WO2014119037A1 - 分光測定装置及び分光測定方法 - Google Patents

分光測定装置及び分光測定方法 Download PDF

Info

Publication number
WO2014119037A1
WO2014119037A1 PCT/JP2013/075032 JP2013075032W WO2014119037A1 WO 2014119037 A1 WO2014119037 A1 WO 2014119037A1 JP 2013075032 W JP2013075032 W JP 2013075032W WO 2014119037 A1 WO2014119037 A1 WO 2014119037A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
sample
excitation light
excitation
area
Prior art date
Application number
PCT/JP2013/075032
Other languages
English (en)
French (fr)
Inventor
茂 江浦
鈴木 健吾
賢一郎 池村
和也 井口
Original Assignee
浜松ホトニクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浜松ホトニクス株式会社 filed Critical 浜松ホトニクス株式会社
Priority to CN201380072223.2A priority Critical patent/CN104981687B/zh
Priority to EP13873653.3A priority patent/EP2952882B1/en
Priority to US14/764,805 priority patent/US9423339B2/en
Priority to KR1020157017813A priority patent/KR102052786B1/ko
Publication of WO2014119037A1 publication Critical patent/WO2014119037A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0205Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
    • G01J3/0254Spectrometers, other than colorimeters, making use of an integrating sphere
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0291Housings; Spectrometer accessories; Spatial arrangement of elements, e.g. folded path arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/42Absorption spectrometry; Double beam spectrometry; Flicker spectrometry; Reflection spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/44Raman spectrometry; Scattering spectrometry ; Fluorescence spectrometry
    • G01J3/4406Fluorescence spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6489Photoluminescence of semiconductors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N2021/6463Optics
    • G01N2021/6469Cavity, e.g. ellipsoid
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N2021/6482Sample cells, cuvettes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N2021/6491Measuring fluorescence and transmission; Correcting inner filter effect
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/06Illumination; Optics
    • G01N2201/062LED's
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/06Illumination; Optics
    • G01N2201/065Integrating spheres
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/12Circuits of general importance; Signal processing

Definitions

  • the present invention relates to a spectroscopic measurement apparatus and a spectroscopic measurement method.
  • Patent Document 1 discloses that when obtaining a quantum yield, a sample is fixed at a position where the excitation light does not directly hit in the integrating sphere, and the excitation light is indirectly incident on the sample. Describes an absolute fluorescence quantum efficiency measurement device that obtains the light absorptance of a sample from the intensity obtained and the intensity obtained by direct incidence of excitation light on the sample.
  • Patent Document 2 the excitation light absorbed by the sample is measured in a state where the excitation light after passing through the sample is reflected in the integration space, and the excitation light after passing through the sample is reflected in the integration space.
  • a quantum efficiency measurement device that measures light generated from a sample in such a state is described.
  • the quantum efficiency measurement apparatus it is intended to reduce measurement errors due to re-excitation (secondary excitation) by performing such a two-stage measurement process.
  • Non-Patent Documents 1 to 3 describe that the quantum yield is calculated on the assumption that excitation light is incident so as to be included in the sample.
  • the excitation light is included in the sample, and the irradiation area of the excitation light at the incident position on the sample (hereinafter simply referred to as “excitation light”). It is constructed under the theory that the “irradiated area” is also smaller than the irradiated area of the sample. Therefore, for example, when measuring a small amount of sample, if the irradiation area of the excitation light is made larger than the irradiated area of the sample, the calculated light absorption rate is estimated differently from the true value, and the light absorption It may be difficult to accurately measure the rate.
  • an object of one aspect of the present invention is to provide a spectroscopic measurement apparatus and a spectroscopic measurement method capable of accurately obtaining a light absorption rate.
  • a spectroscopic measurement device that detects excitation light by irradiating a sample to be measured with excitation light, and a light source that generates excitation light
  • An integrator having an incident opening through which excitation light is incident, and an output opening through which the light reflected from the inside is emitted; an accommodation unit disposed in the integrator for accommodating the sample; and an excitation light on the sample
  • An incident optical system that makes the light incident, a photodetector that detects light emitted from the exit aperture, and an analysis means that calculates the light absorption rate of the sample based on the detection value detected by the photodetector,
  • the irradiation area of the excitation light at the incident position on the sample is made larger than the irradiation area of the sample, and the analysis means calculates the area of the irradiation area of the excitation light and the irradiation area of the sample with respect to the calculated light absorption
  • the irradiation area of the excitation light can be made larger than the irradiated area of the sample.
  • the area ratio correction relating to the irradiation area of the excitation light and the irradiated area of the sample can be performed on the calculated light absorption rate. Therefore, for example, even when a small amount of sample is measured, the light absorption rate can be obtained with high accuracy.
  • the excitation light may be irradiated to the sample so as to enclose the sample.
  • the area ratio correction can be performed by adding the value obtained by dividing the irradiation area of the excitation light by the irradiated area of the sample to the light absorption rate.
  • the analyzing means can calculate the light absorption rate based on the relational expression for area ratio correction by the following expression (1).
  • A light absorptance
  • integrator reflectivity
  • S 1 irradiated area of sample
  • S 2 irradiated area of excitation light
  • Abs 12 Light absorption rate during indirect excitation
  • Abs 22 Light absorption rate during direct excitation.
  • the incident optical system adjusts the excitation light so that the irradiation area of the excitation light is larger than the irradiation area of the sample.
  • a spectroscopic measurement method is a spectroscopic measurement method of irradiating a sample to be measured with excitation light and detecting light to be measured, the step of arranging the sample in an integrator, The step of irradiating the integrator with the excitation light so that the irradiation area of the excitation light at the incident position on the sample is larger than the irradiated area of the sample, and making the light emitted from the integrator light A step of detecting by the detector, and a step of calculating the light absorption rate of the sample based on the detection value detected by the light detector. And a step of correcting the area ratio regarding the irradiation area of the excitation light and the irradiated area of the sample.
  • the excitation light may be irradiated so as to enclose the sample.
  • the area ratio correction can be performed by adding the value obtained by dividing the irradiation area of the excitation light by the irradiated area of the sample to the light absorption rate.
  • the light absorption rate can be calculated based on the relational expression for area ratio correction by the following equation (2).
  • A light absorptance
  • integrator reflectivity
  • S 1 irradiated area of sample
  • S 2 irradiated area of excitation light
  • Abs 12 Light absorption rate during indirect excitation
  • Abs 22 Light absorption rate during direct excitation.
  • the light absorption rate can be obtained with high accuracy.
  • FIG. 4 is a cross-sectional view taken along line IV-IV in FIG. 3. It is a perspective view which shows an example of a sample container. It is sectional drawing corresponding to FIG. 4 at the time of direct excitation. It is a flowchart which shows the spectrometry method using the spectrometer of FIG.
  • (A) is a graph showing an example of a wavelength spectrum detected in the absence of a sample
  • (b) is a graph showing an example of a wavelength spectrum detected during indirect excitation
  • (c) is a wavelength spectrum detected during direct excitation. It is a graph which shows an example.
  • (A) is a schematic diagram showing an example of the relationship between the irradiation area of the excitation light and the irradiated area of the sample
  • (b) is a schematic diagram showing another example of the relationship between the irradiation area of the excitation light and the irradiated area of the sample.
  • FIG. 1 is a diagram schematically illustrating a configuration of a spectrometer according to an embodiment.
  • the spectroscopic measurement apparatus 100 measures or evaluates light emission characteristics such as fluorescence characteristics by a photoluminescence method (PL method) for a sample as a sample to be measured.
  • Samples include, for example, organic EL (Electroluminescence) materials and white LEDs (Light Emitting) It is a fluorescent sample such as a light emitting material for a diode or FPD (Flat Panel Display).
  • a powder, liquid (solution), solid or thin film can be used.
  • the spectroscopic measurement device 100 includes a main body 1A, a data analysis device 50, an input device 91, and a display device 92.
  • FIG. 2 is a plan view showing the main body during indirect excitation
  • FIG. 3 is an enlarged view of the inside of the dark box of FIG. 2 and its peripheral portion
  • FIG. 4 is a cross-sectional view taken along the line IV-IV of FIG.
  • the main body 1A irradiates the sample 1 with excitation light L1 having a predetermined wavelength, and detects the measured light L2 generated in response to the irradiation.
  • the main body 1A includes a dark box 5.
  • the dark box 5 is a rectangular parallelepiped box made of metal and blocks light from entering from the outside.
  • the inner surface 5a of the dark box 5 is coated with a material that absorbs the excitation light L1 and the measured light L2.
  • a light emitting part 7 of the light generating part 6 is connected to one side wall of the dark box 5.
  • the light generator 6 is an excitation light source configured by, for example, a xenon lamp or a spectroscope, and generates the excitation light L1.
  • the excitation light L ⁇ b> 1 is collimated by the lens 8 provided in the light emitting unit 7 and enters the dark box 5.
  • a light incident portion 11 of a light detection portion (light detector) 9 is connected to the rear wall of the dark box 5.
  • the light detection unit 9 is a multichannel detector configured by, for example, a spectroscope, a CCD sensor, or the like, and detects the measured light L2.
  • the light to be measured L ⁇ b> 2 is narrowed by an aperture opening 12 a that is a diaphragm member 12 provided in the light incident portion 11, and enters the light detection portion 9 through the slit 13.
  • An integrating sphere (integrator) 14 is arranged in the dark box 5.
  • the integrating sphere 14 is coated with a highly diffuse reflector such as barium sulfate on the inner surface 14a, or is formed of a material such as PTFE or Spectralon.
  • the integrating sphere 14 is formed with a light incident aperture (incident aperture) 15 through which the excitation light L1 is incident and a light output aperture (exit aperture) 16 through which the measured light L2 is emitted.
  • the excitation light L1 is collected by the lens 61 in the dark box 5 during indirect excitation, and enters the integrating sphere 14 through the light incident aperture 15.
  • the light to be measured L ⁇ b> 2 is narrowed by an opening 17 a that is an aperture of a diaphragm member 17 provided in the light emitting opening 16, and is emitted outside the integrating sphere 14.
  • the dark box 5, the light generation unit 6, and the light detection unit 9 are housed in a housing 10 made of metal.
  • the optical axis of the excitation light L1 emitted from the light emitting part 7 of the light generating part 6 and the optical axis of the measured light L2 incident on the light incident part 11 of the light detecting part 9 are substantially in the horizontal plane. Orthogonal.
  • An opening 37 is formed in the lower part of the integrating sphere 14 and the stage 31 to which the integrating sphere 14 is fixed.
  • a sample container holder (sample holder) 24 that is detachably attached from below the stage 31 is disposed in the opening 37. That is, the sample container holder 24 is detachably attached to the integrating sphere 14.
  • the sample container holder 24 has a sample table 241 on which the sample container 40 is placed and supported.
  • FIG. 5 is a perspective view showing an example of a sample container.
  • the sample container 40 is used for measurement using the integrating sphere 14, and is provided with a rectangular plate-like (for example, rectangular) collar 41 and the collar 41. It has the convex part 42 and the accommodating part 43 as a recessed part which is provided in the convex part 42 and accommodates the sample 1.
  • the shape of the collar portion 41 is not limited to a rectangular shape, and may be other shapes such as a circular shape or an elliptical shape.
  • Such a sample container 40 can be manufactured by fixing a cylindrical member having a through hole in the center portion on a plate member by adhesion or the like.
  • the sample container 40 can be manufactured relatively easily.
  • the sample container 40 is preferably made of a transparent material such as quartz or synthetic quartz, for example, in order to suppress light absorption by the sample container 40. Note that the sample container 40 may not be completely transparent.
  • the convex portion 42 has a circular outer shape when viewed from above, and has a circular cross section.
  • the housing portion 43 has an elongated oval shape in the longitudinal direction of the flange portion 41 (in other words, a track shape having the same long axis as the flange portion 41) when viewed from above. That is, the major axis direction of the surface by the opening of the accommodating portion 43 (hereinafter, the opening surface of the accommodating portion 43) is the same as the major axis direction of the flange portion 41.
  • the shape of the opening surface of the accommodating part 43 is not restricted to an oval shape, What is necessary is just a shape which has a long axis, such as a rectangular shape and an ellipse shape. Since the shape of the opening surface of the accommodating portion 43 has a long axis, the opening area can be increased.
  • the accommodating portion 43 can accommodate the sample 1 such that the excitation light L ⁇ b> 1 irradiated to the sample 1 includes the sample 1.
  • FIG. 6 is a cross-sectional view corresponding to FIG. 4 during direct excitation.
  • the main body 1A of the present embodiment includes a handle 62 (see FIG. 3) as an optical path switching unit that switches the optical path of the excitation light L1.
  • the stage 63 is moved by the handle 62, and the lens 61 is switched to the collimator lens 64.
  • the excitation light L1 collected by the collimator lens 64 is sequentially reflected by the mirrors 65 and 66 and irradiated toward the integrating sphere 14.
  • An aperture 67 is provided in the light incident aperture 15 of the integrating sphere 14.
  • a cutout 67 a is formed in at least a part of the opening of the aperture 67.
  • the shape of the notch 67a is formed so that the excitation light L1 that passes through the aperture 67 and is incident on the sample 1 is wider than the region of the sample 1 (the area of the sample 1 when viewed from above).
  • the aperture 67 is formed in a shape that does not block the excitation light L1, and the opening is inclined so as to expand toward the downstream side of the irradiation optical axis.
  • the collimator lens 64, the mirrors 65 and 66, and the aperture 67 constitute an incident optical system for causing the excitation light L1 to enter the sample 1.
  • the excitation light L1 incident on the dark box 5 is collimated by the collimator lens 64, sequentially reflected by the mirrors 65 and 66, passes through the aperture 67, and is incident on the integrating sphere 14.
  • the excitation light L1 is applied to the sample container 40 so as to enclose the sample 1 in the integrating sphere 14.
  • the irradiation area S 2 of the excitation light L 1 is an area for the irradiation region R 2 of the excitation light L 1 at the incident position on the sample 1, and the irradiated areas S 1 , S of the sample 1 3, sample 1 is the area of the irradiated region R 1 that receives the excitation light L1.
  • the data analysis device 50 is an analysis unit that performs necessary data analysis on the wavelength spectrum (detection value) acquired by the light detection unit 9 and acquires information about the sample 1.
  • the data analysis device 50 here calculates the light absorption rate of the sample 1 based on the output from the spectroscopic analysis device 30, and the irradiation area of the excitation light L1 and the irradiated area of the sample 1 with respect to the calculated light absorption rate. The area ratio is corrected (details will be described later).
  • the input device 91 is used for inputting an instruction for data analysis or the like or inputting an analysis condition, and is connected to the data analysis device 50.
  • the display device 92 is used for displaying the obtained data analysis result, and is connected to the data analysis device 50.
  • reference measurement which is spectroscopic measurement in a state where the sample container 40 is not installed (that is, there is no sample 1), is performed (S3).
  • the light is emitted from the light generation unit 6 and the excitation light L ⁇ b> 1 is incident into the integrating sphere 14.
  • the excitation light L1 does not directly enter the sample 1 but reaches the inner surface of the integrating sphere 14 as it is.
  • the light diffused and reflected inside the integrating sphere 14 is emitted from the light exit opening 16 to the light detection unit 9, and the light detection unit 9 obtains a wavelength spectrum 15a (see FIG. 8A). Since this wavelength spectrum 15a has an intensity in the excitation wavelength region, the data analysis device 50 integrates the intensity in the excitation wavelength region, and obtains the excitation light region intensity La without the sample 1.
  • the sample 1 is accommodated in the sample container 40, and the sample container 40 is placed on the sample table 241 of the sample container holder 24.
  • the sample measurement which is the spectroscopic measurement at the time of the direct excitation in the state which has arrange
  • the light is emitted from the light generation unit 6 and the excitation light L ⁇ b> 1 is incident into the integrating sphere 14.
  • This excitation light L1 does not directly enter the sample 1 but directly reaches the inner surface of the integrating sphere 14 (see FIG. 4).
  • the light diffused and reflected inside the integrating sphere 14 is emitted from the light exit opening 16 to the light detection unit 9, and the light detection unit 9 obtains a wavelength spectrum 15 b (see FIG. 8B).
  • the data analyzer 50 integrates the excitation wavelength region intensities to obtain the excitation light region intensity Lb at the time of indirect excitation.
  • direct excitation measurement is performed at the time of direct excitation, which is a state in which the sample 1 is directly irradiated with the excitation light L1.
  • the handle 62 is operated to move the stage 63, so that the collimator lens 64 is arranged on the optical axis of the excitation light L1 (S6, see FIG. 6).
  • the wavelength of the excitation light L1 is set to a predetermined wavelength (S7).
  • sample measurement is performed to obtain the excitation light region intensity Lc at the time of direct excitation (S9). Specifically, light is emitted from the light generator 6 and the excitation light L1 is incident into the integrating sphere 14, thereby irradiating the sample 1 on the sample container holder 24 with the excitation light L1.
  • the excitation light L1 passes through the aperture 213 through the collimator lens 64, and is irradiated on the sample 1 in a state where the spot diameter is wider than the region of the sample 1. That is, the irradiation area of the excitation light L1 S 2 becomes larger than the irradiation area S 1 of the sample 1 is irradiated on the sample 1 so as to include the sample 1 (see FIG. 6 and 9).
  • the light diffused and reflected inside the integrating sphere 14 is emitted from the light emission opening 16 to the light detection unit 9, and the wavelength spectrum 15 c (see FIG. 8C) is obtained by the light detection unit 9.
  • the light to be measured L2 includes light emission such as fluorescence generated in the sample 1 by irradiation of the excitation light L1, and light components scattered and reflected by the sample 1 in the excitation light L1.
  • the data analysis device 50 integrates the excitation wavelength region intensities to obtain the excitation light region intensity Lc at the time of direct excitation.
  • the light absorption rate A of the sample 1 is calculated (S11).
  • irradiation area S 2 and the area ratio correction for the irradiated area S 1 of the sample 1 of the excitation light L1 (hereinafter, simply referred to as "area ratio correction") row Is called.
  • This area ratio correction is performed based on integrating “irradiated area S 1 / irradiated area S 2 ” with respect to the light absorption rate.
  • the light absorption rate A is calculated based on the relational expression for area ratio correction by the following equation (3). In addition, specific description of the following formula (3) will be described later.
  • A Light absorption rate
  • integrator reflectivity (reflectance at the excitation wavelength for the inner wall material of the integrating sphere 14)
  • Abs 12 Light absorption rate during indirect excitation
  • Abs 22 Light absorption rate during direct excitation.
  • irradiation area S 2 of the excitation light L1 is smaller than the irradiated area S 1 of the sample 1, in a typical spectroscopic measurement, theory the common sense on the assumption Has been built. Therefore, when the irradiation area S 2 of the excitation light L1 is larger than the irradiation area S 1 of the sample 1, the light absorption rate by the general spectroscopy, may become smaller than the exact value (true value).
  • the present embodiment has been made based on this knowledge, and in the case where the irradiation area S 2 of the excitation light L 1 is larger than the irradiation area S 1 of the sample 1, the calculated light absorption rate A By performing the area ratio correction, the light absorption rate A can be obtained with high accuracy.
  • this embodiment can be said to be particularly effective when measuring a small amount of the sample 1. That is, this embodiment can measure even a small amount of sample by applying the area correction method in the absorptance measurement using the integrating sphere 14.
  • the sample 1 is irradiated with the excitation light L1 so as to include the sample 1, but the present invention is not limited to this.
  • the incident optical system of the excitation light L1 and by adjusting at least one of the shape of the housing portion 43 of the sample container 40, a large irradiation area S 2 of the excitation light L1 than the irradiated area S 1 of the sample 1 Under the conditions, the excitation light L1 may be irradiated so as to overlap a part of the sample 1 (see FIG. 9B).
  • the light absorption ratio A can be calculated based on the relational expression of the area ratio correction by the following equation (4).
  • the specific description of the following formula (4) will be described later.
  • Abs 13 light absorptance at the time of indirect excitation
  • Abs 23 Light absorption rate at the time of direct excitation.
  • the calculation formula of “de Mello light absorptance” calculated in Non-Patent Document 2 is the following formula (6). It can be said that the calculation formula of “de Mello light absorptance” cancels the physical process of the integrating sphere 14.
  • “de Mello light absorptance” is 1-relative reflectance (T 2 / ⁇ ).
  • Lb 2 Excitation light region intensity at the time of indirect excitation
  • Lc 2 Excitation light region intensity at the time of direct excitation.
  • the actually measured reflectance Tr 2 is obtained by the relative reflectance shown in the following formula (7). Further, the actually measured light absorption rate Ar 2 is obtained by (1-relative reflectance) represented by the following formula (8).
  • the area weighted average reflectance T 2 is defined by the following formula (9), and the following formula (10) is derived from the following formula (9).
  • the excitation light L1 is irradiated so as to overlap a portion of the sample 1, when the irradiation area S 2 is greater than the irradiated area S 3, the area weighted average reflected sample 1
  • the relational expression between the rate T 3 and the light absorption rate A 3 is defined by the following formula (15).
  • the calculation formula of “de Mello light absorption rate” is the following expression (16). It can be said that the calculation formula of “de Mello light absorptance” cancels the physical process of the integrating sphere 14.
  • “de Mello light absorptance” is 1-relative reflectance (T 3 / ⁇ ).
  • Lb 3 Excitation light region intensity at the time of indirect excitation
  • Lc 3 Excitation light region intensity at the time of direct excitation.
  • the actually measured reflectance Tr 3 is obtained by the relative reflectance shown in the following equation (17). Further, the actually measured light absorption rate Ar 3 is obtained by (1 ⁇ relative reflectance) expressed by the following equation (18).
  • Area weighted average reflectance T 3 is defined by the following equation (19), the following equation from the formula (19) (20) is derived.
  • irradiation area S 2 of the excitation light L1 is larger than the irradiation area S 1 of the sample 1, and, in the optical conditions the excitation light L1 containing the sample 1 (see FIG. 9 (a)), the light absorption rate it can be obtained by the true value following equation (true light absorptance) a t (32). Also, large irradiation area S 2 of the excitation light L1 than the irradiated area S 1 of the sample 1, and, in the excitation light L1 is an optical condition that overlaps with a portion of the sample 1 (see FIG. 9 (b)), light the true value a t of the absorption rate can be determined by the following equation (33).
  • the above equation (32) is obtained as the following equation (36)
  • the above equation ( 33) is obtained by the following equation (37).
  • the above equation (32) is obtained as the above equation (3)
  • the above equation (33) is obtained as shown in the above equation (4).
  • the optical arrangement when switching between indirect excitation and direct excitation, the optical arrangement is changed by driving the optical system, but instead of or in addition to this, the sample 1 (sample container 40) is changed. It may be moved.
  • the integrating sphere 14 is used as the integrator.
  • any means (optical component) for spatially integrating the light inside the integrating sphere 14 may be used.
  • An integrating hemisphere may be used.
  • the sample container holder 24 attached to the integrator holds the sample container 40 having the accommodating portion 43.
  • the sample holder having the accommodating portion 43 may be attached to the integrator.
  • the irradiation area S 2 to be larger than the irradiation area S 1 may be provided with a lens to spread the excitation light L1 from the light emitting portion 7.
  • the collimator lens 64, the mirrors 65 and 66, and the aperture 67 are provided as the incident optical system, only the aperture 67 may be provided.
  • the incident optical system may be configured to include (or only) the emission end of the light emitting unit 7.
  • the measurement at the time of direct excitation may be performed before the measurement at the time of indirect excitation (S1 to S5).
  • it may be configured so that the irradiation area S 2 of the excitation light L1 than the irradiated area S 1 of the sample 1 is large, for example, the incident optical system of the excitation light L1, and the sample container 40 by adjusting at least one of the shape of the housing portion 43, it can be increased irradiation area S 2 than the irradiated area S 1.
  • the light absorption rate can be obtained with high accuracy.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Spectrometry And Color Measurement (AREA)

Abstract

 測定対象となる試料に励起光を照射し、被測定光を検出する分光測定装置であって、励起光を発生させる光源と、励起光が入射される入射開口部と、被測定光を出射する出射開口部とを有する積分器と、積分器内に配置され、試料を収容する収容部と、試料に励起光を入射させる入射光学系と、出射開口部から出射された被測定光を検出する光検出器と、光検出器で検出された検出値に基づき試料の光吸収率を算出する解析手段と、を備え、試料への入射位置における励起光の照射面積は、試料の被照射面積よりも大きくされ、解析手段は、算出される光吸収率に対して、励起光の照射面積及び試料の被照射面積に関する面積比補正を行う。

Description

分光測定装置及び分光測定方法
 本発明は、分光測定装置及び分光測定方法に関する。
 従来、測定対象となる試料に励起光を照射し、被測定光を検出する分光測定装置が知られている。この種の技術として、例えば特許文献1には、量子収率を求める際、積分球内において励起光が直接当たらない位置に試料を固定し、励起光を試料に間接的に入射して得られた強度と、励起光を試料に直接入射して得られた強度とから、試料の光吸収率を求める絶対蛍光量子効率測定装置が記載されている。
 また、例えば特許文献2には、試料透過後の励起光が積分空間内に反射するような状態で試料に吸収される励起光を測定し、試料を透過後の励起光が積分空間内に反射しないような状態で試料から発生する光を測定する量子効率測定装置が記載されている。当該量子効率測定装置では、このような2段階の計測処理を行なうことで、再励起(二次励起)による測定誤差を低減することが図られている。また、非特許文献1~3には、試料に内包されるように励起光を入射することを前提に量子収率を算出することが記載されている。
特開平9-292281号公報 特開2003-215041号公報
「Measurement of absolutephotoluminescence quantum efficiencies in conjugated polymers Chemical PhysicsLetters Volume 241」、Issues 1-2、14 July 1995、Pages 89-96、N.C. Greenham、I.D.W.Samuel、G.R. Hayes、R.T. Phillips、Y.A.R.R. Kessener、S.C. Moratti, A.B. Holmes,R.H. Friend 「An improved experimentaldetermination of external photoluminescence quantum efficiency AdvancedMaterials」、Vol. 9、Issue 3、March 1997、Pages 230-232、John C. de Mello、H. Felix Wittmann、Richard H. Friend 「積分球を用いた絶対蛍光量子効率測定法の理論的検討」、第71回応用物理学会学術講演会(2010年9月12日)、14p-NK-6、市野善朗(2010.9.12)14p-NK-6
 ところで、一般的に、上記の分光測定装置にあっては、前述のように、励起光が試料に内包されており、試料への入射位置における励起光の照射面積(以下、単に「励起光の照射面積」ともいう)が試料の被照射面積よりも小さいという理論下で構築されている。そのため、例えば少量の試料を測定する等の場合において、励起光の照射面積が試料の被照射面積よりも大きくされると、算出する光吸収率が真値に対し異なって見積もられ、光吸収率を精度よく測定することが困難になるおそれがある。
 そこで、本発明の一側面は、光吸収率を精度よく求めることが可能な分光測定装置及び分光測定方法を提供することを課題とする。
 上記課題を解決するため、本発明の一側面に係る分光測定装置は、測定対象となる試料に励起光を照射し、被測定光を検出する分光測定装置であって、励起光を発生させる光源と、励起光が入射される入射開口部と、内部で反射した光を出射する出射開口部とを有する積分器と、積分器内に配置され、試料を収容する収容部と、試料に励起光を入射させる入射光学系と、出射開口部から出射された光を検出する光検出器と、光検出器で検出された検出値に基づき試料の光吸収率を算出する解析手段と、を備え、試料への入射位置における励起光の照射面積は、試料の被照射面積よりも大きくされ、解析手段は、算出される光吸収率に対して、励起光の照射面積及び試料の被照射面積に関する面積比補正を行うことを特徴とする。
 この分光測定装置においては、励起光の照射面積が試料の被照射面積よりも大きくすることができる。そしてこの場合において、算出される光吸収率に対して励起光の照射面積及び試料の被照射面積に関する面積比補正を行うことができる。よって、例えば少量の試料を測定する場合でも、光吸収率を精度よく求めることが可能となる。
 また、励起光は、試料を内包するように当該試料に照射されていてもよい。このとき、面積比補正は、励起光の照射面積を試料の被照射面積で除算した値を、光吸収率に対して積算することによって行うことができる。また、解析手段は、下式(1)による面積比補正の関係式に基づいて、光吸収率を算出することができる。
Figure JPOXMLDOC01-appb-M000003
但し、
 A:光吸収率、ρ=積分器反射率、S:試料の被照射面積、S:励起光の照射面積、
 Abs12:間接励起時の光吸収率、Abs22:直接励起時の光吸収率。
 また、上記作用効果を好適に奏する構成として、具体的には、入射光学系は、試料の被照射面積よりも励起光の照射面積が大きくなるように励起光を調整する構成が挙げられる。
 また、本発明の一側面に係る分光測定方法は、測定対象となる試料に励起光を照射し、被測定光を検出する分光測定方法であって、積分器内に試料を配置する工程と、試料への入射位置における励起光の照射面積が試料の被照射面積よりも大きくなるように、積分器内へ励起光を照射して試料に入射させる工程と、積分器から出射された光を光検出器で検出する工程と、光検出器で検出された検出値に基づいて、試料の光吸収率を算出する工程と、を含み、光吸収率を算出する工程では、光吸収率に対して、励起光の照射面積及び試料の被照射面積に関する面積比補正を行う工程と、を含むことを特徴とする。
 この分光測定方法においても、光吸収率を精度よく求めることが可能となるという上記作用効果が奏される。
 また、試料に励起光を入射させる工程では、励起光が試料を内包するように照射されてもよい。このとき、面積比補正は、励起光の照射面積を試料の被照射面積で除算した値を、光吸収率に対して積算することによって行うことができる。また、光吸収率を算出する工程では、下式(2)による面積比補正の関係式に基づいて、光吸収率を算出することができる。
Figure JPOXMLDOC01-appb-M000004
但し、
 A:光吸収率、ρ=積分器反射率、S:試料の被照射面積、S:励起光の照射面積、
 Abs12:間接励起時の光吸収率、Abs22:直接励起時の光吸収率。
 本発明の一側面によれば、光吸収率を精度よく求めることが可能となる。
一実施形態に係る分光測定装置の構成を模式的に示す図である。 間接励起時の本体を示す平面図である。 図2の暗箱の内部及びその周辺部分の拡大図である。 図3のIV-IV線に沿っての断面図である。 試料容器の一例を示す斜視図である。 直接励起時の図4に対応する断面図である。 図1の分光測定装置を用いた分光測定方法を示すフローチャートである。 (a)は試料がない状態で検出された波長スペクトルの一例を示すグラフ、(b)は間接励起時に検出された波長スペクトルの一例を示すグラフ、(c)は直接励起時に検出された波長スペクトルの一例を示すグラフである。 (a)は励起光の照射面積及び試料の被照射面積の関係についての一例を示す模式図、(b)は励起光の照射面積及び試料の被照射面積の関係についての他の例を示す模式図である。
 以下、図面を参照しつつ好適な実施形態について詳細に説明する。なお、以下の説明において同一又は相当要素には同一符号を付し、重複する説明を省略する。
 図1は、一実施形態に係る分光測定装置の構成を模式的に示す図である。図1に示すように、本実施形態による分光測定装置100は、測定対象となるサンプルとしての試料について、フォトルミネッセンス法(PL法)によって蛍光特性等の発光特性を測定又は評価するものである。試料は、例えば、有機EL(Electroluminescence)材料や、白色LED(Light Emitting
Diode)用やFPD(Flat Panel Display)用等の発光材料等の蛍光試料であり、例えば粉末状、液体状(溶液状)、固体状又は薄膜状のものを用いることができる。分光測定装置100は、本体1A、データ解析装置50、入力装置91及び表示装置92を備えている。
 図2は間接励起時の本体を示す平面図、図3は図2の暗箱の内部及びその周辺部分の拡大図、図4は図3のIV-IV線に沿っての断面図である。図2~4に示すように、本体1Aは、試料1に所定波長の励起光L1を照射し、当該照射に応じて生じた被測定光L2を検出する。この本体1Aは、暗箱5を備えている。
 暗箱5は、金属からなる直方体状の箱体であって、外部からの光の侵入を遮断する。暗箱5の内面5aには、励起光L1及び被測定光L2を吸収する材料による塗装等が施されている。暗箱5の一方の側壁には、光発生部6の光出射部7が接続されている。光発生部6は、例えばキセノンランプや分光器等により構成された励起光源であって、励起光L1を発生させる。励起光L1は、光出射部7に設けられたレンズ8によってコリメートされて、暗箱5内に入射する。
 暗箱5の後壁には、光検出部(光検出器)9の光入射部11が接続されている。光検出部9は、例えば分光器やCCDセンサ等により構成されたマルチチャンネル検出器であって、被測定光L2を検出する。被測定光L2は、光入射部11に設けられた絞り部材12であるアパーチャの開口部12aで絞られて、スリット13を介して光検出部9内に入射する。
 暗箱5内には、積分球(積分器)14が配置されている。積分球14は、その内面14aに硫酸バリウム等の高拡散反射剤の塗布が施されるか、若しくはPTFEやスペクトラロン等の材料で形成されている。積分球14には、励起光L1を入射させる光入射開口(入射開口部)15、及び被測定光L2を出射させる光出射開口(出射開口部)16が形成されている。励起光L1は、間接励起時において暗箱5内でレンズ61により集光され、光入射開口15を介して積分球14内に入射する。被測定光L2は、光出射開口16に設けられた絞り部材17のアパーチャである開口17aで絞られて、積分球14外に出射する。
 以上の暗箱5、光発生部6及び光検出部9は、金属からなる筐体10内に収容されている。なお、光発生部6の光出射部7から出射させられる励起光L1の光軸と、光検出部9の光入射部11に入射させられる被測定光L2の光軸とは、水平面内において略直交している。
 積分球14の下部及び積分球14が固定されたステージ31には、開口37が形成されている。開口37には、ステージ31の下側から着脱自在に取り付けられた試料容器ホルダ(試料ホルダ)24が配設されている。つまり、試料容器ホルダ24は、積分球14に対して着脱自在に取り付けられている。試料容器ホルダ24は、試料容器40を載置し支持する試料台241を有している。
 図5は試料容器の一例を示す斜視図である。図5に示すように、試料容器40は、積分球14を利用した測定に用いられるものであって、矩形板状(例えば、長方形状)の鍔部41と、鍔部41上に設けられた凸部42と、凸部42に設けられ試料1を収容する凹部としての収容部43と、を有している。なお、鍔部41の形状は、矩形状に限らず、円形形状や楕円形状など他の形状でもよい。このような試料容器40は、中心部分に貫通孔を有する円柱部材を板部材上に接着等により固定することで作製することができる。これにより、板部材のうち円柱部材が接着されていない部分が鍔部41となり、また、円柱部材の貫通穴が試料1を収容する凹部としての収容部43となる。このような製造方法によれば、比較的容易に試料容器40を製造することができる。
 この試料容器40は、当該試料容器40による光の吸収を抑制する等のために好ましいとして、例えば石英や合成石英等の透明材料で形成されている。なお、試料容器40は、完全に透明されていなくともよい。凸部42は、上方から見て円形の外形を有しており、その断面が円形状となっている。収容部43は、上方から見て、鍔部41の長手方向に長尺状の長円形状(換言すると、鍔部41と同じ長軸を有するトラック形状)を有している。つまり、収容部43の開口による面(以下、収容部43の開口面)の長軸方向が鍔部41の長軸方向と同方向となる。また、収容部43の開口面の形状は長円形状に限らず、長方形状や楕円形状など、長軸を有する形状であればよい。収容部43の開口面の形状が長軸を有するため、開口面積を広くすることができる。この収容部43は、試料1に照射される励起光L1が試料1を内包するように試料1を収容できる。
 図6は直接励起時の図4に対応する断面図である。図6に示すように、本実施形態の本体1Aは、励起光L1の光路を切り替える光路切替手段として、ハンドル62(図3参照)を備えている。本体1Aでは、このハンドル62によってステージ63が移動させられ、レンズ61からコリメータレンズ64に切り替えられる。コリメータレンズ64によって集光された励起光L1は、ミラー65,66で順次反射されて積分球14内へ向けて照射される。
 積分球14の光入射開口15には、アパーチャ67が設けられている。アパーチャ67の開口部の少なくとも一部には、切欠き67aが形成されている。切欠き67aの形状は、アパーチャ67を通過し試料1に入射される励起光L1が試料1の領域(上方視における試料1の面積)よりも広くなるように形成されている。換言すると、アパーチャ67は、励起光L1を遮らない形状に形成され、その開口部が照射光軸の下流側に行くに従って拡がるように傾斜している。
 これらコリメータレンズ64、ミラー65,66及びアパーチャ67は、試料1に励起光L1を入射させるための入射光学系を構成する。この入射光学系においては、暗箱5に入射した励起光L1は、コリメータレンズ64で平行化され、ミラー65、66で順次反射され、アパーチャ67を通過して積分球14に入射され、これにより、励起光L1は、積分球14内において試料1を内包するように試料容器40へ照射される。
 なお、図9に示すように、励起光L1の照射面積Sは、試料1への入射位置における励起光L1の照射領域Rについての面積であり、試料1の被照射面積S,Sは、試料1が励起光L1を受ける被照射領域Rの面積である。
 図1に戻り、データ解析装置50は、光検出部9によって取得された波長スペクトル(検出値)に対して必要なデータ解析を行い、試料1についての情報を取得する解析手段である。ここでのデータ解析装置50は、分光分析装置30からの出力に基づき試料1の光吸収率を算出すると共に、算出した光吸収率に対して励起光L1の照射面積及び試料1の被照射面積に関する面積比補正を行う(詳しくは、後述)。
 また、入力装置91は、データ解析等についての指示の入力又は解析条件の入力等に用いられ、データ解析装置50に接続されている。表示装置92は、得られたデータ解析結果の表示等に用いられ、データ解析装置50に接続されている。
 次に、上記分光測定装置100による分光測定方法について、図7のフローチャートを参照しつつ説明する。
[間接励起時]
 まず、試料1に励起光L1が直接照射されない状態時である間接励起時の測定を行う。例えば光路切替えスイッチ等を操作することにより、ハンドル62を作動させてステージ63を移動させ、励起光L1の光軸上にレンズ61が配置される光学配置とする(S1、図4参照)。これと共に、励起光L1の波長を所定波長に設定する(S2)。
 次いで、試料容器40が未設置の(つまり、試料1がない)状態での分光測定であるリファレンス測定を行う(S3)。具体的には、光発生部6から光を出射させ、積分球14内へ励起光L1を入射させる。この励起光L1は、試料1に直接入射されずに、そのまま積分球14の内面に到達する。そして、積分球14内部で多重拡散反射した光を、光出射開口16から光検出部9へ出射させ、当該光検出部9により波長スペクトル15a(図8(a)参照)を得る。この波長スペクトル15aは励起波長領域に強度を持つため、データ解析装置50により、励起波長領域の強度を積算し、試料1が無い状態での励起光領域強度Laを取得する。
 次いで、試料容器40に試料1を収容し、この試料容器40を試料容器ホルダ24の試料台241上に配置する。そして、積分球14内に試料1を配置した状態での直接励起時分光測定であるサンプル測定を行う(S4)。具体的には、光発生部6から光を出射させ、積分球14内へ励起光L1を入射させる。この励起光L1は、試料1に直接入射されずに、そのまま積分球14の内面に到達する(図4参照)。そして、積分球14内部で多重拡散反射した光を、光出射開口16から光検出部9へ出射させ、当該光検出部9により波長スペクトル15b(図8(b)参照)を得る。続いて、データ解析装置50により、励起波長領域の強度を積算し、間接励起時の励起光領域強度Lbを取得する。
 次いで、取得した強度La,Lbに基づいて、間接励起時の光吸収率をデータ解析装置50により算出する(S5)。具体的には、下式に従い間接励起時の光吸収率Absを算出する。
             Abs=1-Lb/La
[直接励起時]
 次いで、試料1に励起光L1が直接照射される状態時である直接励起時の測定を行う。例えば光路切替えスイッチ等を操作することにより、ハンドル62を作動させてステージ63を移動させ、励起光L1の光軸上にコリメータレンズ64が配置される光学配置とする(S6、図6参照)。これと共に、励起光L1の波長を所定波長に設定する(S7)。
 次いで、上記S3と同様にリファレンス測定を行い、試料1が無い状態での励起光領域強度Laを取得する(S8)。続いて、サンプル測定を行い、直接励起時の励起光領域強度Lcを取得する(S9)。具体的には、光発生部6から光を出射させ、積分球14内へ励起光L1を入射させ、これにより、励起光L1を試料容器ホルダ24上の試料1に照射する。
 このとき、励起光L1は、コリメータレンズ64を経て、アパーチャ213を通過することで、そのスポット径が試料1の領域よりも広い状態で試料1に照射される、すなわち、励起光L1の照射面積Sが試料1の被照射面積Sよりも大きくなり、試料1を内包するように試料1に照射される(図6,9参照)。
 続いて、積分球14内部で多重拡散反射した光を、光出射開口16から光検出部9へ出射させ、当該光検出部9により波長スペクトル15c(図8(c)参照)を得る。ここでの被測定光L2としては、励起光L1の照射により試料1で生じた蛍光等の発光、及び励起光L1のうち試料1で散乱、反射等された光成分を含んでいる。そして、データ解析装置50により、励起波長領域の強度を積算し、直接励起時の励起光領域強度Lcを取得する。
 次いで、取得した強度La,Lcに基づいて、直接励起時の光吸収率をデータ解析装置50により算出する(S10)。具体的には、下式に従い直接励起時の光吸収率Absを算出する。
             Abs=1-Lc/La
 最後に、試料1の光吸収率Aを算出する(S11)。ここで、本実施形態では、光吸収率を算出する際、励起光L1の照射面積S及び試料1の被照射面積Sに関する面積比補正(以下、単に「面積比補正」という)が行われる。この面積比補正は、光吸収率に対して「被照射面積S/照射面積S」を積算することに基づき実施される。ここでは、下式(3)による面積比補正の関係式に基づいて、光吸収率Aを算出している。なお、下式(3)の具体的説明については後述する。
Figure JPOXMLDOC01-appb-M000005
但し、
 A:光吸収率、
 ρ:積分器反射率(積分球14の内壁材料についての励起波長での反射率)
 Abs12:間接励起時の光吸収率、
 Abs22:直接励起時の光吸収率。
 ところで、分光測定装置100の分野では、励起光L1の照射面積Sが試料1の被照射面積Sよりも小さいことが常識であり、一般的な分光測定においては、当該常識が前提で理論が構築されている。よって、励起光L1の照射面積Sが試料1の被照射面積Sよりも大きい場合、一般的な分光測定による光吸収率は、正確な値(真値)よりも小さくなるおそれがある。そこで、この理論について鋭意検討を重ねた結果、試料1の被照射面積Sと励起光L1の照射面積Sとからなる面積比で光吸収率Aを補正する必要があるという知見が見出された。
 すなわち、本実施形態は、当該知見に基づいてなされたものであり、励起光L1の照射面積Sが試料1の被照射面積Sよりも大きい場合において、算出される光吸収率Aに対して面積比補正を行うことにより、光吸収率Aを精度よく求めることが可能となる。
 また、本実施形態では、上述のように、励起光L1の照射面積Sが試料1の被照射面積Sよりも大きい場合に光吸収率Aを精度よく求め得るため、試料1の量が少なくても、光吸収率Aを精度よく測定することが可能となる。よって、本実施形態は、少ない量の試料1を測定する場合に特に有効なものともいえる。つまり、本実施形態は、積分球14を用いた吸収率測定において、面積補正方法を適用することにより、少量サンプルに対しても測定可能となるものである。
 ちなみに、少ない試料1で測定する場合には、被照射面積Sをそのままで試料容器40の収容部43の深さを浅くすることも考えられるが、この場合、試料1が離散しやすくなるため、少なくとも使い勝手の点で実用的ではない。
 なお、本実施形態では、試料1を内包するように当該試料1に励起光L1を照射したが、これに限定されるものではない。例えば、励起光L1の入射光学系、及び、試料容器40の収容部43の形状の少なくとも一方を調整することにより、励起光L1の照射面積Sが試料1の被照射面積Sよりも大きい条件下において、励起光L1を試料1の一部と重なるように照射してもよい(図9(b)参照)。
 このとき、データ解析装置50による上記演算では、光吸収率を算出するに際して面積比補正を行う場合、下式(4)による面積比補正の関係式に基づいて、光吸収率Aを算出できる。なお、下式(4)の具体的説明については後述する。
Figure JPOXMLDOC01-appb-M000006
但し、
 Abs13:間接励起時の光吸収率、
 Abs23:直接励起時の光吸収率。
 次に、上式(3),(4)に関して具体的に説明する。
 図9(a)に示すように、励起光L1が試料1全体に包むように照射される場合、試料1の面積荷重平均反射率Tと光吸収率Aとの関係式は、下式(5)により定義される。
Figure JPOXMLDOC01-appb-M000007
 よって、上記非特許文献2にて求められている“de Mello の光吸収率”の算出式は、下式(6)となる。なお、“de Mello の光吸収率”の算出式は、積分球14の物理過程をキャンセルしているといえる。また、下式(6)では、“de Mello の光吸収率”が1-相対反射率(T/ρ)となっている。
Figure JPOXMLDOC01-appb-M000008
但し、
 Lb:間接励起時の励起光領域強度、Lc:直接励起時の励起光領域強度。
 積分球14の物理過程をキャンセルした物理モデルで考察すると、実測される反射率Trは、下式(7)に示す相対反射率で求められる。また、実測される光吸収率Arは、下式(8)で示す(1-相対反射率)で求められる。
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000010
 面積加重平均反射率Tは下式(9)で定義され、下式(9)から下式(10)が導出される。
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000012
 上式(10)を上式(8)に代入すると、下式(11)が導出される。試料1の絶対反射率Tと光吸収率Aとの関係式「T=1-A」を下式(11)に代入すると、下式(12),(13)が導出され、上式(6)と上式(8)から下式(14)が導出される。下式(14)は、実験的に“de Mello の光吸収率”を求め、その値に面積比補正S/Sを行っており、積分球14の励起波長での絶対反射率である積分器反射率ρが既知であれば、試料1の真の光吸収率Aを算出できることを意味する。
Figure JPOXMLDOC01-appb-M000013
Figure JPOXMLDOC01-appb-M000014
Figure JPOXMLDOC01-appb-M000015
Figure JPOXMLDOC01-appb-M000016
 一方、図9(b)に示すように、励起光L1が試料1の一部に重なるように照射され、照射面積Sが被照射面積Sよりも大きい場合、試料1の面積荷重平均反射率Tと光吸収率Aとの関係式は、下式(15)により定義される。
Figure JPOXMLDOC01-appb-M000017
 よって、“de Mello の光吸収率”の算出式は下式(16)となる。なお、“de Mello の光吸収率”の算出式は、積分球14の物理過程をキャンセルしているといえる。また、下式(16)では、“de Mello の光吸収率”が1-相対反射率(T/ρ)となっている。
Figure JPOXMLDOC01-appb-M000018
但し、
 Lb:間接励起時の励起光領域強度、Lc:直接励起時の励起光領域強度。
 積分球14の物理過程をキャンセルした物理モデルで考察すると、実測される反射率Trは、下式(17)に示す相対反射率で求められる。また、実測される光吸収率Arは、下式(18)で示す(1-相対反射率)で求められる。
Figure JPOXMLDOC01-appb-M000019
Figure JPOXMLDOC01-appb-M000020
 面積加重平均反射率Tは下式(19)で定義され、下式(19)から下式(20)が導出される。
Figure JPOXMLDOC01-appb-M000021
Figure JPOXMLDOC01-appb-M000022
 上式(20)を上式(18)に代入すると、下式(21)が導出される。試料1の絶対反射率Tと光吸収率Aとの関係式「T=1-A」を下式(21)に代入すると、下式(22),(23)が導出され、上式(16)と上式(18)とから下式(24)が導出される。下式(24)は、実験的に“de Mello の光吸収率”を求め、その値に面積比補正S/Sを行っており、積分球14の励起波長での積分器反射率ρが既知であれば、試料1の真の光吸収率Aを算出できることを意味する。
Figure JPOXMLDOC01-appb-M000023
Figure JPOXMLDOC01-appb-M000024
Figure JPOXMLDOC01-appb-M000025
Figure JPOXMLDOC01-appb-M000026
 “de Mello の光吸収率”の算出式「A=1-(1-A)/ρ=1-T/ρ」と、実測される光吸収率(1-相対反射率)の関係式「A=1-T=1-T/ρ」と、から下式(25)が求まる。また、上式(6),(8)から下式(26)が求まる。また、上式(16),(18)から下式(27)が求まる。“de Mello の光吸収率”は、1次反射で実測される光吸収率(1-相対反射率)を求めていることと等価となる。
Figure JPOXMLDOC01-appb-M000027
Figure JPOXMLDOC01-appb-M000028
Figure JPOXMLDOC01-appb-M000029
 実測される光吸収率(1-相対反射率)の関係式「A=1-T=1-T/ρ」と、上式(11)と、から下式(28)が求まる。これに上式(25),(26)を代入すると、下式(29)が求まる。
Figure JPOXMLDOC01-appb-M000030
Figure JPOXMLDOC01-appb-M000031
 また、実測される光吸収率(1-相対反射率)の関係式「A=1-T=1-T/ρ」と、上式(21)と、から下式(30)が求まる。これに上式(25),(27)を代入すると、下式(31)が求まる。
Figure JPOXMLDOC01-appb-M000032
Figure JPOXMLDOC01-appb-M000033
 なお、上式(29),(31)は、試料1の被照射面積Sが励起光L1の照射面積S以上となる測定条件の“de Mello の光吸収率”に対して、各光学条件での測定値を面積補正係数で補正することによって等価になることを示している。
 従って、励起光L1の照射面積Sが試料1の被照射面積Sよりも大きく、且つ、励起光L1が試料1を内包する光学条件(図9(a)参照)では、光吸収率の真値(真の光吸収率)Aを下式(32)により求めることができる。また、励起光L1の照射面積Sが試料1の被照射面積Sよりも大きく、且つ、励起光L1が試料1の一部と重なるという光学条件(図9(b)参照)では、光吸収率の真値Aを下式(33)により求めることができる。
Figure JPOXMLDOC01-appb-M000034
Figure JPOXMLDOC01-appb-M000035
 光吸収率の真値Aは、ρ=1と近似できる場合、上式(32)は単純化されて下式(34)となり、上式(33)は単純化されて下式(35)となる。
Figure JPOXMLDOC01-appb-M000036
Figure JPOXMLDOC01-appb-M000037
 ここで、上述の強度Lb,Lc,Lb,Lcを実験的に直接求めることが困難な場合があり、例えば間接励起時と直接励起時との光路を切替え等により強度変化する場合などが挙げられる。この場合、実験的に測定可能な反射率や光吸収率を測定パラメータとして使用できる。
 すなわち、光吸収率の真値Aにあっては、各光学条件で反射率Rを測定パラメータとすることで、上式(32)は下式(36)のように求められ、上式(33)は下式(37)のように求められる。また、光吸収率の真値Aにあっては、各光学条件で光吸収率Absを測定パラメータとすることで、上式(32)は上式(3)のように求められ、上式(33)は上式(4)のように求められることとなる。
Figure JPOXMLDOC01-appb-M000038
Figure JPOXMLDOC01-appb-M000039
但し、
 R12:間接励起時の反射率=Lb/La、R22:直接励起時の反射率=Lc/La、
 R13:間接励起時の反射率=Lb/La、R23:直接励起時の反射率=Lc/La。
 以上、好適な実施形態について説明したが、本発明は、上記実施形態に限られるものではなく、各請求項に記載した要旨を変更しない範囲で変形し、又は他のものに適用してもよい。
 例えば、上記実施形態では、間接励起時と直接励起時とを切り替える場合、光学系を駆動してその光学配置を変更させたが、これに代えて又は加えて、試料1(試料容器40)を移動させてもよい。また、上記実施形態では、積分器として積分球14を用いたが、その内部の光を空間的に積分する手段(光学コンポーネント)であればよく、例えば特開2009-103654号公報に開示された積分半球を用いてもよい。また、上記実施形態では、積分器に取り付けられる試料容器ホルダ24が収容部43を有する試料容器40を保持していたが、収容部43を有する試料ホルダを積分器に取り付けてもよい。
 また、上記実施形態では、次の式に示す面積比補正を行うことにより、光吸収率Aを求めてもよい。
           A=S/S×A´
           A=ρ×S/S×A´+(1-ρ)
但し、
 A´:補正前の光吸収率
 また、上記実施形態では、照射面積Sを被照射面積Sよりも大きくするために、光出射部7からの励起光L1を広げるレンズを設けてもよい。また、コリメータレンズ64、ミラー65,66及びアパーチャ67を入射光学系として備えているが、アパーチャ67のみ備えていてもよい。さらにまた、広がった励起光L1が光出射部7から出射されることから、入射光学系を光出射部7の出射端部を含んで(又はのみで)構成してもよい。
 また、上記実施形態では、上記間接励起時の測定(上記S1~上記S5)の前に上記直接励起時の測定(上記S6~上記S10)を実施してもよく、これらは順不同である。また、上記実施形態では、試料1の被照射面積Sよりも励起光L1の照射面積Sが大きくなるように構成すればよく、例えば、励起光L1の入射光学系、及び、試料容器40の収容部43の形状の少なくとも一方を調整することにより、被照射面積Sよりも照射面積Sを大きくできる。
 本発明の一側面によれば、光吸収率を精度よく求めることが可能となる。
 1…試料、6…光発生部(光源)、9…光検出部(光検出部)、14…積分球(積分器)、15…光入射開口(入射開口部)、16…光出射開口(出射開口部)、43…収容部、50…データ解析装置(解析手段)、64…コリメータレンズ(入射光学系)、65,66…ミラー(入射光学系)、67…アパーチャ(入射光学系)、100…分光測定装置、L1…励起光、L2…被測定光、S…試料の被照射面積、S…励起光の照射面積。

Claims (9)

  1.  測定対象となる試料に励起光を照射し、被測定光を検出する分光測定装置であって、
     前記励起光を発生させる光源と、
     前記励起光が入射される入射開口部と、被測定光を出射する出射開口部とを有する積分器と、
     前記積分器内に配置され、前記試料を収容する収容部と、
     前記試料に前記励起光を入射させる入射光学系と、
     前記出射開口部から出射された被測定光を検出する光検出器と、
     前記光検出器で検出された検出値に基づき前記試料の光吸収率を算出する解析手段と、を備え、
     前記試料への入射位置における前記励起光の照射面積は、前記試料の被照射面積よりも大きくされ、
     前記解析手段は、算出される前記光吸収率に対して、前記励起光の前記照射面積及び前記試料の前記被照射面積に関する面積比補正を行う、分光測定装置。
  2.  前記励起光は、前記試料を内包するように当該試料に照射される、請求項1記載の分光測定装置。
  3.  前記面積比補正は、前記励起光の照射面積を前記試料の被照射面積で除算した値を、前記光吸収率に対して積算することによって行われる、請求項2記載の分光測定装置。
  4.  前記解析手段は、下式(1)による前記面積比補正の関係式に基づいて、前記光吸収率を算出する、請求項3記載の分光測定装置。
    Figure JPOXMLDOC01-appb-M000001
    但し、
     A:光吸収率、ρ=積分器反射率、S:試料の被照射面積、S:励起光の照射面積、
     Abs12:間接励起時の光吸収率、Abs22:直接励起時の光吸収率。
  5.  前記入射光学系は、前記試料の前記被照射面積よりも前記励起光の照射面積が大きくなるように前記励起光を調整する、請求項1~4の何れか一項記載の分光測定装置。
  6.  測定対象となる試料に励起光を照射し、被測定光を検出する分光測定方法であって、
     積分器内に前記試料を配置する工程と、
     前記試料への入射位置における前記励起光の照射面積が前記試料の被照射面積よりも大きくなるように、前記積分器内へ前記励起光を照射して前記試料に入射させる工程と、
     前記積分器から出射された被測定光を光検出器で検出する工程と、
     前記光検出器で検出された検出値に基づいて、前記試料の光吸収率を算出する工程と、を含み、
     前記光吸収率を算出する工程では、前記光吸収率に対して、前記励起光の前記照射面積及び前記試料の前記被照射面積に関する面積比補正を行う、分光測定方法。
  7.  前記試料に前記励起光を入射させる工程では、前記励起光が前記試料を内包するように照射される、請求項6記載の分光測定方法。
  8.  前記面積比補正は、前記励起光の照射面積を前記試料の被照射面積で除算した値を、前記光吸収率に対して積算することによって行われる、請求項7記載の分光測定方法。
  9.  前記光吸収率を算出する工程では、下式(2)による前記面積比補正の関係式に基づいて、前記光吸収率を算出する、請求項7記載の分光測定方法。
    Figure JPOXMLDOC01-appb-M000002
    但し、
     A:光吸収率、ρ=積分器反射率、S:試料の被照射面積、S:励起光の照射面積、
     Abs12:間接励起時の光吸収率、Abs22:直接励起時の光吸収率。
PCT/JP2013/075032 2013-02-04 2013-09-17 分光測定装置及び分光測定方法 WO2014119037A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201380072223.2A CN104981687B (zh) 2013-02-04 2013-09-17 分光测定装置及分光测定方法
EP13873653.3A EP2952882B1 (en) 2013-02-04 2013-09-17 Spectrum measuring device and spectrum measuring method
US14/764,805 US9423339B2 (en) 2013-02-04 2013-09-17 Spectrum measuring device and spectrum measuring method
KR1020157017813A KR102052786B1 (ko) 2013-02-04 2013-09-17 분광 측정 장치 및 분광 측정 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-019406 2013-02-04
JP2013019406A JP5944843B2 (ja) 2013-02-04 2013-02-04 分光測定装置及び分光測定方法

Publications (1)

Publication Number Publication Date
WO2014119037A1 true WO2014119037A1 (ja) 2014-08-07

Family

ID=51261775

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/075032 WO2014119037A1 (ja) 2013-02-04 2013-09-17 分光測定装置及び分光測定方法

Country Status (7)

Country Link
US (1) US9423339B2 (ja)
EP (1) EP2952882B1 (ja)
JP (1) JP5944843B2 (ja)
KR (1) KR102052786B1 (ja)
CN (1) CN104981687B (ja)
TW (1) TWI591323B (ja)
WO (1) WO2014119037A1 (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5529305B1 (ja) * 2013-02-04 2014-06-25 浜松ホトニクス株式会社 分光測定装置、及び分光測定方法
JP6279399B2 (ja) * 2014-05-23 2018-02-14 浜松ホトニクス株式会社 光計測装置及び光計測方法
ES2918951T3 (es) * 2014-12-02 2022-07-21 Hamamatsu Photonics Kk Dispositivo de espectrometría y método de espectrometría
TWI560432B (en) * 2015-12-31 2016-12-01 Mpi Corp Integrating sphere cover and integrating sphere module
JP6248244B1 (ja) * 2016-08-09 2017-12-20 ナルックス株式会社 位置測定部を備えた部品
US10983045B2 (en) 2016-10-11 2021-04-20 Victoria Link Limited Spectrometer apparatus for measuring spectra of a liquid sample using an integrating cavity
JP6943618B2 (ja) * 2017-05-17 2021-10-06 浜松ホトニクス株式会社 分光測定装置及び分光測定方法
CN108613932B (zh) * 2018-07-18 2023-08-22 无锡迅杰光远科技有限公司 一种新型侧照式混样装置
JP6492220B1 (ja) * 2018-09-26 2019-03-27 大塚電子株式会社 測定システムおよび測定方法
US11965828B2 (en) * 2020-08-11 2024-04-23 Chapman University Variable light diffuser for plant leaf gas exchange measurements
CN112087527B (zh) * 2020-09-22 2024-01-09 中国科学技术大学 一种远程自动化相机测试平台和方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4583860A (en) * 1983-11-30 1986-04-22 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Optical multiple sample vacuum integrating sphere
JPH09292281A (ja) 1996-02-29 1997-11-11 Matsushita Electric Ind Co Ltd 蛍光体の量子効率測定方法および測定装置
JP2003215041A (ja) 2002-01-24 2003-07-30 National Institute Of Advanced Industrial & Technology 固体試料の絶対蛍光量子効率測定方法及び装置
JP2004309323A (ja) * 2003-04-08 2004-11-04 Oputeru:Kk 発光素子の絶対量子効率測定方法及び装置
JP2007086031A (ja) * 2005-09-26 2007-04-05 Hamamatsu Photonics Kk 光検出装置、及び試料ホルダ用治具
JP2009103654A (ja) 2007-10-25 2009-05-14 Otsuka Denshi Co Ltd 光束計および測定方法
WO2012073567A1 (ja) * 2010-11-29 2012-06-07 浜松ホトニクス株式会社 量子収率測定装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101627288B (zh) * 2007-03-01 2012-06-06 浜松光子学株式会社 光检测装置以及样品架用夹具
WO2009050536A1 (en) 2007-10-15 2009-04-23 Ecole Polytechnique Federale De Lausanne (Epfl) Integrating sphere for the optical analysis of luminescent materials
JP5148387B2 (ja) * 2008-06-30 2013-02-20 浜松ホトニクス株式会社 分光測定装置、分光測定方法、及び分光測定プログラム
JP4835730B2 (ja) * 2009-08-06 2011-12-14 横河電機株式会社 蛍光量または吸光量の測定方法および測定装置
CN102507491B (zh) * 2011-10-18 2013-05-29 江苏中兴药业有限公司 一种水飞蓟籽品质的检测装置和检测方法
JP5529305B1 (ja) * 2013-02-04 2014-06-25 浜松ホトニクス株式会社 分光測定装置、及び分光測定方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4583860A (en) * 1983-11-30 1986-04-22 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Optical multiple sample vacuum integrating sphere
JPH09292281A (ja) 1996-02-29 1997-11-11 Matsushita Electric Ind Co Ltd 蛍光体の量子効率測定方法および測定装置
JP2003215041A (ja) 2002-01-24 2003-07-30 National Institute Of Advanced Industrial & Technology 固体試料の絶対蛍光量子効率測定方法及び装置
JP2004309323A (ja) * 2003-04-08 2004-11-04 Oputeru:Kk 発光素子の絶対量子効率測定方法及び装置
JP2007086031A (ja) * 2005-09-26 2007-04-05 Hamamatsu Photonics Kk 光検出装置、及び試料ホルダ用治具
JP2009103654A (ja) 2007-10-25 2009-05-14 Otsuka Denshi Co Ltd 光束計および測定方法
WO2012073567A1 (ja) * 2010-11-29 2012-06-07 浜松ホトニクス株式会社 量子収率測定装置

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"Theoretic study on absolute fluorescence quantum efficiency measurement method using integrating sphere", THE 71ST JSAP MEETING, 12 September 2010 (2010-09-12)
JOHN C. DE MELLO; H. FELIX WITTMANN; RICHARD H. FRIEND, AN IMPROVED EXPERIMENTAL DETERMINATION OF EXTERNAL PHOTOLUMINESCENCE QUANTUM EFFICIENCY ADVANCED MATERIALS, vol. 9, no. 3, March 1997 (1997-03-01), pages 230 - 232
N.C. GREENHAM; I.D.W. SAMUEL; G.R. HAYES; R.T. PHILLIPS; Y.A.R.R. KESSENER; S.C. MORATTI; A.B. HOLMES; R.H. FRIEND, MEASUREMENT OF ABSOLUTE PHOTOLUMINESCENCE QUANTUM EFFICIENCIES IN CONJUGATED POLYMERS CHEMICAL PHYSICS LETTERS, vol. 241, no. 1-2, 14 July 1995 (1995-07-14), pages 89 - 96

Also Published As

Publication number Publication date
EP2952882B1 (en) 2023-08-23
EP2952882A4 (en) 2016-11-30
KR102052786B1 (ko) 2019-12-05
CN104981687B (zh) 2017-08-11
KR20150099767A (ko) 2015-09-01
TW201432245A (zh) 2014-08-16
EP2952882A1 (en) 2015-12-09
JP5944843B2 (ja) 2016-07-05
JP2014149266A (ja) 2014-08-21
CN104981687A (zh) 2015-10-14
TWI591323B (zh) 2017-07-11
US20150377770A1 (en) 2015-12-31
US9423339B2 (en) 2016-08-23

Similar Documents

Publication Publication Date Title
JP5944843B2 (ja) 分光測定装置及び分光測定方法
JP6279399B2 (ja) 光計測装置及び光計測方法
JP5529305B1 (ja) 分光測定装置、及び分光測定方法
JP5491368B2 (ja) 量子収率測定装置及び量子収率測定方法
KR102343121B1 (ko) 분광 측정 장치 및 분광 측정 방법
JP5491369B2 (ja) 量子収率測定装置
JP2005207982A5 (ja)
KR102265425B1 (ko) 분광 측정 장치 및 분광 측정 방법
JP6763995B2 (ja) 分光測定装置および分光測定方法
JP2005024333A (ja) 分光光度計を用いた発光スペクトル測定方法及び装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13873653

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20157017813

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14764805

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013873653

Country of ref document: EP