WO2014121579A1 - 高效节能的立式低温储罐 - Google Patents

高效节能的立式低温储罐 Download PDF

Info

Publication number
WO2014121579A1
WO2014121579A1 PCT/CN2013/078852 CN2013078852W WO2014121579A1 WO 2014121579 A1 WO2014121579 A1 WO 2014121579A1 CN 2013078852 W CN2013078852 W CN 2013078852W WO 2014121579 A1 WO2014121579 A1 WO 2014121579A1
Authority
WO
WIPO (PCT)
Prior art keywords
pipe
storage tank
return
cryogenic storage
siphon
Prior art date
Application number
PCT/CN2013/078852
Other languages
English (en)
French (fr)
Inventor
翟兰惠
王红霞
董明会
潘晓娥
Original Assignee
石家庄安瑞科气体机械有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 石家庄安瑞科气体机械有限公司 filed Critical 石家庄安瑞科气体机械有限公司
Priority to US14/443,465 priority Critical patent/US9638373B2/en
Publication of WO2014121579A1 publication Critical patent/WO2014121579A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C3/00Vessels not under pressure
    • F17C3/02Vessels not under pressure with provision for thermal insulation
    • F17C3/08Vessels not under pressure with provision for thermal insulation by vacuum spaces, e.g. Dewar flask
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C13/00Details of vessels or of the filling or discharging of vessels
    • F17C13/001Thermal insulation specially adapted for cryogenic vessels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/01Shape
    • F17C2201/0104Shape cylindrical
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/03Orientation
    • F17C2201/032Orientation with substantially vertical main axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/05Size
    • F17C2201/054Size medium (>1 m3)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/01Reinforcing or suspension means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/01Reinforcing or suspension means
    • F17C2203/014Suspension means
    • F17C2203/016Cords
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/03Thermal insulations
    • F17C2203/0391Thermal insulations by vacuum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0602Wall structures; Special features thereof
    • F17C2203/0612Wall structures
    • F17C2203/0626Multiple walls
    • F17C2203/0629Two walls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/01Mounting arrangements
    • F17C2205/0153Details of mounting arrangements
    • F17C2205/018Supporting feet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/01Pure fluids
    • F17C2221/011Oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/01Pure fluids
    • F17C2221/014Nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/03Mixtures
    • F17C2221/032Hydrocarbons
    • F17C2221/033Methane, e.g. natural gas, CNG, LNG, GNL, GNC, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0146Two-phase
    • F17C2223/0153Liquefied gas, e.g. LPG, GPL
    • F17C2223/0161Liquefied gas, e.g. LPG, GPL cryogenic, e.g. LNG, GNL, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/03Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
    • F17C2223/033Small pressure, e.g. for liquefied gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0337Heat exchange with the fluid by cooling
    • F17C2227/0339Heat exchange with the fluid by cooling using the same fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0367Localisation of heat exchange
    • F17C2227/0369Localisation of heat exchange in or on a vessel
    • F17C2227/0374Localisation of heat exchange in or on a vessel in the liquid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2260/00Purposes of gas storage and gas handling
    • F17C2260/02Improving properties related to fluid or fluid transfer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2260/00Purposes of gas storage and gas handling
    • F17C2260/03Dealing with losses
    • F17C2260/031Dealing with losses due to heat transfer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0134Applications for fluid transport or storage placed above the ground
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/05Applications for industrial use

Definitions

  • the utility model belongs to the field of storage and use of cryogenic liquids, and particularly relates to an efficient and energy-saving vertical cryogenic storage tank for storing liquefied natural gas.
  • a cryogenic storage tank is a cryogenic vessel for storing products such as liquefied natural gas (LNG), liquid nitrogen, liquid oxygen, etc., which generally consists of a casing and an inner container, and a vacuum insulation interlayer is provided between the outer casing and the inner container.
  • LNG liquefied natural gas
  • a sling is provided between the outer casing and the inner container.
  • the full tank evaporation rate of cryogenic storage tanks is generally 0.02% ⁇ 0.08% per day.
  • the load on the book and refrigeration systems is increased and the start-up is frequent, resulting in increased energy consumption.
  • the main factor affecting the evaporation rate is the setting of the sling structure, which is also an important factor in the loss of the cooling capacity.
  • the LNG in the cryogenic storage tank enters the external pump body through the liquid outlet pipe provided on the tank body, and if the pressure of the saturated liquid decreases or the temperature rises before the LNG enters the pump body, the liquid reaches supersaturation and overflows the bubble. As the liquid flows from the low pressure side of the pump to the high pressure side, the bubble rapidly condenses or ruptures under the action of high pressure. At this time, the pump cavitation occurs, the pump cannot operate normally, and the use cost and energy consumption are increased.
  • the technical problem to be solved by the utility model is to provide a high-efficiency and energy-saving vertical cryogenic storage tank.
  • a saturation adjustment mechanism at the inlet port of the return air pipe, the gasification gas generated at the pump body is fully utilized, Moreover, the function of adjusting the saturation of LNG in the storage tank is realized, the energy loss is reduced, the interface setting of the storage tank is simplified, the efficiency of the saturation adjustment is improved, and the cavitation of the pump is avoided.
  • An energy-efficient vertical cryogenic storage tank comprising a tank having a vacuum insulation sandwich, and a bag positioned on the tank
  • the conveying device of the return air pipe and the liquid outlet pipe, and the positioning device of the leg disposed at the bottom end of the tank body, the structure further comprises a built-in heat exchanger and a return air dispersing device connected to the inlet port of the return air pipe Adjust the saturation mechanism.
  • the heat exchanger has a spiral disk shape, and the radius of curvature is increased along the radial direction and the axial direction to form an inverted vertebral structure.
  • the gas returning and dispersing device comprises a dispersing tube and a shunt tube joint to form a central radial tube network structure, and is positioned on the inner wall of the tank, wherein the dispersing tube body is uniformly distributed with air holes and the air outlet direction is vertically downward. .
  • a siphon bag is disposed at a bottom end of the tank body, and a conveying device including a return pipe and a liquid outlet pipe is disposed in the siphon bag, and an air inlet of the air return pipe and a liquid outlet of the liquid outlet pipe are respectively disposed on an outer wall of the siphon bag
  • the vacuum insulation layer provided by the siphon bag is connected to the interlayer of the tank body.
  • the thermal insulation chamber adopts a vacuum insulation sandwich structure
  • the liquid outlet of the siphon bag is connected to the submerged liquid in the thermal insulation warehouse by the heat insulating pipe.
  • the return air pipe drawn from the submerged pump device is connected to the air return port on the siphon bag by means of a coil disposed between the siphon bag and the heat insulating chamber.
  • the gasification gas generated at the pump body flows into the cryogenic liquid in the tank body through the return gas pipe and the saturation mechanism, and the gasification gas having a higher temperature increases the saturation of the low temperature liquid, such that The saturated vapor pressure of the cryogenic liquid flowing out from the discharge pipe is high, avoiding cavitation at the pump body, and fully recovering and utilizing the gasification gas generated at the pump body.
  • a saturation adjusting device is arranged at the outlet end of the return air pipe to realize the recycling of the liquefied natural gas, thereby reducing the waste of LNG, thereby reducing energy consumption; 2)
  • the saturation device increases the saturated vapor pressure of the LNG, thus avoiding the pump cavitation to the greatest extent, reducing the cost and energy consumption; especially the saturation adjustment device adopts a row with a radial type and a vent hole.
  • the trachea improves the efficiency of the saturation adjustment;
  • the use of a twisted sling increases the strength of the tank on the one hand and reduces the cold on the other hand compared to the sling of the prior art.
  • the utility model is designed with an insulated thermal storage compartment with a vacuum insulation interlayer, and the low temperature liquid flowing out from the liquid discharge pipe enters the thermal insulation chamber directly through the heat insulating tube, thereby ensuring good insulation of the low temperature liquid and ensuring the inlet of the pump body.
  • the cryogenic liquid is in a supercooled state, further avoiding cavitation caused by the pump body to damage the pump body and reducing economic loss.
  • FIG. 1 is a partial cross-sectional structural view of a first embodiment of the present invention
  • Figure 2 is a schematic enlarged view of A of Figure 1;
  • Figure 3 is a cross-sectional structural view showing a second embodiment of the present invention.
  • Figure 4 is a top plan view of the saturation adjusting device of Figure 3;
  • Figure 5 is a partial cross-sectional structural view showing a third embodiment; Among them, 1, tank, 1-1, outer casing, 1-2, inner container, 2, twisted sling, 5, outrigger, 6, siphon bag, 7, insulation package, 8, heat exchanger, 9, dispersion Tube, 10, outlet pipe, 11, insulated pipe, 12, coil, 13, maintenance door, 14, return pipe.
  • a first embodiment of a vertical cryogenic storage tank of the present invention includes a tank body 1 having a vacuum insulation sandwich, and a return air pipe 14 and a discharge pipe positioned on the tank body 1.
  • the transmission device of 10 10, the positioning device of the leg 5 provided at the bottom end of the can body 1, the heat exchanger 8 connected to the inlet port of the air return pipe 14, and the built-in saturation adjustment mechanism composed of the return air dispersion device.
  • the return air dispersing device is composed of a centrally radiating pipe network structure composed of a dispersing pipe 9 and a diverting pipe joint, and is positioned on the inner wall of the tank, and the dispersing pipe body is uniformly distributed with the air holes and the air outlet direction is vertically downward.
  • the heat exchanger 8 is a linear type having an arc connection. The specific structure of the heat exchanger 8 and the dispersion pipe 9 can be seen in Figs. 3 and 4. Book
  • the structure of the can body 1 includes a housing 1-1, an inner container 1-2, and a vacuum insulation interlayer disposed between the outer casing 1-1 and the inner container 1-2, in the outer casing 1-1 and the inner container
  • the axially fixed twisted sling 2 is uniformly distributed along the circumferential direction of the can body 1
  • the twisted sling 2 is symmetrically arranged along the radial symmetry plane of the can body 1 to form a two-way diagonal pull Structure. See Figure 2.
  • the twisted sling 2 is a steel belt twisted by 10 to 30°, and the steel belt is fixed between the inner wall of the outer casing 1-1 and the outer wall of the inner container 1-2 by means of a splint.
  • the cryogenic storage tanks are generally transported in a horizontal manner.
  • the up and down of the transport and the start and brake will cause the inner container 1-2 to form up and down vibrations in the outer casing 1-1, and the front and rear movement, and the twisted sling 2 - aspect can play the role of shock absorption in the up and down direction, on the other hand, the shear force generated by the front and rear movements on the sling can be converted into tensile force, thereby enhancing the strength of the can body; the present embodiment adopts 4 to 8 groups Twisted sling 2, the tank can reach the required strength, reducing the number of thermal bridges, thus reducing the loss of cooling.
  • a siphon bag 6 is disposed at the bottom end of the can body 1.
  • the siphon bag 6 is provided with a conveying device including a return pipe 14 and a liquid outlet pipe 10, an air inlet of the air return pipe 14 and a liquid outlet of the liquid outlet pipe 10. They are respectively disposed on the outer wall of the siphon bag 6, and the inside of the siphon bag 6 is a vacuum heat insulating space and communicates with the interlayer of the can body 1.
  • the vacuum insulated siphon bag 6 can avoid the rapid gasification of the LNG in the liquid outlet pipe, resulting in an increase in the pressure in the liquid discharge pipe, so that the LNG in the can body 1 cannot flow smoothly or the external pump body cannot be used normally, and Reduce the loss of cold energy and the waste of LNG.
  • the LNG flowing out of the liquid discharge pipe 10 is connected to the pump body through an external heat insulating pipe to prevent heat from leaking in, which reduces the probability of pump cavitation, reduces the loss of cold energy, and reduces energy consumption.
  • BOG is generated at the pump body. After a section of the pipeline exposed to the air enters the intake port of the return air pipe, the BOG is heated by air, the air pressure is increased, and discharged from the outlet of the return pipe through the heat exchanger 8 from the dispersion pipe 9, In this respect, the saturated vapor pressure in the tank 1 is increased, and on the other hand, the BOG is recycled, and the energy consumption is reduced.
  • the dispersing tube 9 is centered on the axis of the can body 1, and is in the radial direction. Symmetrical distribution, so that the return gas can be discharged into the LNG, and some of the gasification gas is liquefied during the reflux process, and the saturated vapor pressure does not heat up rapidly.
  • the bottom of the tank body 1 is provided with a siphon bag 6 structure of one to three, and the submerged pump and the heat insulating tube, the air return tube and the valve respectively constitute a separate liquefied gas. aisle.
  • the bottom end of the can body 1 is provided with a heat insulating chamber 7 of a submersible pump matched with the siphon bag 6.
  • the heat insulating chamber 7 adopts a vacuum insulation sandwich structure, and the siphon bag 6 is provided.
  • the liquid outlet is connected to the submerged pump device in the heat insulating chamber 7 by means of the heat insulating pipe 11, and the air return pipe drawn from the submerged pump device is connected to the coil 12 between the siphon bag 6 and the heat insulating chamber 7 and the siphon bag.
  • the air return port on the 6 is connected.
  • the siphon bag 6 and the heat insulating chamber 7 adopt a double-wall structure with a vacuum insulation sandwich layer, and have good heat insulation effect.
  • the LNG flowing out from the liquid outlet pipe enters the heat insulation chamber with good heat insulation effect through the siphon bag 6 and the heat insulating pipe 11. , to avoid the leakage of hot books to the greatest extent, and the structure is simple, no need to install additional pumps, and the pump insulation system and other additional facilities can achieve efficient and energy-saving LNG supply, suitable for emergency situations.
  • the gas evaporated from the heat insulating chamber 7 is sufficiently preheated through the coil 12, and then enters the tank 1 through the return air pipe to adjust the saturation.
  • the thermal insulation chamber 7 is provided with an inspection door 13 of a vacuum insulation sandwich structure, and the sandwich structure of the inspection door 13 is connected to the insulated insulation layer by a vacuum insulation pipe and is provided with an independent vacuum connection interface.
  • the pump in the insulated tank 7 needs to be repaired, it is only necessary to open the access door 13 without damaging the vacuum system of the insulated warehouse for maintenance.
  • FIG. 5 is a third embodiment of the present invention, which is different from the second embodiment in that: the heat exchanger 8 is a spiral disk tube, and the coil radius of curvature is along the radial direction and the axis.
  • the hook is enlarged to form an inverted vertebral body structure.
  • the spiral heat exchanger helps to fully dissipate the heat of the gas, which is beneficial to improve the efficiency of the saturation.
  • a vent hole is provided in the spiral heat exchanger 8 which is higher than the inner bottom lm of the can body 1.
  • the utility model achieves the beneficial effects of reducing energy consumption, high efficiency, energy saving, and stable earthquake resistance by adding a saturation adjusting mechanism, a siphon bag, a heat insulating bin or an improved sling structure.

Abstract

一种高效节能的立式低温储罐,包括具有真空绝热夹层的罐体(1),定位在罐体(1)上的包括回气管(14)和出液管(10)的传输装置,以及设置在罐体(1)底端的支腿(5)的定位装置,还包括在回气管的入罐端口连通着的热交换器(8)和回气分散装置(9)组成的内置式调饱和机构。通过在回气管的入罐端口设置调饱和机构,充分利用了在泵体处产生的气化气,而且实现了储罐内的LNG调饱和的功能,降低了能量损失,简化了储罐的接口设置,提高了调饱和的效率,避免了泵气蚀。

Description

高效节能的立式低温储罐 技术领域
[0001] 本实用新型属于深冷液体的储存和使用领域, 具体涉及一种储存液化天然气的高 效节能立式低温储罐。
背景技术
[0002] 低温储罐是用于存放液化天然气 (LNG)、 液氮、 液氧等产品的深冷容器, 其一般由 外壳、 内容器构成, 在外壳与内容器之间设有真空绝热夹层, 为了保持强度和内容器的稳 定, 在外壳和内容器之间设有吊带。 说
[0003] 低温储罐每天的满罐蒸发率一般在 0.02%~0.08%, 储罐的保温措施越好, 冷量损失越 低, 蒸发率就越小; 当蒸发率较高时, 蒸发气压缩书机和制冷系统负荷加大, 启动频繁, 导致 能耗增高。 影响蒸发率的主要因素除了真空绝热夹层的效果外, 吊带结构的设置也是冷量损 失的一个重要因素。
[0004] 低温储罐中的 LNG通过罐体上设置的出液管进入外部的泵体, 在 LNG进入泵体之 前、 如果饱和液体压力降低或者温度升高, 则液体达到过饱和而溢出气泡, 随同液体从泵的 低压侧流向高压侧, 气泡在高压作用下, 迅速凝结或破裂, 此时就会发生泵气蚀, 泵不能正 常运转, 增加了使用成本和能耗。 即当出液管与泵体之间有较多热量漏入时, LNG 的温度 升高、 在进入泵体之前发生闪蒸, 结果一方面加剧了泵气蚀, 另一方面也造成冷量损失, 若 由液态天然气气化后形成的气体 (Boil off Gas, 简写 BOG) 不能有效回收, 会进一步增加 能量的浪费。
[0005] 另外, 在 LNG使用过程中, 需要向 LNG储罐内输送来自 LNG调饱和汽化器的气 体, 以促进罐内液体的翻滚, 从而达到所需的饱和温度, 现有技术中 LNG储罐中的液体倒 灌至管道中, 使管道长期积液, 导致 BOG增多而放散, 造成 LNG的大量浪费。
发明内容
[0006] 本实用新型要解决的技术问题是提供一种高效节能的立式低温储罐, 通过在回气管 的入罐端口设置调饱和机构, 充分利用了在泵体处产生的气化气、 而且实现了储罐内的 LNG调饱和的功能, 降低了能量损失、 简化了储罐的接口设置、 提高了调饱和的效率、 避 免了泵气蚀。
[0007] 为了解决上述技术问题, 本实用新型采取的技术方案是:
一种高效节能的立式低温储罐, 其结构中包括具有真空绝热夹层的罐体、 定位在罐体上的包 括回气管和出液管的传输装置、 以及设置在罐体底端的支腿的定位装置, 结构中还包括在回 气管的入罐端口连通着的热交换器和回气分散装置组成的内置式调饱和机构。
[0008] 所述热交换器为螺旋盘管状、 且曲率半径沿着径向和轴向均勾加大形成倒椎体结 构。
[0009] 优选的, 所述回气分散装置由分散管、 分流管接头组成中心放射状的管网结构, 定 位在罐体内壁上, 所述分散管体上均布气孔、 气孔出气方向垂直向下。
[0010] 在罐体的底端设置有虹吸包, 虹吸包内设置包括回气管和出液管的传输装置, 回气 管的进气口和出液管的出液口分别设置在虹吸包的外壁上, 虹吸包设有的真空绝热夹层、 与 罐体的夹层连通。 说
[0011] 在罐体的底端设置有与虹吸包配套的潜液泵绝热仓, 绝热仓采用真空绝热夹层的结 构, 虹吸包上的出液口借助绝热管道连接在绝热仓书中的潜液泵装置上, 潜液泵装置中引出的 回气管借助设置在虹吸包和绝热仓之间的盘管、 与虹吸包上的回气口连接。
[0012] 上述技术方案中, 将在泵体处产生的气化气通过回气管和调饱和机构流向罐体内的 低温液体中, 温度较高的气化气增大了低温液体的饱和度, 这样从出液管流出的低温液体饱 和蒸汽压较高, 避免在泵体处发生气蚀, 而且充分回收、 利用了泵体处产生的气化气。
[0013] 采用上述技术方案产生的有益效果在于: (1 ) 在回气管的出口端设置了调饱和装 置, 使液化天然气实现了循环利用, 减少了 LNG 的挥发浪费、 从而降低了能耗; (2) 调饱 和装置增大了液化天然气的饱和蒸汽压, 从而最大程度上避免了泵气蚀, 降低了成本和能 耗; 尤其是调饱和装置采用设有放射型、 设有排气孔的排气管, 提高了调饱和的效率; (3 ) 在进一步的改进中, 采用麻花状的吊带, 一方面增加了罐体的强度, 另一方面与现有技术中 的吊带相比、 降低了冷量损失; (4 ) 本实用新型设计了具有真空绝热夹层的绝热仓, 从出液 管中流出的低温液体经绝热管直接进入的绝热仓中, 保证了低温液体的良好绝缘, 确保泵体 入口的深冷液体处于过冷状态, 进一步避免泵体启动时产生气蚀而损坏泵体, 降低了经济损 失。
附图说明
[0014] 图 1是本实用新型的第一实施方式的局部剖视结构示意图;
图 2是图 1中 A的放大结构示意图;
图 3是本实用新型的第二实施方式的剖视结构示意图;
图 4是图 3中调饱和装置的俯视结构示意图;
图 5是第三实施方式的局部剖视结构示意图; 其中, 1、 罐体, 1-1、 外壳, 1-2、 内容器, 2、 麻花状吊带, 5、 支腿, 6、 虹吸包, 7、 绝 热包, 8、 热交换器, 9、 分散管, 10、 出液管, 11、 绝热管道, 12、 盘管, 13、 检修门, 14、 回气管。
具体实施方式
[0015] 参见图 1, 是本实用新型立式低温储罐的第一实施方式, 其结构中包括具有真空绝热 夹层的罐体 1、 定位在罐体 1上的包括回气管 14和出液管 10的传输装置、 以及设置在罐体 1底端的支腿 5 的定位装置, 在回气管 14的入罐端口连通着的热交换器 8和回气分散装置 组成的内置式调饱和机构。 所述回气分散装置由分散管 9、 分流管接头组成的中心放射状的 管网结构, 定位在罐体内壁上, 分散管体说上均布气孔、 气孔出气方向垂直向下。 本实施方式 中, 所述热交换器 8为带有弧形连接的直线型。 热交换器 8和分散管 9的具体结构可以参见 图 3和图 4中。 书
[0016] 所述罐体 1的结构中包括外壳 1-1、 内容器 1-2以及设置在外壳 1-1与内容器 1-2之 间的真空绝热夹层, 在外壳 1-1与内容器 1-2之间的夹层中、 沿罐体 1 的圆周方向均布轴向 固定的麻花状吊带 2, 所述麻花状吊带 2沿罐体 1 的径向对称面对称设置、 形成双向斜拉式 结构。 参见图 2。 麻花状吊带 2采用扭转 10~30° 的钢带, 将钢带借助夹板固定在外壳 1-1 的内壁与内容器 1-2 的外壁之间。 低温储罐一般采用卧式的方式运输, 在运输过程中, 运输 工具的上下颠簸以及启动和刹车会导致内容器 1-2 在外壳 1-1 内形成上下震动、 和前后运 动, 而麻花状吊带 2—方面在上下方向可以起到减震的作用, 另一方面可以将前后运动对吊 带产生的剪切力转化成拉伸力, 从而增强了罐体的强度; 本实施方式采用 4~8组麻花状吊带 2, 罐体即可达到标准要求的强度, 减少了热桥的数量, 从而降低了冷量损失。
[0017] 在罐体 1的底端设置有虹吸包 6, 虹吸包 6内设置包括回气管 14和出液管 10的传输 装置, 回气管 14的进气口和出液管 10的出液口分别设置在虹吸包 6的外壁上, 虹吸包 6内 为真空绝热空间、 与罐体 1 的夹层连通。 采用真空绝热的虹吸包 6可以避免出液管中 LNG 迅速气化、 导致出液管中的压力增大, 从而导致罐体 1 内的 LNG不能顺利流出或者外部的 泵体不能正常使用, 而且能够降低冷能量的损失和 LNG的浪费。
[0018] 从出液管 10 中流出的 LNG经外部的绝热管与泵体连接, 防止热量漏入, 降低了泵 气蚀的概率、 减少了冷能量的损失, 降低了能耗。 在泵体处产生 BOG 经过一段在暴露于空 气中的管路进入回气管的进气口, BOG 经过空气升温、 气压增大、 从回流管的出口经热交 换器 8从分散管 9排放, 一方面增大了罐体 1 内的饱和蒸汽压、 另一方面将 BOG得到了回 收利用, 降低了能源消耗。 参见图 3, 所述分散管 9以罐体 1 的轴线为中心, 沿径向方向呈 对称分布, 这样回流气可均勾地排放至 LNG 中, 部分气化气在回流过程中被液化, 饱和蒸 汽压不会迅速升温。
[0019] 作为其他实施方式, 在罐体 1 的底端设置有虹吸包 6 结构为一个到三个, 与配套的 潜液泵及绝热管、 回气管、 阀门分别组成独立的液化气体的分灌通道。
[0020] 第二实施方式
参见图 3, 与第一实施方式不同的是: 在罐体 1 的底端设置有与虹吸包 6配套的潜液泵的绝 热仓 7, 绝热仓 7采用真空绝热夹层的结构, 虹吸包 6上的出液口借助绝热管道 11连接在 绝热仓 7中的潜液泵装置上, 潜液泵装置中引出的回气管借助设置在虹吸包 6和绝热仓 7之 间的盘管 12、 与虹吸包 6上的回气口连说接。 所述虹吸包 6和绝热仓 7采用真空绝热夹层的 双壁结构, 具有良好的绝热效果, 因此, 从出液管中流出的 LNG经虹吸包 6和绝热管道 11 进入绝热效果好的绝热仓内, 最大程度上避免了热书量漏入, 而且结构简单、 不需要另外设置 泵、 以及泵的绝热系统等附加设施即可实现高效节能的 LNG供应, 适用于应急的场合。 从 绝热仓 7中蒸发的气体经过盘管 12的充分预热后, 经回气管进入罐体 1 内, 起到调饱和的 作用。
[0021] 所述绝热仓 7上设有真空绝热夹层结构的检修门 13、 所述检修门 13的夹层结构借助 真空绝热管道与绝热仓 7密封绝热夹层连通、 并配置独立的抽真空接口。 当绝热仓 7内泵需 要维修时, 只需打开检修门 13即可, 不会破坏绝热仓的真空系统, 便于维修。
[0022] 图 5 是本实用新型的第三实施方式, 与第二实施方式不同的是: 所述热交换器 8 热 交换器 8为螺旋盘管状、 盘管曲率半径沿着径向和轴向均勾加大形成倒椎体结构。 螺旋型热 交换器有助于充分回流气体的充分散热, 有利于提高调饱和的效率。
[0023] 在其他实施例中, 在高于罐体 1内底 lm以上的螺旋型的热交换器 8上设有排气孔。
[0024] 综上所述, 本实用新型通过增加调饱和机构、 虹吸包、 绝热仓或者改进吊带结构, 实现了降低能耗、 高效节能、 稳定抗震的有益效果。

Claims

权 利 要 求 书
1. 一种高效节能的立式低温储罐, 其结构中包括具有真空绝热夹层的罐体 (1)、 定位在罐 体 (1) 上的包括回气管 (14) 和出液管 (10) 的传输装置、 以及设置在罐体 (1) 底端的支 腿 (5) 的定位装置, 其特征在于结构中包括在回气管 (14) 的入罐端口连通着的热交换器
(8) 和回气分散装置组成的内置式调饱和机构。
2. 根据权利要求 1 所述的高效节能的立式低温储罐, 其特征在于所述热交换器 (8) 为螺旋 盘管状、 且曲率半径沿着径向和轴向均勾加大形成倒椎体结构。
3. 根据权利要求 1 所述的高效节能的立式低温储罐, 其特征在于所述回气分散装置由分散 管 (9)、 分流管接头组成中心放射状的管网结构, 定位在罐体内壁上, 所述分散管 (9) 的 管体上均布气孔、 气孔出气方向垂直向下。
4. 根据权利要求 2所述的高效节能的立式低温储罐, 其特征在于在高于罐体 (1) 内罐底部 lm以上的热交换器 (8) 上的设有排气孔。
5. 根据权利要求 3 所述的高效节能的立式低温储罐, 其特征在于在罐体 (1) 的底端设置有 虹吸包 (6), 虹吸包 (6) 内设置包括回气管 (14) 和出液管 (10) 的传输装置, 回气管
(14) 的进气口和出液管 (10) 的出液口分别设置在虹吸包 (6) 的外壁上, 虹吸包 (6) 设 有的真空绝热夹层、 与罐体 (1) 的夹层连通。
6. 根据权利要求 5 所述的高效节能的立式低温储罐, 其特征在于在罐体 (1) 的底端设置有 一个到三个虹吸包 (6), 与配套的潜液泵及绝热管、 回气管、 阀门分别组成独立的液化气体 分灌通道。
7. 根据权利要求 5 所述的高效节能的立式低温储罐, 其特征在于在罐体 (1) 的底端设置有 与虹吸包 (6) 配套的潜液泵绝热仓 (7), 绝热仓 (7) 采用真空绝热夹层的结构, 虹吸包
(6) 上的出液口借助绝热管道 (11) 连接在绝热仓 (7) 中的潜液泵装置上, 潜液泵装置中 引出的回气管借助设置在虹吸包 (6) 和绝热仓 (7) 之间的盘管 (12)、 与虹吸包 (6) 上的 回气口连接。
8. 根据权利要求 7所述的高效节能的立式低温储罐, 其特征在于所述绝热仓 (7) 上设有真 空绝热夹层结构的检修门 (13)、 所述检修门 (13) 的夹层结构借助真空绝热管道与绝热仓
(7) 密封绝热夹层连通、 并配置独立的抽真空接口。
9. 根据权利要求 1 所述的高效节能的立式低温储罐, 其特征在于所述罐体 (1) 的结构中包 括外壳 (1-1)、 内容器 (1-2) 以及设置在外壳 (1-1) 与内容器 (1-2) 之间的真空绝热夹 层, 在外壳 (1-1) 与内容器 (1-2) 之间的夹层中、 沿罐体 (1) 的圆周方向均布轴向固定 的麻花状吊带 (2), 所述麻花状吊带 (2) 沿罐体 (1) 的径向对称面对称设置、 形成双向斜 权 利 要 求 书 拉式结构。
PCT/CN2013/078852 2013-02-05 2013-07-05 高效节能的立式低温储罐 WO2014121579A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/443,465 US9638373B2 (en) 2013-02-05 2013-07-05 Energy efficient vertical cryogenic tank

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2013200658854U CN203082526U (zh) 2013-02-05 2013-02-05 高效节能的立式低温储罐
CN201320065885.4 2013-02-05

Publications (1)

Publication Number Publication Date
WO2014121579A1 true WO2014121579A1 (zh) 2014-08-14

Family

ID=48828364

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/078852 WO2014121579A1 (zh) 2013-02-05 2013-07-05 高效节能的立式低温储罐

Country Status (3)

Country Link
US (1) US9638373B2 (zh)
CN (1) CN203082526U (zh)
WO (1) WO2014121579A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109827065A (zh) * 2019-03-04 2019-05-31 张家港市科华化工装备制造有限公司 低温液体储罐
US11029085B2 (en) * 2015-03-20 2021-06-08 Chiyoda Corporation BOG processing apparatus

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203533190U (zh) * 2013-10-23 2014-04-09 石家庄安瑞科气体机械有限公司 一种lng加注站用罐泵一体式结构
CN103807595A (zh) * 2014-02-19 2014-05-21 中船圣汇装备有限公司 一种低温储罐及真空潜液泵系统
DE102014207300B4 (de) * 2014-04-16 2021-07-29 Bayerische Motoren Werke Aktiengesellschaft Verfahren zur Herstellung eines Tanks, insbesondere eines Kraftfahrzeugtanks
CN107002945B (zh) * 2014-12-16 2019-09-10 瓦锡兰芬兰有限公司 Lng储罐和船只
US10787303B2 (en) 2016-05-29 2020-09-29 Cellulose Material Solutions, LLC Packaging insulation products and methods of making and using same
US11078007B2 (en) 2016-06-27 2021-08-03 Cellulose Material Solutions, LLC Thermoplastic packaging insulation products and methods of making and using same
AU2021368733A1 (en) * 2020-10-30 2023-06-08 Universal Hydrogen Co. Systems and methods for storing liquid hydrogen

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000266292A (ja) * 1999-03-17 2000-09-26 Nippon Sanso Corp 低温液化ガス輸送用断熱貯槽装置
JP2003214598A (ja) * 2002-01-23 2003-07-30 Mitsubishi Heavy Ind Ltd 極低温液体タンク
CN201391741Y (zh) * 2009-04-14 2010-01-27 海南海然高新能源有限公司 调温调压的液化天然气加液罐
CN202327629U (zh) * 2011-11-18 2012-07-11 查特深冷工程系统(常州)有限公司 深冷虹吸罐系统
CN102606883A (zh) * 2012-03-18 2012-07-25 沈军 液态天然气加气站
CN202521218U (zh) * 2012-03-12 2012-11-07 四川金科深冷设备工程有限公司 用于lng汽车加气站的低温储罐
CN202812790U (zh) * 2012-09-19 2013-03-20 石家庄安瑞科气体机械有限公司 一种低温液化气体储罐中用的调饱和装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5046331A (en) * 1989-07-25 1991-09-10 Russell A Division Of Ardco, Inc. Evaporative condenser
US8602250B2 (en) * 2009-05-04 2013-12-10 GM Global Technology Operations LLC Storage vessel and method of forming
EP2453160A3 (en) * 2010-08-25 2014-01-15 Chart Industries, Inc. Bulk liquid cooling and pressurized dispensing system and method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000266292A (ja) * 1999-03-17 2000-09-26 Nippon Sanso Corp 低温液化ガス輸送用断熱貯槽装置
JP2003214598A (ja) * 2002-01-23 2003-07-30 Mitsubishi Heavy Ind Ltd 極低温液体タンク
CN201391741Y (zh) * 2009-04-14 2010-01-27 海南海然高新能源有限公司 调温调压的液化天然气加液罐
CN202327629U (zh) * 2011-11-18 2012-07-11 查特深冷工程系统(常州)有限公司 深冷虹吸罐系统
CN202521218U (zh) * 2012-03-12 2012-11-07 四川金科深冷设备工程有限公司 用于lng汽车加气站的低温储罐
CN102606883A (zh) * 2012-03-18 2012-07-25 沈军 液态天然气加气站
CN202812790U (zh) * 2012-09-19 2013-03-20 石家庄安瑞科气体机械有限公司 一种低温液化气体储罐中用的调饱和装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11029085B2 (en) * 2015-03-20 2021-06-08 Chiyoda Corporation BOG processing apparatus
CN109827065A (zh) * 2019-03-04 2019-05-31 张家港市科华化工装备制造有限公司 低温液体储罐

Also Published As

Publication number Publication date
US20150330576A1 (en) 2015-11-19
CN203082526U (zh) 2013-07-24
US9638373B2 (en) 2017-05-02

Similar Documents

Publication Publication Date Title
WO2014121579A1 (zh) 高效节能的立式低温储罐
CN104006295B (zh) 一种低温液化气体的置换式压力输送方法的设备
CN109630876A (zh) 一种深冷高压储氢供氢装置
CN106628696A (zh) 白酒储存控制挥发系统
CN208058421U (zh) 氢气压缩液化耦合的变负荷系统
CN109916135A (zh) 一种用于小型气体液化装置的无泵循环方法
CN209991208U (zh) 一种低温冷量回收装置
CN205173973U (zh) 一种空气能低温液化气体无泵加注系统
CN207034619U (zh) 一种将bog气体再冷凝的大型常压平底lng储罐
CN205447258U (zh) 一体式太阳能热泵液化石油气气化器
CN214535663U (zh) 节能型氢气加注系统
CN209196539U (zh) 一种接收站用lng储存设备
CN206384397U (zh) 白酒储存控制挥发系统
CN208935815U (zh) 一种丙烯球罐的汽化稳压系统
CN207635612U (zh) 一种环保节能热水机组
CN106288655A (zh) 利用液氮贮罐排空低温氮气作冷源的空气预冷装置
CN208817081U (zh) 一种用于立式低温液体储槽的绝热装置
CN207795424U (zh) 车辆及其天然气供气系统
CN202133299U (zh) 一种多冷源循环凉水塔
CN206131843U (zh) 一种工作可靠的氮气回收系统
CN110966815A (zh) Lng的高效蓄冷装置
CN205372075U (zh) 一种有效降低蒸发率的真空绝热深冷压力容器
CN218762676U (zh) 一种超低温液体储存容器用冷屏装置
CN104751909A (zh) 核电站容器加压蓄能系统
CN216481780U (zh) 一种液氧低温利用水循环节能系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13874625

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14443465

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13874625

Country of ref document: EP

Kind code of ref document: A1