WO2014121561A1 - 像素结构及其制作方法 - Google Patents

像素结构及其制作方法 Download PDF

Info

Publication number
WO2014121561A1
WO2014121561A1 PCT/CN2013/074795 CN2013074795W WO2014121561A1 WO 2014121561 A1 WO2014121561 A1 WO 2014121561A1 CN 2013074795 W CN2013074795 W CN 2013074795W WO 2014121561 A1 WO2014121561 A1 WO 2014121561A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
organic light
light
organic
pixel structure
Prior art date
Application number
PCT/CN2013/074795
Other languages
English (en)
French (fr)
Inventor
成军
陈海晶
王东方
孔祥永
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US14/342,133 priority Critical patent/US10062868B2/en
Publication of WO2014121561A1 publication Critical patent/WO2014121561A1/zh

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/38Devices specially adapted for multicolour light emission comprising colour filters or colour changing media [CCM]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/82Cathodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/858Arrangements for extracting light from the devices comprising refractive means, e.g. lenses
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/123Connection of the pixel electrodes to the thin film transistors [TFT]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/124Insulating layers formed between TFT elements and OLED elements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/1201Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/122Pixel-defining structures or layers, e.g. banks

Definitions

  • Embodiments of the present invention relate to a pixel structure and a method of fabricating the same. Background technique
  • the organic light emitting display is a novel display device. Compared with the liquid crystal display, the organic light emitting display has the advantages of self-illumination, fast response speed and wide viewing angle, and can be flexibly displayed, transparently displayed, and displayed in 3D, thereby achieving rapid development. With popularity. There are many ways to achieve color display in organic light-emitting displays, such as RGB (red, green and blue) full-color OLED (organic light-emitting diode), WOLED-CF (white OLED and red, green, blue, white and four color filters).
  • RGB red, green and blue
  • OLED-CF white OLED and red, green, blue, white and four color filters
  • WOLED-COA white OLED and color filter array
  • each pixel structure in the plurality of pixel structures included in the OLED display includes an OLED layer and a color thin film layer, wherein the OLED layer is used to generate White light, a color film layer is used to convert white light produced by the OLED layer into colored light. Since the white light emitted from the OLED layer is directed in various directions, the intensity of the colored light formed by the white light emitted from the OLED layer after passing through the color thin film layer is relatively small, resulting in low display brightness of the organic light emitting display.
  • a pixel structure and a method for fabricating the same according to embodiments of the present invention can improve display brightness of an organic light emitting display.
  • a pixel structure provided by the embodiment of the present invention includes: a substrate; an organic light emitting layer disposed on the substrate; and an organic light collecting layer disposed on a light emitting side of the organic light emitting layer, wherein the organic light emitting layer is emitted Light is incident thereon and used to collect light generated by the organic light-emitting layer
  • a method for fabricating a pixel structure according to an embodiment of the invention includes: preparing an organic concentrating layer on a substrate, and preparing an organic luminescent layer on the organic concentrating layer; or preparing an organic luminescent layer on the substrate a layer, and an organic concentrating layer is prepared on the organic light-emitting layer.
  • the pixel structure provided by the embodiment of the present invention includes a substrate, an organic light emitting layer disposed on the substrate, and an organic light collecting layer for collecting light generated by the organic light emitting layer, wherein the organic light collecting layer can light the light from the organic light emitting layer.
  • the aggregation causes the intensity of light passing through the organic concentrating layer to be enhanced, thereby increasing the display brightness of the organic light emitting display.
  • FIG. 1 is a cross-sectional structural view of a first pixel structure in accordance with an embodiment of the present invention
  • FIG. 2 is a cross-sectional structural view of a second pixel structure in accordance with an embodiment of the present invention
  • 3A to 3D are projection views of an organic light collecting layer on a substrate according to an embodiment of the present invention. detailed description
  • the pixel structure provided by the embodiment of the invention includes a substrate and an organic light emitting layer disposed on the substrate, and further includes an organic light collecting layer for collecting light generated by the organic light emitting layer, wherein the organic light collecting layer can light the light from the organic light emitting layer
  • the aggregation causes the intensity of light emitted from the organic concentrating layer to be enhanced, thereby improving the display brightness of the organic light emitting display.
  • one pixel structure in the embodiment of the present invention is one pixel unit.
  • the embodiments of the present invention are further described in detail below with reference to the accompanying drawings.
  • the pixel structure provided by the embodiment of the invention includes a substrate and an organic light emitting layer disposed on the substrate, and further includes an organic light collecting layer for collecting light generated by the organic light emitting layer.
  • the material of the organic concentrating layer is a transparent organic material, and the organic material having a transmittance value greater than a certain threshold.
  • the specific threshold can be set as needed, for example, set to 95%.
  • the organic concentrating layer is a transparent organic film, for example, the organic concentrating layer is made of acrylic resin
  • the embodiment of the present invention provides two different types of pixel structures, which are a first pixel structure and a second pixel structure, respectively, according to the positional relationship between the organic light-concentrating layer and the organic light-emitting layer, which will be separately described below.
  • the organic concentrating layer is disposed between the color film layer and the organic luminescent layer, that is, on the light incident side of the color film layer.
  • the first pixel structure provided by the embodiment of the present invention includes a substrate 100, a thin film transistor 101 disposed on the substrate 100, and a first passivation layer 102 disposed on the substrate 100 and partially covering the thin film transistor 101.
  • the transparent electrode layer 106 electrically connected to the thin film transistor 101, the pixel electrode layer 107 disposed on the transparent electrode layer 106, and the OLED layer (ie, the organic light emitting layer) 108 disposed on the pixel electrode layer 107 are disposed on the organic A cathode metal layer 109 on the luminescent layer 108.
  • the thin film transistor 101 includes a gate electrode layer 1011 disposed on the substrate 100, a gate insulating layer 1012 disposed on the substrate 100 and covering the gate electrode layer 1011, and a semiconductor active layer 1013 disposed on the gate insulating layer 1012.
  • the etch stop layer 1014 on the semiconductor active layer 1013 is disposed on the drain electrode 1015a and the source electrode 1015b on both sides of the semiconductor active layer 1013, respectively.
  • the transparent electrode layer 106 is electrically connected to the thin film transistor 101, and specifically includes: the transparent electrode layer 106 is electrically connected to the drain electrode 1015a of the thin film transistor 101 through the first contact hole 110, wherein the first contact hole
  • the first passivation layer 105, the planarization layer 104, the color thin film layer 103, and the first passivation layer 102 are penetrated and connected to the drain electrode 1015a of the thin film transistor 101.
  • the first pixel structure provided by the embodiment of the present invention further includes an organic concentrating layer 111 disposed between the color film layer 103 and the organic luminescent layer 108 for collecting light generated by the organic luminescent layer 108, and The collected light is transmitted to the color film layer 103.
  • the pixel electrode layer 107, the transparent electrode layer 106, the second passivation layer 105, and the planarization layer 104 have light transmissivity, and thus the light generated by the organic light-emitting layer 108
  • the organic light-concentrating layer 111 disposed between the organic light-emitting layer 108 and the color thin film layer 103 is collected, the light from the organic light-emitting layer 108 is collected.
  • the organic light-concentrating layer 111 condenses the scattered light emitted by the organic light-emitting layer 108 and emits light in various directions, the intensity and density of the formed colored light are relatively large, thereby causing the organic light-emitting display.
  • the display brightness is higher.
  • the organic light collecting layer 111 includes at least one first lens unit 112.
  • the organic light collecting layer 111 includes 1 to 10 first lens units 112.
  • the organic concentrating layer 111 includes a first pixel unit 112.
  • the projection of the first pixel structure on the substrate 100 is as shown in FIG. 3A.
  • the organic concentrating layer 111 includes the first pixel structure of the four first lens units 112.
  • the projection on the substrate 100 is as shown in FIG. 3B, wherein the a area in FIGS. 3A and 3B is the projection area of the thin film transistor 101 on the substrate 100, and the b area in FIGS. 3A and 3B is included in the organic light collecting layer 111.
  • the projection area of the first lens unit 112 on the substrate 100 is included in the organic light collecting layer 111.
  • the first lens unit 112 is a convex lens.
  • the first lens unit 112 is a convex lens, and since the organic light-concentrating layer 111 is convex toward the light direction, the organic light-concentrating layer 111 can emit organic light.
  • the dispersed light emitted by the layer 108 in various directions is collected, and the light is refracted at the interface of the organic light collecting layer 111 and the layer adjacent to the light incident side of the organic light collecting layer 111.
  • the shape of the cross section of the first lens unit 112 perpendicular to the planar direction of the substrate 100 is a circular arc shape, that is, the shape of the interface between the first lens unit 112 and the adjacent layer on the light incident side thereof is a circular arc shape.
  • the shape of the cross section of the first lens unit 112 parallel to the planar direction of the substrate 100 may be set as needed, for example, circular, elliptical or rectangular.
  • the projection of the first pixel structure including the first lens unit 112 on the substrate 100 is as shown in FIGS. 3A and 3B;
  • the projection of the first pixel structure including the first lens unit 112 on the substrate 100 is as shown in FIGS. 3C and 3D.
  • the long radius of the cross section of the first lens unit 112 parallel to the planar direction of the substrate 100 is parallel or perpendicular to the pixel
  • the long side of the structure in the case where the cross section of the first lens unit 112 parallel to the planar direction of the substrate 100 is a rectangle, the first lens unit 112 is parallel to the plane of the substrate 100
  • the long side of the cross section of the direction is parallel or perpendicular to the long side of the pixel structure, wherein the long side of the pixel structure refers to the pixel structure or the longest side of the pixel unit, as shown in FIG. 3A, and the side length AB in FIG. 3A is The long side of the pixel structure.
  • the first lens unit 112 parallel to the plane direction of the substrate 100 when the cross section of the first lens unit 112 parallel to the plane direction of the substrate 100 is circular, the long radius of the circle is parallel to the long side of the pixel structure; as shown in FIG. 3C, the first lens When the cross section of the unit 112 parallel to the planar direction of the substrate 100 is a rectangle, the long side of the rectangle is parallel to the long side of the pixel structure.
  • the organic light collecting layer 111 including the first lens unit 112 has a better light collecting effect.
  • the thickness of the organic concentrating layer 111 can be set as needed, for example,
  • the organic light-concentrating layer 111 has a thickness of 1 ⁇ - 2 ⁇ .
  • the material of the layer on the light incident side of the organic light collecting layer 111 and adjacent to the organic light collecting layer 111 is different from the material of the organic light collecting layer 111.
  • the light refractive index of the layer located on the light incident side of the organic light collecting layer 111 and adjacent to the organic light collecting layer 111 is smaller than the light refractive index of the organic light collecting layer 111.
  • the light refractive index of the layer located on the light incident side of the organic light collecting layer 111 and adjacent to the organic light collecting layer 111 is smaller than the light refractive index of the organic light collecting layer 111, and then in the organic light collecting layer 111.
  • the organic concentrating layer 111 may be disposed at a plurality of locations.
  • the organic concentrating layer 111 may be disposed between the color thin film layer 103 and the planarization layer 104, and the organic concentrating layer 111 may be disposed on the planarization layer 104.
  • the organic light-concentrating layer 111 may be disposed between the second passivation layer 105 and the transparent electrode layer 106, as long as the organic light-concentrating layer 111 can collect light emitted from the organic light-emitting layer 108. The collected light may be directed to the color film layer 103.
  • the organic concentrating layer 111 in the embodiment of the present invention may be one or plural, and the positions of different organic concentrating layers 111 are not limited.
  • the first pixel structure further includes a free transfer layer 113 for directing light from the organic light-emitting layer 108 to various directions, a light-transmissive side of the color film layer 103, and a free transfer layer 113 on the substrate 100.
  • the projection area and the projection area of the organic light collecting layer 111 on the substrate 100 do not overlap.
  • the area c in FIGS. 3A, 3B, 3C, and 3D is a projection area of the free transport layer 113 on the substrate 100.
  • the organic light-emitting layer 111 collects the light emitted from the organic light-emitting layer 108 to enhance the display brightness of the display device
  • the organic concentrating layer 111 is specifically described below with the organic concentrating layer 111 disposed between the color film layer 103 and the planarization layer 104 and the organic concentrating layer 111 having one first lens unit 112 as an example.
  • the implementation of the other embodiments is similar to the implementation of the embodiment of the present invention, and details are not described herein again.
  • the organic concentrating layer 111 is disposed between the color film layer 103 and the planarization layer 104 , and includes a first lens unit 112 .
  • the interface of the first lens unit 112 on the light incident side is perpendicular to the substrate 100 .
  • the cross section in the planar direction is a circular arc shape; in addition, the material of the planarization layer 104 is different from the material of the organic concentrating layer 111, and the refractive index of the planarization layer 104 is smaller than the refractive index of the organic concentrating layer 111, but is flattened.
  • Both the layer 104 and the organic concentrating layer 111 are transparent organic films.
  • the transparent electrode layer 106 electrically connected to the drain electrode 1015a of the thin film transistor 101 provides an anode electrical signal for the organic light-emitting layer 108
  • the cathode metal layer 109 having a non-transmissive property provides a cathode electrical signal for the organic light-emitting layer 108.
  • the white light generated by the organic light-emitting layer 108 passes through the light-transmitting pixel electrode layer 107, the transparent electrode layer 106, the second passivation layer 105, and the planarization layer 104, and is incident on the organic light-concentrating layer 111 and the free-transport layer 113.
  • the organic light-concentrating layer 111 collects the white light generated by the received organic light-emitting layer 108, and the free-transport layer 113 directs the white light generated by the received organic light-emitting layer 108 in various directions.
  • the white light emitted from the organic concentrating layer 111 and the free transport layer 113 passes through the color film layer 103, and is filtered to become colored light.
  • the gate electrode layer 1011 is made of Mo (molybdenum), MoNb (molybdenum-niobium alloy), A1 (aluminum),
  • the gate electrode layer 1011 has a thickness of 100 nm to 3000 nm.
  • the gate insulating layer 1012 is composed of SiO x (oxide of silicon), SiN x (nitride of silicon), HfO x (oxide of germanium), SiON (oxygen oxide of silicon), and A10 x ( In aluminum oxide) One or more formed single or multi-layer composite films.
  • the H (hydrogen) content of the gate insulating layer 1012 is below a certain threshold.
  • the specific threshold can be set as needed, for example, set to 10%.
  • the H content of the gate insulating layer of the thin film transistor in the pixel structure can also be a value known in the art.
  • the gate insulating layer 1012 has a thickness of 1500 to 300 ⁇ .
  • the semiconductor active layer 1013 is made of a-Si (amorphous silicon), P-Si (polysilicon) or an oxide semiconductor.
  • the oxide semiconductor is made of a film containing an element such as In (indium), Ga (gallium), Zn (express), 0 (oxygen), and Sn (tin), wherein the film must contain oxygen. Element and two or more other elements, such as IGZO (Indium Oxide), IZO (Indium Oxide), InSnO (Indium Tin Oxide), InGaSnO (InGaAs).
  • the semiconductor active layer 1013 has a thickness of 10 nm to 100 nm.
  • the etch barrier layer 1014 is a single layer or a multilayer composite film formed of one or more of SiOx, SiNx, HfOx, and AlOx.
  • the H (hydrogen) content of the etch stop layer 1014 is below a certain threshold.
  • the specific threshold can be set as needed, for example, set to 8%.
  • the H content of the etch stop layer of the thin film transistor in the pixel structure of the embodiment of the present invention may also be a commonly used value known in the art.
  • the etch stop layer 1014 has a thickness of 800A to 2000A.
  • the drain electrode 1015a and the source electrode 1015b are made of Mo, MoNb, Al, AlNd,
  • the first passivation layer 102 is a single layer or a multilayer composite film formed of one or more of SiO x , SiN x , HfO x , and A10 x .
  • the first passivation layer 102 is a two-layer composite film composed of SiO x and SiN x .
  • the thickness of SiO x is 2000A to 3000A, and the thickness of SiN x is 20 ⁇ 100 ⁇ .
  • the H content of the first passivation layer 102 is below a certain threshold.
  • the specific threshold can be set as needed, for example, set to 10%.
  • H content of the passivation layer of the pixel structure of the embodiment of the present invention may also be a commonly used value well known in the art.
  • the first passivation layer 102 has better compactness and surface characteristics.
  • the thickness of the planarization layer 104 is 0.2 ⁇ m to 5 ⁇ m, and alternatively, the thickness of the planarization layer 104 is 1 ⁇ m to 2 ⁇ m.
  • the second passivation layer 105 is similar to the first passivation layer 102 except that the thin film transistor 101 protected by the first passivation layer 102 has better performance, and the germanium content of the first passivation layer 102 is required.
  • the germanium content lower than the second passivation layer 105, and the denseness of the first passivation layer 102 are higher than the denseness of the second passivation layer 105.
  • the organic concentrating layer is disposed on the light emitting side of the organic luminescent layer and the color thin film layer, and the organic protective layer is disposed on the light emitting side of the organic concentrating layer.
  • the second pixel structure provided by the embodiment of the present invention includes a substrate 200, a thin film transistor 201 disposed on the substrate 200, and a passivation layer 202 disposed on the substrate 200 and partially covering the thin film transistor 201.
  • a reflective electrode layer 203 on the layer 202 (ie, the reflective electrode layer 203 is disposed on a side of the organic light-emitting layer opposite to the side on which the organic light-concentrating layer is disposed), and is disposed on the reflective electrode layer 203
  • the transparent electrode layer 204 electrically connected to the thin film transistor 201, the pixel electrode layer 205 disposed on the transparent electrode layer 204, and the OLED layer (ie, the organic light emitting layer) 206 disposed on the pixel electrode layer 205 are disposed on the organic light emitting layer.
  • the thin film transistor 201 includes a gate electrode layer 2011 disposed on the substrate 200, a gate insulating layer 2012 disposed on the substrate 200 and covering the gate electrode layer 2011, and a semiconductor active layer 2013 disposed on the gate insulating layer 2012.
  • the etch stop layer 2014 on the semiconductor active layer 2013 is provided on the drain electrode 2015a and the source electrode 2015b on both sides of the semiconductor active layer 2013, respectively.
  • the transparent electrode layer 204 is electrically connected to the thin film transistor 201, and specifically includes: the transparent electrode layer 204 is electrically connected to the drain electrode 2015a of the thin film transistor 201 through the second contact hole 210, wherein the second contact hole The 210 penetrates the reflective electrode layer 203 and the passivation layer 202 and is connected to the drain electrode 2015a of the thin film transistor 201.
  • the transparent electrode layer 204 electrically connected to the drain electrode 2015a of the thin film transistor 201 provides an anodic electrical signal to the organic luminescent layer 206
  • the transmissive cathode metal layer 207 provides a cathode electrical signal for the organic luminescent layer 206.
  • a part of the white light generated by the organic light-emitting layer 206 passes through the light-transmitting pixel electrode layer 205 and The transparent electrode layer 204 is incident on the reflective electrode layer 203, and the reflective electrode layer 203 reflects the received white light.
  • the white light reflected by the reflective electrode layer 203 sequentially passes through the transparent electrode layer 204, the pixel electrode layer 205, and the organic light emitting layer 206.
  • the cathode metal layer 207, the color thin film layer 208 and the organic light collecting layer 209; another portion of the white light generated by the organic light emitting layer 206 passes through the cathode metal layer 207, the color thin film layer 208 and the organic light collecting layer 209 in sequence.
  • the color film layer 208 converts the white light generated by the received organic light-emitting layer 206 into colored light.
  • the organic concentrating layer 209 collects the received colored light.
  • the gate electrode layer 2011, the gate insulating layer 2012, the semiconductor active layer 2013, the etch stop layer 2014, the drain electrode 2015a, the source electrode 2015b, and the passivation layer 202 in the second pixel structure are in the first pixel structure.
  • the gate electrode layer 1011, the gate insulating layer 1012, the semiconductor active layer 1013, the etch stop layer 1014, the drain electrode 1015a, the source electrode 1015b and the passivation layer 102 are similar, and are not described herein again.
  • the reflective electrode layer 203 is formed of a material having a strong reflection effect on light, such as Ag (silver).
  • the second pixel structure provided by the embodiment of the present invention further includes an organic protective layer 211 disposed above the organic concentrating layer 209 for protecting the second pixel structure from being invaded by air, moisture, and the like.
  • the organic protective layer 211 is a transparent organic film having a light transmittance value greater than a set threshold.
  • the set threshold can be set as needed, for example, set to 95%.
  • organic protective layer of the pixel structure of the embodiment of the present invention may also adopt an organic protective layer commonly used in the field.
  • the organic protective layer 211 has a thickness of 0.2 ⁇ m to 5 ⁇ m, and alternatively, the organic protective layer 211 has a thickness of 1 ⁇ m to 2 ⁇ m.
  • the thickness of the organic concentrating layer 209 can be set as needed, for example, set to 0.2 ⁇ m to 5 ⁇ m, and alternatively, the thickness of the organic light-concentrating layer 209 is 1 ⁇ m to 2 ⁇ m.
  • the organic concentrating layer 209 includes at least one second lens unit 212.
  • the organic concentrating layer 209 includes 1 to 10 second lens units 212.
  • the second lens unit 212 is a concave lens.
  • the second lens unit 212 is a concave lens, and since the organic light-concentrating layer 209 is convex toward the light direction, the organic light-concentrating layer 209 can Achieving the emission of the organic light-emitting layer 206 The light in the directional direction is gathered. It is to be noted that since the organic concentrating layer 209 is convex toward the incoming light direction, light is refracted at the interface between the organic concentrating layer 209 and the organic protective layer 211, and light is generated at the organic protective layer 211. Gather.
  • the shape of the cross section of the second lens unit 212 perpendicular to the planar direction of the substrate 200 is a circular arc shape, that is, the interface between the second lens unit 212 and the organic protective layer 211 (adjacent layer on the light exiting side thereof)
  • the shape is a circular arc.
  • the shape of the cross section of the second lens unit 212 parallel to the planar direction of the substrate 200 is circular, elliptical or rectangular.
  • the organic concentrating layer 209 including the second lens unit 212 has a better concentrating effect.
  • the materials of the organic light-concentrating layer 209 and the organic protective layer 211 are different.
  • the refractive index of the organic protective layer 211 is greater than the refractive index of the organic concentrating layer 209.
  • the refractive index of the organic protective layer 211 is larger than the refractive index of the organic concentrating layer 209, and the refracted light at the interface between the organic concentrating layer 209 and the organic protective layer 211 converges. Therefore, the ability of the organic light collecting layer 209 to collect the light emitted from the organic light emitting layer 206 is stronger.
  • the second pixel structure further includes a free transfer layer 213 for directing light from the organic light-emitting layer 206 to various directions, a projection area of the free transfer layer 213 on the substrate 200 and the organic light-concentrating layer 209 on the substrate 200 The projected areas on the top do not overlap.
  • the organic concentrating layer 209 in the second pixel structure is similar to the organic concentrating layer 111 in the first pixel structure, and the repeated portions are not described again.
  • the pixel structure provided by the embodiment of the present invention is capable of collecting light from the organic light-emitting layer because the organic light-concentrating layer is disposed on the light-emitting side of the organic light-emitting layer, thereby enhancing the intensity of light emitted from the organic light-concentrating layer, thereby improving organic The display brightness of the illuminated display.
  • the embodiment of the present invention further provides a method for fabricating the above pixel structure (a first pixel structure and a second pixel structure), including:
  • An organic concentrating layer is prepared on the substrate, and an organic luminescent layer is prepared on the organic concentrating layer; or an organic luminescent layer is prepared on the substrate, and an organic concentrating layer is prepared on the organic luminescent layer.
  • the method of fabricating the pixel structure is also different for different pixel structures, and the first pixel structure and the second pixel structure described in the embodiments will be separately described below.
  • Step 401 preparing a thin film transistor on a substrate, and preparing a first passivation layer covering the thin film transistor on the thin film transistor;
  • Step 402 preparing a color film layer on the first passivation layer
  • Step 403 preparing an organic concentrating layer on the color film layer
  • Step 404 preparing a planarization layer on the organic concentrating layer
  • Step 405 preparing a second passivation layer on the planarization layer
  • Step 406 forming a first contact hole penetrating the second passivation layer, the planarization layer, the organic light concentrating layer, the color thin film layer and the first passivation layer by photolithography, and exposing the drain electrode of the thin film transistor;
  • Step 407 preparing a transparent electrode layer connected to the drain electrode of the thin film transistor through the first contact hole on the second passivation layer;
  • Step 408 preparing a pixel electrode layer on the transparent electrode layer
  • Step 409 preparing an organic light-emitting layer on the pixel electrode layer.
  • step 401 preparing a thin film transistor on a substrate, specifically comprising: preparing a gate electrode layer on the substrate, preparing a gate insulating layer covering the gate electrode layer on the gate electrode layer, preparing on the gate insulating layer A semiconductor activation layer is formed on the semiconductor activation layer, and a drain electrode 1015a and a source electrode 1015b are formed on both sides of the semiconductor activation layer.
  • step 401 preparing a first passivation layer covering the thin film transistor on the thin film transistor, specifically comprising: preparing on the thin film transistor by using a PECVD (plasma enhanced chemical vapor deposition) technique Covering the first passivation layer of the thin film transistor.
  • PECVD plasma enhanced chemical vapor deposition
  • step 403 preparing an organic concentrating layer on the color film layer, specifically comprising depositing an organic film layer having a transmittance greater than a specific threshold on the color film layer; covering the organic film layer with a semi-transparent reticle ;
  • the organic film layer covering the mask is subjected to exposure treatment to obtain an organic concentrating layer.
  • the prepared organic concentrating layer comprises a first lens unit which is a convex lens
  • a mask which gradually decreases in transmittance from edge to center may be used as a mask covering the organic film layer, that is, semi-transparent.
  • the reticle is a gradation mask of light transmittance.
  • preparing a second passivation layer on the planarization layer comprises: preparing a second passivation layer on the planarization layer by using a PECVD technique.
  • the method further includes: preparing a cathode metal layer on the organic light emitting layer.
  • the organic concentrating layer may be located at multiple locations.
  • the organic concentrating layer 111 may be located between the color thin film layer 103 and the planarization layer 104, and may be located between the planarization layer 104 and the second passivation layer 105. Between the second passivation layer 105 and the transparent electrode layer 106, the embodiment in which the organic concentrating layer is located at different positions is similar to the embodiment of the embodiment of the present invention, but is different for the organic concentrating layer. Position, the order in which the layers of the first pixel structure are made is different.
  • Step 501 preparing a thin film transistor on a substrate, and preparing a passivation layer covering the thin film transistor on the thin film transistor;
  • Step 502 preparing a reflective electrode layer on the passivation layer
  • Step 503 forming a second contact hole penetrating the reflective electrode layer and the passivation layer by photolithography and exposing the drain electrode of the thin film transistor;
  • Step 504 preparing a transparent electrode layer connected to the drain electrode of the thin film transistor through the second contact hole on the reflective electrode layer;
  • Step 505 preparing a pixel electrode layer on the transparent electrode layer
  • Step 506 preparing an organic light-emitting layer on the pixel electrode layer
  • Step 507 preparing a cathode metal layer on the organic light-emitting layer
  • Step 508 preparing a color film layer on the cathode metal layer
  • Step 509 Prepare an organic concentrating layer on the color film layer.
  • the method of fabricating the thin film transistor in the second pixel structure is similar to the method of fabricating the thin film transistor in the first pixel structure, and details are not described herein again.
  • step 501 preparing a passivation layer covering the thin film transistor on the thin film transistor, specifically comprising:
  • a passivation layer covering the thin film transistor is prepared on the thin film transistor by PECVD.
  • preparing a reflective electrode layer on the passivation layer comprises: preparing a reflective electrode layer on the passivation layer by using a Sputter technique.
  • step 509 preparing an organic concentrating layer on the color film layer, specifically comprising: Depositing an organic film layer having a light transmittance greater than a specific threshold on the color film layer;
  • the organic film layer covering the mask is subjected to exposure treatment to obtain an organic concentrating layer.
  • the prepared organic concentrating layer comprises a second lens unit which is a concave lens
  • a mask having a gradually increasing transmittance from the edge to the center may be used as a mask covering the organic film layer, that is, semi-transparent.
  • the reticle of light is a reticle with a light transmittance gradient.
  • step 509 after preparing the organic concentrating layer on the color film layer, further comprising: preparing an organic protective layer on the organic concentrating layer.

Abstract

本发明的实施例涉及一种像素结构及其制作方法。该像素结构,包括:基板;有机发光层,设置于所述基板上;以及有机聚光层,设置于所述有机发光层的出光侧,所述有机发光层出射的光入射在其上,且用于聚集所述有机发光层产生的光

Description

像素结构及其制作方法 技术领域
本发明的实施例涉及一种像素结构及其制作方法。 背景技术
有机发光显示器是一种新型的显示器件, 与液晶显示器相比, 有机发光 显示器具有自发光、 响应速度快和宽视角等优点, 而且可以进行柔性显示、 透明显示和 3D显示, 因而得到了快速发展与普及。 实现有机发光显示器显 示彩色的方式有多种, 比如, RGB (红绿蓝)全彩 OLED (有机发光二极管) 方式、 WOLED-CF (白色 OLED及红、 绿、 蓝、 白四色彩色滤光片 )方式和 WOLED-COA (白色 OLED及彩色滤波阵列 )方式等, 其中, WOLED-COA 实现方式由于在基板上直接制备彩色薄膜, 因而具有彩色效果好、 工艺筒单 和生产成本低等特点, 从而得到了广泛的应用。
在采用 WOLED-COA方式实现有机发光显示器显示彩色时, 针对有机 发光显示器包含的多个像素结构中的各个像素结构, 所述各个像素结构包括 OLED层和彩色薄膜层, 其中, OLED层用于产生白色的光, 彩色薄膜层用 于将 OLED层产生的白光变为彩色光。由于从 OLED层发出的白光是射向各 个方向的, 因而 OLED层发出的白光经过彩色薄膜层后, 形成的彩色光的强 度比较小, 从而导致有机发光显示器的显示亮度较低。 发明内容
本发明实施例提供的一种像素结构及其制作方法, 能够提高有机发光显 示器的显示亮度。
本发明实施例提供的一种像素结构, 包括: 基板; 有机发光层, 设置于 所述基板上; 以及有机聚光层, 设置于所述有机发光层的出光侧, 所述有机 发光层出射的光入射在其上, 且用于聚集所述有机发光层产生的光
本发明实施例提供的一种像素结构的制作方法, 包括: 在基板上制备有 机聚光层, 以及在有机聚光层上制备有机发光层; 或在基板上制备有机发光 层, 以及在有机发光层上制备有机聚光层。
本发明实施例提供的像素结构包括基板, 设置于基板上的有机发光层, 还包括用于聚集有机发光层产生的光的有机聚光层, 由于有机聚光层能够将 来自有机发光层的光聚集, 使得穿过有机聚光层的光的强度增强, 从而提高 了有机发光显示器的显示亮度。 附图说明
为了更清楚地说明本发明实施例的技术方案, 下面将对实施例的附图作 筒单地介绍,显而易见地,下面描述中的附图仅仅涉及本发明的一些实施例, 而非对本发明的限制。
图 1为根据本发明实施例的第一像素结构的截面结构图;
图 2为根据本发明实施例的第二像素结构的截面结构图;
图 3A〜图 3D为根据本发明实施例的有机聚光层在基板上的投影图。 具体实施方式
为使本发明实施例的目的、 技术方案和优点更加清楚, 下面将结合本发 明实施例的附图,对本发明实施例的技术方案进行清楚、 完整地描述。显然, 所描述的实施例是本发明的一部分实施例, 而不是全部的实施例。 基于所描 述的本发明的实施例, 本领域普通技术人员在无需创造性劳动的前提下所获 得的所有其他实施例, 都属于本发明保护的范围。
本发明实施例提供的像素结构包括基板以及设置于基板上的有机发光 层, 还包括用于聚集有机发光层产生的光的有机聚光层, 由于有机聚光层能 够将来自有机发光层的光聚集, 使得从有机聚光层出射的光的强度增强, 从 而提高了有机发光显示器的显示亮度。
需要说明的是, 本发明实施例中的一个像素结构即为一个像素单元。 下面结合说明书附图对本发明实施例作进一步详细描述。
本发明实施例提供的像素结构, 包括基板以及设置于基板上的有机发光 层, 还包括用于聚集有机发光层产生的光的有机聚光层。 备选地, 有机聚光 层的材料为透明有机材料, 透光率值大于特定阈值的有机材料。 而且该特定 阈值可以根据需要设定, 比如, 设定为 95%。 备选地, 有机聚光层为透明有机膜, 比如, 有机聚光层为由丙烯酸树脂
( (C3H402)n )或者丙烯酸树脂的衍生物形成的透明有机膜。
较佳地, 根据有机聚光层与有机发光层的位置关系, 本发明实施例提供 两类不同的像素结构, 分别为第一像素结构和第二像素结构, 下面将分别进 行介绍。
第一像素结构
有机聚光层设置于彩色薄膜层与有机发光层之间, 即, 设置于彩色薄膜 层的入光侧。
如图 1所示, 本发明实施例提供的第一像素结构包括基板 100, 设置于 基板 100上的薄膜晶体管 101 ,设置于基板 100上且部分覆盖薄膜晶体管 101 的第一钝化层 102,设置于第一钝化层 102上的彩色薄膜层 103 ,设置于彩色 薄膜层 103上的平坦化层 104,设置于平坦化层 104上的第二钝化层 105 ,设 置于第二钝化层 105上且与薄膜晶体管 101电性连接的透明电极层 106, 设 置于透明电极层 106上的像素电极层 107,设置于像素电极层 107上的 OLED 层(即, 有机发光层) 108, 设置于有机发光层 108上的阴极金属层 109。
其中, 薄膜晶体管 101包括设置于基板 100上的栅电极层 1011 , 设置于 基板 100上且覆盖栅电极层 1011的栅极绝缘层 1012,设置于栅极绝缘层 1012 上的半导体活化层 1013 , 设置于半导体活化层 1013上的刻蚀阻挡层 1014, 分别设置于半导体活化层 1013的两侧的漏电极 1015a和源电极 1015b。
备选地, 透明电极层 106与薄膜晶体管 101进行电性连接, 具体包括: 透明电极层 106通过第一接触孔 110,与薄膜晶体管 101的漏电极 1015a 进行电性连接, 其中, 第一接触孔 110穿透第二钝化层 105、 平坦化层 104、 彩色薄膜层 103和第一钝化层 102,并连通至薄膜晶体管 101的漏电极 1015a。
备选地, 本发明实施例提供的第一像素结构还包括有机聚光层 111 , 设 置于彩色薄膜层 103与有机发光层 108之间, 用于聚集有机发光层 108产生 的光, 且将该聚集的光传输至彩色薄膜层 103。
在具体示例中, 由于阴极金属层 109具有非透光性, 像素电极层 107、 透明电极层 106、 第二钝化层 105和平坦化层 104具有透光性, 因而有机发 光层 108产生的光向基板 100 (向底部)传输, 设置于有机发光层 108与彩 色薄膜层 103之间的有机聚光层 111将来自有机发光层 108的光聚集起来后, 射向彩色薄膜层 103 , 由于有机聚光层 111将有机发光层 108发出的分散的、 射向各个方向的光聚集起来, 因而形成的彩色光的强度和密度比较大, 从而 导致有机发光显示器的显示亮度较高。
备选地, 有机聚光层 111包括至少一个第一透镜单元 112。
备选地, 有机聚光层 111包括 1~10个第一透镜单元 112。
其中, 有机聚光层 111包括一个第一透镜单元 112的第一像素结构在基 板 100上的投影如图 3A所示, 有机聚光层 111 包括四个第一透镜单元 112 的第一像素结构在基板 100上的投影如图 3B所示, 其中图 3A和图 3B中的 a区域是薄膜晶体管 101在基板 100上的投影区域, 图 3A和图 3B中的 b区 域是有机聚光层 111包括的第一透镜单元 112在基板 100上的投影区域。
备选地, 第一透镜单元 112为凸透镜。
具体示例中, 由于有机发光层 108产生的光向基板 100 (向底部 )传输, 第一透镜单元 112为凸透镜, 由于有机聚光层 111凸向来光方向, 因而有机 聚光层 111能够将有机发光层 108发出的分散的、 射向各个方向的光聚集起 来, 并且光在有机聚光层 111和在该有机聚光层 111的入光侧与其相邻的层 的交界面处发生折射。
备选地, 第一透镜单元 112垂直于基板 100的平面方向的截面的形状为 圓弧形, 即第一透镜单元 112与在其入光侧的相邻层的交界面的形状为圓弧 形。
备选地, 第一透镜单元 112平行于基板 100的平面方向的截面的形状可 以根据需要设置, 比如, 设置为圓形、 橢圓形或者矩形。
其中, 第一透镜单元 112平行于基板 100的平面方向的截面的形状为圓 形时, 包括第一透镜单元 112的第一像素结构在基板 100上的投影如图 3A 和图 3B所示; 第一透镜单元 112平行于基板 100的平面方向的截面的形状 为矩形时, 包括第一透镜单元 112的第一像素结构在基板 100上的投影如图 3C和图 3D所示。
备选地, 针对第一透镜单元 112平行于基板 100的平面方向的截面为圓 形和橢圓形的情况, 第一透镜单元 112平行于基板 100的平面方向的截面的 长半径平行或垂直于像素结构的长边;针对第一透镜单元 112平行于基板 100 的平面方向的截面为矩形的情况, 第一透镜单元 112平行于基板 100的平面 方向的截面的长边平行或垂直于像素结构的长边, 其中, 像素结构的长边是 指像素结构或者像素单元的最长边,如图 3A所示, 图 3A中的边长 AB即为 像素结构的长边。
其中, 如图 3A所示, 第一透镜单元 112平行于基板 100的平面方向的 截面为圓形时, 该圓形的长半径平行于像素结构的长边; 如图 3C所示, 第 一透镜单元 112平行于基板 100的平面方向的截面为矩形时, 该矩形的长边 平行于像素结构的长边。
具体示例中, 包括第一透镜单元 112的有机聚光层 111具有更好的聚光 效果。
具体示例中, 有机聚光层 111的厚度可以根据需要设定, 比如, 设置为
0.2μηι-5μηι, 备选地, 有机聚光层 111的厚度为 1μηι-2μηι。
备选地, 位于有机聚光层 111入光侧且与有机聚光层 111相邻的层的材 料与有机聚光层 111的材料不同。
备选地, 位于有机聚光层 111入光侧且与有机聚光层 111相邻的层的光 折射率小于有机聚光层 111的光折射率。
具体示例中, 位于有机聚光层 111入光侧且与有机聚光层 111相邻的层 的光折射率与有机聚光层 111的光折射率相比越小, 则在有机聚光层 111与
111聚集有机发光层 108发出的光的能力越强。
备选地, 有机聚光层 111可以设置在多个位置, 比如, 有机聚光层 111 可以设置于彩色薄膜层 103与平坦化层 104之间, 有机聚光层 111可以设置 于平坦化层 104与第二钝化层 105之间, 有机聚光层 111可以设置于第二钝 化层 105与透明电极层 106之间等, 只要有机聚光层 111能将从有机发光层 108出射的光聚集且将该聚集的光射向彩膜薄膜层 103即可。
备选地,本发明实施例中的有机聚光层 111可以为一个,也可以为多个, 不同的有机聚光层 111的位置不限。
备选地, 第一像素结构还包括用于将来自有机发光层 108的光射向各个 方向的自由传输层 113 ,设置于彩色薄膜层 103入光侧,并且自由传输层 113 在基板 100上的投影区域与有机聚光层 111在基板 100上的投影区域不会重 叠。 图 3A、 图 3B、 图 3C和图 3D中的 c区域是自由传输层 113在基板 100 上的投影区域。
具体示例中, 在有机聚光层 111将有机发光层 108发出的光聚集起来, 实现增强显示器件的显示亮度时, 由于存在能够将来自有机发光层 108的光 射向各个方向的自由传输层 113 , 从而保证了显示器件的观察视角。
示例性地,下面以有机聚光层 111设置于彩色薄膜层 103与平坦化层 104 之间且有机聚光层 111存在一个第一透镜单元 112为例对有机聚光层 111进 行具体说明, 针对其他情况的实施方式与本发明实施例的实施方式类似, 在 此不再赘述。
如图 1所示, 有机聚光层 111设置于彩色薄膜层 103与平坦化层 104之 间, 包括一个第一透镜单元 112, 该第一透镜单元 112的入光侧的界面在垂 直于基板 100的平面方向的截面为圓弧形; 另外, 平坦化层 104的材料与有 机聚光层 111的材料不同, 平坦化层 104的光折射率小于有机聚光层 111的 光折射率, 但是平坦化层 104和有机聚光层 111均为透明有机膜。
与薄膜晶体管 101的漏电极 1015a进行电性连接的透明电极层 106为有 机发光层 108提供阳极电信号, 具有非透光性的阴极金属层 109为有机发光 层 108提供阴极电信号。
有机发光层 108产生的白光经过具有透光性的像素电极层 107、 透明电 极层 106、第二钝化层 105和平坦化层 104,射到有机聚光层 111和自由传输 层 113上。
有机聚光层 111将接收到的有机发光层 108产生的白光聚集起来, 自由 传输层 113将接收到的有机发光层 108产生的白光射向各个方向。
有机聚光层 111和自由传输层 113发射出去的白光经过彩色薄膜层 103 后, 经滤光变为彩色光。
备选地, 栅电极层 1011为由 Mo (钼)、 MoNb (钼铌合金)、 A1 (铝)、
AlNd (铝钕合金) 、 Ti (钛)和 Cu (铜) 中的一种或多种形成的单层或多 层复合膜。
备选地, 栅电极层 1011的厚度为 100nm~3000nm。
备选地,栅极绝缘层 1012为由 SiOx(硅的氧化物)、 SiNx(硅的氮化物)、 HfOx (铪的氧化物) 、 SiON (硅的氮氧化物)和 A10x (铝的氧化物) 中的 一种或多种形成的单层或多层复合膜。
备选地, 栅极绝缘层 1012的 H (氢)含量低于特定阈值。 而且该特定阈 值可以根据需要设定, 比如, 设定为 10%。
需要说明的是,像素结构中的薄膜晶体管的栅极绝缘层的 H含量也可以 采用本领域公知的值。
备选地, 栅极绝缘层 1012的厚度为 1500~300θΑ。 备选地, 半导体活化 层 1013为由 a-Si (非晶硅)、 P-Si (多晶硅)或氧化物半导体制成。 备选地, 该氧化物半导体为由包含 In (铟) 、 Ga (镓) 、 Zn (辞) 、 0 (氧)和 Sn (锡)等元素的薄膜制成的, 其中该薄膜中必须包含氧元素和两种以上其他 元素, 比如 IGZO (氧化铟镓辞) 、 IZO (氧化铟辞)、 InSnO (氧化铟锡) 、 InGaSnO (氧化铟镓锡 )等。
备选地, 半导体活化层 1013的厚度为 10nm~100nm。
备选地, 刻蚀阻挡层 1014为由 SiOx、 SiNx、 HfOx和 AlOx中的一种或 多种形成的单层或多层复合膜。
备选地, 刻蚀阻挡层 1014的 H (氢)含量低于特定阈值。 而且该特定阈 值可以根据需要设定, 比如, 设定为 8%。
需要说明的是, 本发明实施例的像素结构中的薄膜晶体管的刻蚀阻挡层 的 H含量也可以采用本领域公知的常用数值。
备选地, 刻蚀阻挡层 1014的厚度为 800A~2000A。
备选地, 漏电极 1015a和源电极 1015b为由 Mo、 MoNb、 Al、 AlNd、
Ti和 Cu中的一种或多种形成的单层或多层复合膜。
备选地, 第一钝化层 102为由 SiOx、 SiNx、 HfOx和 A10x中的一种或多 种形成的单层或多层复合膜。
备选地, 第一钝化层 102为由 SiOx和 SiNx构成的双层复合膜, 备选地, SiOx的厚度为 2000A~3000A, SiNx的厚度为 20θΑ~100θΑ。
备选地, 第一钝化层 102的 H含量低于特定阈值。 而且, 该特定阈值可 以根据需要设定, 比如, 设定为 10%。
需要说明的是,本发明实施例的像素结构的钝化层的 H含量也可以采用 本领域公知的常用数值。
备选地, 第一钝化层 102具有较好的致密性和表面特性。 具体示例中,平坦化层 104的厚度为 0.2μηι~5μηι,备选地,平坦化层 104 的厚度为 1μηι~2μηι。
备选地, 第二钝化层 105与第一钝化层 102类似, 只不过为了确保第一 钝化层 102保护的薄膜晶体管 101具有较好的性能, 需要第一钝化层 102的 Η含量低于第二钝化层 105的 Η含量, 以及第一钝化层 102的致密性高于第 二钝化层 105的致密性。
第二像素结构
有机聚光层设置于有机发光层和彩色薄膜层的出光侧, 并且有机保护层 设置于有机聚光层的出光侧。
如图 2所示, 本发明实施例提供的第二像素结构包括基板 200, 设置于 基板 200上的薄膜晶体管 201 ,设置于基板 200上且部分覆盖薄膜晶体管 201 的钝化层 202, 设置于钝化层 202上的反射电极层 203 (即, 反射电极层 203 设置于所述有机发光层的与设置有所述有机聚光层的一侧相反的一侧) , 设 置于反射电极层 203上且与薄膜晶体管 201电性连接的透明电极层 204, 设 置于透明电极层 204上的像素电极层 205 ,设置于像素电极层 205上的 OLED 层(即, 有机发光层) 206, 设置于有机发光层 206上的阴极金属层 207, 设 置于阴极金属层 207上的彩色薄膜层 208, 设置于彩色薄膜层 208上的有机 聚光层 209。
其中, 薄膜晶体管 201包括设置于基板 200上的栅电极层 2011 , 设置于 基板 200上且覆盖栅电极层 2011的栅极绝缘层 2012 ,设置于栅极绝缘层 2012 上的半导体活化层 2013 , 设置于半导体活化层 2013上的刻蚀阻挡层 2014, 分别设置于半导体活化层 2013的两侧的漏电极 2015a和源电极 2015b。
备选地, 透明电极层 204与薄膜晶体管 201进行电性连接, 具体包括: 透明电极层 204通过第二接触孔 210,与薄膜晶体管 201的漏电极 2015a 进行电性连接, 其中, 第二接触孔 210穿透反射电极层 203和钝化层 202, 并连通至薄膜晶体管 201的漏电极 2015a。
具体示例中, 与薄膜晶体管 201的漏电极 2015a进行电性连接的透明电 极层 204为有机发光层 206提供阳极电信号, 具有透光性的阴极金属层 207 为有机发光层 206提供阴极电信号。
有机发光层 206产生的一部分白光经过具有透光性的像素电极层 205和 透明电极层 204射到反射电极层 203上, 反射电极层 203将接收到的白光反 射出去, 被反射电极层 203反射出去的白光依次穿过透明电极层 204、 像素 电极层 205、 有机发光层 206、 阴极金属层 207、 彩色薄膜层 208和有机聚光 层 209;有机发光层 206产生的另一部分白光依次穿过阴极金属层 207、彩色 薄膜层 208和有机聚光层 209。
彩色薄膜层 208将接收到的有机发光层 206产生的白光转变为彩色光。 有机聚光层 209将接收到的彩色光聚集起来。
具体示例中, 第二像素结构中的栅电极层 2011、栅极绝缘层 2012、半导 体活化层 2013、刻蚀阻挡层 2014、漏电极 2015a,源电极 2015b和钝化层 202 与第一像素结构中的栅电极层 1011、栅极绝缘层 1012、 半导体活化层 1013、 刻蚀阻挡层 1014、 漏电极 1015a, 源电极 1015b和钝化层 102类似, 在此不 再赘述。
备选地, 反射电极层 203 由对光具有很强的反射作用的材料, 例如 Ag (银) , 形成。
备选地, 本发明实施例提供的第二像素结构还包括有机保护层 211 , 设 置于有机聚光层 209的上方,用于保护第二像素结构不被空气和水气等侵独。
备选地, 有机保护层 211为透光率值大于设定阈值的透明有机膜。 而且 该设定阈值可以根据需要设定, 比如, 设定为 95%。
需要说明的是, 本发明实施例的像素结构的有机保护层也可以采用本领 域常用的有机保护层。
具体示例中, 有机保护层 211的厚度为 0.2μηι~5μηι, 备选地, 有机保护 层 211的厚度为 1μηι~2μηι。
具体示例中, 有机聚光层 209的厚度可以根据需要设定, 比如, 设置为 0.2μηι-5μηι, 备选地, 有机聚光层 209的厚度为 1μηι-2μηι。
备选地, 有机聚光层 209包括至少一个第二透镜单元 212。
备选地, 有机聚光层 209包括 1~10个第二透镜单元 212。
备选地, 第二透镜单元 212为凹透镜。
具体示例中, 由于有机发光层 206产生的光向阴极金属层 207方向 (向 顶部)传输, 第二透镜单元 212为凹透镜, 由于有机聚光层 209凸向来光方 向, 因而有机聚光层 209能够实现将有机发光层 206发出的^:的、 射向各 个方向的光聚集起来, 需要说明的是, 由于有机聚光层 209凸向来光方向, 因而光在有机聚光层 209和有机保护层 211的交界面发生折射, 光在有机保 护层 211处发生聚集。
备选地, 第二透镜单元 212垂直于基板 200的平面方向的截面的形状为 圆弧形, 即第二透镜单元 212与有机保护层 211 (在其出光侧的相邻层) 的 交界面的形状为圓弧形。
备选地, 第二透镜单元 212平行于基板 200的平面方向的截面的形状为 圓形、 橢圓形或者矩形。
具体示例中, 包括第二透镜单元 212的有机聚光层 209具有更好的聚光 效果。
备选地, 有机聚光层 209和有机保护层 211的材料不同。 备选地, 有机 保护层 211的光折射率大于有机聚光层 209的光折射率。
具体示例中, 有机保护层 211的光折射率与有机聚光层 209的光折射率 相比越大, 在有机聚光层 209与有机保护层 211的交界面处发生折射的光会 越会聚, 因而有机聚光层 209聚集有机发光层 206发出的光的能力越强。
备选地, 第二像素结构还包括用于将来自有机发光层 206的光射向各个 方向的自由传输层 213 , 自由传输层 213在基板 200上的投影区域与有机聚 光层 209在基板 200上的投影区域不会重叠。
具体实施中, 第二像素结构中的有机聚光层 209与第一像素结构中的有 机聚光层 111类似, 重复之处不再赘述。
本发明实施例提供的像素结构由于有机聚光层设置在有机发光层的出光 侧, 其能够将来自有机发光层的光聚集, 使得从有机聚光层出射的光的强度 增强, 从而提高了有机发光显示器的显示亮度。
备选地, 本发明实施例还提供了制作上述的像素结构 (第一像素结构和 第二像素结构) 的方法, 包括:
在基板上制备有机聚光层, 以及在有机聚光层上制备有机发光层; 或 在基板上制备有机发光层, 以及在有机发光层上制备有机聚光层。 针对不同的像素结构, 制作像素结构的方法也不同, 下面将针对实施例 中描述的第一像素结构和第二像素结构分别进行描述。
制作第一像素结构的方法 本发明实施例制作第一像素结构的方法, 包括:
步骤 401、 在基板上制备薄膜晶体管, 在薄膜晶体管上制备覆盖薄膜晶 体管的第一钝化层;
步骤 402、 在第一钝化层上制备彩色薄膜层;
步骤 403、 在彩色薄膜层上制备有机聚光层;
步骤 404、 在有机聚光层上制备平坦化层;
步骤 405、 在平坦化层上制备第二钝化层;
步骤 406、 通过光刻形成穿透第二钝化层、 平坦化层、 有机聚光层、 彩 色薄膜层和第一钝化层, 并露出薄膜晶体管的漏电极的第一接触孔;
步骤 407、 在第二钝化层上制备通过第一接触孔连接至薄膜晶体管的漏 电极的透明电极层;
步骤 408、 在透明电极层上制备像素电极层;
步骤 409、 在像素电极层上制备有机发光层。
备选地, 在步骤 401中, 在基板上制备薄膜晶体管, 具体包括: 在基板上制备栅电极层,在栅电极层上制备覆盖栅电极层的栅极绝缘层, 在栅极绝缘层上制备半导体活化层, 在半导体活化层上制备刻蚀阻挡层, 在 半导体活化层的两侧制备漏电极 1015a和源电极 1015b。
备选地, 在步骤 401中, 在薄膜晶体管上制备覆盖薄膜晶体管的第一钝 化层, 具体包括: 采用 PECVD ( plasma enhanced chemical vapor deposition, 等离子增强的化学气相沉积)技术, 在薄膜晶体管上制备覆盖薄膜晶体管的 第一钝化层。
备选地, 步骤 403中, 在彩色薄膜层上制备有机聚光层, 具体包括 在彩色薄膜层上沉积透光率大于特定阈值的有机膜层; 在有机膜层上覆 盖半透光的掩模板;
将覆盖掩模板的有机膜层进行曝光处理, 得到有机聚光层。
备选地, 为了实现制备的有机聚光层包括的第一透镜单元为凸透镜, 可 以采用从边缘到中心透光度逐渐降低的掩模板作为覆盖在有机膜层上的掩模 板, 即半透光的掩模板为透光率渐变的掩模板。
备选地, 步骤 405中, 在平坦化层上制备第二钝化层, 具体包括: 采用 PECVD技术, 在平坦化层上制备第二钝化层。 备选地, 步骤 409、 在像素电极层上制备有机发光层之后, 还包括: 在有机发光层上制备阴极金属层。
需要说明的是, 有机聚光层可以位于多个位置, 比如, 有机聚光层 111 可以位于彩色薄膜层 103与平坦化层 104之间, 可以位于平坦化层 104与第 二钝化层 105之间, 可以位于第二钝化层 105与透明电极层 106之间, 针对 有机聚光层位于不同的位置的实施方式与本发明实施例的实施方式类似, 只 不过针对有机聚光层位于不同的位置, 制作第一像素结构的包括的层的顺序 不同。
制作第二像素结构的方法
本发明实施例制作第二像素结构的方法, 包括:
步骤 501、 在基板上制备薄膜晶体管, 在薄膜晶体管上制备覆盖薄膜晶 体管的钝化层;
步骤 502、 在钝化层上制备反射电极层;
步骤 503、 通过光刻形成穿透反射电极层和钝化层, 并暴露薄膜晶体管 的漏电极的第二接触孔;
步骤 504、 在反射电极层上制备通过第二接触孔连接至薄膜晶体管的漏 电极的透明电极层;
步骤 505、 在透明电极层上制备像素电极层;
步骤 506、 在像素电极层上制备有机发光层;
步骤 507、 在有机发光层上制备阴极金属层;
步骤 508、 在阴极金属层上制备彩色薄膜层;
步骤 509、 在彩色薄膜层上制备有机聚光层。
具体实施中, 在步骤 501中, 制作第二像素结构中的薄膜晶体管的方法 与制作第一像素结构中的薄膜晶体管的方法类似, 在此不再赘述。
备选地, 步骤 501中, 在薄膜晶体管上制备覆盖薄膜晶体管的钝化层, 具体包括:
采用 PECVD技术, 在薄膜晶体管上制备覆盖薄膜晶体管的钝化层。 备选地, 步骤 502中, 在钝化层上制备反射电极层, 具体包括: 采用 Sputter (溅射)技术, 在钝化层上制备反射电极层。
备选地, 步骤 509中, 在彩色薄膜层上制备有机聚光层, 具体包括: 在彩色薄膜层上沉积透光率大于特定阈值的有机膜层;
在有机膜层上覆盖半透光的掩模板;
将覆盖掩模板的有机膜层进行曝光处理, 得到有机聚光层。
备选地, 为了实现制备的有机聚光层包括的第二透镜单元为凹透镜, 可 以采用从边缘到中心透光度逐渐升高的掩模板作为覆盖在有机膜层上的掩模 板, 即半透光的掩模板为透光率渐变的掩模板。
备选地, 步骤 509、 在彩色薄膜层上制备有机聚光层之后, 还包括: 在有机聚光层上制备有机保护层。
尽管已描述了本发明上述实施例, 但本领域的技术人员一旦得知了基本 创造性概念, 则可对这些实施例作出另外的变更和修改。 所以, 所附权利要 求意欲解释为包括上述实施例以及落入本发明范围的所有变更和修改。 发明的精神和范围。 这样, 倘若本发明的这些修改和变型属于本发明权利要 求及其等同技术的范围之内, 则本发明也意图包含这些改动和变型在内。

Claims

权利要求书
1、 一种像素结构, 包括:
基板;
有机发光层, 设置于所述基板上; 以及
有机聚光层, 设置于所述有机发光层的出光侧, 所述有机发光层出射的 光入射在其上, 且用于聚集所述有机发光层产生的光。
2、如权利要求 1所述的像素结构,其中所述像素结构还包括彩色薄膜层, 所述有机聚光层设置于所述有机发光层与所述彩色薄膜层之间, 所述有机聚 光层设置于所述彩色薄膜层的入光侧。
3、如权利要求 2所述的像素结构, 其中该像素结构还包括平坦化层, 所 述平坦化层设置于所述有机发光层与所述有机聚光层之间, 且位于所述有机 聚光层的入光侧而与所述有机聚光层相邻。
4、如权利要求 3所述的像素结构,其中所述有机聚光层的光折射率大于 所述平坦化层的光折射率。
5、 如权利要求 1~4任一所述的像素结构, 其中所述有机聚光层包括至 少一个第一透镜单元。
6、 如权利要求 5所述的像素结构, 其中所述第一透镜单元为凸透镜。
7、如权利要求 6所述的像素结构,其中所述第一透镜单元平行于基板的 平面方向的截面为圓形、 橢圓形或者矩形。
8、如权利要求 6所述的像素结构,其中所述第一透镜单元垂直于基板的 平面方向的截面的形状为圓弧形。
9、如权利要求 1所述的像素结构,其中所述像素结构还包括有机保护层, 所述有机保护层设置于所述有机聚光层的出光侧, 而且所述有机保护层与所 述有机聚光层紧邻且光折射率大于所述有机聚光层的光折射率。
10、 如权利要求 9所述的像素结构, 其中所述像素结构还包括彩色薄膜 层, 所述有机聚光层设置于所述彩色薄膜层的出光侧。
11、如权利要求 9或 10所述的像素结构,其中所述有机聚光层包括至少 一个第二透镜单元。
12、 如权利要求 11所述的像素结构, 其中所述第二透镜单元为凹透镜。
13、如权利要求 12所述的像素结构,其中所述第二透镜单元平行于基板 的平面方向的截面的形状为圓形、 橢圓形或者矩形。
14、如权利要求 12所述的像素结构,其中所述第二透镜单元垂直于基板 的平面方向的截面的形状为圓弧形。
15、 如权利要求 1~4、 6-10, 12~14任一所述的像素结构, 其中所述有 机聚光层的材料为透明有机材料。
16、如权利要求 15所述的像素结构,其中该像素结构还包括用于将来自 所述有机发光层的光射向各个方向的自由传输层, 所述自由传输层在基板上 的投影区域与所述有机聚光层在基板上的投影区域不重叠。
17、 如权利要求 1~4、 6-10, 12~14任一所述的像素结构, 所述有机聚 光层为由丙烯酸树脂或者丙烯酸树脂的衍生物形成的透明有机膜。
18、 如权利要求 9所述的像素结构, 还包括: 反射电极层, 设置在所述 有机发光层的与设置有所述有机聚光层的一侧相反的一侧, 用于射向其的光 向所述有机聚光层反射。
19、 一种如权利要求 1所述的像素结构的制作方法, 该方法包括: 在基板上制备有机聚光层, 以及在有机聚光层上制备有机发光层; 或 在基板上制备有机发光层, 以及在有机发光层上制备有机聚光层。
20、如权利要求 19所述的方法,其中在所述基板上制备所述有机聚光层, 以及在所述有机聚光层上制备有机发光层, 具体包括:
在基板上制备薄膜晶体管, 在所述薄膜晶体管上制备覆盖所述薄膜晶体 管的第一钝化层;
在所述第一钝化层上制备彩色薄膜层;
在所述彩色薄膜层上制备有机聚光层;
在所述有机聚光层上制备平坦化层;
在所述平坦化层上制备第二钝化层;
通过光刻形成穿透第二钝化层、 平坦化层、 有机聚光层、 彩色薄膜层和 第一钝化层, 并连通至所述薄膜晶体管的漏电极的第一接触孔;
在所述第二钝化层上制备通过所述第一接触孔连接至所述薄膜晶体管的 漏电极的透明电极层;
在所述透明电极层上制备像素电极层; 在所述像素电极层上制备有机发光层。
21、如权利要求 20所述的方法, 其中制备所述有机聚光层为: 在彩色薄 膜层上制备所述有机聚光层, 具体包括:
在所述彩色薄膜层上制备透明有机膜层;
在所述有机膜层上覆盖透光率渐变的掩模板;
将所述覆盖掩模板的有机膜层进行曝光处理, 得到所述有机聚光层。
22、如权利要求 19所述的方法, 其中所述在基板上制备有机发光层, 以 及在有机发光层上制备有机聚光层, 具体包括:
在基板上制备薄膜晶体管, 在所述薄膜晶体管上制备覆盖所述薄膜晶体 管的钝化层;
在所述钝化层上制备反射电极层;
通过光刻形成穿透反射电极层和钝化层, 并连通至所述薄膜晶体管的漏 电极的第二接触孔;
在所述反射电极层上制备通过所述第二接触孔连接至所述薄膜晶体管的 漏电极的透明电极层;
在所述透明电极层上制备像素电极层;
在所述像素电极层上制备有机发光层;
在所述有机发光层上制备阴极金属层;
在所述阴极金属层上制备彩色薄膜层;
在所述彩色薄膜层上制备有机聚光层。
23、如权利要求 22所述的方法,其中在所述彩色薄膜层上制备有机聚光 层, 具体包括:
在所述彩色薄膜层上制备透明有机膜层;
在所述有机膜层上覆盖透光率渐变的掩模板;
将所述覆盖掩模板的有机膜层进行曝光处理, 得到所述有机聚光层。
PCT/CN2013/074795 2013-02-06 2013-04-26 像素结构及其制作方法 WO2014121561A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/342,133 US10062868B2 (en) 2013-02-06 2013-04-26 Pixel structure and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310047326.5A CN103151369B (zh) 2013-02-06 2013-02-06 一种像素结构及其制作方法
CN201310047326.5 2013-02-06

Publications (1)

Publication Number Publication Date
WO2014121561A1 true WO2014121561A1 (zh) 2014-08-14

Family

ID=48549339

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/074795 WO2014121561A1 (zh) 2013-02-06 2013-04-26 像素结构及其制作方法

Country Status (3)

Country Link
US (1) US10062868B2 (zh)
CN (1) CN103151369B (zh)
WO (1) WO2014121561A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103887343B (zh) * 2012-12-21 2017-06-09 北京京东方光电科技有限公司 薄膜晶体管及其制作方法、阵列基板和显示装置
WO2015058571A1 (zh) * 2013-10-25 2015-04-30 京东方科技集团股份有限公司 Oled显示装置及其制作方法
CN105185811B (zh) * 2015-08-24 2018-06-26 昆山国显光电有限公司 一种具有增强可视角的显示装置及其制备方法
US10103276B2 (en) * 2015-10-29 2018-10-16 Mitsubishi Electric Corporation Thin film transistor substrate
CN106444190B (zh) * 2016-10-31 2020-05-19 深圳市华星光电技术有限公司 一种coa基板及其制造方法、液晶面板
CN106847861B (zh) * 2016-12-26 2020-05-05 武汉华星光电技术有限公司 底发光型oled显示单元及其制作方法
CN110164873B (zh) * 2019-05-30 2021-03-23 京东方科技集团股份有限公司 阵列基板的制作方法、阵列基板、显示面板及显示装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1967898A (zh) * 2005-11-17 2007-05-23 群康科技(深圳)有限公司 有机电致发光显示装置
US20090302744A1 (en) * 2008-06-04 2009-12-10 Lg Display Co., Ltd. Organic electro-luminescent display device and manufacturing method thereof
CN102376743A (zh) * 2010-08-10 2012-03-14 佳能株式会社 有机电致发光显示装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3938099B2 (ja) * 2002-06-12 2007-06-27 セイコーエプソン株式会社 マイクロレンズの製造方法、マイクロレンズ、マイクロレンズアレイ板、電気光学装置及び電子機器
JP2006259657A (ja) * 2004-06-11 2006-09-28 Seiko Epson Corp 電気光学装置、及びその製造方法、並びに電気光学装置を用いた電子機器
KR100703158B1 (ko) * 2005-10-24 2007-04-06 삼성전자주식회사 표시장치와 그 제조방법
KR20080061924A (ko) * 2006-12-28 2008-07-03 엘지디스플레이 주식회사 박막트랜지스터 기판과 이의 제조방법
KR101469026B1 (ko) * 2007-12-11 2014-12-05 삼성디스플레이 주식회사 표시 장치 및 그 표시판의 제조 방법
KR20100030865A (ko) * 2008-09-11 2010-03-19 삼성전자주식회사 유기 발광 표시 장치 및 그 제조 방법
CN101752400B (zh) * 2008-12-10 2013-02-27 统宝光电股份有限公司 影像显示装置、影像显示系统及其制造方法
JP2012134128A (ja) 2010-11-30 2012-07-12 Canon Inc 表示装置
KR101975309B1 (ko) * 2012-07-25 2019-09-11 삼성디스플레이 주식회사 유기 발광 디스플레이 소자 및 그 제조 방법
CN203055914U (zh) * 2013-02-06 2013-07-10 京东方科技集团股份有限公司 一种像素结构
JP5991490B2 (ja) * 2013-03-22 2016-09-14 株式会社ジャパンディスプレイ 有機エレクトロルミネッセンス表示装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1967898A (zh) * 2005-11-17 2007-05-23 群康科技(深圳)有限公司 有机电致发光显示装置
US20090302744A1 (en) * 2008-06-04 2009-12-10 Lg Display Co., Ltd. Organic electro-luminescent display device and manufacturing method thereof
CN102376743A (zh) * 2010-08-10 2012-03-14 佳能株式会社 有机电致发光显示装置

Also Published As

Publication number Publication date
CN103151369A (zh) 2013-06-12
US20150236303A1 (en) 2015-08-20
CN103151369B (zh) 2016-01-06
US10062868B2 (en) 2018-08-28

Similar Documents

Publication Publication Date Title
WO2014121561A1 (zh) 像素结构及其制作方法
KR102146070B1 (ko) 유기 발광 표시 장치
US9172060B2 (en) Organic light-emitting display and method of manufacturing the same
TWI580023B (zh) 有機發光顯示裝置及其製造方法
TW202018467A (zh) 顯示裝置
CN109037471B (zh) 具有镜面功能的有机发光显示装置
US7812525B2 (en) Retardation layer and organic light-emitting device including the same
EP3242341A1 (en) Array substrate and manufacturing method therefor, display panel and display device
WO2016106948A1 (zh) Coa型woled结构及制作方法
US20190206848A1 (en) Display apparatus
KR20180063416A (ko) 유기발광 표시장치 및 그 제조방법
TWI541993B (zh) 有機發光顯示器及製造其之方法
WO2014153870A1 (zh) 阵列基板、显示装置及制作方法
WO2014146355A1 (zh) 阵列基板及其制造方法、显示装置
WO2020088236A1 (zh) 基板及其制作方法以及透明显示装置
TW201340329A (zh) 薄膜電晶體及其製作方法
TW201448199A (zh) 發光顯示裝置及其製造方法
KR20160027562A (ko) 유기 발광 표시 장치
JP2013016464A (ja) 表示装置
CN112928225A (zh) 显示基板和显示装置
TWI764634B (zh) 感測裝置
US8492967B2 (en) Light emitting device and display panel
CN203055914U (zh) 一种像素结构
KR102391904B1 (ko) 유기 발광 표시 장치
KR102309510B1 (ko) 유기전계 발광소자 및 이의 제조 방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14342133

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13874841

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 11/12/2015)

122 Ep: pct application non-entry in european phase

Ref document number: 13874841

Country of ref document: EP

Kind code of ref document: A1