WO2014119163A1 - 研削加工方法 - Google Patents

研削加工方法 Download PDF

Info

Publication number
WO2014119163A1
WO2014119163A1 PCT/JP2013/083883 JP2013083883W WO2014119163A1 WO 2014119163 A1 WO2014119163 A1 WO 2014119163A1 JP 2013083883 W JP2013083883 W JP 2013083883W WO 2014119163 A1 WO2014119163 A1 WO 2014119163A1
Authority
WO
WIPO (PCT)
Prior art keywords
workpiece
grindstone
grinding
feed
elastic deformation
Prior art date
Application number
PCT/JP2013/083883
Other languages
English (en)
French (fr)
Inventor
徹夫 杓子
Original Assignee
コマツNtc株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コマツNtc株式会社 filed Critical コマツNtc株式会社
Priority to KR1020157015521A priority Critical patent/KR20150111906A/ko
Priority to CN201380064490.5A priority patent/CN104853880A/zh
Publication of WO2014119163A1 publication Critical patent/WO2014119163A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B49/00Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation
    • B24B49/02Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation according to the instantaneous size and required size of the workpiece acted upon, the measuring or gauging being continuous or intermittent
    • B24B49/04Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation according to the instantaneous size and required size of the workpiece acted upon, the measuring or gauging being continuous or intermittent involving measurement of the workpiece at the place of grinding during grinding operation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B7/00Machines or devices designed for grinding plane surfaces on work, including polishing plane glass surfaces; Accessories therefor
    • B24B7/07Machines or devices designed for grinding plane surfaces on work, including polishing plane glass surfaces; Accessories therefor involving a stationary work-table
    • B24B7/075Machines or devices designed for grinding plane surfaces on work, including polishing plane glass surfaces; Accessories therefor involving a stationary work-table using a reciprocating grinding head mounted on a movable carriage

Definitions

  • the present invention relates to a grinding method in a grinding machine used for surface grinding of a workpiece, and more particularly to correction of the idling start position.
  • Patent Literature 1 discloses a grinding apparatus that feeds a grindstone to a workpiece side by a feeding mechanism to grind the workpiece.
  • This grinding processing device is based on a processing pattern showing a plurality of target speeds and a plurality of target positions with respect to the feed speed of the grindstone, and controls the feed speed relative to the feed position from rough grinding to finish grinding. This makes it possible to obtain grinding results with good accuracy.
  • the wear of the grindstone is calculated from the measurement value of the thickness sensor, the origin of the feed position, and the measured value after or during machining, and based on the value, the empty space immediately before the grindstone contacts the workpiece.
  • the start position is corrected. Before each machining starts, the idle running start position is appropriately corrected, whereby the idle running distance is shortened and the machining time is shortened.
  • the wear of the grindstone is calculated based on the values at the respective origins set before machining from the measured value of the thickness sensor when the workpiece has been ground and the value of the feed position, and the calculated value
  • the free running start position is corrected by correcting the movement of the entire machining pattern based on the above.
  • Free running is a feed control that is performed at a feed speed at which contact can be made so as not to damage the grindstone and the workpiece.
  • Patent Document 1 The correction method of Patent Document 1 is extremely stable and useful under a predetermined condition that is a premise. However, if the precondition is not satisfied, the idling start position may not be corrected appropriately. As an example of such a case, for example, in processing that requires a high pressing force such as sapphire processing, displacement due to elastic deformation of machine components cannot be ignored.
  • the correction method of this Patent Document 1 is established on the premise that the correction amount due to the elastic deformation of the machine component is smaller than the free running distance.
  • the workpiece is extremely hard like sapphire, it is necessary to press the grindstone against the workpiece with a large pressing force, which increases the elastic deformation of the machine components, and this assumption does not hold. There is.
  • the idle running start position corrected based on the measurement value including displacement due to elastic deformation and the feed position is set to the back side of the workpiece surface in the state without elastic deformation, and before the idle running starts.
  • the grindstone will collide with the workpiece.
  • the effect of the correction is reduced and the free running time becomes long, so that the entire machining time also becomes long.
  • An object of the present invention is to provide a grinding method capable of appropriately correcting the idling start position without being affected by the elastic deformation of the machine.
  • the grinding method according to one aspect of the present invention is an idle running that enables a safe contact while rotating the grindstone and the workpiece by controlling a feed base that relatively moves the grindstone and the workpiece back and forth.
  • a grinding method for grinding the surface of the workpiece wherein the workpiece is ground to the machining target position and then the position of the grindstone is returned to the displacement of the feed base.
  • the grinding method enables a safe contact while rotating the grindstone and the workpiece by controlling a feed base that relatively reciprocates the grindstone and the workpiece.
  • a grinding method for grinding the surface of the workpiece by contacting the workpiece through idle running, and when the workpiece is ground to a machining target position, the surface position or thickness of the workpiece, and the feed Measuring the position or displacement of the table, obtaining the amount of elastic deformation of the machine included in the displacement of the feed table when the workpiece is ground to the processing target position, and obtaining the surface position or thickness of the workpiece.
  • the correction value of the idling start position calculated based on the position or displacement amount of the feed base is corrected by the elastic deformation amount, and based on the corrected correction value Is that to correct the air run start position of the times.
  • FIG. 1 is a diagram illustrating a configuration related to grinding in a grinding apparatus used in the present embodiment.
  • the grinding apparatus according to the present embodiment grinds the surface of the workpiece by fixing the workpiece side in the feeding direction and feeding and moving the grindstone side in the direction of the workpiece. Device.
  • the grinding apparatus 1 includes a grindstone 2 that grinds the surface of a workpiece W, a base member 30, a workpiece support unit 40 and a grinding unit 50 that are disposed on the upper surface of the base member 30, And a control device 6 that controls the operation of the grinding device 1.
  • the work support portion 40 is disposed in the right region of FIG. 1, and the grinding portion 50 is disposed in the left region of FIG. 1.
  • the grinding apparatus 1 of the present embodiment is a horizontal grinding apparatus in which the grindstone 2 is attached to the front end surface of the grindstone rotating shaft 55 whose axial direction is arranged in the lateral direction, but the present invention is implemented in a vertical form. Is also possible.
  • the work support unit 40 includes a support base 41, a work rotation shaft 42 provided on the support base 41, a drive motor 43 for rotating the work rotation shaft 42, and a chuck 44 that holds the workpiece W. ing.
  • the support base 41 is fixed to the upper surface of the base member 30, and a work rotation shaft 42 is provided from the support base 41 toward the grinding unit 50.
  • the work rotation shaft 42 is configured to rotate around a central axis 42 ⁇ / b> A of the work rotation shaft 42 by a drive motor 43 provided on the upper portion of the support base 41.
  • the chuck 44 is provided on the front end surface of the workpiece rotating shaft 42 and holds the workpiece W by vacuum suction.
  • the grinding unit 50 includes a fixed base 51, a feed base 52 connected to the fixed base 51, a feed driving unit 53 for moving the feed base 52, a support base 54 attached to the feed base 52, and a support A grindstone rotating shaft 55 provided on the table 54 and a drive motor 56 for rotating the grindstone rotating shaft 55 are provided.
  • the fixed base 51 is fixed to the upper surface of the base member 30.
  • a feed base 52 is coupled to the upper part of the fixed base 51 so as to be slidable in the left-right direction (X direction) in FIG.
  • the feed driving unit 53 is a mechanism that moves the feed base 52 in the left-right direction in FIG.
  • the support table 54 is attached to the upper part of the feed table 52, and a grindstone rotating shaft 55 is provided from the support table 54 toward the work support unit 40.
  • the grindstone rotating shaft 55 is configured to rotate around the central axis 55 ⁇ / b> A of the grindstone rotating shaft 55 by a drive motor 56 provided inside the support base 54.
  • a grindstone 2 is attached to the front end of the grindstone rotating shaft 55.
  • the grindstone 2 and the workpiece W are relatively fed and moved by moving the grindstone 2 side, but the present invention is not limited to this.
  • the workpiece W side may be moved, or both the grindstone 2 side and the workpiece W side may be moved.
  • the grindstone 2 is moved so as to approach the workpiece W in the feeding direction while the workpiece W held by the grindstone 2 and the chuck 44 is rotated, and the grindstone 2 is moved to the workpiece W.
  • the workpiece W is ground by being brought into contact with.
  • FIG. 2 is a diagram for explaining the positional relationship between the grindstone 2 and the workpiece W.
  • the end face of the grindstone 2 is positioned so as to contact the center W 0 of the workpiece W.
  • the grindstone 2 is sent to the workpiece W side at a desired processing speed while rotating.
  • FIG. 3 is a block diagram showing a schematic configuration relating to control in the grinding apparatus 1.
  • the grinding device 1 is provided with various sensors.
  • This sensor is a thickness sensor S 1 that detects the surface position of the workpiece W.
  • the thickness sensor S 1 may be a contact type or a non-contact type.
  • the thickness sensor S 1 may detect the surface position of the chuck 44 and the surface position of the workpiece W and notify the control device 6 of the surface position of the workpiece W, or the difference between them may be detected.
  • the control device 6 may be notified of the thickness of the workpiece W.
  • Feed position detector S 2 for detecting the feed amount of the grinding wheel 2.
  • Feed position detector S 2 measures the feed amount of the grinding wheel 2 by the position or displacement of the feed bar 52.
  • the displacement of the feed base 52 includes elastic deformation of these machines.
  • the control device 6 uses the notifications from the sensors S 1 and S 2 to control the feed driving unit 53 that reciprocates the grindstone rotating shaft 55, and controls the feed speed or position of the grindstone 2. Grind W to the desired thickness. The feed speed or position is controlled according to a predetermined grinding pattern. At this time, the control device 6, the grinding wheel 2 performs feed control based on the feed amount of the grinding wheel 2 which is notified from the feed position detector of the sensor S 2 until contact with the workpiece W, the grinding of the workpiece W beginning with performing feed control based on the surface position or the thickness of the workpiece W to be notified from the thickness sensor S 1 from. Alternatively, it is also possible to perform feed control based on the position to be notified of all the sensor S 2.
  • the control device 6 first causes the grindstone 2 to quickly approach the vicinity of the workpiece W, and then starts feeding at a predetermined idle running speed.
  • the idling is an operation for alleviating the impact when the grindstone 2 is brought into contact with the workpiece W, while rotating the grindstone 2 at a feed speed that does not damage the workpiece W or the grindstone 2 during contact. Send to workpiece W side. Generally, the speed is the same as the next roughing grinding.
  • the grinding apparatus 1 includes means for measuring a load applied to the grindstone rotating shaft 55, and detects that the grindstone 2 has contacted the workpiece W from a change in the load applied to the grindstone rotating shaft 55. You may decide.
  • the load applied to the grindstone rotating shaft 55 can be measured by, for example, the current of the drive motor 56 for driving the grindstone.
  • the grinding apparatus 1 includes means for measuring the rotational speed of the grindstone rotating shaft 55 and detects that the grindstone 2 has contacted the workpiece W from a change in the rotational speed of the grindstone rotating shaft 55. You may decide.
  • the rotation speed of the grindstone rotating shaft 55 can be measured as the rotation speed of the drive motor 56 for driving the grindstone.
  • Grinding of the workpiece W starts when the grindstone 2 contacts the workpiece W. Feed control is performed to a machining target position where the workpiece W has a specified thickness according to a predetermined grinding pattern.
  • the grinding pattern may include rough grinding and subsequent finish grinding in order to enable high-speed and high-precision grinding.
  • the control device 6 grinds the workpiece W with high accuracy at a lower finish process speed than the rough grinding process speed.
  • the control device 6 obtains the measured value measured by the position detector S 2 sends the thickness sensor S 1.
  • the control device 6 adjusts the grinding pattern of the next grinding process including the idling start position using the value acquired here. That is, the idling start position can be corrected by correcting the movement of the grinding pattern.
  • the grindstone 2 When grinding the workpiece W, the grindstone 2 is also worn. When the grindstone 2 is worn, the difference between the displacement of the surface position of the workpiece W in grinding and the displacement of the feed position of the grindstone 2 changes. This is because if the grindstone 2 is worn, the feed position of the grindstone 2 is also advanced by the amount of wear.
  • the grinding apparatus of the present embodiment has a function of correcting the idle running start position according to the wear of the grindstone 2 and setting an appropriate idle running start position. By starting the idle running as close as possible within a range where the grindstone 2 does not collide with the workpiece W, the machining time can be shortened.
  • Patent Document 1 when the N-th grinding process is completed under the precondition that the amount of elastic deformation of the machine is smaller than the free running distance (for example, when 100% is finished or 100% is reached).
  • the feed position value X (N) and the sensor measurement value S (N) are measured, and the correction value calculated as the difference between them is ⁇ ((X (N) ⁇ S (N)) ⁇ Based on (X (0) -S (0))), the idling start position is corrected.
  • X (0) is the origin of the feed position value
  • S (0) is the origin of the sensor measurement value.
  • both X (0) and S (0) are illustrated with the surface position of the chuck 44 as the origin. Yes.
  • the surface position of the chuck 44 as an origin is merely an example, and the effect of the present correction method does not change even if the position of the origin is not particularly limited.
  • the processing target position of the workpiece W that is, the position obtained by adding the post-processing thickness of the workpiece W to the surface position of the chuck 44 may be used as the origin.
  • the feed position value X (N) is compared with the idle running distance.
  • the elastic deformation amount d (N) of the machine that is not small, that is, cannot be ignored is included.
  • the idling start position is set to a position shifted to the back by the elastic deformation amount d (N). It is conceivable that the rescue cannot be done with the margin of the free running distance. Since the grindstone 2 and the workpiece W are not in contact with each other at the position where the idling is started (that is, the pressing force is zero), the surface position of the grindstone is located on the back side by the amount of elastic deformation. It is.
  • the grinding device is provided with a measuring instrument for measuring the load applied to the grindstone rotating shaft 55, and it is determined from the change in the load applied to the grindstone rotating shaft 55 that the elastic deformation can be ignored. Is.
  • the control device 6 measures and stores the load applied to the grindstone rotating shaft 55 before starting the Nth feed control.
  • the load applied to the grindstone rotating shaft 55 can be measured by, for example, the current of the drive motor 56 for driving the grindstone.
  • the control device 6 sets a load threshold value of the grindstone rotating shaft 55 for determining that the elastic deformation can be ignored based on the measured load value. For example, when the measured load value falls within a predetermined range, it may be determined that the elastic deformation can be ignored. Further, another means for obtaining the same effect is the load current of the motor of the grindstone feed shaft, which may be determined based on this.
  • control device 6 performs the N-th series of grinding processes, and starts the control to return the grindstone 2 away from the workpiece W at a low speed when the workpiece W has been ground to the machining target position.
  • control device 6 monitors the load applied to the grindstone rotating shaft 55, and determines that the elastic deformation can be ignored when the load reaches the above threshold value.
  • the control device 6 obtains the measured value is detected by the position detector S 2 sends the thickness sensor S 1 Sb (N), Xb (N).
  • control device 6 does not calculate the threshold value each time from the load applied to the grindstone rotating shaft 55 before starting the Nth feed control as described above, but sets the threshold value fixedly. You may decide to keep it.
  • the grinding device is provided with a measuring device for measuring the rotational speed of the grindstone rotating shaft 55, and the fact that the grindstone 2 has contacted the workpiece W is determined from the change in the rotational speed of the grindstone rotating shaft 55. You may decide to detect.
  • the rotation speed of the grindstone rotating shaft 55 can be measured as the rotation speed of the drive motor 56 for driving the grindstone.
  • the control device 6 calculates the correction value ⁇ (N) and the corrected idling start position Xpa (N + 1).
  • Formulas for calculating the correction value ⁇ (N) and the free running start position Xpa (N + 1) after correction are the formulas (1) and (2), respectively.
  • Xpa (N + 1) (Sa (N + 1) ⁇ S (0)) + X (0) ⁇ (N) + MA (2)
  • Sa (N + 1) represents the surface position of the workpiece W to be ground for the (N + 1) th time
  • (Sa (N + 1) ⁇ S (0)) represents the thickness of the workpiece W.
  • the idling start position Xpa (N + 1) is obtained by adding the value (X (0)) of the feed position origin to the thickness of the workpiece W (Sa (N + 1) ⁇ S (0)).
  • control device 6 moves and corrects the grinding pattern so that idle running is started from the calculated idle running start position Xpa (N + 1) in the (N + 1) th grinding process, and according to the corrected grinding pattern.
  • the N + 1th grinding process is executed.
  • FIG. 4 is a diagram showing the relationship between the elastic deformation amount d (1) and the correction amount ⁇ (1).
  • the elasticity of the machine included in the displacement of the feed base 52 during the return of the position of the grindstone 2 after the workpiece W is ground to the machining target position.
  • the position or displacement of the feed base 52 is measured, and a correction value for the idling start position is calculated based on the measured position or displacement of the feed base 52. Therefore, the idling start position can be appropriately corrected without causing the grindstone 2 to collide with the workpiece W in a state where there is no elastic deformation, and so that the processing time is shortened.
  • the mechanical deformation included in the displacement of the feed base 52 becomes negligible, not only the position or displacement amount of the feed base 52 but also the surface position of the workpiece W or Since the thickness is also measured and the correction value of the idling start position is calculated based on both, it is possible to correct the idling start position more accurately.
  • the thickness sensor S 1 is a contact sensor, and to improve the wafer properties and performs control by spacing the thickness sensor S 1 from the wafer in the return control for. Therefore, the measurement value of the thickness sensor S 1 would not be obtained during the return control.
  • the control device 6 obtains the measured values of the thickness sensor S 1 S (N) when the feed control advances to the processing target position, then performs the return control, the elastic deformation of the machine to get the feed when it becomes a negligible state position detector S 2 measurements Xb (N).
  • control device 6 determines the correction value ⁇ (N) of the idling start position according to the equation (3).
  • the grinding method of this embodiment small influence of mechanical elastic deformation, also can not be measured during the return control, for measurement of the thickness sensor S 1 (surface position or thickness of the workpiece W) of the grinding measured at the end, measured in a state where the elastic deformation can be ignored in the return control for the measurement value of the feed position detector S 2, which is greatly affected by the elastic deformation (position or displacement of the feed table 52). Therefore, even under conditions where the measurement of the surface position or thickness of the workpiece W is limited, the free running so that the grindstone 2 does not collide with the workpiece W without elastic deformation and the processing time is shortened. The starting position can be appropriately corrected.
  • a value obtained by adding a predetermined adjustment to S (N) measured when the feed control has advanced to the machining target position is applied to the above equation (3), and the correction value ⁇ (N) of the idling start position is applied.
  • the grinding apparatus used in the third embodiment basically has the same configuration as that of the first and second embodiments. However, this embodiment differs from the first and second embodiments, the grinding apparatus, measured values of the thickness sensor S 1 and the feed position measuring device S 2 when the feed control advances to the processing target position and elastic It obtains the deformation amount is to use by adding the amount of elastic deformation to the correction value of the idling-run starting position calculated from the measured values of the thickness sensor S 1 and the feed position measuring device S 2.
  • the grinding apparatus includes a measuring device that directly measures the amount of elastic deformation of the machine that affects the measurement value of the thickness sensor S 1 or the feed position measuring device S 2 .
  • the measuring instrument is a measuring instrument that measures a load applied to the grindstone rotating shaft 55. More specifically, the measuring instrument is a measuring instrument that measures the current of the driving motor 56 for driving the grindstone. The relationship between the current of the drive motor 56 and the elastic deformation amount d (N) when the feed control reaches the machining target position can be expressed by a function.
  • control device 6 expresses the relationship between the current of the drive motor 56 and the elastic deformation amount d (N) when the feed control reaches the machining target position by a function such as equation (4) and sets it in advance. Keep it. fd (),..., g, and o are predetermined functions or constants.
  • the control device 6 After a series of feed control, the control device 6, the measured value of the thickness sensor S 1 S (N) and feed position measuring device S 2 measured value X (N) when the feed control advances to the processing target position, The current value Ix (N) of the drive motor 56 is acquired from the measuring instrument.
  • the control device 6 calculates the idle running start position correction value ⁇ ′ (by the equation (5) from the acquired measured value S (N) of the thickness sensor S 1 and measured value X (N) of the feed position measuring device S 2. N) is calculated.
  • ⁇ ′ (N) ⁇ ((X (N) ⁇ X (0)) ⁇ (S (N) ⁇ S (0))) (5)
  • control device 6 calculates the elastic deformation amount d (N) from the current value Ix (N) of the drive motor 56 according to the above equation (4), and elastically generates the correction value ⁇ ′ (N) of the idling start position. By adding the deformation amount d (N), a correction value ⁇ (N) considering elastic deformation is calculated.
  • the control device 6 corrects the idling start position in the next grinding process using the calculated correction value ⁇ (N).
  • the correction value of the idling start position calculated based on the measurement value in a state where elastic deformation is occurring is corrected using the measured elastic deformation amount, so that there is no elastic deformation.
  • the idling start position can be appropriately corrected so that the grindstone 2 does not collide with the workpiece W and the processing time is shortened.
  • the elastic deformation amount d (N) is calculated from the current value Ix (N) of the drive motor 56
  • the present invention is not limited to this.
  • a strain measuring element may be attached to the machine of the grinding apparatus, and the elastic deformation amount d (N) may be calculated from the measured value obtained from the measuring element.
  • the elastic deformation amount of the machine is acquired by actually measuring, but the present invention is not limited to this.
  • the expected elastic deformation amount of the machine when the feed control is advanced to the machining target position is recorded in a memory in advance, and the elastic deformation amount is acquired by reading the elastic deformation amount from the memory. It may be.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Constituent Portions Of Griding Lathes, Driving, Sensing And Control (AREA)
  • Grinding Of Cylindrical And Plane Surfaces (AREA)

Abstract

 空走開始位置を適正に補正することを可能にする技術を提供する。 砥石とワークピースとを相対的に往復移動させる送り台を制御することにより、前記砥石と前記ワークピースを回転させつつ安全な接触を可能にする空走を経て接触させ、前記ワークピースの表面を研削するための研削加工方法であって、前記ワークピースを加工目標位置までの研削をした後に前記砥石の位置を戻す途中で、前記送り台の変位に含まれる機械の弾性変形が無視できる状態になったときに前記送り台の位置または変位量を測定し、前記送り台の位置または変位量に基づいて空走開始位置の補正値を算出し、前記補正値に基づいて次回の空走開始位置を補正する。

Description

研削加工方法
 本発明は、被加工物の表面研削などに使用される研削加工装置における研削加工方法に関し、特に、その空走開始位置の補正に関する。
 ワークピース(被加工物)の表面を平面に研削する研削加工装置は、ワークピースの表面と砥石の表面を平行にし、それぞれ回転させながら送り機構によって砥石をワークピースに接触させることにより、ワークピースを研削する。例えば、特許文献1には、送り機構によって砥石をワークピース側に送ってワークピースを研削する研削加工装置が開示されている。この研削加工装置は、砥石の送り速度に対する複数の目標速度と複数の目標位置とを示した加工パターンに基づき、荒研削加工から仕上げ研削加工というように、送り位置に対する送り速度を制御することにより、良好な精度の研削結果を得ることを可能にしている。
 また特許文献1では、厚みセンサの計測値と送り位置の原点設定時と加工後または加工中の測定値から砥石の摩耗を算出し、その値に基づいて砥石がワークピースに接触する直前の空走開始位置を補正している。各加工開始前に、空走開始位置が適正に補正されることにより空走距離が短縮され、加工時間が短縮される。
特許第4338458号公報
 特許文献1では、ワークピースの研削が終了したときの厚みセンサの計測値と送り位置の値とから加工前に設定した各原点での値を基準にして砥石の摩耗を算出し、その算出値に基づいて加工パターン全体を移動修正することで、空走開始位置を補正している。空走は砥石とワークピースそれぞれにダメージを与えないように接触させることが可能な送り速度で行う送り制御である。砥石とワークピースが接触せず、かつ砥石とワークピースができるだけ近い位置で空走を開始することで、空走距離を短縮し、全体の加工時間を短縮することができる。
 特許文献1の補正方法は、前提となる所定の条件下では極めて安定しており、有用であるが、その前提となる条件が満たされなければ空走開始位置を適正に補正できない場合がある。このような場合の例として、例えば、サファイヤ加工のような高い押付け力を必要とする加工においては、機械構成要素の弾性変形による変位は無視できない。
 この特許文献1の補正方法は、機械構成要素の弾性変形に起因する補正量が空走距離に比し小さいという前提のもとで成立している。しかしながら、ワークピースがサファイアのように硬度が極めて高いものである場合、大きな押付け力で砥石をワークピースに押し当てる必要があるため、機械構成要素の弾性変形が大きくなり、この前提が成り立たないことがある。
 例えば、砥石を大きな押付け力で押し当ててサファイアを研削しているとき、研削加工装置には大きな弾性変形が生じ、その弾性変形による変位が厚みセンサの計測値および送り位置に含まれることとなる。
 そのため、弾性変形による変位を含んだ計測値や送り位置に基づいて補正された空走開始位置が、弾性変形が無い状態におけるワークピースの表面よりも奥側に設定され、空走開始の前に砥石がワークピースに衝突してしまう可能性がある。これを避けるために、想定される弾性変形量以上の空走距離を、余裕をもって設定すると、補正の効果を低減し、空走の時間が長くなるため、全体の加工時間も長くなってしまう。
 本発明の目的は、機械の弾性変形にも影響されずに空走開始位置を適正に補正することが可能な研削加工方法を提供することである。
 本発明の一態様による研削加工方法は、砥石とワークピースとを相対的に往復移動させる送り台を制御することにより、前記砥石と前記ワークピースを回転させつつ安全な接触を可能にする空走を経て接触させ、前記ワークピースの表面を研削するための研削加工方法であって、前記ワークピースを加工目標位置までの研削をした後に前記砥石の位置を戻す途中で、前記送り台の変位に含まれる機械の弾性変形が無視できる状態になったときに前記送り台の位置または変位量を測定し、前記送り台の位置または変位量に基づいて空走開始位置の補正値を算出し、前記補正値に基づいて次回の空走開始位置を補正するというものである。
 また、本発明の他の態様による研削加工方法は、砥石とワークピースとを相対的に往復移動させる送り台を制御することにより、前記砥石と前記ワークピースを回転させつつ安全な接触を可能にする空走を経て接触させ、前記ワークピースの表面を研削するための研削加工方法であって、前記ワークピースを加工目標位置まで研削したときに、前記ワークピースの表面位置または厚みと、前記送り台の位置または変位量と、を測定し、前記ワークピースを前記加工目標位置まで研削したときの前記送り台の変位に含まれる機械の弾性変形量を取得し、前記ワークピースの表面位置または厚みと、前記送り台の位置または変位量とに基づいて算出される空走開始位置の補正値を前記弾性変形量によって修正し、修正した前記補正値に基づいて次回の空走開始位置を補正するというものである。
 本発明によれば、砥石でワークピースを研削する研削加工装置の空走開始位置を適正に補正することが可能となる。
本実施形態に用いられる研削加工装置における研削に関する構成を示す図である。 砥石2とワークピースWの位置関係を説明するための図である。 研削加工装置における制御に関する概略の構成を示すブロック図である。 弾性変形量d(1)と補正量Δ(1)の関係を示す図である。
 本発明の実施形態について図面を参照して説明する。
 (第1の実施形態)
 図1は、本実施形態に用いられる研削加工装置における研削に関する構成を示す図である。本実施形態での研削加工装置は、一例として、ワークピース側を送り方向に固定しておき、砥石側をそのワークピースの方向に送り移動させ、接触させることにより、ワークピースの表面を研削する装置である。
 研削加工装置1は、図1に示すように、ワークピースWの表面を研削する砥石2と、ベース部材30と、ベース部材30の上面に配置されたワーク支持部40および研削加工部50と、研削加工装置1の作動を制御する制御装置6と、を備えている。ベース部材30の上面において、図1の右側の領域にワーク支持部40が配置され、図1の左側の領域に研削加工部50が配置されている。
 また、本実施形態の研削加工装置1は、軸方向が横方向に配置された砥石回転軸55の前端面に砥石2が取り付けられた横形の研削装置を示すが、本発明は縦形での実施も可能である。
 ワーク支持部40は、支持台41と、支持台41に設けられたワーク回転軸42と、ワーク回転軸42を回転させるための駆動モータ43と、ワークピースWを保持するチャック44と、を備えている。
 支持台41は、ベース部材30の上面に固定されており、支持台41から研削加工部50に向けてワーク回転軸42が設けられている。ワーク回転軸42は、支持台41の上部に設けられた駆動モータ43によって、ワーク回転軸42の中心軸42A回りに回転するように構成されている。
 チャック44は、ワーク回転軸42の前端面に設けられており、ワークピースWを真空吸着によって保持するものである。
 研削加工部50は、固定台51と、固定台51に連結された送り台52と、送り台52を移動させるための送り駆動部53と、送り台52に取り付けられた支持台54と、支持台54に設けられた砥石回転軸55と、砥石回転軸55を回転させるための駆動モータ56と、を備えている。
 固定台51は、ベース部材30の上面に固定されている。固定台51の上部には、送り台52が図1の左右方向(X方向)にスライド自在に連結されている。送り駆動部53は、送り台52を図1の左右方向に移動させる機構である。
 支持台54は、送り台52の上部に取り付けられており、支持台54からワーク支持部40に向けて砥石回転軸55が設けられている。
 砥石回転軸55は、支持台54の内部に設けられた駆動モータ56によって、砥石回転軸55の中心軸55A回りに回転するように構成されている。砥石回転軸55の前面端には、砥石2が取り付けられている。
 なお、本実施形態では砥石2側を移動させることにより、砥石2とワークピースWとを相対的に送り移動させる例を示しているが、本発明がこれに限定されることはない。他の例として、ワークピースW側を移動させるものであってもよく、あるいは砥石2側とワークピースW側の双方を移動させるものであってもよい。
 研削加工装置1の動作としては、砥石2とチャック44に保持したワークピースWを回転させている状態で、砥石2を送り方向においてワークピースWに近づけるように移動させ、砥石2をワークピースWに接触させることによりワークピースWを研削する。
 図2は、砥石2とワークピースWの位置関係を説明するための図である。
 砥石回転軸55に取り付けられた砥石2と、チャック44に保持されたワークピースWとは、互いの中心軸をずらして平行に向き合っている。砥石2の端面がワークピースWの中心Wに接するように位置決めされている。研削加工時には、砥石2は回転しながら、所望の加工速度でワークピースW側に送られる。
 図3は、研削加工装置1における制御に関する概略の構成を示すブロック図である。
 研削加工装置1には各種センサが備えられている。このセンサの1つに、例えば、ワークピースWの表面位置を検知する厚みセンサSがある。厚みセンサSは接触式によるものでも非接触式によるものでもよい。厚みセンサSは、チャック44の表面位置とワークピースWの表面位置とを検知し、そのうちのワークピースWの表面位置を制御装置6に通知するものであってもよく、あるいはそれらの差分をワークピースWの厚みとして制御装置6に通知するものであってもよい。
 また、他のセンサとしては、砥石2の送り量を検知する送り位置検出器Sがある。送り位置検出器Sは、送り台52の位置または変位量によって砥石2の送り量を計測する。ただし、送り台52には、支持台54、駆動モータ56、砥石回転軸55などを介して砥石2が固定されているので、送り台52の変位にはそれら機械の弾性変形が含まれる。
 制御装置6は、センサS,Sからの通知を利用して、砥石回転軸55を往復移動させる送り駆動部53を制御し、砥石2の送り速度あるいは位置を制御することにより、ワークピースWを所望の厚みまで研削する。送り速度あるいは位置の制御は、所定の研削加工パターンに従って行われる。その際、制御装置6は、砥石2がワークピースWに接触するまではセンサSの送り位置検出器から通知される砥石2の送り量に基づいて送り制御を行い、ワークピースWの研削が始まってからは厚みセンサSから通知されるワークピースWの表面位置あるいは厚みに基づいて送り制御を行う。あるいは、全てセンサSから通知される位置に基づいて送り制御を行うこともできる。
 次に、研削加工パターンに従った研削加工全体の概略の流れについて説明する。研削加工パターンには、砥石の送り速度に対する複数の目標速度とそれら目標速度に対する複数の目標位置とが示されており、ここに空走開始位置も含まれている。
 制御装置6は、まず砥石2をワークピースWの近傍まで迅速に接近させた後、所定の空走速度での送りを開始する。空走は、砥石2をワークピースWに接触させるときの衝撃を緩和するための動作であり、砥石2を回転させながら、接触時にワークピースWや砥石2にダメージを与えない程度の送り速度でワークピースW側に送る。一般的には、次の荒加工研削と同じ速度としている。
 ここでは一例として、研削加工装置1は砥石回転軸55にかかる負荷を計測する手段を備えており、砥石2がワークピースWに接触したことを、砥石回転軸55にかかる負荷の変化から検知することにしてもよい。砥石回転軸55にかかる負荷は例えば砥石駆動用の駆動モータ56の電流によって計測することができる。
 他の例として、研削加工装置1は砥石回転軸55の回転数を計測する手段を備えており、砥石2がワークピースWに接触したことを、砥石回転軸55の回転数の変化から検知することにしてもよい。砥石回転軸55の回転数は砥石駆動用の駆動モータ56の回転数として計測することができる。
 砥石2がワークピースWに接触した時点からワークピースWの研削が始まる。所定の研削加工パターンに従ってワークピースWが指定の厚みになる加工目標位置まで送り制御が行われる。
 研削加工パターンには、高速かつ高精度の研削を可能にするため、荒研削加工とその後の仕上げ研削加工とを含むものとしてもよい。その場合、比較的高速で研削を進める荒研削加工が、所定距離だけ、またはワークピースWが指定の厚みになるまで進行すると、仕上げ研削加工に移行する。仕上げ研削加工においては、制御装置6は、荒研削加工の速度に比べて低速の仕上げ加工速度でワークピースWを高精度に研削する。加工目標位置までワークピースWを研削したら、砥石2を元の位置に戻して研削加工を終了する。
 仕上げ研削加工を終了して砥石2を元の位置に戻す戻り制御において、制御装置6は、厚みセンサSと送り位置検出器Sによって測定される計測値を取得する。制御装置6は、ここで取得した値を用いて、空走開始位置を含む次回の研削加工の研削加工パターンを調整する。すなわち、空走開始位置の補正は研削加工パターンの移動修正によって行うことができる。
 次に、空走開始位置の補正について詳細に説明する。
 ワークピースWの研削を行うと砥石2も摩耗する。砥石2が摩耗すると、研削加工におけるワークピースWの表面位置の変位と砥石2の送り位置の変位との差分が変化する。砥石2が摩耗すれば砥石2の送り位置も摩耗分だけ前進するからである。
 本実施形態の研削加工装置は、空走開始位置を砥石2の摩耗に応じて補正し、適切な空走開始位置を設定する機能を備えている。砥石2がワークピースWに衝突しない範囲で、できるだけ近づけて空走を開始することにより、加工時間を短縮することが可能となる。
 N+1回目の加工における空走開始位置は、前回(N回目)の加工の際に、厚みセンサSで検出したセンサ計測値S(N)と、送り位置検出器Sで検出した送り位置値X(N)と、に基づいて算出した補正値の分だけ補正される。
 特許文献1においては、機械の弾性変形量が空走距離に比して小さいという前提条件の下で、N回目の研削加工が終わったとき(例えば、100%終わった時点、あるいは、100%に近くまで終わった時点)、送り位置値X(N)とセンサ計測値S(N)を計測し、それらの差分として算出される補正値=-((X(N)-S(N))-(X(0)-S(0)))に基づいて空走開始位置を補正している。なお、X(0)は送り位置値の原点、S(0)はセンサ計測値の原点であり、ここではX(0)とS(0)をともにチャック44の表面位置を原点として例示している。ただし、チャック44の表面位置を原点とするのは単なる一例であり、原点の位置は特に限定しなくとも、本補正方法の効果は変わらない。他の例としてワークピースWの加工目標位置、すなわち、チャック44の表面位置にワークピースWの加工後の厚みを加算した位置を原点としてもよい。
 しかしながら、本実施形態のように、N回目の研削加工が終わったときワークピースWに対する大きな押付け力が機械にかかっている場合、送り位置値X(N)には、空走距離に比して小さくない、すなわち無視することができない機械の弾性変形量d(N)が含まれている。そのため、この状態で計測した送り位置値X(N)を用いて算出した補正値で補正すると、空走開始位置は弾性変形量d(N)だけ奥にずれた位置に設定され、そのずれを空走距離のマージンで救済できないことが考えられる。空走を開始する位置においては、砥石2とワークピースWは接触していない状態(つまり、押付け力がゼロ)であり、砥石の面位置は弾性変形分だけ奥側に位置するようになるからである。
 そこで、本実施形態では、ワークピースWの研削を終了した後に砥石2の位置を戻す途中で、弾性変形量が無視できる状態になったときに、厚みセンサSで測定したセンサ計測値Sb(N)と、送り位置検出器Sで測定した送り位置値Xb(N)とに基づいて補正値を算出し、その補正値に基づいてN+1回目の空走開始位置を補正する。
 弾性変形が無視できる状態になったことを判断する方法の例について説明する。この方法は、研削加工装置に砥石回転軸55にかかる負荷を計測する計測器を備えておき、砥石回転軸55にかかる負荷の変化から、弾性変形が無視できる状態になったことを判断するというものである。
 まず、制御装置6は、N回目の送り制御を開始する前の砥石回転軸55にかかる負荷を測定して記憶しておく。砥石回転軸55にかかる負荷は例えば砥石駆動用の駆動モータ56の電流によって計測することができる。更に、制御装置6は、測定された負荷の値に基づいて、弾性変形が無視できる状態と判断するための砥石回転軸55の負荷の閾値を設定する。例えば、測定された負荷の値の所定範囲内に入ったら、弾性変形が無視できる状態になったと判断することにしてもよい。
 また、同様の効果を得るもう一つの手段は、砥石送り軸のモータの負荷電流であり、これにより判断してもよい。
 そして、制御装置6は、N回目の一連の研削加工を行い、ワークピースWの研削加工が加工目標位置まで進んだら、低速で砥石2をワークピースWから離間させるように戻す制御を開始する。その戻り制御の間、制御装置6は、砥石回転軸55にかかる負荷を監視し、負荷が上述の閾値に達したら、弾性変形が無視できる状態になったと判断する。
 弾性変形が無視できる状態と判断すると、制御装置6は、厚みセンサSと送り位置検出器Sとで検知される計測値Sb(N)、Xb(N)を取得する。
 また、他の例として、制御装置6は、上述のようにN回目の送り制御を開始する前の砥石回転軸55にかかる負荷から各回の閾値を算出するのではなく、閾値を固定的に設定しておくことにしてもよい。
 また、他の例として、研削加工装置に砥石回転軸55の回転数を計測する測定器を備えておき、砥石2がワークピースWに接触したことを、砥石回転軸55の回転数の変化から検知することにしてもよい。砥石回転軸55の回転数は砥石駆動用の駆動モータ56の回転数として計測することができる。
 計測値Sb(N)、Xb(N)が得られたら、制御装置6は、補正値Δ(N)と、補正後の空走開始位置Xpa(N+1)を計算する。補正値Δ(N)と、補正後の空走開始位置Xpa(N+1)の計算式は、それぞれ式(1)、(2)である。
Δ(N)=-((Xb(N)-Sb(N))-(X(0)-S(0)))
    =-((Xb(N)-X(0))-(Sb(N)-S(0))) …(1)
Xpa(N+1)=(Sa(N+1)-S(0))+X(0)-Δ(N)+MA …(2)
 Sa(N+1)は、N+1回目に研削するワークピースWの表面位置を表し、(Sa(N+1)-S(0))はそのワークピースWの厚さを表している。
 空走開始位置Xpa(N+1)は、ワークピースWの厚さ(Sa(N+1)-S(0))に、送り位置の原点の値(X(0))を加算し、主に砥石2の摩耗に相当する補正値Δ(N)を減算し、更にマージンMAを加算した値となっている。
 そして、制御装置6は、N+1回目の研削加工において空走が、算出した空走開始位置Xpa(N+1)の位置から開始されるように研削加工パターンを移動修正し、修正された研削加工パターンに従ってN+1回目の研削加工を実行する。
 図4は、弾性変形量d(1)と補正量Δ(1)の関係を示す図である。図4では、チャック44の表面位置ではなく、ワークピースWの加工目標位置を原点S(0)、X(0)とし、また厚みセンサSのセンサ計測値Sb(1)、Sb(2)・・・は加工の回数を重ねても変化しないものとしている。つまり、S(0)=Sb(1)=Sb(2)である。
 図4を参照すると、1回目の研削加工では、加工目標位置まで研削が進んだ状態では、送り位置は原点X(0)よりも、機械の弾性変形量d(1)を含んだ所定距離だけ奥まで変位している。その状態から戻り制御が行われ、機械の弾性変形が無視できる状態、つまり弾性変形量d(1)だけ戻った位置で、送り位置Xb(1)が計測される。上述のようにSb(1)=S(0)なので、式(1)より、補正値Δ(1)=-(Xb(1)-X(0))となる。
 同様に、2回目の研削加工で、加工目標まで研削が進んだ状態では、送り位置は原点X(0)よりも、機械の弾性変形量d(2)を含んだ所定距離だけ奥まで変位している。その状態から戻り制御が行われ、機械の弾性変形が無視できる状態、つまり弾性変形量d(2)だけ戻った位置で、送り位置Xb(2)が計測される。上述のようにSb(2)=S(0)なので、式(1)より、補正値Δ(2)=-(Xb(2)-X(0))となる。
 以上説明したように、本実施形態の研削加工方法によれば、ワークピースWを加工目標位置までの研削をした後に砥石2の位置を戻す途中で、送り台52の変位に含まれる機械の弾性変形が無視できる状態になったときに送り台52の位置または変位量を測定し、測定した送り台52の位置または変位量に基づいて空走開始位置の補正値を算出する。そのため、弾性変形が無い状態で砥石2をワークピースWに衝突させることなく、かつ、加工時間が短くなるように、空走開始位置を適切に補正することができる。
 また、本実施形態によれば、送り台52の変位に含まれる機械の弾性変形が無視できる状態になったときに、送り台52の位置または変位量だけでなく、ワークピースWの表面位置または厚みも測定し、その両方を基に空走開始位置の補正値を算出するので、より正確に空走開始位置を補正することが可能である。
 (第2の実施形態)
 第2の実施形態での研削加工装置は、基本的には第1の実施形態のものと同様の構成を有するが、厚みセンサSが接触式のセンサであり、かつ、ウェハ性状を向上させるために戻り制御においては厚みセンサSをウェハから離間させて制御を行うものであるとする。したがって、戻り制御の途中で厚みセンサSの計測値は得られないことになる。
 そこで、本実施形態では、制御装置6は、送り制御が加工目標位置まで進んだときに厚みセンサSの計測値S(N)を取得し、その後、戻り制御を行い、機械の弾性変形が無視できる状態となったときに送り位置検出器Sの計測値Xb(N)を取得する。
 そして、制御装置6は、式(3)にしたがって、空走開始位置の補正値Δ(N)を決定する。
Δ(N)=-((Xb(N)-S(N))-(X(0)-S(0)))
    =-((Xb(N)-X(0))-(S(N)-S(0))) …(3)
 機械の弾性変形は、送り位置検出器Sの計測値には比較的大きく影響するが、厚みセンサSの計測値への影響は比較的小さい。そのため、本実施形態のように、式(3)によって十分に実用的な補正値Δ(N)を得ることができる。
 本実施形態の研削加工方法によれば、機械の弾性変形の影響が小さく、また戻り制御中に計測ができない、厚みセンサSの計測値(ワークピースWの表面位置または厚み)については研削の終了時に計測し、弾性変形に大きく影響される送り位置検出器Sの計測値(送り台52の位置または変位量)については戻り制御において弾性変形が無視できる状態で計測する。そのため、ワークピースWの表面位置または厚みの測定が制限される条件下でも、弾性変形が無い状態で砥石2をワークピースWに衝突させることなく、かつ、加工時間が短くなるように、空走開始位置を適切に補正することができる。
 なお、送り制御が加工目標位置まで進んだときに計測されたS(N)に所定の調整を加えた値を上記式(3)に適用して空走開始位置の補正値Δ(N)を算出することにしてもよい。例えば、厚みセンサSの計測値に現れる弾性変形量を予め想定して設定しておき、送り制御が加工目標位置まで進んだ時に計測されたS(N)に加算することにしてもよい。
 (第3の実施形態)
 第3の実施形態に用いられる研削加工装置は、基本的には第1および第2の実施形態のものと同様の構成を有する。ただし、本実施形態は、第1および第2の実施形態と異なり、研削加工装置は、送り制御が加工目標位置まで進んだときに厚みセンサSおよび送り位置計測器Sの計測値と弾性変形量とを取得し、厚みセンサSおよび送り位置計測器Sの計測値から算出される空走開始位置の補正値に弾性変形量を加算して用いるものである。
 そのため、本実施形態での研削加工装置は、厚みセンサSあるいは送り位置計測器Sの計測値に影響する機械の弾性変形量を直接的に計測する測定器を備えている。具体例として、測定器は、砥石回転軸55にかかる負荷を計測する計測器である。より具体的には、測定器は、砥石駆動用の駆動モータ56の電流を計測する測定器である。送り制御が加工目標位置に達したときの駆動モータ56の電流と弾性変形量d(N)との関係は関数で表現できる。
 以下、空走開始位置を補正する処理について説明する。
 まず、制御装置6は、送り制御が加工目標位置に達したときの駆動モータ56の電流と弾性変形量d(N)との関係を式(4)のような関数で表現し、予め設定しておく。fd()、~、g、oは所定の関数あるいは定数である。
d(N)=fd(Ix(N))~g・Ix(N)+o …(4)
 一連の送り制御の後、制御装置6は、送り制御が加工目標位置まで進んだときに厚みセンサSの計測値S(N)および送り位置計測器Sの計測値X(N)と、測定器から駆動モータ56の電流値Ix(N)とを取得する。
 制御装置6は、取得した厚みセンサSの計測値S(N)および送り位置計測器Sの計測値X(N)から、式(5)によって、空走開始位置の補正値Δ´(N)を算出する。
Δ´(N)=-((X(N)-X(0))-(S(N)-S(0))) …(5)
 更に、制御装置6は、上記式(4)によって、駆動モータ56の電流値Ix(N)から弾性変形量d(N)を算出し、空走開始位置の補正値Δ´(N)に弾性変形量d(N)を加算することにより、弾性変形を考慮した補正値Δ(N)を算出する。
 制御装置6は、算出した補正値Δ(N)を用いて、次回の研削加工における空走開始位置を補正する。
 以上、本実施形態によれば、弾性変形が生じている状態の計測値を基に算出した空走開始位置の補正値を、測定した弾性変形量を用いて修正するので、弾性変形が無い状態で砥石2をワークピースWに衝突させることなく、かつ、加工時間が短くなるように、空走開始位置を適切に補正することができる。
 なお、本実施形態では、駆動モータ56の電流値Ix(N)から弾性変形量d(N)を算出する例を示したが、本発明がこれに限定されることはない。他の例として、研削加工装置の機械に歪測定素子を取り付けておき、その測定素子から得られる計測値から、弾性変形量d(N)を算出することにしてもよい。
 また、本実施形態では、機械の弾性変形量を実際に計測することにより取得する例を示したが、本発明がこれに限定されることはない。他の例として、送り制御が加工目標位置まで進んだときの機械の想定される弾性変形量を予めメモリに記録しておき、メモリからその弾性変形量を読み出すことで弾性変形量を取得するものであってもよい。
 以上、本発明の実施形態を説明したが、これらは全て本発明を説明するための例示であり、これらの実施形態のみに本発明の範囲を限定する趣旨ではない。従って、本発明は、その要旨を逸脱することなく、他の様々な形態で実施することが可能である。
S1、S2…センサ、1…研削加工装置、2…砥石、30…ベース部材、40…ワーク支持部、41…支持台、42…ワーク回転軸、42A…中心軸、43…駆動モータ、44…チャック、50…研削加工部、51…固定台、52…送り台、53…送り駆動部、54…支持台、55…砥石回転軸、55A…中心軸、56…駆動モータ、6…制御装置
 

Claims (4)

  1.  砥石とワークピースとを相対的に往復移動させる送り台を制御することにより、前記砥石と前記ワークピースを回転させつつ安全な接触を可能にする空走を経て接触させ、前記ワークピースの表面を研削するための研削加工方法であって、
     前記ワークピースを加工目標位置までの研削した後に前記砥石の位置を戻す途中で、前記送り台の変位に含まれる機械の弾性変形が無視できる状態になったときに前記送り台の位置または変位量を測定し、
     前記送り台の位置または変位量に基づいて空走開始位置の補正値を算出し、
     前記補正値に基づいて次回の空走開始位置を補正する、研削加工方法。
  2.  前記砥石の位置を戻す途中で、前記砥石を前記ワークピースに押し当てる押付け力が所定値まで低下したら、前記弾性変形が無視できる状態になったと判断する、請求項1に記載の研削加工方法。
  3.  前記砥石の位置を戻す途中で、前記弾性変形が無視できる状態になったときに、更に、前記ワークピースの表面位置または厚みを測定し、
     前記ワークピースの表面位置または厚みと、前記送り台の位置または変位量とに基づいて、前記空走開始位置の補正値を算出する、
    請求項1に記載の研削加工方法。
  4.  砥石とワークピースとを相対的に往復移動させる送り台を制御することにより、前記砥石と前記ワークピースを回転させつつ安全な接触を可能にする空走を経て接触させ、前記ワークピースの表面を研削するための研削加工方法であって、
     前記ワークピースを加工目標位置まで研削したときに、前記ワークピースの表面位置または厚みと、前記送り台の位置または変位量と、を測定し、
     前記ワークピースを前記加工目標位置まで研削したときの前記送り台の変位に含まれる機械の弾性変形量を取得し、
     前記ワークピースの表面位置または厚みと、前記送り台の位置または変位量とに基づいて算出される空走開始位置の補正値を前記弾性変形量によって修正し、
     修正した前記補正値に基づいて次回の空走開始位置を補正する、研削加工方法。
     
     
PCT/JP2013/083883 2013-01-30 2013-12-18 研削加工方法 WO2014119163A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020157015521A KR20150111906A (ko) 2013-01-30 2013-12-18 연삭 가공 방법
CN201380064490.5A CN104853880A (zh) 2013-01-30 2013-12-18 磨削加工方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-015148 2013-01-30
JP2013015148A JP6023598B2 (ja) 2013-01-30 2013-01-30 研削加工方法

Publications (1)

Publication Number Publication Date
WO2014119163A1 true WO2014119163A1 (ja) 2014-08-07

Family

ID=51261888

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/083883 WO2014119163A1 (ja) 2013-01-30 2013-12-18 研削加工方法

Country Status (5)

Country Link
JP (1) JP6023598B2 (ja)
KR (1) KR20150111906A (ja)
CN (1) CN104853880A (ja)
TW (1) TW201436949A (ja)
WO (1) WO2014119163A1 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106078511A (zh) * 2016-07-26 2016-11-09 佛山职业技术学院 磨削机床在线测量系统
CN106078510B (zh) * 2016-07-26 2019-01-18 佛山职业技术学院 一种具有在线测量功能的磨削机床
CN106078515B (zh) * 2016-07-26 2018-08-03 佛山职业技术学院 一种集检测、磨削功能于一体的恒力磨削系统
CN109202721B (zh) * 2017-07-03 2021-12-03 株式会社安川电机 研磨工艺的控制方法、研磨装置和机器人研磨系统
JP7135288B2 (ja) * 2017-10-20 2022-09-13 株式会社ジェイテクト 研削盤及び研削方法
JP2019155488A (ja) * 2018-03-07 2019-09-19 株式会社東京精密 研削盤
JP6973237B2 (ja) * 2018-03-29 2021-11-24 日本電気硝子株式会社 板ガラスの製造方法
JP7098257B2 (ja) * 2019-03-22 2022-07-11 住友重機械ファインテック株式会社 研削装置の制御装置、プログラム、及び研削方法
CN112201606B (zh) * 2020-10-12 2023-08-25 华海清科股份有限公司 具有柔性连轴器的晶圆对中机构、传输装置及减薄设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06270061A (ja) * 1993-03-24 1994-09-27 Shin Meiwa Ind Co Ltd 研削ロボットの研削基準面位置検出装置
JPH06270060A (ja) * 1993-03-24 1994-09-27 Shin Meiwa Ind Co Ltd 研削ロボットの研削基準面位置検出装置
JP2005021997A (ja) * 2003-06-30 2005-01-27 Komatsu Machinery Corp 研削加工装置及び研削加工方法
JP2009214217A (ja) * 2008-03-10 2009-09-24 Jtekt Corp 砥石先端位置補正方法及び装置
US20100167627A1 (en) * 2005-08-04 2010-07-01 Sumio Kamiya Precision Machining Apparatus and Precision Machining Method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102275131B (zh) * 2011-06-28 2013-03-20 上海三一精机有限公司 检测磨床加工状态的监控方法及监控系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06270061A (ja) * 1993-03-24 1994-09-27 Shin Meiwa Ind Co Ltd 研削ロボットの研削基準面位置検出装置
JPH06270060A (ja) * 1993-03-24 1994-09-27 Shin Meiwa Ind Co Ltd 研削ロボットの研削基準面位置検出装置
JP2005021997A (ja) * 2003-06-30 2005-01-27 Komatsu Machinery Corp 研削加工装置及び研削加工方法
US20100167627A1 (en) * 2005-08-04 2010-07-01 Sumio Kamiya Precision Machining Apparatus and Precision Machining Method
JP2009214217A (ja) * 2008-03-10 2009-09-24 Jtekt Corp 砥石先端位置補正方法及び装置

Also Published As

Publication number Publication date
JP2014144513A (ja) 2014-08-14
CN104853880A (zh) 2015-08-19
JP6023598B2 (ja) 2016-11-09
KR20150111906A (ko) 2015-10-06
TW201436949A (zh) 2014-10-01

Similar Documents

Publication Publication Date Title
JP6023598B2 (ja) 研削加工方法
US8287329B2 (en) Grinding machine and grinding method
JP5891010B2 (ja) 薄板状ワークの研削方法及び両頭平面研削盤
KR20150032827A (ko) 연삭 가공 장치 및 그 제어 방법
KR101503616B1 (ko) 연삭 가공반 및 연삭 가공 방법
JP6089774B2 (ja) 研削盤および研削方法
JP5692420B2 (ja) 金属製環状部材の研削加工方法および装置
US9056385B2 (en) Grinding machine and method with improved teaching operation
CN104139335B (zh) 磨床
JP2009184063A (ja) 研削盤および研削加工方法
JP2013111686A (ja) 実切込み量測定方法および加工方法および工作機械
JP5851803B2 (ja) 薄板状ワークの研削方法及び両頭平面研削盤
JP4998078B2 (ja) 研削盤および非真円形状または偏心形状のワークの研削方法
JP6675548B2 (ja) Nc研削装置及びワークの研削方法
JP4940904B2 (ja) かつぎ量計測装置
US9880074B2 (en) Pressing load setting method of tire testing machine
JP6390220B2 (ja) 被加工物のたわみ測定方法、被加工物の剛性測定方法及び工作機械
JP5133770B2 (ja) 研削盤を用いたワークの研削方法
JP2014104552A (ja) 研削加工方法および研削加工装置
JP2014104553A (ja) 研削加工方法および研削加工装置
JP2017127925A (ja) ホーニング加工機
JP2013116534A (ja) 研削方法および研削盤

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13873691

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20157015521

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13873691

Country of ref document: EP

Kind code of ref document: A1