WO2014119375A1 - 二次電池用負極およびその製造方法、それを用いた二次電池 - Google Patents

二次電池用負極およびその製造方法、それを用いた二次電池 Download PDF

Info

Publication number
WO2014119375A1
WO2014119375A1 PCT/JP2014/050706 JP2014050706W WO2014119375A1 WO 2014119375 A1 WO2014119375 A1 WO 2014119375A1 JP 2014050706 W JP2014050706 W JP 2014050706W WO 2014119375 A1 WO2014119375 A1 WO 2014119375A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
substituted
unsubstituted
negative electrode
lithium
Prior art date
Application number
PCT/JP2014/050706
Other languages
English (en)
French (fr)
Inventor
須黒 雅博
緑 志村
田村 宜之
中原 謙太郎
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to JP2014559617A priority Critical patent/JPWO2014119375A1/ja
Priority to US14/765,173 priority patent/US20160006010A1/en
Publication of WO2014119375A1 publication Critical patent/WO2014119375A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/46Separators, membranes or diaphragms characterised by their combination with electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a non-aqueous electrolyte secondary battery. More specifically, the present invention relates to a lithium secondary battery or a lithium ion secondary battery, and in particular, a non-aqueous electrolyte secondary battery with improved charge / discharge cycle life at high temperatures, capacity retention characteristics, and resistance increase after storage. It is about.
  • Non-aqueous electrolyte lithium which uses carbon material, oxide, lithium alloy or lithium metal for negative electrode, uses lithium-containing transition metal composite oxide for positive electrode, and further has electrolyte containing chain or cyclic carbonate solvent Ion or lithium secondary batteries are attracting attention as power sources for mobile phones and laptop computers because they can achieve high energy density. Recently, attention has also been paid to a power source for driving a motor such as a hybrid vehicle (HEV) by improving output characteristics and long-term reliability such as storage characteristics.
  • HEV hybrid vehicle
  • a plurality of additives are added to the electrolytic solution, and an electrochemical reaction in the charge / discharge process is used to add the additives to the electrode surface.
  • a protective film or film
  • the formation and control of the coating on the electrode surface is indispensable for improving the performance of the battery because this coating has a great influence on the charge / discharge efficiency, cycle life, and safety.
  • Various additives have been applied to the electrolyte to form the film.
  • Patent Documents 2 to 6 describe the use of a sulfone compound having an acid anhydride group, a sulfone compound having a carbonate group, an oxocarbonic acid metal salt, a nitrile compound, and a polymer having a sulfonic acid ion, respectively. Has been. However, in these patent documents, the lithium salt of the monosulfonate compound and the disulfonate compound used in the present invention is neither described nor suggested.
  • Patent Document 7 mainly describes biphenyl having two or more rings and a sulfonate compound having a bicyclo structure, and a large sulfonate compound in which four or more benzene rings and cyclohexane rings are connected by a single bond. Mainly considered. However, even in this patent document, the monosulfonate lithium salt and disulfonate lithium salt of aliphatic, mononuclear aromatic and dinuclear fused ring aromatic used in the present invention are not described or suggested.
  • the slurry for electrode production has a problem of poor dispersion stability and easy gelation.
  • the gelation of the slurry means that the fluidity and uniformity of the slurry are lost due to the increase in the viscosity of the slurry, and it becomes impossible to apply to the current collector or the application uniformity of the electrode is deteriorated.
  • the gelation of the slurry is considered to be due to the fact that when PVdF is used as the binder, the PVdF as the binder is denatured when the slurry becomes alkaline.
  • Patent Document 8 in order to suppress gelation of the slurry for producing the positive electrode, the gel of the slurry is obtained by adding sulfonic acid and / or a lithium salt thereof to the positive electrode using the lithium nickel composite oxide as an active material. It is described that the deterioration of the battery characteristics is also suppressed while the crystallization is suppressed.
  • this patent document relates to the positive electrode, and unlike the present invention, the negative electrode has not been studied.
  • a secondary battery using a sulfonic acid compound as an additive has the following problems even though it exhibits excellent battery characteristics.
  • a sulfonic acid compound is used as an electrolytic solution additive.
  • the additive to be used needs to be soluble in a non-aqueous electrolytic solution. That is, until now, a compound that is not soluble in a non-aqueous electrolyte cannot be used as an additive.
  • Patent Documents 3 to 5 describe a method of forming a sulfone compound layer on a silicon negative electrode layer formed by vapor deposition or CVD. This method forms a sulfone compound layer on a silicon layer. Therefore, it is necessary to immerse the deposited silicon negative electrode in an aqueous solution in which the sulfone compound is further dissolved. For this reason, since it is necessary to newly perform a dipping process after the vapor deposition process, it is not possible to easily form a film, and there are problems in man-hours and cost increase. Furthermore, in the dipping process, unless the dipping time, concentration, and temperature are controlled in detail, unevenness occurs in the thickness and shape of the sulfone compound layer.
  • Patent Document 8 describes a method of adding a sulfonic acid and / or a lithium salt thereof to a positive electrode using a lithium nickel composite oxide as an active material in order to suppress gelation of the positive electrode manufacturing slurry. Yes. This is because when PVdF is used as the binder, when the slurry becomes alkaline, PVdF, which is the binder, is denatured and gelled. Therefore, by adding sulfonic acid to the slurry and neutralizing, It is being studied to suppress crystallization.
  • the slurry becomes acidic, so that the active material and the current collector become brittle due to oxidation, causing the electrodes to peel off and the battery characteristics to deteriorate.
  • the addition of sulfonic acid to the slurry is effective in suppressing the gelation of the electrode, but the coating uniformity is adversely affected, which adversely affects productivity and battery characteristics.
  • the technique of the patent document suppresses gelation by adding acidic sulfonic acid, and no effect is observed in the neutral lithium salt, but sulfonic acid (acidic) and its The difference in the effect of lithium salt (neutral) is not described.
  • the present invention has been made in view of the above circumstances, and its purpose is to produce a secondary battery excellent in battery characteristics such as cycle characteristics and storage characteristics by using a lithium sulfonate that does not dissolve in a non-aqueous electrolyte. It is to be.
  • lithium of monosulfonate represented by the general formula (I) It has been found that a lithium salt of a salt or disulfonate is suitable for a negative electrode for a lithium secondary battery.
  • R represents an n-valent aliphatic hydrocarbon group having 1 to 30 carbon atoms, an n-valent mononuclear aromatic group or an n-valent dinuclear fused ring aromatic group; n represents 1 or 2.
  • a secondary battery excellent in battery characteristics such as cycle characteristics and storage characteristics is provided.
  • the lithium sulfonate of the present invention is applied to the negative electrode even if it is insoluble in the electrolyte.
  • excellent battery characteristics can be realized.
  • the negative electrode is formed, for example, by binding a negative electrode active material to a negative electrode current collector with a negative electrode binder. As long as the negative electrode active material in this embodiment can occlude and release lithium, any material can be used as long as the effects of the present invention are not significantly impaired.
  • the negative electrode is formed by providing a negative electrode active material layer on a current collector.
  • the negative electrode active material is not particularly limited as long as it is a material capable of occluding and releasing lithium ions, and a known negative electrode active material can be arbitrarily used.
  • carbonaceous materials such as coke, acetylene black, mesophase microbeads, and graphite; lithium metal; lithium alloys such as lithium-silicon and lithium-tin, and lithium titanate are preferably used.
  • a carbonaceous material in terms of good cycle characteristics and safety and excellent continuous charge characteristics.
  • a negative electrode active material may be used individually by 1 type, and may use 2 or more types together by arbitrary combinations and a ratio.
  • the particle diameter of the negative electrode active material is arbitrary as long as the effects of the present invention are not significantly impaired.
  • it is usually 1 ⁇ m or more, preferably 15 ⁇ m. These are usually 50 ⁇ m or less, preferably about 30 ⁇ m or less.
  • organic substances used for coating include coal tar pitch from soft pitch to hard pitch; coal heavy oil such as dry distillation liquefied oil; straight heavy oil such as atmospheric residual oil and vacuum residual oil; crude oil And petroleum heavy oils such as cracked heavy oil (for example, ethylene heavy end) by-produced during thermal decomposition of naphtha and the like.
  • a solid residue obtained by distilling these heavy oils at 200 to 400 ° C. and pulverized to 1 to 100 ⁇ m can be used.
  • a vinyl chloride resin, a phenol resin, an imide resin, etc. can also be used.
  • the negative electrode active material layer can be formed into a sheet electrode by roll molding the negative electrode active material described above, or a pellet electrode by compression molding.
  • the negative electrode active material, the binder, and, if necessary, various auxiliary agents and the like can be produced by applying a coating solution obtained by slurrying with a solvent onto a current collector and drying it. it can.
  • Examples of the negative electrode active material containing silicon include silicon and silicon compounds.
  • Examples of silicon include simple silicon.
  • Examples of the silicon compound include silicon oxide, silicate, a compound of transition metal such as nickel silicide and cobalt silicide and silicon, and the like.
  • the silicon compound has a role of relaxing expansion and contraction due to repeated charge / discharge of the negative electrode active material itself, and is preferably used from the viewpoint of charge / discharge cycle characteristics. Furthermore, depending on the type of silicon compound, it also has a role of ensuring conduction between silicons. From this point of view, silicon oxide is preferably used as the silicon compound.
  • the silicon oxide is not particularly limited, but is represented by, for example, SiO x (0 ⁇ x ⁇ 2).
  • the silicon oxide may contain Li, and the silicon oxide containing Li is represented by, for example, SiLi y O z (y> 0, 2>z> 0). Further, the silicon oxide may contain a trace amount of a metal element or a nonmetal element. The silicon oxide can contain, for example, 0.1 to 5% by mass of one or more elements selected from nitrogen, boron and sulfur. By containing a trace amount of a metal element or a nonmetal element, the electrical conductivity of the silicon oxide can be improved. Further, the silicon oxide may be crystalline or amorphous.
  • the negative electrode active material preferably contains a carbon material capable of inserting and extracting lithium ions in addition to silicon or silicon oxide. The carbon material can also be contained in a composite state with silicon or silicon oxide.
  • the carbon material Similar to silicon oxide, the carbon material has the role of relaxing expansion and contraction due to repeated charge and discharge of the negative electrode active material itself and ensuring conduction between silicon as the negative electrode active material. Therefore, better cycle characteristics can be obtained by the coexistence of silicon, silicon oxide, and carbon material.
  • the carbon material graphite, amorphous carbon, diamond-like carbon, carbon nanotube, or a composite thereof can be used.
  • graphite with high crystallinity has high electrical conductivity, and is excellent in adhesiveness and voltage flatness with a positive electrode current collector made of a metal such as copper.
  • amorphous carbon having low crystallinity has a relatively small volume expansion, it has a high effect of relaxing the volume expansion of the entire negative electrode, and deterioration due to non-uniformity such as crystal grain boundaries and defects hardly occurs.
  • the content of the carbon material in the negative electrode active material is preferably 2% by mass or more and 50% by mass or less, and more preferably 2% by mass or more and 30% by mass or less.
  • a method for producing a negative electrode active material containing silicon and a silicon compound when silicon oxide is used as the silicon compound, for example, a method of mixing simple silicon and silicon oxide and sintering under high temperature and reduced pressure Is mentioned. Further, when a compound of transition metal and silicon is used as the silicon compound, for example, a method of mixing and melting simple silicon and the transition metal, and a method of coating the transition metal on the surface of the simple silicon by vapor deposition or the like can be mentioned. .
  • a method of introducing a mixed sintered product of simple silicon and silicon compound into a gas atmosphere of an organic compound in a high temperature non-oxygen atmosphere, or a mixed sintered product of single silicon and silicon oxide and carbon in a high temperature non-oxygen atmosphere By the method of mixing the precursor resins, a coating layer made of carbon can be formed around the cores of simple silicon and silicon oxide. Thereby, the suppression of volume expansion with respect to charging / discharging and the further improvement effect of cycling characteristics are acquired.
  • silicon When silicon is used as the negative electrode active material in the present embodiment, it is preferably made of a composite containing silicon, silicon oxide and carbon material (hereinafter also referred to as Si / SiO / C composite). Furthermore, it is preferable that all or part of the silicon oxide has an amorphous structure.
  • the silicon oxide having an amorphous structure can suppress the volume expansion of a carbon material or silicon which is another negative electrode active material. Although this mechanism is not clear, it is presumed that the formation of a film on the interface between the carbon material and the electrolytic solution has some influence due to the amorphous structure of silicon oxide.
  • the amorphous structure is considered to have relatively few elements due to non-uniformity such as crystal grain boundaries and defects.
  • the Si / SiO / C composite it is preferable that all or part of silicon is dispersed in silicon oxide.
  • silicon oxide By dispersing at least a part of silicon in silicon oxide, volume expansion as a whole of the negative electrode can be further suppressed, and decomposition of the electrolytic solution can also be suppressed.
  • all or part of silicon is dispersed in the silicon oxide because transmission electron microscope observation (general TEM observation) and energy dispersive X-ray spectroscopy measurement (general EDX measurement). It can confirm by using together. Specifically, the cross section of the sample is observed, the oxygen concentration of the silicon portion dispersed in the silicon oxide is measured, and it can be confirmed that the sample is not an oxide.
  • the Si / SiO / C composite for example, all or part of silicon oxide has an amorphous structure, and all or part of silicon is dispersed in silicon oxide.
  • a Si / SiO / C composite can be produced, for example, by a method disclosed in Japanese Patent Application Laid-Open No. 2004-47404. That is, the Si / SiO / C composite can be obtained, for example, by performing a CVD process on silicon oxide in an atmosphere containing an organic gas such as methane gas.
  • the Si / SiO / C composite obtained by such a method has a form in which the surface of particles made of silicon oxide containing silicon is coated with carbon. Silicon is nanoclustered in silicon oxide.
  • the ratio of silicon, silicon oxide and carbon material is not particularly limited.
  • Silicon is preferably 5% by mass or more and 90% by mass or less, and more preferably 20% by mass or more and 50% by mass or less with respect to the Si / SiO / C composite.
  • the silicon oxide is preferably 5% by mass or more and 90% by mass or less, and more preferably 40% by mass or more and 70% by mass or less with respect to the Si / SiO / C composite.
  • the carbon material is preferably 2% by mass or more and 50% by mass or less, and more preferably 2% by mass or more and 30% by mass or less with respect to the Si / SiO / C composite.
  • the Si / SiO / C composite can be composed of a mixture of simple silicon, silicon oxide and carbon material, and can also be produced by mixing simple silicon, silicon oxide and carbon material by mechanical milling. it can.
  • the Si / SiO / C composite can be obtained by mixing particulate silicon, silicon oxide and carbon materials.
  • the average particle diameter of simple silicon can be made smaller than the average particle diameter of the carbon material and the average particle diameter of the silicon oxide. In this way, simple silicon with a small volume change during charge / discharge has a relatively small particle size, and carbon materials and silicon oxides with a large volume change have a relatively large particle size. Is more effectively suppressed.
  • the average particle diameter of the single silicon can be set to 20 ⁇ m or less, for example, and preferably 15 ⁇ m or less.
  • the average particle diameter of silicon oxide is preferably 1/2 or less of the average particle diameter of the carbon material, and the average particle diameter of simple silicon is 1/2 or less of the average particle diameter of silicon oxide. preferable.
  • the average particle diameter of the silicon oxide is 1/2 or less of the average particle diameter of the carbon material, and the average particle diameter of the simple silicon is 1/2 or less of the average particle diameter of the silicon oxide.
  • the average particle diameter of silicon oxide is 1 ⁇ 2 or less of the average particle diameter of graphite, and the average particle diameter of simple silicon is 1 ⁇ 2 or less of the average particle diameter of silicon oxide.
  • the average particle diameter of the single silicon can be, for example, 20 ⁇ m or less, and is preferably 15 ⁇ m or less.
  • the binder for the negative electrode is not particularly limited.
  • polyvinylidene fluoride, vinylidene fluoride-hexafluoropropylene copolymer, vinylidene fluoride-tetrafluoroethylene copolymer, styrene-butadiene copolymer Rubber, polytetrafluoroethylene, polypropylene, polyethylene, polyimide, polyamideimide and the like can be used.
  • polyimide, polyamideimide, polyacrylic acid (including lithium salt, sodium salt and potassium salt neutralized with alkali), carboxymethylcellulose (lithium salt neutralized with alkali) due to its strong binding properties , Sodium salts and potassium salts) are preferred.
  • the amount of the binder for the negative electrode to be used is preferably 2 to 10 parts by mass with respect to 100 parts by mass of the negative electrode active material from the viewpoints of “sufficient binding force” and “high energy” which are in a trade-off relationship. .
  • a material of the current collector for the negative electrode a known material can be arbitrarily used.
  • a metal material such as copper, nickel, or SUS is used.
  • copper is particularly preferable from the viewpoint of ease of processing and cost.
  • the current collector is preferably subjected to a roughening treatment in advance.
  • the shape of the current collector is also arbitrary, and examples thereof include a foil shape, a flat plate shape, and a mesh shape.
  • a perforated current collector such as expanded metal or punching metal can be used.
  • the preferable thickness and shape when using a thin film as the current collector are also arbitrary.
  • the negative electrode can be produced by forming a negative electrode active material layer containing a negative electrode active material and a negative electrode binder on a negative electrode current collector.
  • the method for forming the negative electrode active material layer include a doctor blade method, a die coater method, a CVD method, and a sputtering method.
  • a thin film of aluminum, nickel, or an alloy thereof may be formed by a method such as vapor deposition or sputtering to form a negative electrode current collector.
  • the lithium sulfonic acid salt represented by the general formula (I) is added to and dispersed in the negative electrode slurry, and this slurry is applied and dried, whereby the lithium sulfonic acid salt is formed on the surface of the negative electrode active material.
  • Adhere to. it is possible to improve battery characteristics by adhering a compound that could not be used as a film forming agent to the surface of the negative electrode active material because it does not dissolve in the non-aqueous electrolyte so far. It becomes possible. Since the sulfonic acid lithium salt is present on the surface of the negative electrode active material, it is possible to reduce the cycle of the battery, the storage characteristics, and the swelling caused by the generation of internal gas. A secondary battery can be provided. Although this mechanism is not clear, it is presumed that the lithium sulfonic acid salt adhering to the negative electrode surface forms a film by some kind of reaction during the initial charge.
  • the lithium sulfonic acid salt of the present invention is deposited on the surface of the negative electrode active material, and probably because a film is formed during the initial charge, the negative electrode surface of the secondary battery is controlled, and the electrolyte solvent Decomposition is suppressed. As a result, the cycle characteristics and capacity storage characteristics of the secondary battery can be improved, and an increase in resistance can be suppressed.
  • n 1, in which case the compound of formula (I) represents the lithium salt of monosulfonate.
  • the group R is a monovalent aliphatic hydrocarbon group having 1 to 30 carbon atoms, a monovalent mononuclear aromatic group, or a monovalent dinuclear fused ring aromatic. It is a group.
  • examples of preferred aliphatic hydrocarbon groups include, but are not limited to, substituted or unsubstituted linear alkyl groups; substituted or unsubstituted branched alkyl groups; substituted or unsubstituted A cyclic alkyl group; a substituted or unsubstituted cyclohexyl group; or a substituted or unsubstituted decahydronaphthyl group.
  • Examples of preferred monovalent mononuclear aromatic groups include, but are not limited to, substituted or unsubstituted phenyl group; substituted or unsubstituted tolyl group; substituted or unsubstituted xylyl group; substituted or unsubstituted benzyl Substituted or unsubstituted trityl group; substituted or unsubstituted styryl group; substituted or unsubstituted pyridyl group; substituted or unsubstituted furyl group; substituted or unsubstituted thienyl group; or substituted or unsubstituted morpholino Groups.
  • Examples of preferred monovalent dinuclear fused ring aromatic groups include, but are not limited to, substituted or unsubstituted tetralyl groups; substituted or unsubstituted naphthoquinolyl groups; substituted or unsubstituted naphthyl groups; An unsubstituted quinolyl group is mentioned.
  • it is a C1-C10 substituted or unsubstituted linear alkyl group; or a C1-C10 substituted or unsubstituted branched alkyl group; a substituted or unsubstituted phenyl group; a substituted or unsubstituted A substituted tolyl group; a substituted or unsubstituted xylyl group; a substituted or unsubstituted naphthyl group; a substituted or unsubstituted tetralyl group; or a substituted or unsubstituted morpholino group.
  • the group R includes methyl, ethyl, propyl, phenyl, furyl, naphthyl groups.
  • one or more CH 2 groups are independently of each other —CH ⁇ CH—, —C ⁇ C—, —O—, —CO—, —CO—O—, —O—CO.
  • -Or -SiY 1 Y 2- may be substituted.
  • one or more CH 2 groups are each independently of one another —CH ⁇ CH—, —O—, —CO—, —CO—O—, —O—CO— or —SiY 1 Y 2 — may be substituted.
  • Y 1 and Y 2 are each independently of each other H, an alkyl group having 1 to 5 carbon atoms, an alkoxy group having 1 to 5 carbon atoms, an alkenyl group having 2 to 5 carbon atoms, or an alkyl group having 2 to 5 carbon atoms. Represents an alkynyl group.
  • Y 1 and Y 2 each independently represent H or an alkyl group having 1 to 5 carbon atoms.
  • methyl, ethyl, propyl, butyl, pentyl, vinyl, prop-1- and -2-enyl, but-1-, -2- and -3-enyl, penta-1-, -2- and- 3- and -4-enyl are mentioned.
  • one or more hydrogen atoms are independently of one another halogens such as bromo, chloro, fluoro and iodo; methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl, undecyl Alkyl groups such as, dodecyl, tridecyl, tetradecyl and pentadecyl; methoxy, ethoxy, propoxy, butoxy, pentoxy, hexyloxy, heptyloxy, octyloxy, nonyloxy, decyloxy, undecyloxy, dodecyloxy, tridecyloxy and tetradecyloxy Alkoxy groups such as: vinyl, prop-1- and -2-enyl, but-1-, -2- and -3-enyl, penta-1-, -2-,
  • one or more hydrogen atoms are halogens such as bromo, chloro, fluoro and iodo; alkyls such as methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl and octyl.
  • halogens such as bromo, chloro, fluoro and iodo
  • alkyls such as methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl and octyl.
  • alkoxy groups such as methoxy, ethoxy, propoxy, butoxy, pentoxy, hexyloxy, heptyloxy and octyloxy; vinyl, prop-1- and -2-enyl, but-1-, -2- and -3-enyl , Alkenyl groups such as penta-1-, -2-, -3- and -4-enyl, hexa-1-, -2-, -3-, -4- and -5-enyl; phenyl, tolyl, xylyl Benzyl, trityl, styryl, naphthyl, decahydronaphthyl, tetralyl and naphthoquinolyl
  • Aryl groups such as furyl, thienyl, pyridyl, quinolyl and morpholino; nitrogen-containing groups such as nitro, nitroso, cyano, isocyano, cyanato, is
  • Examples include hydroxy, carboxyl, dimethylsilyl, and diphenylsilyl.
  • lithium salt of monosulfonate represented by the general formula (I) include, but are not limited to, the following structures.
  • n 2
  • the compound of formula (I) represents the lithium salt of disulfonate.
  • the group R is a divalent aliphatic hydrocarbon group having 1 to 30 carbon atoms, a divalent mononuclear aromatic group or a divalent dinuclear fused ring aromatic. It is a group.
  • examples of preferred aliphatic hydrocarbon groups include, but are not limited to, substituted or unsubstituted linear alkylene groups; substituted or unsubstituted branched alkylene groups; substituted or unsubstituted A cyclic alkylene group; a substituted or unsubstituted cyclohexylene group; or a substituted or unsubstituted decahydronaphthylene group.
  • Examples of preferred divalent mononuclear aromatic groups include, but are not limited to, a substituted or unsubstituted phenylene group; a substituted or unsubstituted tolylene group; a substituted or unsubstituted xylylene group; a substituted or unsubstituted benzylidene A substituted or unsubstituted pyridylene group; a substituted or unsubstituted furylene group; a substituted or unsubstituted thienylene group; or a substituted or unsubstituted morpholylene group.
  • Examples of preferred divalent dinuclear fused ring aromatic groups include, but are not limited to, substituted or unsubstituted tetrarylene groups; substituted or unsubstituted naphthoquinolylene groups; substituted or unsubstituted naphthylene groups; An unsubstituted quinolylene group can be mentioned.
  • a linear alkylene group having 1 to 10 carbon atoms or substituted or unsubstituted; or a branched or unsubstituted alkylene group having 1 to 10 carbon atoms can be used.
  • methyl, ethyl, propyl, butyl, propyl, isopropyl and isobutyl groups can be mentioned.
  • one or more CH 2 groups are independently of each other —CH ⁇ CH—, —C ⁇ C—, —O—, —CO—, —CO—O—, —O—CO.
  • -Or -SiY 1 Y 2- may be substituted.
  • one or more CH 2 groups may be each independently replaced with —SiY 1 Y 2 —.
  • Y 1 and Y 2 are each independently of each other H, an alkyl group having 1 to 5 carbon atoms, an alkoxy group having 1 to 5 carbon atoms, an alkenyl group having 2 to 5 carbon atoms, or an alkyl group having 2 to 5 carbon atoms. Represents an alkynyl group.
  • Y 1 and Y 2 each independently represent H or an alkyl group having 1 to 5 carbon atoms.
  • methyl, ethyl, propyl, butyl, pentyl, vinyl, prop-1- and -2-enyl, but-1-, -2- and -3-enyl, penta-1-, -2- and- 3- and -4-enyl are mentioned.
  • both Y 1 and Y 2 represent methyl. That is, the group R has a dimethylsilylene group.
  • one or more hydrogen atoms each independently of one another selected from bromo, chloro, fluoro and iodo; methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl, An alkyl group selected from undecyl, dodecyl, tridecyl, tetradecyl and pentadecyl; methoxy, ethoxy, propoxy, butoxy, pentoxy, hexyloxy, heptyloxy, octyloxy, nonyloxy, decyloxy, undecyloxy, dodecyloxy, tridecyloxy and tetra Alkoxy groups selected from decyloxy; vinyl, prop-1- and -2-enyl, but-1-, -2- and -3-enyl, penta-1-, -2-, -3-enyl,
  • one or more hydrogen atoms may be substituted with an alkyl group selected from methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl and octyl.
  • lithium salt of disulfonate represented by the general formula (I) include, but are not limited to, the following structures.
  • the lithium sulfonic acid salt described above is dispersed in the slurry, and the slurry is applied and dried to adhere the lithium sulfonic acid salt only to the surface of the negative electrode active material. This is because if the amount of adhesion is too large, the film formed from the lithium sulfonate salt is probably too thick, and the conductivity of lithium ions and the electron conductivity in the electrode may be reduced. When these characteristics deteriorate, the resistance increases and the high-speed charge / discharge characteristics may deteriorate.
  • the amount of the lithium sulfonate is preferably 0.001% by mass or more, more preferably 0.01% by mass or more, and more preferably 5% by mass or less, based on the amount of the active material, and 3% by mass or less. Is more preferable, and 1% by mass or less is most preferable.
  • the lithium sulfonate represented by the general formula (I) described above as an insoluble index with respect to the non-aqueous electrolyte is preferably a solvent having a solubility parameter (sp value) having a specific value. It is desirable that it is insoluble. Specifically, it is desirable that the sulfonic acid lithium salt represented by the general formula (I) is insoluble in a solvent having an sp value in the range of 8.8 to 11.5.
  • the solubility parameter (sp value) of the organic solvent is hexane (7.3), diethyl ether (7.4), diethyl carbonate (8.8), toluene (8.9), dimethyl carbonate (9.9).
  • the electrolyte solvent is generally a mixture of dimethyl carbonate, diethyl carbonate, propylene carbonate, and ethylene carbonate.
  • the sp value of the non-aqueous electrolyte calculated from this value falls within the range of 8.8 to 11.5. Therefore, the fact that it does not dissolve in the non-aqueous electrolyte solution can be said to be insoluble in a solvent having an sp value of 8.8 to 11.5.
  • the positive electrode active material layer includes a positive electrode active material, and has a structure in which the positive electrode active material is bound on the positive electrode current collector by a positive electrode binder.
  • the positive electrode active material releases lithium ions into the electrolyte during charging and occludes lithium from the electrolyte during discharge, and has a layered structure such as LiMnO 2 and LixMn 2 O 4 (0 ⁇ x ⁇ 2).
  • Lithium manganate having a spinel structure LiCoO 2 , LiNiO 2 , or a part of these transition metals replaced with another metal; LiNi 1/3 Co 1/3 Mn 1/3 O And lithium transition metal oxides in which the number of specific transition metals such as 2 does not exceed half; those lithium transition metal oxides in which Li is excessive in comparison with the stoichiometric composition.
  • a positive electrode active material can be used individually by 1 type or in combination of 2 or more types.
  • the positive electrode binder that binds and integrates the positive electrode active material specifically, the same negative electrode binder as that described above can be used.
  • the positive electrode binder polyvinylidene fluoride is preferable from the viewpoint of versatility and low cost.
  • the amount of the positive electrode binder used is preferably 2 to 10 parts by mass with respect to 100 parts by mass of the positive electrode active material.
  • the content of the positive electrode binder is 2 parts by mass or more, the adhesion between the active materials or between the active material and the current collector is improved, and the cycle characteristics are improved.
  • the substance ratio is improved and the positive electrode capacity can be improved.
  • a conductive auxiliary material may be added for the purpose of reducing the impedance of the positive electrode active material.
  • the conductive auxiliary material carbonaceous fine particles such as graphite, carbon black, and acetylene black can be used.
  • the binder for the positive electrode is not particularly limited.
  • polyvinylidene fluoride, vinylidene fluoride-hexafluoropropylene copolymer, vinylidene fluoride-tetrafluoroethylene copolymer, styrene-butadiene copolymer Rubber, polytetrafluoroethylene, polypropylene, polyethylene, polyimide, polyamideimide and the like can be used.
  • polyimide, polyamideimide, polyacrylic acid (including lithium salt, sodium salt and potassium salt neutralized with alkali), carboxymethylcellulose (lithium salt neutralized with alkali) due to its strong binding properties , Sodium salts and potassium salts) are preferred.
  • the amount of the positive electrode binder used is preferably 2 to 10 parts by mass with respect to 100 parts by mass of the negative electrode active material from the viewpoints of “sufficient binding force” and “higher energy” which are in a trade-off relationship. .
  • the positive electrode current collector may be any material that supports the positive electrode active material layer including the positive electrode active material integrated by the binder and has conductivity that enables conduction with the external terminal.
  • the same negative electrode current collector as described above can be used.
  • the method for producing the positive electrode is not particularly limited. For example, only the surface-treated Mn-based positive electrode powder, or the surface-treated Mn-based positive electrode powder and the lithium nickel composite oxide powder, After mixing with a binder and an appropriate dispersion medium that can dissolve the binder (slurry method), apply it on a current collector such as an aluminum foil, dry the solvent, and then compress it with a press or the like. Form a film.
  • a conductive support material Usually used things, such as carbon black, acetylene black, natural graphite, artificial graphite, carbon fiber, can be used.
  • the electrolyte solution is selected from the group consisting of cyclic carbonates, chain carbonates, aliphatic carboxylic acid esters, ⁇ -lactones, cyclic ethers, chain ethers and their fluorine derivatives as aprotic solvents. One or more solvents may be included.
  • cyclic carbonates such as propylene carbonate (PC), ethylene carbonate (EC), butylene carbonate (BC), vinylene carbonate (VC), dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate (EMC), chain carbonates such as dipropyl carbonate (DPC), aliphatic carboxylic acid esters such as methyl formate, methyl acetate and ethyl propionate, ⁇ -lactones such as ⁇ -butyrolactone, 1,2-di Chain ethers such as ethoxyethane (DEE) and ethoxymethoxyethane (EME), cyclic ethers such as tetrahydrofuran and 2-methyltetrahydrofuran, dimethyl sulfoxide, 1,3-dioxolane, formamide, acetamide, dimethyl Formamide, acetonitrile, propylnitrile, nitromethane, e
  • PC propy
  • the electrolyte solution for a secondary battery according to the present embodiment may further include a lithium salt as an electrolyte.
  • a lithium salt as an electrolyte.
  • lithium salts include lithium imide salt, LiPF 6 , LiBF 4 , LiAsF 6 , LiSbF 6 , LiClO 4 , LiAlCl 4 , LiN (C n F 2n + 1 SO 2 ) (C m F 2m + 1 SO 2 ) (n and m are natural numbers) It can be set as the structure containing one or more substances selected from these. In particular, it is preferable to use LiPF 6 or LiBF 4 . By using these, the electrical conductivity of the lithium salt can be increased, and the cycle characteristics of the secondary battery can be further improved.
  • a laminate film can be used.
  • the laminate film can be appropriately selected as long as it is stable to the electrolytic solution and has a sufficient water vapor barrier property.
  • a laminate film made of polypropylene, polyethylene or the like coated with aluminum, silica, or alumina can be used as the outer package.
  • an aluminum laminate film is preferable from the viewpoint of suppressing volume expansion.
  • the distortion of the electrode element becomes very large when gas is generated, compared to a secondary battery using a metal can as the exterior body. This is because the laminate film is more easily deformed by the internal pressure of the secondary battery than the metal can. Furthermore, when sealing a secondary battery using a laminate film as an exterior body, the internal pressure of the battery is usually lower than the atmospheric pressure, so there is no extra space inside, and if gas is generated, it is immediately It may lead to battery volume changes and electrode element deformation.
  • a typical layer configuration of the laminate film includes a configuration in which a metal thin film layer and a heat-fusible resin layer are laminated.
  • a protective layer made of a film of polyester such as polyethylene terephthalate or nylon is further laminated on the surface of the metal thin film layer opposite to the heat fusion resin layer. The structure which was made is mentioned. When sealing the battery element, the battery element is surrounded with the heat-fusible resin layer facing each other.
  • the metal thin film layer for example, a foil of Al, Ti, Ti alloy, Fe, stainless steel, Mg alloy or the like having a thickness of 10 to 100 ⁇ m is used.
  • the resin used for the heat-fusible resin layer is not particularly limited as long as it can be heat-sealed.
  • An ionomer resin bonded between molecules is used as the heat-fusible resin layer.
  • the thickness of the heat-fusible resin layer is preferably 10 to 200 ⁇ m, more preferably 30 to 100 ⁇ m.
  • the configuration of the secondary battery is not particularly limited.
  • the secondary battery can be a laminated laminate type in which an electrode element in which a positive electrode and a negative electrode are arranged to face each other and an electrolytic solution are included in an outer package.
  • FIG. 1 is a schematic cross-sectional view showing a structure of an electrode element included in a laminated laminate type secondary battery. This electrode element is formed by alternately stacking a plurality of positive electrodes 1 and a plurality of negative electrodes 3 having a planar structure with a separator 2 interposed therebetween.
  • the positive electrode current collector 1b of each positive electrode 1 is welded and electrically connected to each other at an end portion not covered with the positive electrode active material layer 1a, and the positive electrode terminal 4 is welded to the welded portion.
  • the negative electrode current collector 3b included in each negative electrode 3 is welded and electrically connected to each other at an end portion not covered with the negative electrode active material layer 3a, and the negative electrode terminal 6 is welded to the welded portion. Further, the positive electrode terminal 4 is welded to the positive electrode tab 5, and the negative electrode terminal 6 is welded to the negative electrode tab 7.
  • the electrode element having such a planar laminated structure does not have a portion with a small R (a region close to the winding core of the wound structure), the electrode element associated with charge / discharge is compared with an electrode element having a wound structure.
  • an electrode element having a wound structure since the electrode is curved, the structure is easily distorted when a volume change occurs.
  • a negative electrode active material having a large volume change due to charge / discharge such as silicon oxide
  • a secondary battery using an electrode element having a wound structure has a large capacity reduction due to charge / discharge.
  • the electrode element having a planar laminated structure has a problem that when the gas is generated between the electrodes, the generated gas tends to stay between the electrodes. This is because, in the case of an electrode element having a wound structure, the distance between the electrodes is difficult to widen because tension is applied to the electrodes, whereas in the case of an electrode element having a laminated structure, the distance between the electrodes is widened. This is because it is easy. This problem is particularly noticeable when the outer package is an aluminum laminate film.
  • the lithium sulfonic acid salt represented by the general formula (I) is adhered to the surface of the negative electrode active material, and a film is formed. Therefore, the above problem can be solved, and a high energy type negative electrode Even in a laminated laminate type lithium ion secondary battery using a battery, long life driving is possible.
  • the secondary battery according to one embodiment of the present invention includes a laminated laminate type two battery having an electrode element in which a positive electrode and a negative electrode are arranged to face each other, an electrolytic solution, and an outer package containing the electrode element and the electrolytic solution.
  • the negative electrode includes a negative electrode active material including at least one of a metal (a) capable of being alloyed with lithium and a metal oxide (b) capable of occluding and releasing lithium ions, and a negative electrode binder.
  • the negative electrode current collector is bound by an adhesive, and the sulfonic acid lithium salt represented by the general formula (I) is attached to the surface of the negative electrode active material or a film is formed.
  • the lithium sulfonate represented by the general formula (I) is also effective in a secondary battery using an electrode element having a wound structure.
  • a compound generally known as a positive electrode active material such as LiCoO 2 can be mixed and used in a positive electrode active material mainly including a surface-treated Mn-based positive electrode. Further, for safety and the like, a commonly used additive substance such as Li 2 CO 3 can be further added.
  • various shapes such as a square shape, a paper shape, a stacked shape, a cylindrical shape, and a coin shape can be adopted as the battery outer body.
  • the exterior material and other constituent members are not particularly limited, and may be selected according to the battery shape.
  • a film-like outer package is a film obtained by laminating the above-mentioned heat-fusible resin film directly or via an adhesive on a heat-resistant resin film such as polyethylene terephthalate, or a heat-fusible resin film alone film, etc. Can be configured.
  • the electrolytic solution may further include a compound having one or more sulfonyl groups in addition to the cyclic sulfonic acid ester having at least two sulfonyl groups.
  • Lithium manganate, LiNi 0.8 Co 0.2 O 2 and a conductivity-imparting agent are dry-mixed and uniformly dispersed in N-methyl-2-pyrrolidone (NMP) in which PVDF as a binder is dissolved.
  • NMP N-methyl-2-pyrrolidone
  • a slurry was prepared. Carbon black was used as the conductivity imparting agent.
  • the slurry was applied on an aluminum metal foil having a thickness of 25 ⁇ m, NMP was evaporated, and the positive electrode sheet was pressed to produce a positive electrode.
  • Two laminate films having a structure in which a polypropylene resin (sealing layer, thickness 70 ⁇ m), polyethylene terephthalate (20 ⁇ m), aluminum (50 ⁇ m), and polyethylene terephthalate (20 ⁇ m) are laminated in this order are cut into a predetermined size, A concave portion having a bottom surface portion and a side surface portion suitable for the size of the laminated electrode body was formed.
  • the laminated electrode body was wrapped with these facing each other, and the periphery was heat-sealed to produce a film-clad battery.
  • Example 1 As the sulfonic acid lithium salt represented by the general formula (I), a compound represented by the formula (101) was added in an amount of 0.5% by mass with respect to carbon to produce a negative electrode. The negative electrode was cut into a predetermined size, and an aluminum laminate cell was produced by the method described above.
  • Example 2 An aluminum laminated secondary battery was produced in the same manner as in Example 1 except that the compounds represented by formulas (109), (116), and (117) were used as the lithium sulfonate.
  • Examples 5 to 8 An aluminum laminate mold was used in the same manner as in Example 1 except that 1.0% by mass of the compounds represented by formulas (101), (109), (116) and (117) was used as the lithium sulfonate. A secondary battery was manufactured.
  • Example 9 to 12 An aluminum laminate mold was used in the same manner as in Example 1 except that 0.5% by mass of the compounds represented by formulas (201), (202), (203) and (204) was used as the lithium sulfonate. A secondary battery was manufactured.
  • Example 1 An aluminum laminate cell was manufactured in the same manner as in Example 1 except that the negative electrode was manufactured without adding lithium sulfonate to the negative electrode slurry at the time of manufacturing the negative electrode.
  • the secondary batteries fabricated in Examples 1 to 8 and Comparative Example 1 were evaluated for cycle characteristics and storage characteristics in a high temperature environment. Specifically, the secondary battery was tested for charging and discharging 200 times in a constant temperature bath maintained at 60 ° C. in a voltage range of 2.5 V to 4.1 V. Then, (discharge capacity at the 200th cycle) / (discharge capacity at the 5th cycle) (unit:%) was calculated as the maintenance rate. In addition, the storage characteristics were calculated by multiplying (volume before storage at high temperature) / (capacity after storage after 2 weeks) (unit:%). The results are shown in Table 1. In addition, about the maintenance rate, 95% or more is “ ⁇ ”, 90% or more and less than 95% is “ ⁇ ”, and less than 90% is ⁇
  • the present embodiment can be used in, for example, all industrial fields that require a power source and industrial fields related to transportation, storage, and supply of electrical energy.
  • power supplies for mobile devices such as mobile phones and notebook computers
  • power supplies for transportation and transportation media such as trains, satellites, and submarines, including electric vehicles such as electric cars, hybrid cars, electric bikes, and electric assist bicycles
  • a backup power source such as a UPS
  • a power storage facility for storing power generated by solar power generation, wind power generation, etc .
  • the present application also relates to the following matters.
  • It is a lithium secondary battery provided with the electrode element by which the positive electrode and the negative electrode were opposingly arranged, and nonaqueous solvent type electrolyte solution, Comprising: It represents with the general formula (I) on the surface of the active material of this negative electrode A vehicle in which a lithium secondary battery to which the lithium sulfonate salt is applied or a battery pack using two or more lithium secondary batteries is mounted as a motor driving power source.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

 本発明は一般式(I)で表されるスルホン酸リチウム塩を含むリチウム二次電池用負極に関し、高温環境下におけるサイクル特性、保存特性に優れる二次電池を提供する。(式中、 Rは、炭素数1~30でn価の脂肪族炭化水素基、n価の単核式芳香族基またはn価の2核式縮合環芳香族基を表し、 nは、1または2を表す。)

Description

二次電池用負極およびその製造方法、それを用いた二次電池
 本発明は非水電解液二次電池に関する発明である。更に詳細には、リチウム二次電池あるいはリチウムイオン二次電池に関し、特に、高温における充放電サイクル寿命、容量保持特性、ならびに、保存後の抵抗上昇の問題を改善した、非水電解液二次電池に関するものである。
 負極に炭素材料、酸化物、リチウム合金またはリチウム金属を用い、正極にリチウム含有遷移金属複合酸化物を用い、更に鎖状又は環状のカーボネート系の溶媒を含んだ電解液を有する非水電解液リチウムイオンまたはリチウム二次電池は、高いエネルギー密度を実現できることから携帯電話、ノートパソコン用などの電源として注目されている。また最近では、出力特性の向上、保存特性などの長期信頼性の向上によりハイブリッド自動車(HEV)などのモーター駆動の電源としても注目されている。これらの二次電池においては、電極表面と前記溶媒分子との反応を抑制する目的で、電解液中に複数の添加剤を加え、充放電過程の電気化学反応を利用し、電極表面に添加剤由来の保護皮膜(又は皮膜)と呼ばれる膜を形成し二次電池の基本特性や信頼性を向上させることが知られている。この皮膜は、充放電効率、サイクル寿命、安全性に大きな影響を及ぼすことから電池の高性能化には電極表面の皮膜の形成・制御が不可欠であることが知られている。前記皮膜を形成させるために、様々な添加剤が電解液に適用されてきた。
 中でも、特許文献1に示されるような無機のリチウム塩が溶解した電解液を用いることで、サイクル特性および保存特性に優れる電池が得られることが知られている。しかしながら、当該公報においては無機リチウム塩が検討されており、本願発明で使用されるモノスルホネート化合物およびジスルホネート化合物などの有機リチウム塩は、記載も示唆もされていない。
 また、特許文献2~6には、それぞれ、酸無水物基を有するスルホン化合物、カーボネート基を有するスルホン化合物、オキソカーボン酸金属塩、ニトリル化合物およびスルホン酸イオンを有する重合体を使用することが記載されている。しかしながら、これらの特許文献においても、本願発明で使用されるモノスルホネート化合物およびジスルホネート化合物のリチウム塩は、記載も示唆もされていない。
 特許文献7には、2個以上の環を有するビフェニルおよびビシクロ構造を有するスルホネート化合物が主に記載されており、4個以上のベンゼン環およびシクロヘキサン環が単結合で連結された大型のスルホネート化合物が主に検討されている。しかしながら、当該特許文献においても、本願発明で使用される脂肪族、単核式芳香族および2核式縮合環芳香族のモノスルホネートリチウム塩およびジスルホネートリチウム塩は、記載も示唆もされていない。
 ここで、電極製造用スラリーは、分散安定性が悪く、ゲル化しやすいという問題がある。スラリーのゲル化とは、スラリーの粘度増加によりその流動性や均一性が失われることで、集電体への塗布が不可能となったり、電極の塗布均一性が悪くなることで、一定の品質を満たす正極の生産が困難となったりする問題がある。スラリーのゲル化は、結着剤にPVdFを使用した場合、スラリーがアルカリ性になると、結着剤であるPVdFが変性してしまうためと考えられている。そこで、特許文献8には、正極製造用スラリーのゲル化を抑制するために、リチウムニッケル複合酸化物を活物質とする正極中にスルホン酸及び/またはそのリチウム塩を添加することでスラリーのゲル化を抑制しつつも電池特性の悪化も抑制されることが記載されている。しかしながら、当該特許文献は正極に関するものであり、本願発明と異なり、負極については検討されていない。
 電極に被膜を形成する際は、より安価で簡便な方法が求められており、仮に安価、簡便であっても、これまでよりも優れた電池特性を発現するような電極作製プロセスの開発が重要な課題となっている。
 より具体的には、スルホン酸化合物を添加剤に用いた二次電池は非常に優れた電池特性を示すにも関わらず、次のような課題も有していた。特許文献1および2では、スルホン酸化合物を電解液添加剤として使用しているが、電解液添加剤として使用するためには、用いる添加剤が非水系電解液に可溶である必要がある。すなわち、これまでは非水系電解液に溶けない化合物は添加剤として使用することが出来なかった。
 また、非水系電解液に不溶な化合物を電解液に混ぜて注液すると、不溶な添加剤がノズルに詰まり、注液不良を生じることも判明した。加えて、特許文献3~5は、蒸着やCVDにより形成させたシリコン負極層上にスルホン化合物層を形成させる方法が記載されているが、この方法は、シリコン層上にスルホン化合物層を形成させるために、蒸着シリコン負極をさらにスルホン化合物が溶解する水溶液に浸漬させる必要がある。そのため、蒸着工程の後新たに浸漬工程を行う必要があるため、簡便に被膜を形成させることが出来ず、工数やコスト増加に課題があった。さらに、浸漬工程においては浸漬時間、濃度、温度を詳細に制御しなければ、スルホン化合物層の厚みや形状にムラが生じてしまう。
 更に、特許文献8には、正極製造用スラリーのゲル化を抑制するために、リチウムニッケル複合酸化物を活物質とする正極中にスルホン酸及び/またはそのリチウム塩を添加する方法が記載されている。これは、結着剤にPVdFを使用した場合、スラリーがアルカリ性になると、結着剤であるPVdFが変性し、ゲル化してしまうため、スラリーにスルホン酸を添加して中和することで、ゲル化を抑制することが検討されている。しかしながら、スラリーにスルホン酸を添加すると、スラリーが酸性になってしまうため、活物質、集電体が酸化により脆くなり、電極の剥がれ、電池特性の悪化が生じるといった課題があった。すなわち、スラリーにスルホン酸を添加することでは、電極のゲル化を抑制することには効果が認められるが、逆に塗布均一性が悪化し、生産性、電池特性に悪影響を及ぼす。また、当該特許文献の手法は、酸性のスルホン酸を添加することでゲル化を抑制するものであり、中性であるそのリチウム塩においては効果が認められないが、スルホン酸(酸性)およびそのリチウム塩(中性)の効果の違いについては、記述されていない。
特開平07-235297号公報 特開2009-176719号公報 特開2009-163890号公報 特開2009-021229号公報 特開2010-49928号公報 特開2009-059514号公報 特開2010-015885号公報 特許4453242号明細書
 以上のような理由から、非水系電解液に溶解しないスルホン酸リチウム塩は、これまで、使用が困難であった。しなしながら、これらのスルホン酸リチウム塩の中にも、高性能の非水電解液二次電池を得るにあたって好適なものは多いと考えられる。
 本発明は上記事情に鑑みてなされたものであり、その目的は、非水系電解液に溶解しないスルホン酸リチウム塩を使用して、サイクル特性および保存特性などの電池特性に優れる二次電池を製造することである。
 上記課題を解決するために本発明者らは、非水系電解液に不溶であることを指標として、各種のスルホン酸リチウム塩を鋭意検討した結果、一般式(I)で示されるモノスルホネートのリチウム塩またはジスルホネートのリチウム塩がリチウム二次電池用負極に適することを見出した。
Figure JPOXMLDOC01-appb-C000006
 式中、
 Rは、炭素数1~30でn価の脂肪族炭化水素基、n価の単核式芳香族基またはn価の2核式縮合環芳香族基を表し、
 nは、1または2を表す。
 本発明によれば、サイクル特性および保存特性などの電池特性に優れる二次電池が提供される。
 より具体的には、非水系電解液に不溶な添加剤を電解液添加剤として用いる場合、たとえ電解液に不溶であったとしても、本発明のスルホン酸リチウム塩であれば、負極に適用することで、優れた電池特性を実現できる。
積層ラミネート型の二次電池に使用される電極素子の構造を示す模式的断面図である。
 以下、本発明の負極およびこの負極を使用することができる二次電池の例を、各構成要素ごとに説明する。
 [負極]
 <負極活物質層>
 負極は、例えば負極活物質が負極用結着剤によって負極集電体に結着されてなる。本実施形態における負極活物質は、リチウムの吸蔵及び放出が可能なものであれば、本発明の効果を著しく損なわない限り任意のものを用いることができる。負極は、集電体上に負極活物質層を設けて構成されたものを用いる。
 負極活物質としては、リチウムイオンの吸蔵放出が可能な材料であれば他に制限は無く、公知の負極活物質を任意に用いることができる。例えば、コークス、アセチレンブラック、メゾフェーズマイクロビーズ、グラファイト等の炭素質材料;リチウム金属;リチウム-シリコン、リチウム-スズ等のリチウム合金、チタン酸リチウムなどを使用することが好ましい。これらの中でもサイクル特性及び安全性が良好でさらに連続充電特性も優れている点で、炭素質材料を使用するのが最も好ましい。なお、負極活物質は1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用しても良い。
 さらに、負極活物質の粒径は、本発明の効果を著しく損なわない限り任意であるが、初期効率、レ-ト特性、サイクル特性等の電池特性が優れる点で、通常1μm以上、好ましくは15μm以上であり、通常50μm以下、好ましくは30μm以下程度である。また、例えば、上記の炭素質材料をピッチ等の有機物で被覆した後で焼成したもの、CVD法等を用いて表面に上記炭素質材料よりも非晶質の炭素を形成したものなども、炭素質材料として好適に使用することができる。ここで、被覆に用いる有機物としては、軟ピッチから硬ピッチまでのコールタールピッチ;乾留液化油等の石炭系重質油;常圧残油、減圧残油等の直留系重質油;原油、ナフサ等の熱分解時に副生する分解系重質油(例えばエチレンヘビーエンド)等の石油系重質油が挙げられる。また、これらの重質油を200~400℃で蒸留して得られた固体状残渣物を、1~100μmに粉砕したものも使用することができる。さらに塩化ビニル樹脂、フェノール樹脂、イミド樹脂なども使用することができる。負極活物質層は、例えば、上述の負極活物質をロール成形してシート電極としたり、圧縮成形によりペレット電極としたりすることも可能であるが、通常は、正極活物質層の場合と同様に、上述の負極活物質と、結着剤と、必要に応じて各種の助剤等とを、溶媒でスラリー化してなる塗布液を、集電体に塗布し、乾燥することにより製造することができる。
 また、ケイ素を含む負極活物質としては、例えば、シリコンやシリコン化合物等が挙げられる。シリコンとしては、例えば、単体ケイ素が挙げられる。シリコン化合物としては、例えば、シリコン酸化物、ケイ酸塩、ニッケルシリサイドやコバルトシリサイドなどの遷移金属とケイ素との化合物等などが挙げられる。シリコン化合物には、負極活物質自体の繰り返し充放電に対する膨脹収縮を緩和する役目があり、充放電サイクル特性の観点から好ましく用いられる。さらにシリコン化合物の種類によってはシリコン間の導通を確保する役目もあり、このような観点から、シリコン化合物としてシリコン酸化物が好ましく用いられる。シリコン酸化物は、特に限定されるものではないが、例えば、SiO(0<x<2)で表される。シリコン酸化物は、Liを含んでもよく、Liを含むシリコン酸化物は、例えばSiLi(y>0、2>z>0)で表される。また、シリコン酸化物は微量の金属元素や非金属元素を含んでも良い。シリコン酸化物は、例えば、窒素、ホウ素およびイオウの中から選ばれる一種または二種以上の元素を、例えば0.1~5質量%含有することができる。微量の金属元素や非金属元素を含有することで、シリコン酸化物の電気伝導性を向上させることができる。また、シリコン酸化物は結晶であってもよく、非晶質であってもよい。また、負極活物質は、シリコン又はシリコン酸化物に加えて、リチウムイオンを吸蔵、放出し得る炭素材料を含むことが好ましい。炭素材料は、シリコンやシリコン酸化物と複合化させた状態で含有させることもできる。炭素材料は、シリコン酸化物と同様に、負極活物質自体の繰り返し充放電に対する膨脹収縮を緩和し、負極活物質であるシリコン間の導通を確保する役目がある。したがって、シリコン、シリコン酸化物、及び炭素材料が共存することにより、より良好なサイクル特性が得られる。
 炭素材料としては、黒鉛、非晶質炭素、ダイヤモンド状炭素、カーボンナノチューブ、またはこれらの複合物を用いることができる。ここで、結晶性の高い黒鉛は、電気伝導性が高く、銅などの金属からなる正極集電体との接着性および電圧平坦性が優れている。一方、結晶性の低い非晶質炭素は、体積膨張が比較的小さいため、負極全体の体積膨張を緩和する効果が高く、かつ結晶粒界や欠陥といった不均一性に起因する劣化が起きにくい。負極活物質中の炭素材料の含有率は、2質量%以上50質量%以下とすることが好ましく、2質量%以上30質量%以下とすることがより好ましい。
 シリコンとシリコン化合物とを含有する負極活物質の作製方法としては、シリコン化合物としてシリコン酸化物を用いる場合には、例えば、単体ケイ素とシリコン酸化物を混合し、高温減圧下にて焼結させる方法が挙げられる。また、シリコン化合物として遷移金属とケイ素との化合物を用いる場合には、例えば、単体ケイ素と遷移金属を混合、溶融させる方法や、単体ケイ素の表面に遷移金属を蒸着等により被覆する方法が挙げられる。
 上記で述べた作製方法に加えて、炭素との複合化を組み合わせることもできる。例えば、高温非酸素雰囲気下で有機化合物の気体雰囲気中に単体ケイ素とシリコン化合物の混合焼結物を導入する方法や、高温非酸素雰囲気下で単体ケイ素とシリコン酸化物の混合焼結物と炭素の前駆体樹脂を混合する方法により、単体ケイ素とシリコン酸化物の核の周囲に炭素からなる被覆層を形成することができる。これにより充放電に対する体積膨張の抑制及びサイクル特性のさらなる改善効果が得られる。
 本実施形態における負極活物質としてシリコンを用いる場合は、シリコン、シリコン酸化物及び炭素材料を含む複合体(以下、Si/SiO/C複合体とも称す)からなることが好ましい。さらに、シリコン酸化物は、その全部または一部がアモルファス構造を有することが好ましい。アモルファス構造のシリコン酸化物は、他の負極活物質である炭素材料やシリコンの体積膨張を抑制することができる。このメカニズムは明確ではないが、シリコン酸化物がアモルファス構造であることにより、炭素材料と電解液の界面への皮膜形成に何らかの影響があるものと推定される。また、アモルファス構造は、結晶粒界や欠陥といった不均一性に起因する要素が比較的少ないと考えられる。なお、シリコン酸化物の全部または一部がアモルファス構造を有することは、エックス線回折測定(一般的なXRD測定)にて確認することができる。具体的には、シリコン酸化物がアモルファス構造を有しない場合には、シリコン酸化物に固有のピークが観測されるが、シリコン酸化物の全部または一部がアモルファス構造を有する場合は、シリコン酸化物に固有のピークがブロードとなって観測される。
 Si/SiO/C複合体において、シリコンは、その全部または一部がシリコン酸化物中に分散していることが好ましい。シリコンの少なくとも一部をシリコン酸化物中に分散させることで、負極全体としての体積膨張をより抑制することができ、電解液の分解も抑制することができる。なお、シリコンの全部または一部がシリコン酸化物中に分散していることは、透過型電子顕微鏡観察(一般的なTEM観察)とエネルギー分散型X線分光法測定(一般的なEDX測定)を併用することで確認することができる。具体的には、サンプルの断面を観察し、シリコン酸化物中に分散しているシリコン部分の酸素濃度を測定し、酸化物となっていないことを確認することができる。
 Si/SiO/C複合体において、例えば、シリコン酸化物の全部または一部がアモルファス構造であり、シリコンはその全部または一部がシリコン酸化物中に分散している。このようなSi/SiO/C複合体は、例えば、特開2004-47404号公報で開示されているような方法で作製することができる。すなわち、Si/SiO/C複合体は、例えば、シリコン酸化物をメタンガスなどの有機物ガスを含む雰囲気下でCVD処理を行うことで得ることができる。このような方法で得られるSi/SiO/C複合体は、シリコンを含むシリコン酸化物からなる粒子の表面がカーボンで被覆された形態となる。また、シリコンはシリコン酸化物中にナノクラスター化している。
 Si/SiO/C複合体において、シリコン、シリコン酸化物および炭素材料の割合は、特に制限されるものではない。シリコンは、Si/SiO/C複合体に対し、5質量%以上90質量%以下とすることが好ましく、20質量%以上50質量%以下とすることがより好ましい。シリコン酸化物は、Si/SiO/C複合体に対し、5質量%以上90質量%以下とすることが好ましく、40質量%以上70質量%以下とすることがより好ましい。炭素材料は、Si/SiO/C複合体に対し、2質量%以上50質量%以下とすることが好ましく、より好ましくは2質量%以上30質量%以下である。
 また、Si/SiO/C複合体は、単体ケイ素、シリコン酸化物及び炭素材料の混合物からなることができ、単体ケイ素とシリコン酸化物と炭素材料とをメカニカルミリングで混合することでも作製することができる。例えば、Si/SiO/C複合体は、それぞれの単体ケイ素、シリコン酸化物および炭素材料が粒子状のものを混合して得ることができる。例えば、単体ケイ素の平均粒子径は、炭素材料の平均粒子径およびシリコン酸化物の平均粒子径よりも小さい構成とすることができる。このようにすれば、充放電時に伴う体積変化の小さい単体ケイ素が相対的に小粒径となり、体積変化の大きい炭素材料やシリコン酸化物が相対的に大粒径となるため、デンドライト生成および合金の微粉化がより効果的に抑制される。
 また、単体ケイ素の平均粒子径は、例えば20μm以下とすることができ、15μm以下とすることが好ましい。また、シリコン酸化物の平均粒子径が炭素材料の平均粒子径の1/2以下であることが好ましく、単体ケイ素の平均粒子径がシリコン酸化物の平均粒子径の1/2以下であることが好ましい。さらに、シリコン酸化物の平均粒子径が炭素材料の平均粒子径の1/2以下であり、かつ単体ケイ素の平均粒子径がシリコン酸化物の平均粒子径の1/2以下であることがより好ましい。平均粒子径をこのような範囲に制御すれば、体積膨脹の緩和効果がより有効に得ることができ、エネルギー密度、サイクル寿命と効率のバランスに優れた二次電池を得ることができる。より具体的には、シリコン酸化物の平均粒子径を黒鉛の平均粒子径の1/2以下とし、単体ケイ素の平均粒子径をシリコン酸化物の平均粒子径の1/2以下とすることが好ましい。またより具体的には、単体ケイ素の平均粒子径は、例えば20μm以下とすることができ、15μm以下とすることが好ましい。また、負極活物質として、上述のSi/SiO/C複合体の表面をシランカップリング剤によって処理したものを用いてもよい。
 <負極用結着剤>
 負極用結着剤としては、特に制限されるものではないが、例えば、ポリフッ化ビニリデン、ビニリデンフルオライド-ヘキサフルオロプロピレン共重合体、ビニリデンフルオライド-テトラフルオロエチレン共重合体、スチレン-ブタジエン共重合ゴム、ポリテトラフルオロエチレン、ポリプロピレン、ポリエチレン、ポリイミド、ポリアミドイミド等を用いることができる。これらの中でも、結着性が強いことから、ポリイミド、ポリアミドイミド、ポリアクリル酸(アルカリで中和されたリチウム塩、ナトリウム塩、カリウム塩を含む)、カルボキシメチルセルロース(アルカリで中和されたリチウム塩、ナトリウム塩、カリウム塩を含む)が好ましい。使用する負極用結着剤の量は、トレードオフの関係にある「十分な結着力」と「高エネルギー化」の観点から、負極活物質100質量部に対して、2~10質量部が好ましい。
 <負極用集電体>
 負極用集電体の材質としては、公知のものを任意に用いることができるが、例えば、銅、ニッケル、SUS等の金属材料が用いられる。中でも加工し易さとコストの点から特に銅が好ましい。また、集電体は予め粗面化処理しておくのが好ましい。さらに、集電体の形状も任意であり、箔状、平板状、メッシュ状等が挙げられる。また、エキスパンドメタルやパンチングメタルのような穴あきタイプの集電体を使用することもできる。また、集電体として薄膜を使用する場合の好ましい厚さ、形状も任意である。
 <負極の作製方法>
 負極の作製方法としては、例えば、負極集電体上に、負極活物質と負極用結着剤を含む負極活物質層を形成することで作製できる。負極活物質層の形成方法としては、例えば、ドクターブレード法、ダイコーター法、CVD法、スパッタリング法などが挙げられる。予め負極活物質層を形成した後に、蒸着、スパッタ等の方法でアルミニウム、ニッケルまたはそれらの合金の薄膜を形成して、負極集電体としてもよい。
 本発明によれば、一般式(I)で示されるスルホン酸リチウム塩を負極スラリーに添加して分散し、このスラリーを塗布し、乾燥することによって、負極活物質の表面にスルホン酸リチウム塩が付着する。本発明によれば、これまで非水系電解液に溶解しないために、被膜形成剤として使用することが出来なかった化合物を、負極活物質の表面に付着させることで、電池特性を向上することが可能になる。この負極活物質の表面にはスルホン酸リチウム塩が存在しているため、電池のサイクル低下、保存特性の低下、内部ガスが発生することによる膨れを抑制することにより、優れた非水系電解液二次電池を提供することができる。このメカニズムは明らかではないが、負極表面に付着したスルホン酸リチウム塩が初回充電時に何らかの反応により皮膜を形成するためと推察している。
 より具体的には、本発明のスルホン酸リチウム塩を負極活物質の表面上に付着させ、恐らく、初回充電時に皮膜が形成されるため、二次電池の負極表面が制御され、電解液溶媒の分解が抑制される。この結果、二次電池のサイクル特性、容量保存特性などを向上でき、抵抗上昇を抑制できる。
 <スルホン酸リチウム塩>
 本発明の1つの実施形態によれば、一般式(I)において、nが1を表すことが好ましく、この場合、式(I)の化合物はモノスルホネートのリチウム塩を表す。
 式(I)のモノスルホネートリチウム塩において、基Rは、炭素数1~30で1価の脂肪族炭化水素基、1価の単核式芳香族基または1価の2核式縮合環芳香族基である。
 モノスルホネートのリチウム塩の場合、好ましい脂肪族炭化水素基の例としては、限定することなく、置換または無置換の直鎖状アルキル基;置換または無置換の分岐状アルキル基;置換または無置換の環状アルキル基;置換または無置換のシクロヘキシル基;または、置換または無置換のデカヒドロナフチル基が挙げられる。
 好ましい1価の単核式芳香族基の例としては、限定することなく、置換または無置換のフェニル基;置換または無置換のトリル基;置換または無置換のキシリル基;置換または無置換のベンジル基;置換または無置換のトリチル基;置換または無置換のスチリル基;置換または無置換のピリジル基;置換または無置換のフリル基;置換または無置換のチエニル基;または、置換または無置換のモルホリノ基が挙げられる。
 好ましい1価の2核式縮合環芳香族基の例としては、限定することなく、置換または無置換のテトラリル基;置換または無置換のナフトキノリル基;置換または無置換のナフチル基;または、置換または無置換のキノリル基が挙げられる。
 より好ましくは、炭素数1~10で置換または無置換の直鎖状アルキル基;または、炭素数1~10で置換または無置換の分岐状アルキル基;置換または無置換のフェニル基;置換または無置換のトリル基;置換または無置換のキシリル基;置換または無置換のナフチル基;置換または無置換のテトラリル基;または、置換または無置換のモルホリノ基が挙げられる。
 最も好ましくは、基Rとして、メチル、エチル、プロピル、フェニル、フリル、ナフチル基が挙げられる。
 ただし、基Rにおいて、1個以上のCH基は、それぞれ互いに独立に、-CH=CH-、-C≡C-、-O-、-CO-、-CO-O-、-O-CO-または-SiY-で置き換えられていてもよい。
 好ましくは、基Rにおいて、1個以上のCH基は、それぞれ互いに独立に、-CH=CH-、-O-、-CO-、-CO-O-、-O-CO-または-SiY-で置き換えられていてもよい。
 より好ましくは、-CH=CH-、-O-、-CO-、-CO-O-、-O-CO-が挙げられる。
 式中、YおよびYは、それぞれ互いに独立に、H、炭素数1~5のアルキル基、炭素数1~5のアルコキシ基、炭素数2~5のアルケニル基または炭素数2~5のアルキニル基を表す。
 好ましくは、YおよびYは、それぞれ互いに独立に、Hまたは炭素数1~5のアルキル基を表す。
 より好ましくは、メチル、エチル、プロピル、ブチル、ペンチル、ビニル、プロパ-1-および-2-エニル、ブタ-1-、-2-および-3-エニル、ペンタ-1-、-2-、-3-および-4-エニルが挙げられる。
 上記の基において、1個以上の水素原子は、それぞれ互いに独立に、ブロモ、クロロ、フルオロおよびヨードなどのハロゲン;メチル、エチル、プロピル、ブチル、ペンチル、ヘキシル、ヘプチル、オクチル、ノニル、デシル、ウンデシル、ドデシル、トリデシル、テトラデシルおよびペンタデシルなどのアルキル基;メトキシ、エトキシ、プロポキシ、ブトキシ、ペントキシ、ヘキシルオキシ、ヘプチルオキシ、オクチルオキシ、ノニルオキシ、デシルオキシ、ウンデシルオキシ、ドデシルオキシ、トリデシルオキシおよびテトラデシルオキシなどのアルコキシ基;ビニル、プロパ-1-および-2-エニル、ブタ-1-、-2-および-3-エニル、ペンタ-1-、-2-、-3-および-4-エニル、ヘキサ-1-、-2-、-3-、-4-および-5-エニル、ヘプタ-1-、-2-、-3-、-4-、-5-および-6-エニル、オクタ-1-、-2-、-3-、-4-、-5-、-6-および-7-エニル、ノナ-1-、-2-、-3-、-4-、-5-、-6-、-7-および-8-エニル、デカ-1-、-2-、-3-、-4-、-5-、-6-、-7-、-8-および-9-エニルなどのアルケニル基;エチニルおよびプロパルギル基などのアルキニル基;置換または無置換のシクロヘキシル基;フェニル、トリル、キシリル、ベンジル、トリチル、スチリル、ナフチル、デカヒドロナフチル、テトラリルおよびナフトキノリルなどのアリール基;フリル、チエニル、ピリジル、キノリルおよびモルホリノなどのヘテロ環基;ニトロ、ニトロソ、シアノ、イソシアノ、シアナト、イソシアナト、アミノおよびアミドなどの含窒素基;ヒドロキシ、カルボキシル、アシルおよびアルコキシカルボニルなどの含酸素基;シリル、モノメチルシリル、ジメチルシリル、トリメチルシリル、モノフェニルシリル、ジフェニルシリルおよびトリフェニルシリルなどの含ケイ素基;または、チオアルキルおよびチオアルコキシなどの含イオウ基で置換されていてもよい。
 好ましくは、上記の基において、1個以上の水素原子は、それぞれ互いに独立に、ブロモ、クロロ、フルオロおよびヨードなどのハロゲン;メチル、エチル、プロピル、ブチル、ペンチル、ヘキシル、ヘプチルおよびオクチルなどのアルキル基;メトキシ、エトキシ、プロポキシ、ブトキシ、ペントキシ、ヘキシルオキシ、ヘプチルオキシおよびオクチルオキシなどのアルコキシ基;ビニル、プロパ-1-および-2-エニル、ブタ-1-、-2-および-3-エニル、ペンタ-1-、-2-、-3-および-4-エニル、ヘキサ-1-、-2-、-3-、-4-および-5-エニルなどのアルケニル基;フェニル、トリル、キシリル、ベンジル、トリチル、スチリル、ナフチル、デカヒドロナフチル、テトラリルおよびナフトキノリルなどのアリール基;フリル、チエニル、ピリジル、キノリルおよびモルホリノなどのヘテロ環基;ニトロ、ニトロソ、シアノ、イソシアノ、シアナト、イソシアナト、アミノおよびアミドなどの含窒素基;ヒドロキシ、カルボキシル、アシルおよびアルコキシカルボニルなどの含酸素基;または、シリル、モノメチルシリル、ジメチルシリル、トリメチルシリル、モノフェニルシリル、ジフェニルシリルおよびトリフェニルシリルなどの含ケイ素基で置換されていてもよい。
 より好ましくは、ブロモ、クロロ、フルオロ、ヨード、メチル、エチル、プロピル、メトキシ、エトキシ、プロポキシ、ビニル、プロパ-1-および-2-エニル、フェニル、ベンジル、スチリル、ナフチル、フリル、ニトロ、ニトロソ、ヒドロキシ、カルボキシル、ジメチルシリル、ジフェニルシリルが挙げられる。
 一般式(I)で表されるモノスルホネートのリチウム塩の好ましい例としては、限定することなく、以下の構造が挙げられる。
Figure JPOXMLDOC01-appb-C000007
 本発明の他の実施形態によれば、nが2を表すことが好ましくは、この場合、式(I)の化合物はジスルホネートのリチウム塩を表す。
 式(I)のジスルホネートリチウム塩において、基Rは、炭素数1~30で2価の脂肪族炭化水素基、2価の単核式芳香族基または2価の2核式縮合環芳香族基である。
 ジスルホネートのリチウム塩の場合、好ましい脂肪族炭化水素基の例としては、限定することなく、置換または無置換の直鎖状アルキレン基;置換または無置換の分岐状アルキレン基;置換または無置換の環状アルキレン基;置換または無置換のシクロヘキシレン基;または、置換または無置換のデカヒドロナフチレン基が挙げられる。
 好ましい2価の単核式芳香族基の例としては、限定することなく、置換または無置換のフェニレン基;置換または無置換のトリレン基;置換または無置換のキシリレン基;置換または無置換のベンジリデン基;置換または無置換のピリジレン基;置換または無置換のフリレン基;置換または無置換のチエニレン基;または、置換または無置換のモルホリレン基が挙げられる。
 好ましい2価の2核式縮合環芳香族基の例としては、限定することなく、置換または無置換のテトラリレン基;置換または無置換のナフトキノリレン基;置換または無置換のナフチレン基;または、置換または無置換のキノリレン基が挙げられる。
 より好ましくは、炭素数1~10で置換または無置換の直鎖状アルキレン基;または、炭素数1~10で置換または無置換の分岐状アルキレン基が挙げられる。
 最も好ましくは、メチル、エチル、プロピル、ブチル、プロピル、イソプロピル、イソブチル基が挙げられる。
 ただし、基Rにおいて、1個以上のCH基は、それぞれ互いに独立に、-CH=CH-、-C≡C-、-O-、-CO-、-CO-O-、-O-CO-または-SiY-で置き換えられていてもよい。
 好ましくは、基Rにおいて、1個以上のCH基は、それぞれ互いに独立に、-SiY-で置き換えられていてもよい。
 より好ましくは、-CH=CH-、-O-、-CO-、-CO-O-、-O-CO-が挙げられる。
 式中、YおよびYは、それぞれ互いに独立に、H、炭素数1~5のアルキル基、炭素数1~5のアルコキシ基、炭素数2~5のアルケニル基または炭素数2~5のアルキニル基を表す。
 好ましくは、YおよびYは、それぞれ互いに独立に、Hまたは炭素数1~5のアルキル基を表す。
 より好ましくは、メチル、エチル、プロピル、ブチル、ペンチル、ビニル、プロパ-1-および-2-エニル、ブタ-1-、-2-および-3-エニル、ペンタ-1-、-2-、-3-および-4-エニルが挙げられる。
 最も好ましくは、YおよびYの両者がメチルを表す。即ち、基Rはジメチルシリレン基を有する。
 上記の基において、1個以上の水素原子は、それぞれ互いに独立に、ブロモ、クロロ、フルオロおよびヨードから選ばれるハロゲン;メチル、エチル、プロピル、ブチル、ペンチル、ヘキシル、ヘプチル、オクチル、ノニル、デシル、ウンデシル、ドデシル、トリデシル、テトラデシルおよびペンタデシルから選ばれるアルキル基;メトキシ、エトキシ、プロポキシ、ブトキシ、ペントキシ、ヘキシルオキシ、ヘプチルオキシ、オクチルオキシ、ノニルオキシ、デシルオキシ、ウンデシルオキシ、ドデシルオキシ、トリデシルオキシおよびテトラデシルオキシから選ばれるアルコキシ基;ビニル、プロパ-1-および-2-エニル、ブタ-1-、-2-および-3-エニル、ペンタ-1-、-2-、-3-および-4-エニル、ヘキサ-1-、-2-、-3-、-4-および-5-エニル、ヘプタ-1-、-2-、-3-、-4-、-5-および-6-エニル、オクタ-1-、-2-、-3-、-4-、-5-、-6-および-7-エニル、ノナ-1-、-2-、-3-、-4-、-5-、-6-、-7-および-8-エニル、デカ-1-、-2-、-3-、-4-、-5-、-6-、-7-、-8-および-9-エニルから選ばれるアルケニル基;エチニルおよびプロパルギル基から選ばれるアルキニル基;置換または無置換のシクロヘキシル基;フェニル、トリル、キシリル、ベンジル、トリチル、スチリル、ナフチル、デカヒドロナフチル、テトラリルおよびナフトキノリルから選ばれるアリール基;フリル、チエニル、ピリジル、キノリルおよびモルホリノから選ばれるヘテロ環基;ニトロ、ニトロソ、シアノ、イソシアノ、シアナト、イソシアナト、アミノおよびアミドから選ばれる含窒素基;ヒドロキシ、カルボキシル、アシルおよびアルコキシカルボニルから選ばれる含酸素基;シリル、モノメチルシリル、ジメチルシリル、トリメチルシリル、モノフェニルシリル、ジフェニルシリルおよびトリフェニルシリルから選ばれる含ケイ素基;または、チオアルキルおよびチオアルコキシから選ばれる含イオウ基で置換されていてもよい。
 好ましくは、上記の基において、1個以上の水素原子は、メチル、エチル、プロピル、ブチル、ペンチル、ヘキシル、ヘプチルおよびオクチルから選ばれるアルキル基で置換されていてもよい。
 より好ましくは、メチル、エチル、プロピル、ブチルが挙げられる。
 一般式(I)で表されるジスルホネートのリチウム塩の好ましい例としては、限定することなく、以下の構造が挙げられる。
Figure JPOXMLDOC01-appb-C000008
 以上で説明してきたスルホン酸リチウム塩をスラリー内に分散し、スラリーを塗布および乾燥して、スルホン酸リチウム塩を負極活物質の表面のみに付着するのが好ましい。これは、付着量が多すぎると、恐らく、スルホン酸リチウム塩より形成される皮膜が厚くなり過ぎるため、リチウムイオンの伝導性、電極中の電子伝導性が低下することがあるからである。これらの特性が低下すると、抵抗が上昇し、高速充放電特性が低下することがある。そこで、スルホン酸リチウム塩の量としては、活物質量に対して、0.001質量%以上が好ましく、0.01質量%以上が更に好ましく、一方、5質量%以下が好ましく、3質量%以下が更に好ましく、1質量%以下が最も好ましい。
 ここで、非水系電解液に対する不溶性の指標として、以上で説明してきた一般式(I)で表されるスルホン酸リチウム塩は、好ましくは、特定の値の溶解度パラメータ(sp値)を有する溶媒に不溶であることが望ましい。具体的には、8.8~11.5の範囲内のsp値を有する溶媒に、一般式(I)で表されるスルホン酸リチウム塩が不溶であることが望ましい。
 これは、次の理由による。即ち、有機溶媒の溶解度パラメータ(sp値)は、ヘキサン(7.3)、ジエチルエーテル(7.4)、ジエチルカーボネート(8.8)、トルエン(8.9)、ジメチルカーボネート(9.9)、酢酸エチル(9.1)、テトラヒドロフラン(9.1)、アセトン(10.0)、1,4-ジオキサン(10.0)、N-メチルピロリドン(11.3)、イソプロピルアルコール(11.5)、アセトニトリル(11.9)、ジメチルホルムアミド(12.0)、ジメチルスルホキシド(12.0)、γ-ブチロラクトン(12.6)、エタノール(12.7)、プロピレンカーボネート(13.3)、エチレンカーボネート(14.7)、メタノール(14.5)、水(23.4)であることが知られている。電解液溶媒は一般的に、ジメチルカーボネート、ジエチルカーボネート、プロピレンカーボネート、エチレンカーボネートの混合物であることが多い。この値から算出される非水系電解液のsp値は、8.8~11.5の範囲内に入る。よって、非水系電解液に溶解しないとは、sp値が8.8~11.5の溶媒に不溶であると言い換えることができるからである。
 [正極]
 <正極活物質層>
 正極活物質層は、正極活物質を含み、正極活物質が正極用結着剤によって正極集電体上に結着した構造を有するものである。正極活物質は、充電時にリチウムイオンを電解液中へ放出し、放電時に電解液中からリチウムを吸蔵するものであり、LiMnO、LixMn(0<x<2)等の層状構造を持つマンガン酸リチウム、又はスピネル構造を有するマンガン酸リチウム;LiCoO、LiNiO、又はこれらの遷移金属の一部を他の金属で置き換えたもの;LiNi1/3Co1/3Mn1/3等の特定の遷移金属が半数を超えないリチウム遷移金属酸化物;これらのリチウム遷移金属酸化物において化学量論組成よりもLiを過剰にしたもの等が挙げられる。特に、LiαNiβCoγAlδ(1≦α≦1.2、β+γ+δ=1、β≧0.7、γ≦0.2)又はLiαNiβCoγMnδ(1≦α≦1.2、β+γ+δ=1、β≧0.6、γ≦0.2)が好ましい。正極活物質は、1種を単独で、又は2種以上を組み合わせて使用することができる。
 上記正極活物質を結着して一体化する正極結着剤としては、具体的には、上記負極結着剤と同様のものを用いることができる。正極結着剤としては、汎用性、低コストの観点から、ポリフッ化ビニリデンが好ましい。使用する正極結着剤の量は、正極活物質100質量部に対して、2~10質量部であることが好ましい。正極結着剤の含有量が2質量部以上であれば、活物質同士あるいは活物質と集電体との密着性が向上し、サイクル特性が良好になり、10質量部以下であれば、活物質比率が向上し、正極容量を向上させることができる。
 上記正極活物質層には、正極活物質のインピーダンスを低下させる目的で、導電補助材を添加してもよい。導電補助材としては、グラファイト、カーボンブラック、アセチレンブラック等の炭素質微粒子を用いることができる。
 <正極用結着剤>
 正極用結着剤としては、特に制限されるものではないが、例えば、ポリフッ化ビニリデン、ビニリデンフルオライド-ヘキサフルオロプロピレン共重合体、ビニリデンフルオライド-テトラフルオロエチレン共重合体、スチレン-ブタジエン共重合ゴム、ポリテトラフルオロエチレン、ポリプロピレン、ポリエチレン、ポリイミド、ポリアミドイミド等を用いることができる。これらの中でも、結着性が強いことから、ポリイミド、ポリアミドイミド、ポリアクリル酸(アルカリで中和されたリチウム塩、ナトリウム塩、カリウム塩を含む)、カルボキシメチルセルロース(アルカリで中和されたリチウム塩、ナトリウム塩、カリウム塩を含む)が好ましい。使用する正極用結着剤の量は、トレードオフの関係にある「十分な結着力」と「高エネルギー化」の観点から、負極活物質100質量部に対して、2~10質量部が好ましい。
 <正極用集電体>
 正極用集電体は、結着剤により一体化される正極活物質を含む正極活物質層を支持し、外部端子との導通を可能とする導電性を有するものであればよく、具体的には、上記負極集電体と同様のものを用いることができる。
 <正極の作製方法>
 正極電極の製造方法としては、特に制限はないが例えば、表面処理Mn系正極の粉体のみ、あるいは、表面処理Mn系正極の粉体とリチウムニッケル複合酸化物の粉体を、導電補助材および結着剤と共に、結着剤を溶解しうる適当な分散媒で混合(スラリー法)した上で、アルミ箔等の集電体上に塗布し、溶剤を乾燥した後、プレス等により圧縮して成膜する。尚、導電補助材としては特に制限は無く、カーボンブラック、アセチレンブラック、天然黒鉛、人工黒鉛、炭素繊維等の通常用いられるものを用いることができる。
 [電解液]
 電解液は、非プロトン性溶媒として、環状カーボネート類、鎖状カーボネート類、脂肪族カルボン酸エステル類、γ-ラクトン類、環状エーテル類、鎖状エーテル類およびそれらのフッ素誘導体、からなる群から選択された一以上の溶媒を含むことができる。具体的には、たとえばプロピレンカーボネート(PC)、エチレンカーボネート(EC)、ブチレンカーボネート(BC)、ビニレンカーボネート(VC)等の環状カーボネート類、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)、ジプロピルカーボネート(DPC)等の鎖状カーボネート類、ギ酸メチル、酢酸メチル、プロピオン酸エチル等の脂肪族カルボン酸エステル類、γ-ブチロラクトン等のγ-ラクトン類、1,2-ジエトキシエタン(DEE)、エトキシメトキシエタン(EME)等の鎖状エーテル類、テトラヒドロフラン、2-メチルテトラヒドロフラン等の環状エーテル類、ジメチルスルホキシド、1,3-ジオキソラン、ホルムアミド、アセトアミド、ジメチルホルムアミド、アセトニトリル、プロピルニトリル、ニトロメタン、エチルモノグライム、リン酸トリエステル、トリメトキシメタン、ジオキソラン誘導体、スルホラン、メチルスルホラン、1,3-ジメチル-2-イミダゾリジノン、3-メチル-2-オキサゾリジノン、プロピレンカーボネート誘導体、テトラヒドロフラン誘導体、エチルエーテル、N-メチルピロリドン、フッ素化カルボン酸エステル、メチル-2,2,2-トリフルオロエチルカーボネート、メチル-2,2,3,3,3-ペンタフルオロプロピルカーボネート、トリフルオロメチルエチレンカーボネート、モノフルオロメチルエチレンカーボネート、ジフルオロメチルエチレンカーボネート、4,5-ジフルオロ-1,3-ジオキソラン-2-オン、モノフルオロエチレンカーボネートなどのうち、一種または二種以上を混合して使用することができる。
 本実施形態の二次電池用電解液において、さらに電解質としてリチウム塩を含む構成とすることができる。こうすることにより、リチウムイオンを移動物質とすることができるため、電池特性を向上させることができる。リチウム塩としてたとえばリチウムイミド塩、LiPF、LiBF、LiAsF、LiSbF、LiClO、LiAlCl、LiN(C2n+1SO)(C2m+1SO)(n、mは自然数)の中から選択された一以上の物質を含む構成とすることができる。また、特にLiPFまたはLiBFを用いることが好ましい。これらを用いることにより、リチウム塩の電気伝導率を高めることができ、二次電池のサイクル特性をさらに向上させることができる。
 [セパレータ]
 セパレータとしては、特に制限されるものではないが、ポリプロピレン、ポリエチレン等の多孔質フィルムや不織布を用いることができる。また、セパレータとしては、それらを積層したものを用いることもできる。
 [外装体]
 外装体としては、特に制限されるものではないが、例えば、ラミネートフィルムを用いることができる。ラミネートフィルムとしては、電解液に安定でかつ十分な水蒸気バリア性を持つものであれば、適宜選択することができる。ラミネートフィルムとしては、例えば、外装体として、アルミニウム、シリカ、アルミナをコーティングしたポリプロピレン、ポリエチレン等のラミネートフィルムを用いることができる。特に、体積膨張を抑制する観点から、アルミニウムラミネートフィルムが好ましい。
 外装体としてラミネートフィルムを用いた二次電池の場合、外装体として金属缶を用いた二次電池に比べて、ガスが発生すると電極素子の歪みが非常に大きくなる。これは、ラミネートフィルムが金属缶に比べて二次電池の内圧により変形しやすいためである。さらに、外装体としてラミネートフィルムを用いた二次電池を封止する際には、通常、電池内圧を大気圧より低くするため、内部に余分な空間がなく、ガスが発生した場合にそれが直ちに電池の体積変化や電極素子の変形につながる場合がある。
 本実施形態に係る二次電池では、上記問題を克服することができる。それにより、安価かつ積層数の変更によるセル容量の設計の自由度に優れた、積層ラミネート型のリチウムイオン二次電池を提供することができる。ラミネートフィルムの代表的な層構成としては、金属薄膜層と熱融着性樹脂層とが積層された構成が挙げられる。また、ラミネートフィルムの代表的な層構成としては、その他にも、金属薄膜層の熱融着樹脂層と反対側の面に、さらにポリエチレンテレフタレートなどのポリエステルやナイロン等のフィルムからなる保護層が積層された構成が挙げられる。電池要素を封止する場合、熱融着性樹脂層を対向させて電池要素が包囲される。金属薄膜層としては、例えば、厚さ10~100μmの、Al、Ti、Ti合金、Fe、ステンレス、Mg合金などの箔が用いられる。熱融着性樹脂層に用いられる樹脂は、熱融着が可能な樹脂であれば特に制限はない。例えば、ポリプロピレン、ポリエチレン、これらの酸変成物、ポリフェニレンサルファイド、ポリエチレンテレフタレートなどのポリエステル、ポリアミド、エチレン-酢酸ビニル共重合体、エチレン-メタクリル酸共重合体やエチレン-アクリル酸共重合体を金属イオンで分子間結合させたアイオノマー樹脂などが、熱融着性樹脂層として用いられる。熱融着性樹脂層の厚さは10~200μmが好ましく、より好ましくは30~100μmである。
 [電池構成]
 二次電池の構成は、特に制限されるものではないが、例えば、正極および負極が対向配置された電極素子と、電解液と、が外装体に内包されている積層ラミネート型とすることができる。図1は、積層ラミネート型の二次電池が有する電極素子の構造を示す模式的断面図である。この電極素子は、平面構造を有する正極1の複数および負極3の複数が、セパレータ2を挟みつつ交互に積み重ねられて形成されている。各正極1が有する正極集電体1bは、正極活物質層1aに覆われていない端部で互いに溶接されて電気的に接続され、さらにその溶接箇所に正極端子4が溶接されている。各負極3が有する負極集電体3bは、負極活物質層3aに覆われていない端部で互いに溶接されて電気的に接続され、さらにその溶接箇所に負極端子6が溶接されている。さらに、正極端子4は正極タブ5に、負極端子6は負極タブ7に溶接されている。このような平面的な積層構造を有する電極素子は、Rの小さい部分(捲回構造の巻き芯に近い領域)がないため、捲回構造を持つ電極素子に比べて、充放電に伴う電極の体積変化に対する悪影響を受けにくいという利点がある。すなわち、体積膨張を起こしやすい活物質を用いた電極素子として有効である。一方で、捲回構造を持つ電極素子では電極が湾曲しているため、体積変化が生じた場合にその構造が歪みやすい。特に、ケイ素酸化物のように充放電に伴う体積変化が大きい負極活物質を用いた場合、捲回構造を持つ電極素子を用いた二次電池では、充放電に伴う容量低下が大きい。
 ところが、平面的な積層構造を持つ電極素子には、電極間にガスが発生した際に、その発生したガスが電極間に滞留しやすい問題点がある。これは、捲回構造を持つ電極素子の場合には電極に張力が働いているため電極間の間隔が広がりにくいのに対して、積層構造を持つ電極素子の場合には電極間の間隔が広がりやすいためである。外装体がアルミラミネートフィルムであった場合、この問題は特に顕著となる。
 本発明では、一般式(I)で表されるスルホン酸リチウム塩を負極活物質表面に付着させ、恐らく、皮膜が形成されるため、上記の問題を解決することができ、高エネルギー型の負極を用いた積層ラミネート型のリチウムイオン二次電池においても、長寿命駆動が可能となる。
 従って、本発明の1実施形態の二次電池は、正極および負極が対向配置された電極素子と、電解液と、前記電極素子および前記電解液を内包する外装体とを有する積層ラミネート型の二次電池であって、前記負極は、リチウムと合金可能な金属(a)およびリチウムイオンを吸蔵、放出し得る金属酸化物(b)の少なくとも1つを含む負極活物質を含み、かつ負極用結着剤によって負極集電体と結着されており、負極活物質表面に一般式(I)で表されるスルホン酸リチウム塩が付着されているか、または、皮膜が形成されている。但し、一般式(I)で表されるスルホン酸リチウム塩は、捲回構造を持つ電極素子を用いた二次電池においても有効である。
 [発明の他の実施形態]
 上記実施の形態において、表面処理Mn系正極を主とした正極活物質に、LiCoO等の一般的に正極活物質として知られている化合物を混合して用いることもできる。また、安全性等のためにLiCO等の通常用いられる添加物質をさらに加えることもできる。
 また、上記実施の形態において、電池の外装体としては、角型、ペーパー型、積層型、円筒型、コイン型など種々の形状を採用することが出来る。外装材料その他の構成部材は特に限定されるものではなく、電池形状に応じて選定すればよい。一例を挙げると、フィルム状外装体を、ポリエチレンテレフタレートなどの耐熱性樹脂膜に直接あるいは接着剤を介して前述の熱融着性樹脂膜をラミネートしたフィルム、あるいは熱融着性樹脂膜単独フィルムなどで構成することができる。
 また、電解液は、スルホニル基を少なくとも2個有する環式スルホン酸エステルに加え、一以上のスルホニル基を有する化合物をさらに含む構成とすることもできる。
 以下に本発明の実施例を具体的に説明するが、本発明はこれらに限定されるものではない。
 [負極の製作]
 負極シートをカーボン:PVDF=90:10(質量%)の比率となるように混合し、NMPに分散させた。さらに、スルホン酸リチウム塩をカーボンに対して0.5質量%添加し、さらに分散させた。得られたスルホン酸リチウム塩混合スラリーを、厚さ20μmの銅箔上に塗布して乾燥後、さらにプレスすることで、負極を製作した。
 [正極の製作]
 マンガン酸リチウム、LiNi0.8Co0.2および導電性付与剤を乾式混合し、バインダーであるPVDFを溶解させたN-メチル-2-ピロリドン(NMP)中に均一に分散させて、スラリーを作製した。導電性付与剤としては、カーボンブラックを用いた。そのスラリーを厚さ25μmのアルミ金属箔上に塗布後、NMPを蒸発させ、さらに正極シートをプレスすることで、正極を製作した。正極中の固形分比率はマンガン酸リチウム:LiNi0.8Co0.2:導電性付与剤:PVDF=72:8:10:10(質量%)の混合比(a=10)とした。
 [ラミネートセル製作]
 ポリプロピレン樹脂(封着層、厚み70μm)、ポリエチレンテレフタレート(20μm)、アルミニウム(50μm)、ポリエチレンテレフタレート(20μm)の順に積層した構造を有するラミネートフィルムを所定の大きさに2枚切り出し、その一部分に上記の積層電極体の大きさに合った底面部分と側面部分とを有する凹部を形成した。これらを対向させて上記の積層電極体を包み込み、周囲を熱融着させてフィルム外装電池を作製した。最後の1辺を熱融着封口する前に、EC/DEC=30/70(体積比)からなるカーボネート系非水電解溶媒に支持塩としてのLiPFを1mol/Lの濃度で溶解させた電解液を注液した後、0.1気圧まで減圧しつつ積層電極体に含浸させ、封止することで、アルミラミネート型の二次電池を製作した。
 [電池特性評価]
 アルミラミネート電池は、室温(25℃)において、終止電圧4.3Vまで充電し、次に2.5Vまで放電した。その後、60℃において定電流電圧でサイクル充放電および保存特性評価を行い、容量維持率を評価した。
 (実施例1)
 一般式(I)で示されるスルホン酸リチウム塩として、式(101)で示される化合物を炭素に対して0.5質量%添加して負極を製作した。負極を所定の大きさに切りだし、上述の方法でアルミラミネートセルを製作した。
 (実施例2~4)
 スルホン酸リチウム塩として、それぞれ、式(109)、(116)および(117)で示される化合物を用いたこと以外は、実施例1と同様にしてアルミラミネート型二次電池を製作した。
 (実施例5~8)
 スルホン酸リチウム塩として、それぞれ、式(101)、(109)、(116)および(117)で示される化合物を1.0質量%用いたこと以外は、実施例1と同様にしてアルミラミネート型二次電池を製作した。
 (実施例9~12)
 スルホン酸リチウム塩として、それぞれ、式(201)、(202)、(203)および(204)で示される化合物を0.5質量%用いたこと以外は、実施例1と同様にしてアルミラミネート型二次電池を製作した。
 (比較例1)
 負極製作時に、負極スラリーにスルホン酸リチウム塩を添加することなく、負極を製作したこと以外は、実施例1と同様の方法でアルミラミネートセルを製作した。
 <評価>
 実施例1~8および比較例1で作製した二次電池について、高温環境下におけるサイクル特性、保存特性を評価した。具体的には、二次電池に対し、60℃に保った恒温槽中で2.5Vから4.1Vの電圧範囲で200回充放電を繰り返す試験を行った。そして、(200サイクル目の放電容量)/(5サイクル目の放電容量)(単位:%)を維持率として算出した。また保存特性は、(高温保管前容量)/(2週間後保管後容量)(単位:%)を膨れ率として算出した。その結果を表1に示す。なお、維持率については、95%以上で「◎」、90%以上95%未満で「○」、90%未満で△とした。
Figure JPOXMLDOC01-appb-T000009
 以上の結果より、一般式(I)で示されるスルホン酸リチウム塩を用いることで、高いリサイクル特性および保存特性を実現できることが判った。
 本実施形態は、例えば、電源を必要とするあらゆる産業分野、ならびに電気的エネルギーの輸送、貯蔵および供給に関する産業分野にて利用することができる。具体的には、携帯電話、ノートパソコンなどのモバイル機器の電源;電気自動車、ハイブリッドカー、電動バイク、電動アシスト自転車などの電動車両を含む、電車や衛星や潜水艦などの移動・輸送用媒体の電源;UPSなどのバックアップ電源;太陽光発電、風力発電などで発電した電力を貯める蓄電設備;などに、利用することができる。
[付記]
 本出願は、以下の事項にも関する。
 (付記1)少なくとも、本出願に記載の負極と、非水溶媒系電解液とを内包する外装体を備え、該外装体はラミネートフィルムであるリチウム二次電池。
 (付記2)電極素子において、正極および前記負極がセパレータを介して積層配置されている付記1に記載の積層ラミネート型リチウム二次電池。
 (付記3)正極および負極が対向配置された電極素子と、非水溶媒系電解液とを備えるリチウム二次電池であって、該負極の活物質の表面上には一般式(I)で表されるスルホン酸リチウム塩が施されているリチウム二次電池を2個以上使用する組電池。
 (付記4)正極および負極が対向配置された電極素子と、非水溶媒系電解液とを備えるリチウム二次電池であって、該負極の活物質の表面上には一般式(I)で表されるスルホン酸リチウム塩が施されているリチウム二次電池、または、該リチウム二次電池を2個以上使用する組電池をモータ駆動用電源として搭載する車両。
1a 正極活物質層
1b 正極集電体
2 セパレータ
3a 負極活物質層
3b 負極集電体
4 正極端子
5 正極タブ
6 負極端子
7 負極タブ

Claims (10)

  1.  一般式(I)で表されるスルホン酸リチウム塩を含むリチウム二次電池用負極。
    Figure JPOXMLDOC01-appb-C000001
    (式中、
     Rは、炭素数1~30でn価の脂肪族炭化水素基、n価の単核式芳香族基またはn価の2核式縮合環芳香族基を表し、
     nは、1または2を表す。)
  2.  nは1を表し、
     Rは、置換または無置換の直鎖状アルキル基;置換または無置換の分岐状アルキル基;置換または無置換の環状アルキル基;置換または無置換のシクロヘキシル基;置換または無置換のデカヒドロナフチル基;置換または無置換のテトラリル基;置換または無置換のナフトキノリル基;置換または無置換のフェニル基;置換または無置換のトリル基;置換または無置換のキシリル基;置換または無置換のベンジル基;置換または無置換のトリチル基;置換または無置換のスチリル基;置換または無置換のナフチル基;置換または無置換のフリル基;置換または無置換のチエニル基;置換または無置換のピリジル基;置換または無置換のキノリル基;または、置換または無置換のモルホリノ基を表し、
     上記の基において、1個以上のCH基は、それぞれ互いに独立に、-CH=CH-、-C≡C-、-O-、-CO-、-CO-O-、-O-CO-または-SiY-で置き換えられていてもよく、
     ただし、YおよびYは、それぞれ互いに独立に、H、炭素数1~5のアルキル基、炭素数1~5のアルコキシ基、炭素数2~5のアルケニル基または炭素数2~5のアルキニル基を表し、
     上記の基において、1個以上の水素原子は、それぞれ互いに独立に、ブロモ、クロロ、フルオロおよびヨードから選ばれるハロゲン;メチル、エチル、プロピル、ブチル、ペンチル、ヘキシル、ヘプチル、オクチル、ノニル、デシル、ウンデシル、ドデシル、トリデシル、テトラデシルおよびペンタデシルから選ばれるアルキル基;メトキシ、エトキシ、プロポキシ、ブトキシ、ペントキシ、ヘキシルオキシ、ヘプチルオキシ、オクチルオキシ、ノニルオキシ、デシルオキシ、ウンデシルオキシ、ドデシルオキシ、トリデシルオキシおよびテトラデシルオキシから選ばれるアルコキシ基;ビニル、プロパ-1-および-2-エニル、ブタ-1-、-2-および-3-エニル、ペンタ-1-、-2-、-3-および-4-エニル、ヘキサ-1-、-2-、-3-、-4-および-5-エニル、ヘプタ-1-、-2-、-3-、-4-、-5-および-6-エニル、オクタ-1-、-2-、-3-、-4-、-5-、-6-および-7-エニル、ノナ-1-、-2-、-3-、-4-、-5-、-6-、-7-および-8-エニル、デカ-1-、-2-、-3-、-4-、-5-、-6-、-7-、-8-および-9-エニルから選ばれるアルケニル基;エチニルおよびプロパルギル基から選ばれるアルキニル基;置換または無置換のシクロヘキシル基;フェニル、トリル、キシリル、ベンジル、トリチル、スチリル、ナフチル、デカヒドロナフチル、テトラリルおよびナフトキノリルから選ばれるアリール基;フリル、チエニル、ピリジル、キノリルおよびモルホリノから選ばれるヘテロ環基;ニトロ、ニトロソ、シアノ、イソシアノ、シアナト、イソシアナト、アミノおよびアミドから選ばれる含窒素基;ヒドロキシ、カルボキシル、アシルおよびアルコキシカルボニルから選ばれる含酸素基;シリル、モノメチルシリル、ジメチルシリル、トリメチルシリル、モノフェニルシリル、ジフェニルシリルおよびトリフェニルシリルから選ばれる含ケイ素基;または、チオアルキルおよびチオアルコキシから選ばれる含イオウ基で置換されていてもよい請求項1に記載のリチウム二次電池用負極。
  3.  一般式(I)で表されるスルホン酸リチウム塩は、下式から成る群より選ばれる化合物である請求項2に記載のリチウム二次電池用負極。
    Figure JPOXMLDOC01-appb-C000002
  4.  nは2を表し、
     Rは、置換または無置換の直鎖状アルキレン基;置換または無置換の分岐状アルキレン基;置換または無置換の環状アルキレン基;置換または無置換のシクロヘキシレン基;置換または無置換のデカヒドロナフチレン基;置換または無置換のテトラリレン基;置換または無置換のナフトキノリレン基;置換または無置換のフェニレン基;置換または無置換のトリレン基;置換または無置換のキシリレン基;置換または無置換のベンジリデン基;置換または無置換のナフチレン基;置換または無置換のフリレン基;置換または無置換のチエニレン基;置換または無置換のピリジレン基;置換または無置換のキノリレン基;または、置換または無置換のモルホリレン基を表し、
     上記の基において、1個以上のCH基は、それぞれ互いに独立に、-CH=CH-、-C≡C-、-O-、-CO-、-CO-O-、-O-CO-または-SiY-で置き換えられていてもよく、
     ただし、YおよびYは、それぞれ互いに独立に、H、炭素数1~5のアルキル基、炭素数1~5のアルコキシ基、炭素数2~5のアルケニル基または炭素数2~5のアルキニル基を表し、
     上記の基において、1個以上の水素原子は、それぞれ互いに独立に、ブロモ、クロロ、フルオロおよびヨードから選ばれるハロゲン;メチル、エチル、プロピル、ブチル、ペンチル、ヘキシル、ヘプチル、オクチル、ノニル、デシル、ウンデシル、ドデシル、トリデシル、テトラデシルおよびペンタデシルから選ばれるアルキル基;メトキシ、エトキシ、プロポキシ、ブトキシ、ペントキシ、ヘキシルオキシ、ヘプチルオキシ、オクチルオキシ、ノニルオキシ、デシルオキシ、ウンデシルオキシ、ドデシルオキシ、トリデシルオキシおよびテトラデシルオキシから選ばれるアルコキシ基;ビニル、プロパ-1-および-2-エニル、ブタ-1-、-2-および-3-エニル、ペンタ-1-、-2-、-3-および-4-エニル、ヘキサ-1-、-2-、-3-、-4-および-5-エニル、ヘプタ-1-、-2-、-3-、-4-、-5-および-6-エニル、オクタ-1-、-2-、-3-、-4-、-5-、-6-および-7-エニル、ノナ-1-、-2-、-3-、-4-、-5-、-6-、-7-および-8-エニル、デカ-1-、-2-、-3-、-4-、-5-、-6-、-7-、-8-および-9-エニルから選ばれるアルケニル基;エチニルおよびプロパルギル基から選ばれるアルキニル基;置換または無置換のシクロヘキシル基;フェニル、トリル、キシリル、ベンジル、トリチル、スチリル、ナフチル、デカヒドロナフチル、テトラリルおよびナフトキノリルから選ばれるアリール基;フリル、チエニル、ピリジル、キノリルおよびモルホリノから選ばれるヘテロ環基;ニトロ、ニトロソ、シアノ、イソシアノ、シアナト、イソシアナト、アミノおよびアミドから選ばれる含窒素基;ヒドロキシ、カルボキシル、アシルおよびアルコキシカルボニルから選ばれる含酸素基;シリル、モノメチルシリル、ジメチルシリル、トリメチルシリル、モノフェニルシリル、ジフェニルシリルおよびトリフェニルシリルから選ばれる含ケイ素基;または、チオアルキルおよびチオアルコキシから選ばれる含イオウ基で置換されていてもよい請求項1に記載のリチウム二次電池用負極。
  5.  一般式(I)で表されるスルホン酸リチウム塩は、下式から成る群より選ばれる化合物である請求項4に記載のリチウム二次電池用負極。
    Figure JPOXMLDOC01-appb-C000003
  6.  一般式(I)で表されるスルホン酸リチウム塩は、溶解度パラメータ(sp値)が8.8~11.5の溶媒に不溶である請求項1~5のいずれか1項に記載のリチウム二次電池用負極。
  7.  請求項1~6のいずれか1項に記載のスルホン酸リチウム塩が負極活物質の表面に付着しているか、または、皮膜を形成している請求項1~6のいずれか1項に記載のリチウム二次電池用負極。
  8.  該負極活物質に対する該スルホン酸リチウム塩の量は、0.001質量%以上および5.0質量%以下である請求項7に記載のリチウム二次電池用負極。
  9.  正極および負極が対向配置された電極素子と、非水溶媒系電解液とを備えるリチウム二次電池であって、該負極の活物質の表面上には一般式(I)で表されるスルホン酸リチウム塩が施されているリチウム二次電池。
    Figure JPOXMLDOC01-appb-C000004
    (式中、
     Rは、炭素数1~30でn価の脂肪族炭化水素基、n価の単核式芳香族基またはn価の2核式縮合環芳香族基を表し、
     nは、1または2を表す。)
  10.  一般式(1)で表されるスルホン酸リチウム塩を含むリチウム二次電池用負極を製造する方法であって、
     該スルホン酸リチウム塩を分散してスラリーを調製する工程と、
     該スラリーを塗布し、乾燥する工程と
    を含む製造方法。
    Figure JPOXMLDOC01-appb-C000005
    (式中、
     Rは、炭素数1~30でn価の脂肪族炭化水素基、n価の単核式芳香族基またはn価の2核式縮合環芳香族基を表し、
     nは、1または2を表す。)
PCT/JP2014/050706 2013-02-04 2014-01-16 二次電池用負極およびその製造方法、それを用いた二次電池 WO2014119375A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014559617A JPWO2014119375A1 (ja) 2013-02-04 2014-01-16 二次電池用負極およびその製造方法、それを用いた二次電池
US14/765,173 US20160006010A1 (en) 2013-02-04 2014-01-16 Negative electrode for secondary battery, method for producing same, and secondary battery using same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013019951 2013-02-04
JP2013-019951 2013-02-04

Publications (1)

Publication Number Publication Date
WO2014119375A1 true WO2014119375A1 (ja) 2014-08-07

Family

ID=51262089

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/050706 WO2014119375A1 (ja) 2013-02-04 2014-01-16 二次電池用負極およびその製造方法、それを用いた二次電池

Country Status (3)

Country Link
US (1) US20160006010A1 (ja)
JP (1) JPWO2014119375A1 (ja)
WO (1) WO2014119375A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016201308A (ja) * 2015-04-13 2016-12-01 富士フイルム株式会社 非水電解液および非水二次電池
JP2019139931A (ja) * 2018-02-08 2019-08-22 三菱ケミカル株式会社 非水系電解液及び非水系電解液電池
WO2023119990A1 (ja) * 2021-12-24 2023-06-29 パナソニックIpマネジメント株式会社 非水電解質二次電池用負極、及び非水電解質二次電池
WO2023190239A1 (ja) * 2022-03-31 2023-10-05 パナソニックIpマネジメント株式会社 二次電池用負極材料および二次電池
WO2023190241A1 (ja) * 2022-03-31 2023-10-05 パナソニックIpマネジメント株式会社 二次電池用負極材料および二次電池

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102237824B1 (ko) * 2014-07-11 2021-04-08 삼성전자주식회사 공기극, 이를 포함하는 리튬공기전지, 및 공기극 제조방법
US20160149207A1 (en) * 2014-11-21 2016-05-26 Nexeon Limited Surface treated silicon containing active materials for electrochemical cells
CN110112354B (zh) * 2018-02-01 2023-04-28 东京应化工业株式会社 二次电池及二次电池用多孔质隔膜
CN112310475B (zh) * 2019-07-31 2023-08-18 新亚杉杉新材料科技(衢州)有限公司 一种锂离子电池非水电解液及锂离子电池
CN112164774A (zh) * 2020-09-08 2021-01-01 合肥国轩高科动力能源有限公司 一种复合高镍三元正极材料及其制备方法
CN114243211A (zh) * 2021-11-09 2022-03-25 中国计量大学 一种抑制产气的锂电池用隔膜及锂电池
CN114039028A (zh) * 2021-11-09 2022-02-11 中国计量大学 一种抑制产气的锂电池负极极片及锂电池
CN114050228A (zh) * 2021-11-09 2022-02-15 中国计量大学 一种抑制产气的锂电池正极极片及锂电池
CN114883531A (zh) * 2022-05-17 2022-08-09 合肥国轩高科动力能源有限公司 一种三电极锂离子电池及其预锂和补锂方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002134173A (ja) * 2000-10-23 2002-05-10 Toshiba Battery Co Ltd 非水二次電池の製造方法
JP2004296420A (ja) * 2003-02-14 2004-10-21 Hitachi Maxell Ltd 有機電解液電池
JP2009021229A (ja) * 2007-06-13 2009-01-29 Sony Corp 負極およびその製造方法、ならびに二次電池およびその製造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4453242B2 (ja) * 2001-09-26 2010-04-21 三菱化学株式会社 リチウム二次電池及び正極

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002134173A (ja) * 2000-10-23 2002-05-10 Toshiba Battery Co Ltd 非水二次電池の製造方法
JP2004296420A (ja) * 2003-02-14 2004-10-21 Hitachi Maxell Ltd 有機電解液電池
JP2009021229A (ja) * 2007-06-13 2009-01-29 Sony Corp 負極およびその製造方法、ならびに二次電池およびその製造方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016201308A (ja) * 2015-04-13 2016-12-01 富士フイルム株式会社 非水電解液および非水二次電池
JP2019139931A (ja) * 2018-02-08 2019-08-22 三菱ケミカル株式会社 非水系電解液及び非水系電解液電池
JP7012550B2 (ja) 2018-02-08 2022-01-28 三菱ケミカル株式会社 非水系電解液及び非水系電解液電池
WO2023119990A1 (ja) * 2021-12-24 2023-06-29 パナソニックIpマネジメント株式会社 非水電解質二次電池用負極、及び非水電解質二次電池
WO2023190239A1 (ja) * 2022-03-31 2023-10-05 パナソニックIpマネジメント株式会社 二次電池用負極材料および二次電池
WO2023190241A1 (ja) * 2022-03-31 2023-10-05 パナソニックIpマネジメント株式会社 二次電池用負極材料および二次電池

Also Published As

Publication number Publication date
US20160006010A1 (en) 2016-01-07
JPWO2014119375A1 (ja) 2017-01-26

Similar Documents

Publication Publication Date Title
WO2014119375A1 (ja) 二次電池用負極およびその製造方法、それを用いた二次電池
KR102473873B1 (ko) 비수전해질 이차 전지용 부극재 및 부극 활물질 입자의 제조 방법
JP6288186B2 (ja) リチウムイオン二次電池
JP6191454B2 (ja) 二次電池および電解液
JP5748193B2 (ja) 二次電池
JP5704633B2 (ja) 二次電池
KR101579641B1 (ko) 리튬 이차전지용 음극 활물질 및 이를 포함하는 리튬 이차전지
US10374259B2 (en) Hydrofluoroether compound, nonaqueous electrolyte solution and lithium ion secondary battery
WO2013114946A1 (ja) リチウム二次電池
US20190181494A1 (en) Nonaqueous electrolytic solution and lithium ion secondary battery
US10069166B2 (en) Cyclic sulfonic acid ester compound, non-aqueous electrolyte solution, and lithium ion secondary battery using same
WO2013038842A1 (ja) 二次電池
JP5867397B2 (ja) 二次電池
JP2016018708A (ja) 非水電解液及びリチウムイオン二次電池
WO2016017362A1 (ja) シクロブテンジオン誘導体、非水電解液、及びリチウムイオン二次電池
JP6720974B2 (ja) リチウムイオン二次電池
US10050309B2 (en) Nonaqueous electrolytic solution and lithium ion secondary battery
WO2016006381A1 (ja) 非水電解液及びリチウムイオン二次電池
JP6191294B2 (ja) 二次電池用負極およびその製造方法、それを用いた二次電池
WO2012049889A1 (ja) 二次電池およびそれに用いる二次電池用電解液
WO2014141932A1 (ja) リチウム二次電池
JP2014137861A (ja) リチウムイオン二次電池用負極、その製造方法およびそれを用いた二次電池
JP2012033346A (ja) 非プロトン性電解液二次電池
WO2014119377A1 (ja) 二次電池用負極およびその製造方法、それを用いた二次電池
JP6447500B2 (ja) 二次電池用負極、その製造方法、およびそれを用いた二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14746342

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014559617

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14765173

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14746342

Country of ref document: EP

Kind code of ref document: A1