WO2014118818A1 - 電力変換装置 - Google Patents

電力変換装置 Download PDF

Info

Publication number
WO2014118818A1
WO2014118818A1 PCT/JP2013/000474 JP2013000474W WO2014118818A1 WO 2014118818 A1 WO2014118818 A1 WO 2014118818A1 JP 2013000474 W JP2013000474 W JP 2013000474W WO 2014118818 A1 WO2014118818 A1 WO 2014118818A1
Authority
WO
WIPO (PCT)
Prior art keywords
control mode
voltage
power converter
control
switch
Prior art date
Application number
PCT/JP2013/000474
Other languages
English (en)
French (fr)
Inventor
坂野 正太郎
藤田 悟
Original Assignee
富士電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士電機株式会社 filed Critical 富士電機株式会社
Priority to CN201380035651.8A priority Critical patent/CN104428987B/zh
Priority to PCT/JP2013/000474 priority patent/WO2014118818A1/ja
Priority to JP2014559349A priority patent/JP5850182B2/ja
Priority to EP13873160.9A priority patent/EP2953251B1/en
Publication of WO2014118818A1 publication Critical patent/WO2014118818A1/ja
Priority to US14/591,535 priority patent/US9343995B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/05Capacitor coupled rectifiers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/12Arrangements for reducing harmonics from ac input or output
    • H02M1/126Arrangements for reducing harmonics from ac input or output using passive filters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/40Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc
    • H02M5/42Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters
    • H02M5/44Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac
    • H02M5/453Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M5/458Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
    • H02J9/062Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems for AC powered loads
    • H02J9/063Common neutral, e.g. AC input neutral line connected to AC output neutral line and DC middle point
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • H02M1/325Means for protecting converters other than automatic disconnection with means for allowing continuous operation despite a fault, i.e. fault tolerant converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/538Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a push-pull configuration
    • H02M7/53803Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a push-pull configuration with automatic control of output voltage or current

Definitions

  • the present invention relates to a power converter that can supply a stable voltage to a load even if the voltage of an AC power supply fluctuates.
  • FIG. 18 is a diagram for explaining one mode of the power conversion device disclosed in Patent Document 1.
  • This power converter once converts the voltage of the AC power source into a DC voltage, converts the converted DC voltage into a predetermined AC voltage again, and supplies it to the load.
  • 1 is a single-phase AC power supply
  • 2 is a capacitor
  • 3 is a DC power supply circuit
  • 4 is an inverter circuit
  • 5 is a filter circuit
  • 6 is a load.
  • the AC power supply 1 includes a power supply terminal R and a power supply terminal S as terminals for outputting an AC voltage.
  • the power terminal R is referred to as a terminal R
  • the power terminal S is referred to as a terminal S.
  • the capacitor 2 is connected between the terminals R of the AC power supply 1.
  • the DC power supply circuit 3 includes capacitors Cp and Cn, switching elements Qp and Qn, and a reactor Lr.
  • Capacitors Cp and Cn are connected in series.
  • the connection points of the capacitors Cp and Cn are connected to the terminal S of the AC power supply 1 and to the neutral point terminal O of the DC power supply circuit 3.
  • the switching elements Qp and Qn are connected in series.
  • the series circuit of the switching elements Qp and Qn is connected in parallel to the series circuit of the capacitors Cp and Cn.
  • Reactor Lr is connected between terminal R of AC power supply 1 and the connection point of switching elements Qp, Qn.
  • the capacitors Cp and Cn are charged to an equal voltage using the voltage of the AC power supply 1 when the switching elements Qp and Qn are turned on and off.
  • the charged voltages of the capacitors Cp and Cn are higher than the amplitude of the AC voltage output from the AC power supply 1.
  • the DC power supply circuit 3 outputs the positive voltage of the capacitor Cp from the positive terminal P and the negative voltage of the capacitor Cn from the negative terminal N with the neutral point terminal O as a reference.
  • the inverter circuit 4 includes a series circuit of switching elements Q1 and Q2 connected in series and bidirectional switches BS1 and BS2. Diodes are connected in antiparallel to switching elements Q1 and Q2, respectively.
  • a connection point of the switching elements Q1 and Q2 is connected to one output terminal U of the inverter circuit 4.
  • the other output terminal V of the inverter circuit 4 is connected to the neutral point terminal O.
  • a series circuit of the switching elements Q 1 and Q 2 is connected between the positive terminal P and the negative terminal N of the DC power supply circuit 3.
  • the bidirectional switch BS1 is connected between the terminal R and the output terminal U of the AC power supply 1.
  • the bidirectional switch BS2 is connected between the neutral point terminal O and the output terminal U.
  • Inverter circuit 4 selectively turns on / off switching elements Q1, Q2 and bidirectional switches BS1, BS2. With this operation, a predetermined AC voltage is output between the output terminal U and the output terminal V.
  • between output terminal U and output terminal V is referred to as “between output terminals U and V”.
  • the AC voltage output between the output terminals U and V is a pulse train voltage subjected to pulse width modulation.
  • the filter circuit 5 is configured by connecting a reactor Lf1 and a capacitor Cf1 in series.
  • the filter circuit 5 is connected between the output terminals U and V of the inverter circuit 4.
  • the load 6 is connected to both ends of the capacitor Cf1.
  • the filter circuit 5 removes a high frequency component from the alternating voltage of the pulse train output from the inverter circuit 4. Therefore, a sinusoidal AC voltage is supplied to the load 6.
  • Patent Document 1 discloses a technique in which the power conversion device outputs a predetermined voltage lower than the voltage of the AC power supply 1.
  • This power conversion device alternately turns on and off the bidirectional switches BS1 and BS2, and outputs a predetermined voltage lower than the voltage of the AC power supply 1 between the output terminals U and V.
  • the power converter can also output a predetermined voltage that is higher than the voltage of the AC power supply 1.
  • This power converter selectively turns on and off the switching elements Q1, Q2 and the bidirectional switch BS1, and outputs a predetermined voltage higher than the voltage of the AC power supply 1 between the output terminals U-V.
  • the power conversion device shown in FIG. 18 turns on and off two elements alternately with a rest period. This pause period is provided to prevent both elements from turning on simultaneously. However, if there is a rest period when the combination of elements that are alternately turned on and off is switched, the path of the current flowing through reactor Lf1 is lost. When the path of the current flowing through the reactor Lf1 is lost, there arises a problem that a surge voltage is generated at both ends of the reactor Lf1. This surge voltage causes breakdown of elements included in the inverter circuit 4 and damage to the load.
  • an object of the present invention is to secure a path for a current flowing in an inductance component existing between output terminals of a power converter even when the control mode of the inverter circuit is switched. And it is suppressing the surge voltage which generate
  • one aspect of the present invention provides first to fourth input terminals, first and second output terminals, first to fourth input terminals, and a first output. It is a power converter device provided with the power converter which has the 1st to 4th arm connected between terminals.
  • the power converter of this power converter operates in a control mode in which two arms selected from the first to fourth arms are alternately turned on and off. And this power converter has two or more control modes by the combination of a different arm. Furthermore, when the power converter switches its operation from one control mode to another control mode, at the timing when at least one common arm continues in a bidirectionally conductive state before and after the switching, the power converter Switch the mode.
  • the power conversion device switches the control mode at a timing when at least one common arm is in a bidirectionally conductive state before and after the switching.
  • this power converter device can ensure the path
  • FIG. 1 is a diagram for explaining a configuration example of a power conversion device according to the present invention.
  • 1 is an AC power supply
  • 2 is a capacitor
  • 30 is a DC power supply circuit
  • 40 is an inverter circuit
  • 5 is a filter circuit
  • 6 is a load
  • 100 is a control circuit.
  • the AC power supply 1 is a single-phase AC power supply having a power supply terminal R and a power supply terminal S.
  • the power supply terminal R is referred to as a terminal R.
  • the power supply terminal S is referred to as a terminal S.
  • the positive terminal P, negative terminal N, and neutral point terminal O of the DC power supply circuit 30 shown in FIG. 1 are respectively the positive terminal P, negative terminal N, and neutral point of the DC power supply circuit 3 shown in FIG. Corresponds to terminal O.
  • the DC power supply circuit 30 is a power supply circuit configured by connecting a positive DC power supply Psp (first DC power supply) and a negative DC power supply Psn (second DC power supply) in series.
  • the magnitudes of the positive voltage Vp of the positive DC power supply Psp and the negative voltage Vn of the negative DC power supply Psn are set to be larger than the amplitude of the AC voltage output from the AC power supply 1.
  • the DC power supply circuit 30 can be realized by the DC power supply circuit 3 shown in FIG. 18 or a circuit having an equivalent function.
  • the neutral point terminal O of the DC power supply circuit 30 is a terminal that outputs an intermediate potential (zero voltage Vz) of the DC power supply circuit 30.
  • a terminal S of the AC power supply 1 is connected to a neutral point terminal O of the DC power supply circuit 30. That is, the neutral point terminal O is a reference potential point for the AC power supply 1 and the DC power supply circuit 30.
  • the voltage of each terminal is represented by a potential with reference to the potential of the neutral point terminal O. Therefore, the positive terminal P of the DC power supply circuit 30 outputs the positive voltage Vp of the DC power supply Psp.
  • the negative terminal N of the DC power supply circuit 30 outputs the negative voltage Vn of the DC power supply Psn.
  • the terminal R of the AC power supply 1 outputs the voltage Vr of the AC power supply 1.
  • the inverter circuit 40 outputs a single-phase AC voltage Vuv between the output terminals U-V using four levels of voltages, that is, a positive voltage Vp, a negative voltage Vn, a zero voltage Vz, and a voltage Vr of the AC power supply 1.
  • the AC voltage output between the output terminals U and V is a pulsed voltage that is pulse width modulated based on the voltage command V * .
  • the configuration and operation of the inverter circuit 40 are as follows.
  • the inverter circuit 40 includes a switching element series circuit, a first bidirectional switch BS1, and a second bidirectional switch BS2.
  • the switching element series circuit is a circuit in which switching elements Q1 and Q2 are connected in series.
  • the switching element Q1 forms a first arm with a diode connected in antiparallel.
  • the switching element Q2 forms a second arm with a diode connected in antiparallel.
  • the first bidirectional switch BS1 is a circuit in which switch elements S1 and S2 are connected in antiparallel, and constitutes a third arm.
  • the second bidirectional switch BS2 is a circuit in which switch elements S3 and S4 are connected in antiparallel, and constitutes a fourth arm.
  • the switching elements Q1, Q2 and the first to fourth switching elements S1 to S4 perform an on / off operation according to the control signals G1, G2 and Gs1 to Gs4, respectively. Therefore, switching elements Q1 and Q2 can perform a unidirectional ON / OFF operation based on the respective control signals.
  • the switching elements Q1 and Q2 can be conducted in the direction from the anode to the cathode of the diode regardless of the state of each control signal. That is, the first and second arms can control conduction in one direction, but can always conduct in the other direction.
  • the switch elements S1 and S2 are turned on / off according to the respective control signals. Further, the switch elements S3 and S4 are turned on / off according to the respective control signals.
  • the first bidirectional switch BS1 (third arm) can conduct in one direction or both directions.
  • the second bidirectional switch BS2 (fourth arm) can conduct in one direction or both directions.
  • the switching element series circuit is connected between the positive terminal P and the negative terminal N of the DC power supply circuit 30.
  • a series connection point of the switching elements Q1, Q2 is connected to the output terminal U (first output terminal).
  • the output terminal V (second output terminal) is connected to the neutral point terminal O.
  • the first bidirectional switch is connected between the output terminal U and the terminal R.
  • the collector terminal side of the switch element S1 of the first bidirectional switch is connected to the terminal R.
  • the emitter terminal side of the switch element S1 is connected to the output terminal U.
  • the second bidirectional switch is connected between the output terminal U and the neutral point terminal O.
  • the collector terminal side of the switch element S4 of the second bidirectional switch is connected to the output terminal U.
  • the emitter terminal side of the switch element S4 is connected to the neutral point terminal O.
  • the output terminals U and V are connected to the load 6 through the filter circuit 5.
  • the filter circuit 5 is constituted by a series circuit of a reactor Lf1 and a capacitor Cf1.
  • the load 6 is connected to both ends of the capacitor Cf1.
  • the switching elements Q1 and Q2 are IGBTs (Insulated) in which diodes are connected in antiparallel. Gate Bipolar Transistor).
  • the switching elements Q1, Q2 are not limited to such a configuration.
  • the switching elements Q1 and Q2 may be configured using other semiconductor elements that can be turned on and off at a sufficiently high frequency with respect to the frequency of the AC power supply 1, such as MOSFET (Metal Oxide Semiconductor Field Effect Transistor).
  • the first and second bidirectional switches are circuits formed by connecting two reverse blocking IGBTs in antiparallel.
  • This bidirectional switch can energize a current in one direction by turning on one switch element, and can energize a current in the other direction by turning on the other switch element.
  • the bidirectional switch can energize current in both directions by turning on both switch elements.
  • the bidirectional switch may be a circuit having the configuration shown in FIGS. 2A to 2C or a circuit having equivalent functions and effects.
  • FIG. 2 (a) is a circuit in which two sets of circuits in which an IGBT having no reverse blocking withstand voltage and a diode are connected in series are connected in antiparallel.
  • FIG. 2 (a) is a circuit in which two sets of circuits in which an IGBT having no reverse blocking withstand voltage and a diode are connected in series are connected in antiparallel.
  • FIG. 2 (a) is a circuit in which two sets of circuits in which an IGBT having no reverse blocking withstand voltage and
  • FIG. 2B is a circuit formed by connecting two sets of circuits in which diodes are connected in antiparallel to an IGBT having no reverse blocking withstand voltage in reverse series.
  • FIG. 2C is a circuit configured by replacing the IGBT with a MOSFET in the circuit of FIG.
  • the positive voltage Vp of the DC power supply circuit 30 is output to the output terminal U when the switching element Q1 is turned on.
  • the positive voltage Vp of the DC power supply circuit 30 is also output to the output terminal U when a diode connected in antiparallel with the switching element Q1 is turned on.
  • the negative voltage Vn of the DC power supply circuit 30 is output to the output terminal U.
  • the negative voltage Vn of the DC power supply circuit 30 is also output to the output terminal U when a diode connected in antiparallel with the switching element Q2 is turned on.
  • the voltage Vr of the AC power supply 1 is output to the output terminal U when one of the switch elements S1 and S2 is turned on.
  • the zero voltage Vz of the neutral point terminal O is output to the output terminal U when one of the switch elements S3 and S4 is turned on.
  • inverter circuit 40 Based on the control signal generated by control circuit 100, inverter circuit 40 selectively turns on / off switching elements Q1, Q2 and switching elements S1-S4. By this on / off operation, the inverter circuit 40 outputs the voltage Vu corresponding to the voltage command Vu * between the output terminals U and V.
  • the voltage command Vu * is a voltage command having the frequency and amplitude of the AC voltage to be supplied to the load 6.
  • the voltage Vu output from the inverter circuit 40 is pulse-width modulated and includes many harmonic components.
  • the AC voltage Vu output from the inverter circuit 40 has its harmonic components removed by the filter circuit 5 and is supplied to the load 6.
  • the control circuit 100 receives the voltage Vr of the AC power supply 1, the positive voltage Vp of the DC power supply circuit 30, and the negative voltage Vn of the DC power supply circuit 30.
  • the voltage Vr of the AC power supply 1 is detected by the voltage detector 301.
  • the positive voltage Vp is detected by the voltage detector 401.
  • the negative voltage Vn is detected by the voltage detector 402.
  • the control circuit 100 uses the input voltages, the zero voltage Vz, and the voltage command Vu * for each control cycle to control the switching elements Q1, Q2 and the switching elements S1 to S4 to turn on and off the control signals G1, G2.
  • the control signals Gs1 to Gs4 are generated.
  • the control period corresponds to the period of a carrier signal Sc described later. It is desirable that the on / off frequency (switching frequency) of each element determined by this control cycle is sufficiently higher than the frequency of the voltage command Vu * . For example, when the frequency of the voltage command Vu * is a commercial frequency, the switching frequency is preferably 1 kHz or more.
  • the control cycle does not necessarily have to be synchronized with the voltage command Vu * , and may be asynchronous.
  • FIG. 3 is a diagram for explaining an operation in which the control circuit 100 generates each control signal.
  • the control circuit 100 mainly includes a voltage command generation circuit 111, a control mode setting circuit 112, a modulation signal generation circuit 113, a comparison circuit 114, a pulse distribution circuit 115, a carrier signal generation circuit, and a logic inversion circuit 117.
  • Each circuit constituting the control circuit 100 performs a calculation operation for each control cycle to be described later.
  • the voltage Vr of the AC power supply 1 is input to the voltage command generation circuit 111.
  • the voltage command generation circuit 111 considers that the AC power supply 1 is healthy.
  • the voltage command generation circuit 111 generates a voltage command Vu * based on the voltage Vr of the AC power supply 1.
  • the voltage command Vu * is a voltage command having an amplitude equal to the rated input voltage of the load 6 in synchronization with the voltage Vr of the AC power supply 1.
  • the voltage command generation circuit 111 considers that the AC power supply 1 is out of power.
  • the voltage command generation circuit 111 generates a voltage command Vu * having a predetermined frequency and an amplitude equal to the rated input voltage of the load 6.
  • the voltage command Vu * may be a voltage command that is asynchronous with the voltage Vr of the AC power supply 1.
  • the voltage command Vu * can also be a voltage command having an amplitude different from the rated input voltage of the load 6.
  • the voltage command Vu * generated by the voltage command generation circuit 111 is input to the control mode setting circuit 112 together with the voltage Vr of the AC power supply 1.
  • Control mode setting circuit 112 determines the operation mode of inverter circuit 40 using voltage command Vu * and voltage Vr of AC power supply 1.
  • the operation modes of the inverter circuit 40 include first to fourth operation modes.
  • the first operation mode is a mode for outputting a predetermined voltage higher than the voltage Vr of the AC power supply 1.
  • the second operation mode is a mode for outputting a predetermined voltage lower than the voltage Vr of the AC power supply 1.
  • the third operation mode is a mode for outputting the voltage Vr of the AC power supply 1.
  • the fourth operation mode is a mode for outputting a predetermined voltage using the voltage of the DC power supply circuit 30.
  • the control mode setting circuit 112 outputs a control mode signal ⁇ for instructing an operation in the corresponding control cycle.
  • the control mode signal ⁇ of the inverter circuit 40 includes a first control mode to a seventh control mode.
  • FIG. 4 shows control mode setting conditions performed by the control mode setting circuit 112. When the relationship between the voltage command Vu * and the voltage Vr of the AC power supply 1 in the control cycle is Vu * ⁇ Vz and Vr ⁇ Vz, the control mode of the control cycle is set to the first control mode CM1.
  • the control mode of the control cycle is the second control mode CM2. Is set.
  • the control mode of the control cycle is the third control mode CM3. Is set.
  • the control mode of the control cycle is the fourth control mode CM4. Is set.
  • the control mode of the control cycle is the fifth control mode CM5. Is set.
  • the control mode of the control cycle is set to the sixth control mode CM6.
  • the control mode of the control cycle is set to the seventh control mode CM7.
  • the modulation signal generation circuit 113 receives the voltage command Vu * , the voltage Vr of the AC power supply 1, the positive voltage Vp, the negative voltage Vn, and the control mode signal ⁇ , and generates a modulation signal ⁇ .
  • the modulation signal ⁇ in each control mode is calculated using the following equations (1) to (7) (FIG. 4).
  • the carrier signal generation circuit 116 generates a carrier signal Sc.
  • the carrier signal Sc has a triangular wave shape.
  • the control cycle in which the calculation of the control circuit 100 is performed includes a period from the top to the bottom of the carrier signal Sc and a period from the bottom to the top of the carrier signal Sc.
  • the comparison circuit 114 compares the modulation signal ⁇ and the carrier signal Sc to generate a pulse width modulated signal Spwm.
  • the pulse width-modulated signal Spwm is referred to as a PWM signal Spwm.
  • the pulse distribution circuit 115 selects the first element and the second element from the switching elements Q1, Q2 and the switch elements S1 to S4 according to the control mode signal ⁇ .
  • the pulse distribution circuit 115 generates a control signal Hon for the first element based on the PWM signal Spwm.
  • the control signal Hon changes from Low to High after a rest period Td after the PWM signal Spwm changes from Low to High.
  • the control signal Hon changes from High to Low at the same time as the PWM signal Spwm changes from High to Low.
  • the pulse distribution circuit 115 generates the control signal Lon for the second element based on the PWM signal Spwm.
  • the control signal Lon changes from High to Low at the same time as the PWM signal Spwm changes from Low to High.
  • the control signal Lon changes from Low to High after the suspension period Td has elapsed since the PWM signal Spwm changed from High to Low. That is, the control signal Hon and the control signal Lon are signals that alternately become High and Low with a pause period in between.
  • the control signal Hon When the control signal Hon is High, the first element is turned on (conductive). When the control signal Hon is Low, the first element is turned off (non-conducting). In each control cycle, the period during which the first element is turned on is a period based on the modulation signal ⁇ . Further, when the control signal Lon is High, the second element is turned on (conductive). When the control signal Lon is Low, the second element is turned off (non-conducting).
  • the pulse distribution circuit 115 also sets an on element or an off element for the element selected as the first and second elements according to the control mode signal ⁇ .
  • the pulse distribution circuit 115 sets the control signal for the ON element to High.
  • the pulse distribution circuit 115 sets the control signal for the off element to Low.
  • the ON element is always in the ON (conducting) state according to the control signal.
  • the off element is always in an off (non-conducting) state in accordance with the control signal.
  • FIG. 4 shows the operation of the switching elements Q1 and Q2 and the switching elements S1 to S4 in each control mode.
  • the operation of each element is indicated by control signals G1, G2 and Gs1 to Gs4 for controlling each element.
  • the element whose control signal is described as Hon is the element selected as the first element in the control cycle.
  • An element whose control signal is written as Lon is an element selected as the second element in the control cycle.
  • An element whose control signal is written as H is an element that is set as an ON element in the control cycle.
  • An element whose control signal is written as L is an element set as an off element in the control cycle.
  • the switching element Q1 is selected as the first element.
  • the switch element S4 is selected as the second element.
  • the switch element S3 is set as an ON element
  • the switching element Q2 and the switch elements S1 and S2 are set as OFF elements.
  • the switching element Q1 and the switching element S4 are alternately turned on and off with a pause period Td.
  • the period during which the switching element Q1 is turned on is a period corresponding to the modulation signal ⁇ calculated by the above equation (1).
  • the switching element Q1 is selected as the first element.
  • the switch element S2 is selected as the second element.
  • the switch element S1 is set as an ON element
  • the switching element Q2 and the switch elements S3 and S4 are set as OFF elements.
  • the switching element Q1 and the switching element S2 are alternately turned on and off with a pause period Td interposed therebetween.
  • the period during which the switching element Q1 is turned on is a period corresponding to the modulation signal ⁇ calculated by the above equation (2).
  • the inverter circuit 40 can output an AC voltage corresponding to the voltage command Vu * between the output terminals U-V using the positive voltage Vp and the voltage Vr of the AC power supply 1.
  • the switch element S1 is selected as the first element. Also, the switch element S4 is selected as the second element. Then, the switch elements S2 and S3 are set as ON elements, and the switching elements Q1 and Q2 are set as OFF elements.
  • the switch elements S1 and S4 are alternately turned on and off with a pause period Td. The period during which the switch element S1 is turned on is a period corresponding to the modulation signal ⁇ calculated by the above equation (3).
  • the inverter circuit 40 can output an AC voltage corresponding to the voltage command Vu * between the output terminals U-V using the voltage Vr of the AC power supply 1.
  • the switch element S2 is selected as the first element. Further, the switch element S3 is selected as the second element. Then, the switch elements S1 and S4 are set as ON elements, and the switching elements Q1 and Q2 are set as OFF elements.
  • the switch elements S2 and S3 are alternately turned on and off with a pause period Td. The period during which the switch element S2 is turned on is a period corresponding to the modulation signal ⁇ calculated by the above equation (4).
  • the inverter circuit 40 can output an AC voltage corresponding to the voltage command Vu * between the output terminals U-V using the voltage Vr of the AC power supply 1.
  • the switching element Q2 is selected as the first element.
  • the switch element S1 is selected as the second element.
  • the switch element S2 is set as an ON element, and the switching element Q1 and the switch elements S3 and S4 are set as OFF elements.
  • the switching element Q2 and the switching element S1 are alternately turned on and off with a pause period Td interposed therebetween.
  • the period during which the switching element Q2 is turned on is a period corresponding to the modulation signal ⁇ calculated by the above equation (5).
  • the inverter circuit 40 can output the AC voltage corresponding to the voltage command Vu * between the output terminals U-V using the negative voltage Vn and the voltage Vr of the AC power supply 1.
  • the switching element Q2 is selected as the first element. Further, the switch element S3 is selected as the second element. Then, the switch element S4 is set as an ON element, and the switching element Q1 and the switch elements S1 and S2 are set as OFF elements.
  • the switching element Q2 and the switching element S3 are alternately turned on and off with a pause period Td.
  • the period during which the switching element Q2 is turned on is a period corresponding to the modulation signal ⁇ calculated by the above equation (6).
  • the switch elements S1 and S2 are set to ON elements. Further, the switching elements Q1, Q2 and the switch elements S3, S4 are set as off elements. By setting the ON element and the OFF element in this way, the inverter circuit 40 can output the voltage Vr of the AC power supply 1 between the output terminals U and V.
  • the inverter circuit 40 operates in the second control mode CM2 and the fifth control mode CM5 when in the first operation mode. That is, the inverter circuit 40 operates in the second control mode CM2 when the voltage command Vu * is equal to or higher than the zero voltage Vz, and operates in the fifth control mode CM5 when the voltage command Vu * is less than the zero voltage Vz.
  • the inverter circuit 40 operates in the third control mode CM3 and the fourth control mode CM4 in the second operation mode. That is, the inverter circuit 40 operates in the third control mode CM3 when the voltage command Vu * is equal to or higher than the zero voltage Vz, and operates in the fourth control mode CM4 when the voltage command Vu * is less than the zero voltage Vz.
  • the inverter circuit 40 operates in the seventh control mode CM7 when in the third operation mode.
  • the inverter circuit 40 operates in the first control mode CM1 and the sixth control mode CM6 in the fourth operation mode. That is, the inverter circuit 40 operates in the first control mode CM1 when the voltage command Vu * is equal to or higher than the zero voltage Vz, and operates in the sixth control mode CM6 when the voltage command Vu * is less than the zero voltage Vz.
  • the inverter circuit 40 switches the control mode within each operation mode. Further, when the inverter circuit 40 switches the operation mode, the control mode is switched. The control mode is switched at a timing when there is a common arm capable of conducting in both directions.
  • the inverter circuit 40 switches its operation from the second control mode CM2 to the fifth control mode CM5 at the timing t1. Further, the inverter circuit 40 switches its operation from the fifth control mode CM5 to the second control mode CM2 at the timing t2. Timings t1 and t2 are timings when the carrier signal Sc is at the apex.
  • the switch element S1 In the second control mode CM2, the switch element S1 is in the on state, and the switching element Q2 and the switch elements S3 and S4 are in the off state. Then, the switching element Q1 performs an on / off operation according to the control signal Hon. Further, the switch element S2 performs an on / off operation in accordance with the control signal Lon.
  • the switch element S2 In the fifth control mode CM5, the switch element S2 is in the on state, and the switching element Q1 and the switch elements S3 and S4 are in the off state. Then, the switching element Q2 performs an on / off operation according to the control signal Hon. Further, the switch element S1 performs an on / off operation in accordance with the control signal Lon.
  • the switch elements S1 and S2 are kept on. Therefore, even when the operation of the inverter circuit 40 is switched from the second control mode CM2 to the fifth control mode CM5, the current flowing between the inverter circuit 40 and the load 6 causes either of the switch elements S1 and S2 to flow. Continue to flow. Further, before and after the timing t2, the switch elements S1 and S2 continue to be in the on state. Therefore, even when the operation of the inverter circuit 40 is switched from the fifth control mode CM5 to the second control mode CM2, the current flowing between the inverter circuit 40 and the load 6 causes either of the switch elements S1 and S2. Continue to flow.
  • the inverter circuit 40 performs control mode switching between the second control mode CM2 and the fifth control mode CM5 at the top of the carrier signal Sc in the first operation mode.
  • the inverter circuit 40 can ensure a path for the current flowing through the reactor Lf1. Therefore, the inverter circuit 40 can suppress the surge voltage generated at both ends of the reactor Lf1 in the control mode switching in the first operation mode.
  • the inverter circuit 40 switches its operation from the third control mode CM3 to the fourth control mode CM4 at the timing t1. Further, the inverter circuit 40 switches its operation from the fourth control mode CM4 to the third control mode CM3 at the timing t2. Timings t1 and t2 are timings when the carrier signal Sc is at the apex.
  • the switch elements S2 and S3 are in the on state, and the switching elements Q1 and Q2 are in the off state. Then, the switch element S1 performs an on / off operation according to the control signal Hon. Further, the switch element Q4 performs an on / off operation in accordance with the control signal Lon.
  • the switch elements S1, S4 are in the on state, and the switching elements Q1, Q2 are in the off state. Then, the switch element S2 performs an on / off operation in accordance with the control signal Hon. Further, the switch element S3 performs an on / off operation in accordance with the control signal Lon.
  • the switch elements S3 and S4 are kept on. Therefore, even if the operation of the inverter circuit 40 is switched from the third control mode CM3 to the fourth control mode CM4, the current flowing between the inverter circuit 40 and the load 6 causes either of the switch elements S3 and S4 to flow. Continue to flow. Further, before and after the timing t2, the switch elements S3 and S4 continue to be in the on state. Therefore, even when the operation of the inverter circuit 40 is switched from the fourth control mode CM4 to the third control mode CM3, the current flowing between the inverter circuit 40 and the load 6 causes either of the switch elements S3 and S4 to flow. Continue to flow.
  • the inverter circuit 40 performs control mode switching between the third control mode CM3 and the fourth control mode CM4 at the top of the carrier signal Sc in the second operation mode.
  • the inverter circuit 40 can ensure a path for the current flowing through the reactor Lf1. Therefore, the inverter circuit 40 can suppress the surge voltage generated at both ends of the reactor Lf1 in the control mode switching in the second operation mode.
  • the inverter circuit 40 switches its operation from the first control mode CM1 to the sixth control mode CM6 at the timing t1. Further, the inverter circuit 40 switches its operation from the sixth control mode CM6 to the first control mode CM1 at the timing t2. Timings t1 and t2 are timings when the carrier signal Sc is at the apex.
  • the switch element S3 In the first control mode CM1, the switch element S3 is in the on state, and the switching element Q2 and the switch elements S1 and S2 are in the off state. Then, the switching element Q1 performs an on / off operation according to the control signal Hon. Further, the switch element Q4 performs an on / off operation in accordance with the control signal Lon.
  • the switch element S4 In the sixth control mode CM6, the switch element S4 is in the on state, and the switching element Q1 and the switch elements S1, S2 are in the off state. Then, the switching element Q2 performs an on / off operation according to the control signal Hon. Further, the switch element S3 performs an on / off operation in accordance with the control signal Lon.
  • the switch elements S3 and S4 are kept on. Therefore, even when the operation of the inverter circuit 40 is switched from the first control mode CM1 to the sixth control mode CM6, the current flowing between the inverter circuit 40 and the load 6 is caused to flow through any one of the switch elements S3 and S4. Continue to flow. Further, before and after the timing t2, the switch elements S3 and S4 continue to be in the on state. Therefore, even when the operation of the inverter circuit 40 is switched from the sixth control mode CM6 to the first control mode CM1, the current flowing between the inverter circuit 40 and the load 6 causes either of the switch elements S3 and S4 to flow. Continue to flow.
  • the inverter circuit 40 performs control mode switching between the first control mode CM1 and the sixth control mode CM6 at the top of the carrier signal Sc in the fourth operation mode.
  • the inverter circuit 40 can ensure a path for the current flowing through the reactor Lf1. Therefore, the inverter circuit 40 can suppress the surge voltage generated at both ends of the reactor Lf1 in the control mode switching in the fourth operation mode.
  • FIG. 8 shows the operation of the inverter circuit 40 when the voltage command Vu * is equal to or higher than the zero voltage Vz.
  • the inverter circuit 40 switches its operation from the second control mode CM2 to the seventh control mode CM7 at the timing t1. Further, the inverter circuit 40 switches its operation from the seventh control mode CM7 to the second control mode CM2 at the timing t2.
  • Timings t1 and t2 are timings when the carrier signal Sc is at the apex.
  • the switch element S1 In the second control mode CM2, the switch element S1 is in the on state, and the switching element Q2 and the switch elements S3 and S4 are in the off state. Then, the switching element Q1 performs an on / off operation according to the control signal Hon. Further, the switch element S2 performs an on / off operation in accordance with the control signal Lon.
  • the switch elements S1, S2 are in the on state, and the switching elements Q1, Q2 and the switch elements S3, S4 are in the off state.
  • the switch elements S1 and S2 are kept on. Therefore, even when the operation of the inverter circuit 40 is switched from the second control mode CM2 to the seventh control mode CM7, the current flowing between the inverter circuit 40 and the load 6 causes either of the switch elements S1 and S2. Continue to flow. Further, before and after the timing t2, the switch elements S1 and S2 continue to be in the on state. Therefore, even when the operation of the inverter circuit 40 is switched from the seventh control mode CM7 to the second control mode CM2, the current flowing between the inverter circuit 40 and the load 6 causes either of the switch elements S1 and S2. Continue to flow.
  • FIG. 9 shows the operation of the inverter circuit 40 when the voltage command Vu * is less than the zero voltage Vz.
  • the inverter circuit 40 switches its operation from the fifth control mode CM5 to the seventh control mode CM7 at the timing t1. Further, the inverter circuit 40 switches its operation from the seventh control mode CM7 to the fifth control mode CM5 at the timing t2.
  • Timings t1 and t2 are timings when the carrier signal Sc is at the apex.
  • the switch element S2 is in the on state, and the switching element Q1 and the switch elements S3 and S4 are in the off state. Then, the switching element Q2 performs an on / off operation according to the control signal Hon. Further, the switch element S1 performs an on / off operation in accordance with the control signal Lon.
  • the switch elements S1, S2 are in the on state, and the switching elements Q1, Q2 and the switch elements S3, S4 are in the off state.
  • the switch elements S1 and S2 are kept on. Therefore, even when the operation of the inverter circuit 40 is switched from the fifth control mode CM5 to the seventh control mode CM7, the current flowing between the inverter circuit 40 and the load 6 causes either of the switch elements S1 and S2. Continue to flow. Further, before and after the timing t2, the switch elements S1 and S2 continue to be in the on state. Therefore, even when the operation of the inverter circuit 40 is switched from the seventh control mode CM7 to the fifth control mode CM5, the current flowing between the inverter circuit 40 and the load 6 causes either of the switch elements S1 and S2. Continue to flow.
  • the inverter circuit 40 performs operation mode switching between the first operation mode and the third operation mode by switching the control mode performed at the top of the carrier signal Sc.
  • the inverter circuit 40 can ensure a path for the current flowing through the reactor Lf1. Therefore, the inverter circuit 40 can suppress a surge voltage generated at both ends of the reactor Lf1 in the operation mode switching between the first operation mode and the third operation mode.
  • FIG. 10 shows the operation of the inverter circuit 40 when the voltage command Vu * is equal to or higher than the zero voltage Vz.
  • the inverter circuit 40 switches its operation from the third control mode CM3 to the seventh control mode CM7 at the timing t1. Further, the inverter circuit 40 switches its operation from the seventh control mode CM7 to the third control mode CM3 at the timing t2.
  • Timings t1 and t2 are timings when the carrier signal Sc becomes the bottom point.
  • the switch elements S2 and S3 are in the on state, and the switching elements Q1 and Q2 are in the off state. Then, the switch element S4 performs an on / off operation according to the control signal Hon. Further, the switch element S1 performs an on / off operation in accordance with the control signal Lon.
  • the switch elements S1, S2 are in the on state, and the switching elements Q1, Q2 and the switch elements S3, S4 are in the off state.
  • the switch element S3 is turned off, but the switch elements S1 and S2 are in the on state. Then, before and after the timing t1, the switch elements S1 and S2 are kept on. Therefore, even if the operation of the inverter circuit 40 is switched from the third control mode CM3 to the seventh control mode CM7, the current flowing between the inverter circuit 40 and the load 6 causes either of the switch elements S1 and S2 to flow. Continue to flow. Further, before and after the timing t2, the switch elements S1 and S2 continue to be in the on state. Therefore, even if the operation of the inverter circuit 40 is switched from the seventh control mode CM7 to the third control mode CM3, the current flowing between the inverter circuit 40 and the load 6 causes either of the switch elements S1 and S2. Continue to flow.
  • FIG. 11 shows the operation of the inverter circuit 40 when the voltage command Vu * is less than the zero voltage Vz.
  • the inverter circuit 40 switches its operation from the fourth control mode CM4 to the seventh control mode CM7 at the timing t1. Further, the inverter circuit 40 switches its operation from the seventh control mode CM7 to the fourth control mode CM4 at the timing t2.
  • Timings t1 and t2 are timings when the carrier signal Sc becomes the bottom point.
  • the switch elements S1 and S4 are in the on state, and the switching elements Q1 and Q2 are in the off state.
  • the switch element S3 performs an on / off operation according to the control signal Hon. Further, the switch element S2 performs an on / off operation in accordance with the control signal Lon.
  • the switch elements S1, S2 are in the on state, and the switching elements Q1, Q2 and the switch elements S3, S4 are in the off state.
  • the switch element S4 is turned off, but the switch elements S1 and S2 are in the on state. Then, before and after the timing t1, the switch elements S1 and S2 continue to be on. Therefore, even when the operation of the inverter circuit 40 is switched from the fourth control mode CM4 to the seventh control mode CM7, the current flowing between the inverter circuit 40 and the load 6 causes either of the switch elements S1 and S2. Continue to flow. Further, before and after the timing t2, the switch elements S1 and S2 continue to be in the on state. Therefore, even when the operation of the inverter circuit 40 is switched from the seventh control mode CM7 to the fourth control mode CM4, the current flowing between the inverter circuit 40 and the load 6 causes either of the switch elements S1 and S2. Continue to flow.
  • the inverter circuit 40 performs the operation mode switching between the second operation mode and the third operation mode by the control mode switching performed at the bottom point of the carrier signal Sc.
  • the inverter circuit 40 can ensure a path for the current flowing through the reactor Lf1. Therefore, the inverter circuit 40 can suppress the surge voltage generated at both ends of the reactor Lf1 in the operation mode switching between the second operation mode and the third operation mode.
  • FIG. 12 shows the operation of the inverter circuit 40 when the voltage command Vu * is equal to or higher than the zero voltage Vz.
  • the inverter circuit 40 switches its operation from the first control mode CM1 to the second control mode CM2 at the timing t1. Further, the inverter circuit 40 switches its operation from the second control mode CM2 to the first control mode CM1 at the timing t2.
  • Timings t1 and t2 are timings when the carrier signal Sc becomes the bottom point.
  • the switch element S3 In the first control mode CM1, the switch element S3 is in the on state, and the switching element Q2 and the switch elements S1 and S2 are in the off state. Then, the switch element S4 performs an on / off operation according to the control signal Hon. Further, the switching element Q1 performs an on / off operation according to the control signal Lon.
  • the switch element S1 In the second control mode CM2, the switch element S1 is in the on state, and the switching element Q2 and the switch elements S3 and S4 are in the off state. Then, the switch element S2 performs an on / off operation in accordance with the control signal Hon. Further, the switching element Q1 performs an on / off operation according to the control signal Lon.
  • the switch element S3 is turned off at the timing t1.
  • the switching element Q1 continues to be on. Therefore, even when the operation of the inverter circuit 40 is switched from the first control mode CM1 to the second control mode CM2, the current flowing between the inverter circuit 40 and the load 6 is connected to the switching element Q1 or antiparallel. Continue to flow through one of the diodes. Further, before and after the timing t2, the switching element Q1 continues to be on. Therefore, even when the operation of the inverter circuit 40 is switched from the second control mode CM2 to the first control mode CM1, the current flowing between the inverter circuit 40 and the load 6 is connected to the switching element Q1 or antiparallel. Continue to flow through one of the diodes.
  • FIG. 13 shows the operation of the inverter circuit 40 when the voltage command Vu * is less than the zero voltage Vz.
  • the inverter circuit 40 switches its operation from the fifth control mode CM5 to the sixth control mode CM6 at the timing t1. Further, the inverter circuit 40 switches its operation from the sixth control mode CM6 to the fifth control mode CM5 at the timing t2.
  • Timings t1 and t2 are timings when the carrier signal Sc becomes the bottom point.
  • the switch element S2 is in the on state, and the switching element Q1 and the switch elements S3 and S4 are in the off state. Then, the switch element S1 performs an on / off operation according to the control signal Hon. Further, the switching element Q2 performs an on / off operation in accordance with the control signal Lon.
  • the switch element S4 is in the on state, and the switching element Q1 and the switch elements S1, S2 are in the off state.
  • the switch element S3 performs an on / off operation according to the control signal Hon. Further, the switching element Q2 performs an on / off operation in accordance with the control signal Lon.
  • the switch element S2 is turned off.
  • the switching element Q2 continues to be on. Therefore, even when the operation of the inverter circuit 40 is switched from the fifth control mode CM5 to the sixth control mode CM6, the current flowing between the inverter circuit 40 and the load 6 is connected to the switching element Q2 or antiparallel. Continue to flow through one of the diodes. Further, before and after the timing t2, the switching element Q2 continues to be on. Therefore, even when the operation of the inverter circuit 40 is switched from the sixth control mode CM6 to the fifth control mode CM5, the current flowing between the inverter circuit 40 and the load 6 is connected to the switching element Q2 or antiparallel. Continue to flow through one of the diodes.
  • the inverter circuit 40 performs operation mode switching between the first operation mode and the fourth operation mode by switching the control mode performed at the bottom point of the carrier signal Sc.
  • the inverter circuit 40 can ensure a path for the current flowing through the reactor Lf1. Therefore, the inverter circuit 40 can suppress the surge voltage generated at both ends of the reactor Lf1 in the operation mode switching between the first operation mode and the fourth operation mode.
  • FIG. 14 shows the operation of the inverter circuit 40 when the voltage command Vu * is equal to or higher than the zero voltage Vz.
  • the inverter circuit 40 switches its operation from the first control mode CM1 to the third control mode CM3 at the timing t1. Further, the inverter circuit 40 switches its operation from the third control mode CM3 to the first control mode CM1 at the timing t2.
  • Timings t1 and t2 are timings when the carrier signal Sc is at the apex.
  • the switch element S3 In the first control mode CM1, the switch element S3 is in the on state, and the switching element Q2 and the switch elements S1 and S2 are in the off state. Then, the switch element S4 performs an on / off operation according to the control signal Hon. Further, the switching element Q1 performs an on / off operation according to the control signal Lon.
  • the switch elements S2 and S3 are in the on state, and the switching elements Q1 and Q2 are in the off state. Then, the switch element S1 performs an on / off operation according to the control signal Hon. Further, the switch element S4 performs an on / off operation in accordance with the control signal Lon.
  • the switch elements S3 and S4 are kept on. Therefore, even if the operation of the inverter circuit 40 is switched from the first control mode CM1 to the third control mode CM3, the current flowing between the inverter circuit 40 and the load 6 causes either of the switch elements S3 and S4 to flow. Continue to flow. In addition, before and after the timing t2, the switch elements S3 and S4 are kept on. Therefore, even when the operation of the inverter circuit 40 is switched from the third control mode CM3 to the first control mode CM1, the current flowing between the inverter circuit 40 and the load 6 causes either of the switch elements S3 and S4 to flow. Continue to flow.
  • FIG. 15 shows the operation of the inverter circuit 40 when the voltage command Vu * is less than the zero voltage Vz.
  • the inverter circuit 40 switches its operation from the fourth control mode CM4 to the sixth control mode CM6 at the timing t1.
  • the inverter circuit 40 switches its operation from the sixth control mode CM6 to the fourth control mode CM4 at the timing t2.
  • Timings t1 and t2 are timings when the carrier signal Sc is at the apex.
  • the switch elements S1 and S4 are in the on state, and the switching elements Q1 and Q2 are in the off state. Then, the switch element S2 performs an on / off operation in accordance with the control signal Hon. Further, the switch element S3 performs an on / off operation in accordance with the control signal Lon.
  • the switch element S4 is in the on state, and the switching element Q1 and the switch elements S1, S2 are in the off state. Then, the switching element Q2 performs an on / off operation according to the control signal Hon. Further, the switch element S3 performs an on / off operation in accordance with the control signal Lon.
  • the switch elements S3 and S4 are kept on. Therefore, even when the operation of the inverter circuit 40 is switched from the fourth control mode CM4 to the sixth control mode CM6, the current flowing between the inverter circuit 40 and the load 6 causes either of the switch elements S3 and S4 to flow. Continue to flow. In addition, before and after the timing t2, the switch elements S3 and S4 are kept on. Therefore, even when the operation of the inverter circuit 40 is switched from the sixth control mode CM6 to the fourth control mode CM4, the current flowing between the inverter circuit 40 and the load 6 is caused to flow through any one of the switch elements S3 and S4. Continue to flow.
  • FIG. 16 shows the operation of the inverter circuit 40 when the voltage command Vu * is switched from positive polarity to negative polarity.
  • the operation of the inverter circuit 40 is switched from the third control mode CM3 to the sixth control mode CM6 at the timing t1. Further, the operation of the inverter circuit 40 is switched from the sixth control mode CM6 to the third control mode CM3 at the timing t2.
  • Timings t1 and t2 are timings when the carrier signal Sc is at the apex.
  • the switch elements S2 and S3 are in the on state, and the switching elements Q1 and Q2 are in the off state. Then, the switch element S1 performs an on / off operation according to the control signal Hon. Further, the switch element S4 performs an on / off operation in accordance with the control signal Lon.
  • the switch element S4 is in the on state, and the switching element Q1 and the switch elements S1, S2 are in the off state. Then, the switching element Q2 performs an on / off operation according to the control signal Hon. Further, the switch element S3 performs an on / off operation in accordance with the control signal Lon.
  • the switch elements S3 and S4 are kept on. Therefore, even if the operation of the inverter circuit 40 is switched from the third control mode CM3 to the sixth control mode CM6, the current flowing between the inverter circuit 40 and the load 6 causes either of the switch elements S3 and S4 to flow. Continue to flow. In addition, before and after the timing t2, the switch elements S3 and S4 are kept on. Therefore, even when the operation of the inverter circuit 40 is switched from the sixth control mode CM6 to the third control mode CM3, the current flowing between the inverter circuit 40 and the load 6 flows through one of the switch elements S3 and S4. to continue.
  • FIG. 17 shows the operation of the inverter circuit 40 when the voltage command Vu * is switched from positive polarity to negative polarity.
  • the operation of the inverter circuit 40 is switched from the first control mode CM1 to the fourth control mode CM4 at the timing t1. Further, the operation of the inverter circuit 40 is switched from the fourth control mode CM4 to the first control mode CM1 at the timing t2.
  • Timings t1 and t2 are timings when the carrier signal Sc is at the apex.
  • the switch element S3 In the first control mode CM1, the switch element S3 is in the on state, and the switching element Q2 and the switch elements S1 and S2 are in the off state. Then, the switching element Q1 performs an on / off operation according to the control signal Hon. Further, the switch element S4 performs an on / off operation in accordance with the control signal Lon.
  • the switch elements S1, S4 are in the on state, and the switching elements Q1, Q2 are in the off state. Then, the switch element S2 performs an on / off operation in accordance with the control signal Hon. Further, the switch element S3 performs an on / off operation in accordance with the control signal Lon.
  • the switch elements S3 and S4 are kept on. Therefore, even when the operation of the inverter circuit 40 is switched from the first control mode CM1 to the fourth control mode CM4, the current flowing between the inverter circuit 40 and the load 6 causes either of the switch elements S3 and S4 to flow. Continue to flow. In addition, before and after the timing t2, the switch elements S3 and S4 are kept on. Therefore, even when the operation of the inverter circuit 40 is switched from the fourth control mode CM4 to the first control mode CM1, the current flowing between the inverter circuit 40 and the load 6 causes either of the switch elements S3 and S4 to flow. Continue to flow.
  • the inverter circuit 40 switches the operation mode between the second operation mode and the fourth operation mode by switching the control mode performed at the top of the carrier signal Sc.
  • the inverter circuit 40 can ensure a path for the current flowing through the reactor Lf1. Therefore, the inverter circuit 40 can suppress the surge voltage generated at both ends of the reactor Lf1 in the operation mode switching between the second operation mode and the fourth operation mode.
  • the present invention is described by taking a power converter having four arms as an example, but the present invention can also be applied to a power converter having five or more arms.
  • the present invention can be applied to an apparatus for supplying a stable voltage to a load even when a voltage fluctuation of the AC power supply or a power failure of the AC power supply occurs, such as an instantaneous voltage drop compensation device or an uninterruptible power supply device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)
  • Rectifiers (AREA)
  • Ac-Ac Conversion (AREA)

Abstract

 スイッチング素子Q1にダイオードを逆並列に接続して構成される第1のアームと、スイッチング素子Q2にダイオードを逆並列に接続して構成される第2のアームと、スイッチ素子S1,S2を逆並列に接続して構成される第1の双方向スイッチからなる第3のアームと、スイッチ素子S3,S4を逆並列に接続して構成される第2の双方向スイッチからなる第4のアームを備え、直流電源Pspと直流電源Psnを直列接続して構成される直流電源回路の端子P-N間に第1と第2のアームを直列接続し、直流電源回路の端子Oに端子Sが接続される交流電源1の端子Rと出力端子Uとの間に第3のアームを接続し、出力端子U-V間に第4のアームを接続してインバータ回路を構成し、制御モード間で共通する少なくとも1つのアームが導通可能な状態を継続するタイミングで、インバータ回路の制御モードを切り替える。

Description

電力変換装置
 本発明は、交流電源の電圧が変動しても、安定した電圧を負荷に供給することができる電力変換装置に関する。
 図18は、特許文献1に開示されている電力変換装置の一形態を説明するための図である。この電力変換装置は、交流電源の電圧を一旦直流電圧に変換し、変換した直流電圧を再度所定の交流電圧に変換して負荷に供給する。図において、1は単相の交流電源、2はコンデンサ、3は直流電源回路、4はインバータ回路、5はフィルタ回路、6は負荷である。交流電源1は、交流電圧を出力する端子として、電源端子Rと電源端子Sを備えている。以下では、電源端子Rを端子Rといい、電源端子Sを端子Sという。コンデンサ2は、交流電源1の端子Rと端子の間に接続されている。
 直流電源回路3は、コンデンサCp,Cnとスイッチング素子Qp,QnおよびリアクトルLrとからなる。コンデンサCp,Cnは直列に接続されている。コンデンサCp,Cnの接続点は、交流電源1の端子Sに接続されるとともに、直流電源回路3の中性点端子Oに接続される。スイッチング素子Qp,Qnは直列に接続されている。スイッチング素子Qp,Qnの直列回路は、コンデンサCp,Cnの直列回路に並列に接続される。リアクトルLrは、交流電源1の端子Rとスイッチング素子Qp,Qnの接続点との間に接続される。
 コンデンサCp,Cnは、スイッチング素子Qp,Qnがオンオフすることにより、交流電源1の電圧を用いて、等しい電圧に充電される。充電されたコンデンサCp,Cnの電圧は、交流電源1から出力される交流電圧の振幅よりも高い電圧である。そして、直流電源回路3は、中性点端子Oを基準として、正側端子PからコンデンサCpの正電圧を出力し、負側端子NからコンデンサCnの負電圧を出力する。
 インバータ回路4は、直列接続されたスイッチング素子Q1,Q2の直列回路と双方向スイッチBS1,BS2とで構成されている。スイッチング素子Q1,Q2には、それぞれ、ダイオードが逆並列に接続されている。スイッチング素子Q1,Q2の接続点は、インバータ回路4の一方の出力端子Uに接続されている。インバータ回路4の他方の出力端子Vは、中性点端子Oに接続されている。スイッチング素子Q1,Q2の直列回路は、直流電源回路3の正側端子Pと負側端子Nとの間に接続される。双方向スイッチBS1は、交流電源1の端子Rと出力端子Uとの間に接続される。双方向スイッチBS2は、中性点端子Oと出力端子Uとの間に接続される。
 インバータ回路4は、スイッチング素子Q1,Q2と双方向スイッチBS1,BS2とを選択的にオンオフさせる。この動作により、出力端子Uと出力端子Vとの間に、所定の交流電圧が出力される。以下では、「出力端子Uと出力端子Vとの間」を「出力端子U-V間」という。出力端子U-V間に出力される交流電圧は、パルス幅変調されたパルス列の電圧である。
 フィルタ回路5は、リアクトルLf1とコンデンサCf1とを直列接続して構成されている。フィルタ回路5は、インバータ回路4の出力端子U-V間に接続される。負荷6は、コンデンサCf1の両端に接続されている。
 フィルタ回路5は、インバータ回路4が出力するパルス列の交流電圧から高周波数成分を除去する。したがって、負荷6には、正弦波状の交流電圧が供給される。
 特許文献1には、上記電力変換装置が交流電源1の電圧よりも低い所定の電圧を出力する技術が開示されている。この電力変換装置は、双方向スイッチBS1,BS2を交互にオンオフさせて、出力端子U-V間に、交流電源1の電圧よりも低い所定の電圧を出力する。また、この電力変換装置は、交流電源1の電圧よりも高い所定の電圧を出力することもできる。この電力変換装置は、スイッチング素子Q1,Q2と双方向スイッチBS1とを選択的にオンオフさせて、出力端子U-V間に、交流電源1の電圧よりも高い所定の電圧を出力する。
国際公開第2012/067167号
 図18に示した電力変換装置は、2つの素子を、休止期間を挟んで交互にオンオフさせる。この休止期間は、両素子が同時にオンするのを防止するために設けられている。しかしながら、交互にオンオフする素子の組合せが切り替わるときに休止期間が存在すると、リアクトルLf1に流れている電流の経路が喪失する。リアクトルLf1に流れている電流の経路が喪失すると、リアクトルLf1の両端にサージ電圧が発生するという問題が生じる。このサージ電圧は、インバータ回路4に含まれる素子のブレークダウンや負荷の損傷の要因となる。
 本発明は、このような従来技術が有している問題を解決するためになされたものである。すなわち、本発明の目的は、インバータ回路の制御モードが切り替わるときであっても、電力変換装置の出力端子間に存在するインダクタンス成分に流れている電流の経路を確保することである。そして、インダクタンス成分に流れる電流の経路を確保することにより、インダクタンス成分の両端に発生するサージ電圧を抑制することである。
 上記目的を達成するため、本発明の形態の一側面は、第1から第4の入力端子と、第1と第2の出力端子と、第1から第4の入力端子それぞれと第1の出力端子との間に接続される第1から第4のアームと、を有する電力変換器を備える電力変換装置である。この電力変換装置の電力変換器は、第1から第4のアームのうちから選択した2つのアームを交互にオンオフさせる制御モードで動作する。そして、この電力変換器は、異なるアームの組み合わせによる制御モードを2以上有している。さらに、この電力変換器は、その動作を一の制御モードから他の制御モードに切り替えるとき、その切り替え前後において少なくとも1つの共通するアームが双方向に導通可能な状態を継続するタイミングで、前記制御モードの切替えを行う。
 本発明による電力変換装置は、制御モードの切り替えを、切り替え前後において少なくとも1つの共通するアームが双方向に導通可能な状態にあるタイミングで行う。これにより、この電力変換装置は、電力変換器の出力端子間に存在するインダクタンス成分を流れる電流の経路を確保することができる。したがって、この電力変換装置は、電力変換器の出力端子間に存在するインダクタンス成分の両端に発生するサージ電圧を抑制することができる。
本発明に係る電力変換装置の構成例を説明するための図である。 双方向スイッチの実施形態を説明するための図である。 制御回路の構成例を説明するためのブロック図である。 制御モードと各素子の制御信号の関係を説明するための図である。 制御モードを切替える一例を説明するための図である。 制御モードの他の切替え例を説明するための図である。 制御モードの他の切替え例を説明するための図である。 制御モードの他の切替え例を説明するための図である。 制御モードの他の切替え例を説明するための図である。 制御モードの他の切替え例を説明するための図である。 制御モードの他の切替え例を説明するための図である。 制御モードの他の切替え例を説明するための図である。 制御モードの他の切替え例を説明するための図である。 制御モードの他の切替え例を説明するための図である。 制御モードの他の切替え例を説明するための図である。 制御モードの他の切替え例を説明するための図である。 制御モードの他の切替え例を説明するための図である。 従来技術に係る電力変換装置の構成を説明するための図である。
 以下、本発明の実施例について説明する。図1は、本発明に係る電力変換装置の構成例を説明するための図である。図において、1は交流電源、2はコンデンサ、30は直流電源回路、40はインバータ回路、5はフィルタ回路、6は負荷、100は制御回路である。交流電源1は、電源端子Rと電源端子Sとを有する単相交流電源である。以下では、電源端子Rを端子Rという。また、電源端子Sを端子Sという。図1に示す直流電源回路30の正側端子P、負側端子N,中性点端子Oは、それぞれ図18に示した直流電源回路3の正側端子P、負側端子N,中性点端子Oに対応する。
 直流電源回路30は、正側の直流電源Psp(第1の直流電源)と負側の直流電源Psn(第2の直流電源)とを直列接続して構成される電源回路である。正側の直流電源Pspの正電圧Vpと負側の直流電源Psnの負電圧Vnの大きさは、交流電源1から出力される交流電圧の振幅よりも大きくなるように設定されている。直流電源回路30は、図18に示した直流電源回路3または同等の機能を有する回路によって実現することができる。直流電源回路30の中性点端子Oは、直流電源回路30の中間電位(ゼロ電圧Vz)を出力する端子である。交流電源1の端子Sは、直流電源回路30の中性点端子Oに接続されている。すなわち、中性点端子Oは、交流電源1および直流電源回路30の基準電位点である。
 以下では、各端子の電圧を、中性点端子Oの電位を基準とする電位で表す。したがって、直流電源回路30の正側端子Pは、直流電源Pspの正電圧Vpを出力する。直流電源回路30の負側端子Nは、直流電源Psnの負電圧Vnを出力する。交流電源1の端子Rは、交流電源1の電圧Vrを出力する。
 インバータ回路40は、正電圧Vp,負電圧Vn,ゼロ電圧Vzおよび交流電源1の電圧Vrの4レベルの電圧を用いて、出力端子U-V間に、単相の交流電圧Vuvを出力する。出力端子U-V間に出力される交流電圧は、電圧指令Vに基づいてパルス幅変調されたパルス状の電圧である。インバータ回路40の構成および動作は以下のとおりである。
 インバータ回路40は、スイッチング素子直列回路と第1の双方向スイッチBS1と第2の双方向スイッチBS2とで構成されている。スイッチング素子直列回路は、スイッチング素子Q1,Q2を直列接続した回路である。スイッチング素子Q1は、逆並列に接続されるダイオードとで、第1のアームを構成している。スイッチング素子Q2は、逆並列に接続されるダイオードとで、第2のアームを構成している。第1の双方向スイッチBS1は、スイッチ素子S1,S2を逆並列接続した回路であり、第3のアームを構成している。第2の双方向スイッチBS2は、スイッチ素子S3,S4を逆並列接続した回路であり、第4のアームを構成している。
 スイッチング素子Q1,Q2および第1から第4のスイッチ素子S1~S4は、それぞれの制御信号G1,G2およびGs1~Gs4に従って、オンオフの動作をする。
 したがって、スイッチング素子Q1,Q2は、それぞれの制御信号に基づいて、単方向のオンオフ動作が可能である。また、スイッチング素子Q1,Q2は、それぞれの制御信号の状態に関係なく、ダイオードのアノードからカソードの方向に導通可能である。すなわち、第1と第2のアームは、一方向の導通を制御可能であるが、他方向については常に導通可能である。
 スイッチ素子S1,S2は、それぞれの制御信号に従ってオンオフする。また、スイッチ素子S3,S4は、それぞれの制御信号に従ってオンオフする。したがって、第1の双方向スイッチBS1(第3のアーム)は、単方向もしくは双方向に導通することができる。また、第2の双方向スイッチBS2(第4のアーム)は、単方向もしくは双方向に導通することができる。
 制御信号G1,G2および制御信号Gs1~Gs4を生成する方法の一例については、後述する。
 スイッチング素子直列回路は、直流電源回路30の正側端子Pと負側端子Nの間に接続される。スイッチング素子Q1,Q2の直列接続点は、出力端子U(第1の出力端子)に接続される。出力端子V(第2の出力端子)は、中性点端子Oに接続される。
 第1の双方向スイッチは、出力端子Uと端子Rとの間に接続される。そして、第1の双方向スイッチのスイッチ素子S1のコレクタ端子側は、端子Rに接続される。スイッチ素子S1のエミッタ端子側は、出力端子Uに接続される。また、第2の双方向スイッチは、出力端子Uと中性点端子Oとの間に接続される。そして、第2の双方向スイッチのスイッチ素子S4のコレクタ端子側は、出力端子Uに接続される。スイッチ素子S4のエミッタ端子側は、中性点端子Oに接続される。
 出力端子U,Vは、フィルタ回路5を介して負荷6に接続される。フィルタ回路5は、リアクトルLf1とコンデンサCf1の直列回路で構成されている。負荷6は、コンデンサCf1の両端に接続される。
 ここで、スイッチング素子Q1,Q2は、ダイオードが逆並列に接続されたIGBT(Insulated
Gate Bipolar Transistor)である。しかし、スイッチング素子Q1,Q2は、このような構成に限られない。スイッチング素子Q1,Q2は、MOSFET(Metal Oxide Semiconductor Field Effect Transistor)など、交流電源1の周波数に対して十分に高い周波数でオンオフ動作ができる他の半導体素子を用いて構成しても良い。
 また、第1と第2の双方向スイッチは、2つの逆阻止型IGBTを逆並列に接続して構成した回路である。この双方向スイッチは、一方のスイッチ素子をオンすることによって一方向に電流を通電することができ、他方のスイッチ素子をオンすることによって他方向に電流を通電することができる。また、この双方向スイッチは、両方のスイッチ素子をオンすることによって両方向に電流を通電することができる。
 双方向スイッチは、図2(a)~図2(c)に示す構成からなる回路、または同等の機能および効果を有する回路であっても良い。図2(a)は、逆阻止耐圧を有しないIGBTとダイオードとを直列接続した2組の回路を逆並列に接続した回路である。図2(b)は、逆阻止耐圧を有しないIGBTにダイオードを逆並列に接続した2組の回路を逆直列に接続して構成した回路である。図2(c)は、図2(b)の回路において、IGBTをMOSFETに置き換えて構成した回路である。
 上記インバータ回路40の構成において、スイッチング素子Q1が導通することによって、直流電源回路30の正電圧Vpが出力端子Uに出力される。また、スイッチング素子Q1に逆並列に接続されているダイオードが導通することによっても、直流電源回路30の正電圧Vpが出力端子Uに出力される。
 スイッチング素子Q2が導通することによって、直流電源回路30の負電圧Vnが出力端子Uに出力される。また、スイッチング素子Q2に逆並列に接続されているダイオードが導通することによっても、直流電源回路30の負電圧Vnが出力端子Uに出力される。
 スイッチ素子S1,S2のいずれかが導通することによって、交流電源1の電圧Vrが出力端子Uに出力される。また、スイッチ素子S3,S4のいずれかが導通することによって、中性点端子Oのゼロ電圧Vzが出力端子Uに出力される。
 インバータ回路40は、制御回路100で生成された制御信号に基づいて、スイッチング素子Q1,Q2およびスイッチ素子S1~S4を選択的にオンオフさせる。このオンオフ動作により、インバータ回路40は、出力端子U-V間に、電圧指令Vuに対応する電圧Vuを出力する。電圧指令Vuは、負荷6に供給されるべき交流電圧の周波数と振幅を有する電圧指令である。
 インバータ回路40から出力される電圧Vuはパルス幅変調されており、多くの高調波成分を含んでいる。インバータ回路40から出力される交流電圧Vuは、フィルタ回路5によって高調波成分が除去され、負荷6に供給される。
 次に、制御回路100が各制御信号を生成する動作を説明する。制御回路100には、交流電源1の電圧Vr,直流電源回路30の正電圧Vp,直流電源回路30の負電圧Vnが入力される。交流電源1の電圧Vrは、電圧検出器301によって検出される。正電圧Vpは、電圧検出器401によって検出される。負電圧Vnは、電圧検出器402によって検出される。
 制御回路100は、制御周期ごとに、入力された各電圧およびゼロ電圧Vzと電圧指令Vuとを用いて、スイッチング素子Q1,Q2およびスイッチ素子S1~S4をオンオフさせるための制御信号G1,G2および制御信号Gs1~Gs4を生成する。
 制御周期は、後述するキャリア信号Scの周期に対応している。この制御周期によって定まる各素子のオンオフ周波数(スイッチング周波数)は、電圧指令Vuの周波数に対して十分高い周波数であるのが望ましい。例えば、電圧指令Vuの周波数が商用周波数の場合、スイッチング周波数は1kHz以上であるのが好ましい。また、制御周期は、必ずしも、電圧指令Vuに同期している必要はなく、非同期であっても良い。
 図3は、制御回路100が各制御信号を生成する動作を説明するための図である。制御回路100は、主に、電圧指令生成回路111,制御モード設定回路112,変調信号生成回路113,比較回路114,パルス分配回路115,キャリア信号生成回路,論理反転回路117で構成されている。制御回路100を構成する各回路は、後述する制御周期ごとにそれぞれの演算動作を行う。
 まず、交流電源1の電圧Vrが、電圧指令生成回路111に入力される。交流電源1の電圧Vrが所定値以上であるとき、電圧指令生成回路111は、交流電源1が健全であるとみなす。そして、電圧指令生成回路111は、交流電源1の電圧Vrに基づく電圧指令Vuを生成する。電圧指令Vuは、交流電源1の電圧Vrに同期し、負荷6の定格入力電圧と等しい振幅を有する電圧指令である。一方、交流電源1の電圧Vrが所定値未満のとき、電圧指令生成回路111は、交流電源1が停電しているとみなす。そして、電圧指令生成回路111は、所定の周波数であって負荷6の定格入力電圧と等しい振幅を有する電圧指令Vuを生成する。
 なお、電圧指令Vuは、交流電源1の電圧Vrと非同期の電圧指令とすることもできる。また、電圧指令Vuは、負荷6の定格入力電圧と異なる振幅を有する電圧指令とすることもできる。
 電圧指令生成回路111で生成された電圧指令Vuは、交流電源1の電圧Vrとともに、制御モード設定回路112に入力される。
 制御モード設定回路112は、電圧指令Vuと交流電源1の電圧Vrとを用いて、インバータ回路40の動作モードを決定する。インバータ回路40の動作モードには、第1から第4の動作モードが含まれる。第1の動作モードは、交流電源1の電圧Vrよりも高い所定の電圧を出力するモードである。第2の動作モードは、交流電源1の電圧Vrよりも低い所定の電圧を出力するモードである。第3の動作モードは、交流電源1の電圧Vrを出力するモードである。第4の動作モードは、直流電源回路30の電圧を用いて所定の電圧を出力するモードである。
 次に、制御モード設定回路112は、該当する制御周期における動作を指令するための制御モード信号δを出力する。インバータ回路40の制御モード信号δには、第1の制御モード~第7の制御モードが含まれる。
 図4は、制御モード設定回路112が行う制御モードの設定条件を示している。制御周期における電圧指令Vuと交流電源1の電圧Vrとの関係が、Vu≧VzかつVr≦Vzであるとき、その制御周期の制御モードは、第1の制御モードCM1に設定される。制御周期における電圧指令Vuと交流電源1の電圧Vrの関係が、Vu≧VzかつVr>VzかつVu>Vrであるとき、その制御周期の制御モードは、第2の制御モードCM2に設定される。制御周期における電圧指令Vuと交流電源1の電圧Vrの関係が、Vu≧VzかつVr>VzかつVu≦Vrであるとき、その制御周期の制御モードは、第3の制御モードCM3に設定される。制御周期における電圧指令Vuと交流電源1の電圧Vrの関係が、Vu<VzかつVr<VzかつVu≧Vrであるとき、その制御周期の制御モードは、第4の制御モードCM4に設定される。制御周期における電圧指令Vuと交流電源1の電圧Vrの関係が、Vu<VzかつVr<VzかつVu<Vrであるとき、その制御周期の制御モードは、第5の制御モードCM5に設定される。制御周期における電圧指令Vuと交流電源1の電圧Vrの関係が、Vu<VzかつVr≧Vzであるとき、その制御周期の制御モードは、第6の制御モードCM6に設定される。制御周期における電圧指令Vuと交流電源1の電圧Vrの関係が、|Vu-Vr|<ΔVuであるとき、その制御周期の制御モードは、第7の制御モードCM7に設定される。
 変調信号生成回路113は、電圧指令Vu,交流電源1の電圧Vr,正電圧Vp,負電圧Vnおよび制御モード信号δを入力として、変調信号αを生成する。各制御モードにおける変調信号αは次式(1)~(7)を用いて算出される(図4)。
Figure JPOXMLDOC01-appb-M000001
 キャリア信号生成回路116は、キャリア信号Scを生成する。本実施例では、キャリア信号Scは三角波形状としている。そして、この制御回路100の演算が行われる制御周期は、キャリア信号Scの頂点から底点までの期間とキャリア信号Scの底点から頂点までの期間とからなる。
 比較回路114は、変調信号αとキャリア信号Scとを比較して、パルス幅変調された信号Spwmを生成する。以下では、パルス幅変調された信号SpwmをPWM信号Spwmという。変調信号αがキャリア信号Sc以上のとき、PWM信号SpwmはHighとなる。変調信号αがキャリア信号Scより小さいとき、PWM信号SpwmはLowとなる。
 パルス分配回路115は、制御モード信号δにしたがって、スイッチング素子Q1,Q2とスイッチ素子S1~S4の中から、第1の素子と第2の素子を選択する。また、パルス分配回路115は、PWM信号Spwmに基づいて、第1の素子の制御信号Honを生成する。制御信号Honは、PWM信号SpwmがLowからHighになってから休止期間Td後に、LowからHighになる。そして、制御信号Honは、PWM信号SpwmがHighからLowになると同時に、HighからLowになる。また、パルス分配回路115は、PWM信号Spwmに基づいて、第2の素子の制御信号Lonを生成する。制御信号Lonは、PWM信号SpwmがLowからHighになると同時に、HighからLowになる。そして、制御信号Lonは、PWM信号SpwmがHighからLowになってから休止期間Td経過後に、LowからHighになる。すなわち、制御信号Honと制御信号Lonとは、休止期間を挟んで交互にHighとLowとなる信号である。
 制御信号HonがHighのとき、第1の素子はオン(導通)する。そして、制御信号HonがLowのとき、第1の素子はオフ(不導通)となる。各制御周期において、第1の素子がオンする期間は、変調信号αに基づく期間である。また、制御信号LonがHighのとき、第2の素子はオン(導通)する。そして、制御信号LonがLowのとき、第2の素子はオフ(不導通)となる。
 パルス分配回路115は、また、制御モード信号δにしたがって、第1と第2の素子に選択されなった素子に対して、オン素子またはオフ素子の設定をする。そして、パルス分配回路115は、オン素子のための制御信号をHighとする。また、パルス分配回路115は、オフ素子のための制御信号をLowとする。オン素子は、その制御信号に従って、常にオン(導通)状態になる。オフ素子は、その制御信号に従って、常にオフ(不導通)の状態になる。
 図4は、各制御モードにおけるスイッチング素子Q1,Q2とスイッチ素子S1~S4の動作を示している。各素子の動作は、それぞれを制御するための制御信号G1,G2およびGs1~Gs4で示されている。制御信号がHonと記されている素子は、その制御周期において第1の素子として選択された素子である。制御信号がLonと記されている素子は、その制御周期において第2の素子として選択された素子である。制御信号がHと記されている素子は、その制御周期においてオン素子に設定された素子である。制御信号がLと記されている素子は、その制御周期においてオフ素子に設定された素子である。
 次に、各制御モードにおけるインバータ回路40の動作を説明する。
 第1の制御モードCM1では、スイッチング素子Q1が第1の素子として選択される。また、スイッチ素子S4が第2の素子として選択される。そして、スイッチ素子S3がオン素子、スイッチング素子Q2とスイッチ素子S1,S2がオフ素子に設定される。スイッチング素子Q1とスイッチ素子S4とは、休止期間Tdを挟んで、交互にオンオフする。スイッチング素子Q1がオンする期間は、上記(1)式によって算出される変調信号αに対応する期間である。この動作によって、インバータ回路40は、正電圧Vpを用いて、電圧指令Vuに対応する交流電圧を、出力端子U-V間に出力することができる。
 第2の制御モードCM2では、スイッチング素子Q1が第1の素子として選択される。また、スイッチ素子S2が第2の素子として選択される。そして、スイッチ素子S1がオン素子、スイッチング素子Q2とスイッチ素子S3,S4がオフ素子に設定される。スイッチング素子Q1とスイッチ素子S2とは、休止期間Tdを挟んで、交互にオンオフする。スイッチング素子Q1がオンする期間は、上記(2)式によって算出される変調信号αに対応する期間である。この動作によって、インバータ回路40は、正電圧Vpと交流電源1の電圧Vrとを用いて、電圧指令Vuに対応する交流電圧を、出力端子U-V間に出力することができる。
 第3の制御モードCM3では、スイッチ素子S1が第1の素子として選択される。また、スイッチ素子S4が第2の素子として選択される。そして、スイッチ素子S2,S3がオン素子、スイッチング素子Q1,Q2がオフ素子に設定される。スイッチ素子S1,S4は、休止期間Tdを挟んで、交互にオンオフする。スイッチ素子S1がオンする期間は、上記(3)式によって算出される変調信号αに対応する期間である。この動作によって、インバータ回路40は、交流電源1の電圧Vrを用いて、電圧指令Vuに対応する交流電圧を、出力端子U-V間に出力することができる。
 第4の制御モードCM4では、スイッチ素子S2が第1の素子として選択される。また、スイッチ素子S3が第2の素子として選択される。そして、スイッチ素子S1,S4がオン素子、スイッチング素子Q1,Q2がオフ素子に設定される。スイッチ素子S2,S3は、休止期間Tdを挟んで、交互にオンオフする。スイッチ素子S2がオンする期間は、上記(4)式によって算出される変調信号αに対応する期間である。この動作によって、インバータ回路40は、交流電源1の電圧Vrを用いて、電圧指令Vuに対応する交流電圧を、出力端子U-V間に出力することができる。
 第5の制御モードCM5では、スイッチング素子Q2が第1の素子として選択される。また、スイッチ素子S1が第2の素子として選択される。そして、スイッチ素子S2がオン素子、スイッチング素子Q1とスイッチ素子S3,S4がオフ素子に設定される。スイッチング素子Q2とスイッチ素子S1とは、休止期間Tdを挟んで、交互にオンオフする。スイッチング素子Q2がオンする期間は、上記(5)式によって算出される変調信号αに対応する期間である。この動作によって、インバータ回路40は、負電圧Vnと交流電源1の電圧Vrとを用いて、電圧指令Vuに対応する交流電圧を、出力端子U-V間に出力することができる。
 第6の制御モードCM6では、スイッチング素子Q2が第1の素子として選択される。また、スイッチ素子S3が第2の素子として選択される。そして、スイッチ素子S4がオン素子、スイッチング素子Q1とスイッチ素子S1,S2がオフ素子に設定される。スイッチング素子Q2とスイッチ素子S3とは、休止期間Tdを挟んで、交互にオンオフする。スイッチング素子Q2がオンする期間は、上記(6)式によって算出される変調信号αに対応する期間である。この動作によって、インバータ回路40は、負電圧Vnを用いて、電圧指令Vuに対応する交流電圧を、出力端子U-V間に出力することができる。
 第7の制御モードCM7では、スイッチ素子S1,S2がオン素子に設定される。また、スイッチング素子Q1,Q2とスイッチ素子S3,S4がオフ素子に設定される。このようにオン素子とオフ素子を設定することにより、インバータ回路40は、交流電源1の電圧Vrを、出力端子U-V間に出力することができる。
 そして、インバータ回路40は、第1の動作モードのとき、第2の制御モードCM2と第5の制御モードCM5で動作する。すなわち、インバータ回路40は、電圧指令Vuがゼロ電圧Vz以上のとき第2の制御モードCM2で動作し、電圧指令Vuがゼロ電圧Vz未満のとき第5の制御モードCM5で動作する。また、インバータ回路40は、第2の動作モードのとき、第3の制御モードCM3と第4の制御モードCM4で動作する。すなわち、インバータ回路40は、電圧指令Vuがゼロ電圧Vz以上のとき第3の制御モードCM3で動作し、電圧指令Vuがゼロ電圧Vz未満のとき第4の制御モードCM4で動作する。また、インバータ回路40は、第3の動作モードのとき、第7の制御モードCM7で動作する。また、インバータ回路40は、第4の動作モードのとき、第1の制御モードCM1と第6の制御モードCM6で動作する。すなわち、インバータ回路40は、電圧指令Vuがゼロ電圧Vz以上のとき第1の制御モードCM1で動作し、電圧指令Vuがゼロ電圧Vz未満のとき第6の制御モードCM6で動作する。
 ここで、インバータ回路40は、各動作モード内で、制御モードの切り替えを行う。また、インバータ回路40が動作モードを切り替えるとき、制御モードの切替えが生じる。そして、制御モードの切替えは、双方向に導通可能な共通アームが存在するタイミングで行われる。
 まず、インバータ回路40が、第1の動作モードにおいて、第2の制御モードCM2と第5の制御モードCM5とを相互に切替える動作を、図5を参照して説明する。インバータ回路40は、タイミングt1において、その動作を第2の制御モードCM2から第5の制御モードCM5に切り替える。また、インバータ回路40は、タイミングt2において、その動作を第5の制御モードCM5から第2の制御モードCM2に切り替える。タイミングt1,t2は、キャリア信号Scが頂点となるタイミングである。
 第2の制御モードCM2では、スイッチ素子S1がオン状態にあり、スイッチング素子Q2とスイッチ素子S3,S4がオフ状態にある。そして、スイッチング素子Q1が、制御信号Honに従ってオンオフ動作をする。また、スイッチ素子S2が、制御信号Lonに従ってオンオフ動作をする。
 一方、第5の制御モードCM5では、スイッチ素子S2がオン状態にあり、スイッチング素子Q1とスイッチ素子S3,S4がオフ状態にある。そして、スイッチング素子Q2が、制御信号Honに従ってオンオフ動作をする。また、スイッチ素子S1が、制御信号Lonに従ってオンオフ動作をする。
 したがって、タイミングt1の前後において、スイッチ素子S1,S2はオン状態を継続する。それゆえ、インバータ回路40の動作が第2の制御モードCM2から第5の制御モードCM5に切り替わっても、インバータ回路40と負荷6との間を流れる電流は、スイッチ素子S1,S2のいずれかを流れ続ける。また、タイミングt2の前後において、スイッチ素子S1,S2はオン状態を継続する。それゆえ、インバータ回路40の動作が第5の制御モードCM5から第2の制御モードCM2に切り替わっても、インバータ回路40と負荷6との間を流れる電流は、スイッチ素子S1,S2のいずれかを流れ続ける。
 すなわち、インバータ回路40は、第1の動作モードにおいて、第2の制御モードCM2と第5の制御モードCM5の間の制御モード切替えをキャリア信号Scの頂点で行う。この制御モード切替え動作により、インバータ回路40は、リアクトルLf1に流れる電流の経路を確保することができる。したがって、インバータ回路40は、第1の動作モード内の制御モード切替えにおいて、リアクトルLf1の両端に発生するサージ電圧を抑制することができる。
 次に、インバータ回路40が、第2の動作モードにおいて、第3の制御モードCM3と第4の制御モードCM4とを相互に切替える動作を、図6を参照して説明する。インバータ回路40は、タイミングt1において、その動作を第3の制御モードCM3から第4の制御モードCM4に切り替える。また、インバータ回路40は、タイミングt2において、その動作を第4の制御モードCM4から第3の制御モードCM3に切り替える。タイミングt1,t2は、キャリア信号Scが頂点となるタイミングである。
 第3の制御モードCM3では、スイッチ素子S2,S3がオン状態にあり、スイッチング素子Q1,Q2がオフ状態にある。そして、スイッチ素子S1が、制御信号Honに従ってオンオフ動作をする。また、スイッチ素子Q4が、制御信号Lonに従ってオンオフ動作をする。
 一方、第4の制御モードCM4では、スイッチ素子S1,S4がオン状態にあり、スイッチング素子Q1,Q2がオフ状態にある。そして、スイッチ素子S2が、制御信号Honに従ってオンオフ動作をする。また、スイッチ素子S3が、制御信号Lonに従ってオンオフ動作をする。
 したがって、タイミングt1の前後において、スイッチ素子S3,S4はオン状態を継続する。それゆえ、インバータ回路40の動作が第3の制御モードCM3から第4の制御モードCM4に切り替わっても、インバータ回路40と負荷6との間を流れる電流は、スイッチ素子S3,S4のいずれかを流れ続ける。また、タイミングt2の前後において、スイッチ素子S3,S4はオン状態を継続する。それゆえ、インバータ回路40の動作が第4の制御モードCM4から第3の制御モードCM3に切り替わっても、インバータ回路40と負荷6との間を流れる電流は、スイッチ素子S3,S4のいずれかを流れ続ける。
 すなわち、インバータ回路40は、第2の動作モードにおいて、第3の制御モードCM3と第4の制御モードCM4の間の制御モード切替えをキャリア信号Scの頂点で行う。この制御モード切替え動作により、インバータ回路40は、リアクトルLf1に流れる電流の経路を確保することができる。したがって、インバータ回路40は、第2の動作モード内の制御モード切替えにおいて、リアクトルLf1の両端に発生するサージ電圧を抑制することができる。
 次に、インバータ回路40が、第4の動作モードにおいて、第1の制御モードCM1と第6の制御モードCM6とを相互に切替える動作を、図7を参照して説明する。インバータ回路40は、タイミングt1において、その動作を第1の制御モードCM1から第6の制御モードCM6に切り替える。また、インバータ回路40は、タイミングt2において、その動作を第6の制御モードCM6から第1の制御モードCM1に切り替える。タイミングt1,t2は、キャリア信号Scが頂点となるタイミングである。
 第1の制御モードCM1では、スイッチ素子S3がオン状態にあり、スイッチング素子Q2およびスイッチ素子S1,S2がオフ状態にある。そして、スイッチング素子Q1が、制御信号Honに従ってオンオフ動作をする。また、スイッチ素子Q4が、制御信号Lonに従ってオンオフ動作をする。
 一方、第6の制御モードCM6では、スイッチ素子S4がオン状態にあり、スイッチング素子Q1およびスイッチ素子S1,S2がオフ状態にある。そして、スイッチング素子Q2が、制御信号Honに従ってオンオフ動作をする。また、スイッチ素子S3が、制御信号Lonに従ってオンオフ動作をする。
 したがって、タイミングt1の前後において、スイッチ素子S3,S4はオン状態を継続する。それゆえ、インバータ回路40の動作が第1の制御モードCM1から第6の制御モードCM6に切り替わっても、インバータ回路40と負荷6との間を流れる電流は、スイッチ素子S3,S4のいずれかを流れ続ける。また、タイミングt2の前後において、スイッチ素子S3,S4はオン状態を継続する。それゆえ、インバータ回路40の動作が第6の制御モードCM6から第1の制御モードCM1に切り替わっても、インバータ回路40と負荷6との間を流れる電流は、スイッチ素子S3,S4のいずれかを流れ続ける。
 すなわち、インバータ回路40は、第4の動作モードにおいて、第1の制御モードCM1と第6の制御モードCM6との間の制御モード切替えをキャリア信号Scの頂点で行う。この制御モード切替え動作により、インバータ回路40は、リアクトルLf1に流れる電流の経路を確保することができる。したがって、インバータ回路40は、第4の動作モード内の制御モード切替えにおいて、リアクトルLf1の両端に発生するサージ電圧を抑制することができる。
 次に、インバータ回路40が、第1の動作モードと第3の動作モードとを相互に切替える動作を、図8と図9とを参照して説明する。図8は、電圧指令Vuがゼロ電圧Vz以上のときの、インバータ回路40の動作を示している。インバータ回路40は、タイミングt1において、その動作を第2の制御モードCM2から第7の制御モードCM7に切り替える。また、インバータ回路40は、タイミングt2において、その動作を第7の制御モードCM7から第2の制御モードCM2に切り替える。タイミングt1,t2は、キャリア信号Scが頂点となるタイミングである。
 第2の制御モードCM2では、スイッチ素子S1がオン状態にあり、スイッチング素子Q2およびスイッチ素子S3,S4がオフ状態にある。そして、スイッチング素子Q1が、制御信号Honに従ってオンオフ動作をする。また、スイッチ素子S2が、制御信号Lonに従ってオンオフ動作をする。
 一方、第7の制御モードCM7では、スイッチ素子S1,S2がオン状態にあり、スイッチング素子Q1,Q2およびスイッチ素子S3,S4がオフ状態にある。
 したがって、タイミングt1の前後において、スイッチ素子S1,S2はオン状態を継続する。それゆえ、インバータ回路40の動作が第2の制御モードCM2から第7の制御モードCM7に切り替わっても、インバータ回路40と負荷6との間を流れる電流は、スイッチ素子S1,S2のいずれかを流れ続ける。また、タイミングt2の前後において、スイッチ素子S1,S2はオン状態を継続する。それゆえ、インバータ回路40の動作が第7の制御モードCM7から第2の制御モードCM2に切り替わっても、インバータ回路40と負荷6との間を流れる電流は、スイッチ素子S1,S2のいずれかを流れ続ける。
 図9は、電圧指令Vuがゼロ電圧Vz未満のときの、インバータ回路40の動作を示している。インバータ回路40は、タイミングt1において、その動作を第5の制御モードCM5から第7の制御モードCM7に切り替える。また、インバータ回路40は、タイミングt2において、その動作を第7の制御モードCM7から第5の制御モードCM5に切り替える。タイミングt1,t2は、キャリア信号Scが頂点となるタイミングである。
 第5の制御モードCM5では、スイッチ素子S2がオン状態にあり、スイッチング素子Q1およびスイッチ素子S3,S4がオフ状態にある。そして、スイッチング素子Q2が、制御信号Honに従ってオンオフ動作をする。また、スイッチ素子S1が、制御信号Lonに従ってオンオフ動作をする。
 一方、第7の制御モードCM7では、スイッチ素子S1,S2がオン状態にあり、スイッチング素子Q1,Q2およびスイッチ素子S3,S4がオフ状態にある。
 したがって、タイミングt1の前後において、スイッチ素子S1,S2はオン状態を継続する。それゆえ、インバータ回路40の動作が第5の制御モードCM5から第7の制御モードCM7に切り替わっても、インバータ回路40と負荷6との間を流れる電流は、スイッチ素子S1,S2のいずれかを流れ続ける。また、タイミングt2の前後において、スイッチ素子S1,S2はオン状態を継続する。それゆえ、インバータ回路40の動作が第7の制御モードCM7から第5の制御モードCM5に切り替わっても、インバータ回路40と負荷6との間を流れる電流は、スイッチ素子S1,S2のいずれかを流れ続ける。
 すなわち、インバータ回路40は、第1の動作モードと第3の動作モードの間の動作モード切替えを、キャリア信号Scの頂点で行う制御モードの切替えによって行う。この制御モード切替え動作により、インバータ回路40は、リアクトルLf1に流れる電流の経路を確保することができる。したがって、インバータ回路40は、第1の動モードと第3の動作モードの間の動作モード切替えにおいて、リアクトルLf1の両端に発生するサージ電圧を抑制することができる。
 次に、インバータ回路40が、第2の動作モードと第3の動作モードとを相互に切替える動作を、図10と図11とを参照して説明する。図10は、電圧指令Vuがゼロ電圧Vz以上のときの、インバータ回路40の動作を示している。インバータ回路40は、タイミングt1において、その動作を第3の制御モードCM3から第7の制御モードCM7に切り替える。また、インバータ回路40は、タイミングt2において、その動作を第7の制御モードCM7から第3の制御モードCM3に切り替える。タイミングt1,t2は、キャリア信号Scが底点となるタイミングである。
 第3の制御モードCM3では、スイッチ素子S2,S3がオン状態にあり、スイッチング素子Q1,Q2がオフ状態にある。そして、スイッチ素子S4が、制御信号Honに従ってオンオフ動作をする。また、スイッチ素子S1が、制御信号Lonに従ってオンオフ動作をする。
 一方、第7の制御モードCM7では、スイッチ素子S1,S2がオン状態にあり、スイッチング素子Q1,Q2およびスイッチ素子S3,S4がオフ状態にある。
 したがって、タイミングt1において、スイッチ素子S3はオフするが、スイッチ素子S1,S2がオン状態にある。そして、タイミングt1の前後において、スイッチ素子S1,S2がオン状態を継続する。それゆえ、インバータ回路40の動作が第3の制御モードCM3から第7の制御モードCM7に切り替わっても、インバータ回路40と負荷6との間を流れる電流は、スイッチ素子S1,S2のいずれかを流れ続ける。また、タイミングt2の前後において、スイッチ素子S1,S2はオン状態を継続する。それゆえ、インバータ回路40の動作が第7の制御モードCM7から第3の制御モードCM3に切り替わっても、インバータ回路40と負荷6との間を流れる電流は、スイッチ素子S1,S2のいずれかを流れ続ける。
 図11は、電圧指令Vuがゼロ電圧Vz未満のときの、インバータ回路40の動作を示している。インバータ回路40は、タイミングt1において、その動作を第4の制御モードCM4から第7の制御モードCM7に切り替える。また、インバータ回路40は、タイミングt2において、その動作を第7の制御モードCM7から第4の制御モードCM4に切り替える。タイミングt1,t2は、キャリア信号Scが底点となるタイミングである。
 第4の制御モードCM4では、スイッチ素子S1,S4がオン状態にあり、スイッチング素子Q1,Q2がオフ状態にある。そして、スイッチ素子S3が、制御信号Honに従ってオンオフ動作をする。また、スイッチ素子S2が、制御信号Lonに従ってオンオフ動作をする。
 一方、第7の制御モードCM7では、スイッチ素子S1,S2がオン状態にあり、スイッチング素子Q1,Q2およびスイッチ素子S3,S4がオフ状態にある。
 したがって、タイミングt1において、スイッチ素子S4はオフするが、スイッチ素子S1,S2がオン状態にある。そして、タイミングt1の前後において、スイッチ素子S1,S2はオン状態を継続する。それゆえ、インバータ回路40の動作が第4の制御モードCM4から第7の制御モードCM7に切り替わっても、インバータ回路40と負荷6との間を流れる電流は、スイッチ素子S1,S2のいずれかを流れ続ける。また、タイミングt2の前後において、スイッチ素子S1,S2はオン状態を継続する。それゆえ、インバータ回路40の動作が第7の制御モードCM7から第4の制御モードCM4に切り替わっても、インバータ回路40と負荷6との間を流れる電流は、スイッチ素子S1,S2のいずれかを流れ続ける。
 すなわち、インバータ回路40は、第2の動作モードと第3の動作モードとの間の動作モード切替えを、キャリア信号Scの底点で行う制御モード切替えによって行う。この制御モード切替え動作により、インバータ回路40は、リアクトルLf1に流れる電流の経路を確保することができる。したがって、インバータ回路40は、第2の動作モードと第3の動作モードとの間の動作モード切替えにおいて、リアクトルLf1の両端に発生するサージ電圧を抑制することができる。
 次に、インバータ回路40が、第1の動作モードと第4の動作モードとを相互に切替える動作を、図12と図13とを参照して説明する。図12は、電圧指令Vuがゼロ電圧Vz以上のときの、インバータ回路40の動作を示している。インバータ回路40は、タイミングt1において、その動作を第1の制御モードCM1から第2の制御モードCM2に切り替える。また、インバータ回路40は、タイミングt2において、その動作を第2の制御モードCM2から第1の制御モードCM1に切り替える。タイミングt1,t2は、キャリア信号Scが底点となるタイミングである。
 第1の制御モードCM1では、スイッチ素子S3がオン状態にあり、スイッチング素子Q2およびスイッチ素子S1,S2がオフ状態にある。そして、スイッチ素子S4が、制御信号Honに従ってオンオフ動作をする。また、スイッチング素子Q1が、制御信号Lonに従ってオンオフ動作をする。
 一方、第2の制御モードCM2では、スイッチ素子S1がオン状態にあり、スイッチング素子Q2およびスイッチ素子S3,S4がオフ状態にある。そして、スイッチ素子S2が、制御信号Honに従ってオンオフ動作をする。また、スイッチング素子Q1が、制御信号Lonに従ってオンオフ動作をする。
 したがって、タイミングt1において、スイッチ素子S3はオフする。しかし、タイミングt1の前後において、スイッチング素子Q1がオン状態を継続する。それゆえ、インバータ回路40の動作が第1の制御モードCM1から第2の制御モードCM2に切り替わっても、インバータ回路40と負荷6との間を流れる電流は、スイッチング素子Q1または逆並列に接続されているダイオードのいずれかを流れ続ける。また、タイミングt2の前後において、スイッチング素子Q1はオン状態を継続する。それゆえ、インバータ回路40の動作が第2の制御モードCM2から第1の制御モードCM1に切り替わっても、インバータ回路40と負荷6との間を流れる電流は、スイッチング素子Q1または逆並列に接続されているダイオードのいずれかを流れ続ける。
 図13は、電圧指令Vuがゼロ電圧Vz未満のときの、インバータ回路40の動作を示している。インバータ回路40は、タイミングt1において、その動作を第5の制御モードCM5から第6の制御モードCM6に切り替える。また、インバータ回路40は、タイミングt2において、その動作を第6の制御モードCM6から第5の制御モードCM5に切り替える。タイミングt1,t2は、キャリア信号Scが底点となるタイミングである。
 第5の制御モードCM5では、スイッチ素子S2がオン状態にあり、スイッチング素子Q1およびスイッチ素子S3,S4がオフ状態にある。そして、スイッチ素子S1が、制御信号Honに従ってオンオフ動作をする。また、スイッチング素子Q2が、制御信号Lonに従ってオンオフ動作をする。
 一方、第6の制御モードCM6では、スイッチ素子S4がオン状態にあり、スイッチング素子Q1およびスイッチ素子S1,S2がオフ状態にある。そして、スイッチ素子S3が、制御信号Honに従ってオンオフ動作をする。また、スイッチング素子Q2が、制御信号Lonに従ってオンオフ動作をする。
 したがって、タイミングt1において、スイッチ素子S2はオフする。しかし、タイミングt1の前後において、スイッチング素子Q2はオン状態を継続する。それゆえ、インバータ回路40の動作が第5の制御モードCM5から第6の制御モードCM6に切り替わっても、インバータ回路40と負荷6との間を流れる電流は、スイッチング素子Q2または逆並列に接続されているダイオードのいずれかを流れ続ける。また、タイミングt2の前後において、スイッチング素子Q2はオン状態を継続する。それゆえ、インバータ回路40の動作が第6の制御モードCM6から第5の制御モードCM5に切り替わっても、インバータ回路40と負荷6との間を流れる電流は、スイッチング素子Q2または逆並列に接続されているダイオードのいずれかを流れ続ける。
 すなわち、インバータ回路40は、第1の動作モードと第4の動作モードの間の動作モード切替えを、キャリア信号Scの底点で行う制御モードの切替えによって行う。この制御モード切替え動作により、インバータ回路40は、リアクトルLf1に流れる電流の経路を確保することができる。したがって、インバータ回路40は、第1の動作モードと第4の動作モードの間の動作モード切替えにおいて、リアクトルLf1の両端に発生するサージ電圧を抑制することができる。
 次に、インバータ回路40が、第2の動作モードと第4の動作モードとを相互に切替える動作を、図14から図17を参照して説明する。図14は、電圧指令Vuがゼロ電圧Vz以上のときの、インバータ回路40の動作を示している。インバータ回路40は、タイミングt1において、その動作を第1の制御モードCM1から第3の制御モードCM3に切り替える。また、インバータ回路40は、タイミングt2において、その動作を第3の制御モードCM3から第1の制御モードCM1に切り替える。タイミングt1,t2は、キャリア信号Scが頂点となるタイミングである。
 第1の制御モードCM1では、スイッチ素子S3がオン状態にあり、スイッチング素子Q2およびスイッチ素子S1,S2がオフ状態にある。そして、スイッチ素子S4が、制御信号Honに従ってオンオフ動作をする。また、スイッチング素子Q1が、制御信号Lonに従ってオンオフ動作をする。
 一方、第3の制御モードCM3では、スイッチ素子S2,S3がオン状態にあり、スイッチング素子Q1,Q2がオフ状態にある。そして、スイッチ素子S1が、制御信号Honに従ってオンオフ動作をする。また、スイッチ素子S4が、制御信号Lonに従ってオンオフ動作をする。
 したがって、タイミングt1の前後において、スイッチ素子S3,S4がオン状態を継続する。それゆえ、インバータ回路40の動作が第1の制御モードCM1から第3の制御モードCM3に切り替わっても、インバータ回路40と負荷6との間を流れる電流は、スイッチ素子S3,S4のいずれかを流れ続ける。また、タイミングt2の前後において、スイッチ素子S3,S4がオン状態を継続する。それゆえ、インバータ回路40の動作が第3の制御モードCM3から第1の制御モードCM1に切り替わっても、インバータ回路40と負荷6との間を流れる電流は、スイッチ素子S3,S4のいずれかを流れ続ける。
 図15は、電圧指令Vuがゼロ電圧Vz未満のときの、インバータ回路40の動作を示している。インバータ回路40は、タイミングt1において、その動作を第4の制御モードCM4から第6の制御モードCM6に切り替える。また、インバータ回路40は、タイミングt2において、その動作を第6の制御モードCM6から第4の制御モードCM4に切り替える。タイミングt1,t2は、キャリア信号Scが頂点となるタイミングである。
 第4の制御モードCM4では、スイッチ素子S1,S4がオン状態にあり、スイッチング素子Q1,Q2がオフ状態にある。そして、スイッチ素子S2が、制御信号Honに従ってオンオフ動作をする。また、スイッチ素子S3が、制御信号Lonに従ってオンオフ動作をする。
 一方、第6の制御モードCM6では、スイッチ素子S4がオン状態にあり、スイッチング素子Q1およびスイッチ素子S1,S2がオフ状態にある。そして、スイッチング素子Q2が、制御信号Honに従ってオンオフ動作をする。また、スイッチ素子S3が、制御信号Lonに従ってオンオフ動作をする。
 したがって、タイミングt1の前後において、スイッチ素子S3,S4がオン状態を継続する。それゆえ、インバータ回路40の動作が第4の制御モードCM4から第6の制御モードCM6に切り替わっても、インバータ回路40と負荷6との間を流れる電流は、スイッチ素子S3,S4のいずれかを流れ続ける。また、タイミングt2の前後において、スイッチ素子S3,S4がオン状態を継続する。それゆえ、インバータ回路40の動作が第6の制御モードCM6から第4の制御モードCM4に切り替わっても、インバータ回路40と負荷6との間を流れる電流は、スイッチ素子S3,S4のいずれかを流れ続ける。
 図16は、電圧指令Vuが正極性から負極性に切り替わるときの、インバータ回路40の動作を示している。インバータ回路40の動作は、タイミングt1で、第3の制御モードCM3から第6の制御モードCM6に切り替わる。また、インバータ回路40の動作は、タイミングt2で、第6の制御モードCM6から第3の制御モードCM3に切り替わる。タイミングt1,t2は、キャリア信号Scが頂点となるタイミングである。
 第3の制御モードCM3では、スイッチ素子S2,S3がオン状態にあり、スイッチング素子Q1,Q2がオフ状態にある。そして、スイッチ素子S1が、制御信号Honに従ってオンオフ動作をする。また、スイッチ素子S4が、制御信号Lonに従ってオンオフ動作をする。
 一方、第6の制御モードCM6では、スイッチ素子S4がオン状態にあり、スイッチング素子Q1およびスイッチ素子S1,S2がオフ状態にある。そして、スイッチング素子Q2が、制御信号Honに従ってオンオフ動作をする。また、スイッチ素子S3が、制御信号Lonに従ってオンオフ動作をする。
 したがって、タイミングt1の前後において、スイッチ素子S3,S4がオン状態を継続する。それゆえ、インバータ回路40の動作が第3の制御モードCM3から第6の制御モードCM6に切り替わっても、インバータ回路40と負荷6との間を流れる電流は、スイッチ素子S3,S4のいずれかを流れ続ける。また、タイミングt2の前後において、スイッチ素子S3,S4がオン状態を継続する。したがって、インバータ回路40の動作が第6の制御モードCM6から第3の制御モードCM3に切り替わっても、インバータ回路40と負荷6との間を流れる電流は、スイッチ素子S3,S4のいずれかを流れ続ける。
 図17は、電圧指令Vuが正極性から負極性に切り替わるときの、インバータ回路40の動作を示している。インバータ回路40の動作は、タイミングt1で、第1の制御モードCM1から第4の制御モードCM4に切り替わる。また、インバータ回路40の動作は、タイミングt2で、第4の制御モードCM4から第1の制御モードCM1に切り替わる。タイミングt1,t2は、キャリア信号Scが頂点となるタイミングである。
 第1の制御モードCM1では、スイッチ素子S3がオン状態にあり、スイッチング素子Q2とスイッチ素子S1,S2がオフ状態にある。そして、スイッチング素子Q1が、制御信号Honに従ってオンオフ動作をする。また、スイッチ素子S4が、制御信号Lonに従ってオンオフ動作をする。
 一方、第4の制御モードCM4では、スイッチ素子S1,S4がオン状態にあり、スイッチング素子Q1,Q2がオフ状態にある。そして、スイッチ素子S2が、制御信号Honに従ってオンオフ動作をする。また、スイッチ素子S3が、制御信号Lonに従ってオンオフ動作をする。
 したがって、タイミングt1の前後において、スイッチ素子S3,S4がオン状態を継続する。それゆえ、インバータ回路40の動作が第1の制御モードCM1から第4の制御モードCM4に切り替わっても、インバータ回路40と負荷6との間を流れる電流は、スイッチ素子S3,S4のいずれかを流れ続ける。また、タイミングt2の前後において、スイッチ素子S3,S4がオン状態を継続する。それゆえ、インバータ回路40の動作が第4の制御モードCM4から第1の制御モードCM1に切り替わっても、インバータ回路40と負荷6との間を流れる電流は、スイッチ素子S3,S4のいずれかを流れ続ける。
 すなわち、インバータ回路40は、第2の動作モードと第4の動作モードの間の動作モード切替えを、キャリア信号Scの頂点で行う制御モードの切替えによって行う。この制御モード切替え動作により、インバータ回路40は、リアクトルLf1に流れる電流の経路を確保することができる。したがって、インバータ回路40は、第2の動作モードと第4の動作モードの間の動作モード切替えにおいて、リアクトルLf1の両端に発生するサージ電圧を抑制することができる。
 なお、上記では、本発明の説明を、4つのアームを備える電力変換器を例にとって行っているが、本発明は、5以上のアームを備える電力変換器に対しても適用することができる。
 本発明は、瞬時電圧低下補償装置または無停電電源装置など、交流電源の電圧変動および交流電源の停電が発生しても、負荷に安定な電圧を供給するための装置に適用することができる。
1     交流電源
2     コンデンサ
3,30  直流電源回路
4,40  インバータ回路
5     フィルタ回路
6     負荷
100   制御回路

Claims (16)

  1.  第1から第4の入力端子と、
     第1の出力端子と、
     前記第4の入力端子に接続される第2の出力端子と、
     前記第1から第4の入力端子それぞれと前記第1の出力端子との間に接続される第1から第4のアームと、
    を有し、前記第1から第4の入力端子から入力される電圧を用いて前記第1と第2の出力端子の間に交流電圧を出力する電力変換器を備え、
     前記電力変換器は、前記第1から第4のアームのうちから選択した2つのアームを交互にオンオフさせる制御モードで動作し、
     前記電力変換器は、異なるアームの組み合わせによる前記制御モードを2以上有し、
     前記電力変換器は、その動作を一の制御モードから他の制御モードに切り替えるとき、その切り替え前後において少なくとも1つの共通するアームが双方向に導通可能な状態を継続するタイミングで、前記制御モードの切替えを行うことを特徴とする電力変換装置。
  2.  前記第1の入力端子と前記第4の入力端子との間には第1の直流電圧が入力され、
     前記第2の入力端子と前記第4の入力端子との間には第2の直流電圧が入力され、
     前記第3の入力端子と前記第4の入力端子との間には交流電圧が入力され、
     前記第1と第2の直流電圧の大きさは、前記交流電圧の振幅よりも大きいことを特徴とする請求項1に記載の電力変換装置。
  3.  前記第1のアームは、第1のスイッチング素子とこれに逆並列に接続される第1のダイオードとを含み、
     前記第2のアームは、第2のスイッチング素子とこれに逆並列に接続される第2のダイオードとを含み、
     前記第3のアームは、第1のスイッチ素子とこれに逆並列に接続される第2のスイッチ素子とを含み、
     前記第4のアームは、第3のスイッチ素子とこれに逆並列に接続される第3のスイッチ素子とを含む、
    ことを特徴とする請求項2に記載の電力変換装置。
  4.  前記電力変換器が有する制御モードは、第1から第7の制御モードを含み、
     前記第1の制御モードは、前記第1の直流電圧を用いて前記第1と第2の出力端子の間に正極性の電圧を出力する制御モードであり、
     前記第2の制御モードは、前記交流電圧と前記第1の直流電圧とを用いて前記第1と第2の出力端子の間に正極性の電圧を出力する制御モードであり、
     前記第3の制御モードは、前記交流電圧を用いて前記第1と第2の出力端子の間に正極性の電圧を出力する制御モードであり、
     前記第4の制御モードは、前記交流電圧を用いて前記第1と第2の出力端子の間に負極性の電圧を出力する制御モードであり、
     前記第5の制御モードは、前記交流電圧と前記第1の直流電圧とを用いて前記第1と第2の出力端子の間に負極性の電圧を出力する制御モードであり、
     前記第6の制御モードは、前記第2の直流電圧を用いて前記第1と第2の出力端子の間に負極性の電圧を出力する制御モードであり、
     前記第7の制御モードは、前記交流電圧を前記第1と第2の出力端子の間に出力する制御モードである、
    ことを特徴とする請求項3に記載の電力変換装置。
  5.  前記電力変換器は、前記第3と第4のスイッチ素子がオンしているときに、前記第1と第6の制御モードとの間で前記制御モードの切替えを行うことを特徴とする請求項4に記載の電力変換装置。
  6.  前記電力変換器は、前記第1と第2のスイッチ素子がオンしているときに、前記第2と第5の制御モードとの間で前記制御モードの切替えを行うことを特徴とする請求項4に記載の電力変換装置。
  7.  前記電力変換器は、前記第1と第2のスイッチ素子がオンしているときに、前記第3と第4の制御モードとの間で前記制御モードの切替えを行うことを特徴とする請求項5に記載の電力変換装置。
  8.  前記電力変換器は、前記第1と第2のスイッチ素子がオンしているときに、前記第7の制御モードと前記第2から第5の制御モードのいずれかと間で前記制御モードの切替えを行うことを特徴とする請求項4に記載の電力変換装置。
  9.  前記電力変換器は、前記第1のスイッチング素子がオンしているときに、前記第1の制御モードと前記第2の制御モードとの間で前記制御モードの切替えを行うことを特徴とする請求項4に記載の電力変換装置。
  10.  前記電力変換器は、前記第2のスイッチング素子がオンしているときに、前記第5の制御モードと前記第6の制御モードの間で前記制御モードの切替えを行うことを特徴とする請求項4に記載の電力変換装置。
  11.  前記電力変換器は、前記第3と第4のスイッチ素子がオンしているときに、前記第3の制御モードと前記第1または第6の制御モードのいずれかとの間で前記制御モードの切替えを行うことを特徴とする請求項4に記載の電力変換装置。
  12.  前記電力変換器は、前記第3と第4のスイッチ素子がオンしているときに、前記第4の制御モードと前記第1または第6の制御モードのいずれかとの間で前記制御モードの切替えを行うことを特徴とする請求項4に記載の電力変換装置。
  13.  請求項4に記載の電力変換装置であって、さらに制御回路を備え、
     前記電力変換器は、パルス幅変調された信号に基づく電圧を前記第1と第2の出力端子の間に出力し、
     前記制御回路は、
     前記電力変換器が出力する電圧の指令を生成するための電圧指令生成回路と、
     前記電力変換器の制御モードが前記第1から第7の制御モードのいずれであるかを示す制御モード信号を生成するための制御モード設定回路と、
     変調信号とキャリア信号とを用いて前記パルス幅変調された信号を生成するためのパルス幅変調回路と、
     前記変調信号を生成するための変調信号生成回路と、
     前記キャリア信号を生成するためのキャリア信号生成回路と、
     を備え、
     前記電圧指令生成回路は、少なくとも、前記交流電圧に基づいて前記電力変換器が出力する電圧の指令を生成し、
     前記制御モード設定回路は、少なくとも、前記電力変換器が出力する電圧の指令と前記交流電圧とに基づいて前記制御モードを生成し、
     前記変調信号生成回路は、少なくとも、前記制御モード信号と前記電力変換器が出力する電圧の指令と前記交流電圧および前記第1と第2の直流電圧とに基づいて前記変調信号を生成し、
     前記パルス幅変調回路は、少なくとも、前記変調信号と前記キャリア信号とに基づいて前記パルス幅変調信号を生成し、
     前記パルス分配回路は、少なくとも、前記制御モード信号と前記パする幅変調信号とに基づいて前記第1と第2のスイッチング素子および前記第1から第4のスイッチ素子のオンオフを制御するための制御信号を生成する、
    ことを特徴とする電力変換装置。
  14.  N(Nは4以上の整数)個の入力端子と、
     第1と第2の出力端子と、
     前記N個の入力端子それぞれと前記第1の出力端子との間に接続されるN個のアームと、
    を有し、前記N個の入力端子から入力される電圧を用いて前記第1と第2の出力端子の間に交流電圧を出力する電力変換器を備え、
     前記電力変換器は、前記N個のアームのうちから選択した2つのアームを交互にオンオフさせる制御モードで動作し、
     前記電力変換器は、異なるアームの組み合わせによる前記制御モードを2以上含み、
     前記電力変換器は、その動作を一の制御モードから他の制御モードに切り替えるとき、その切り替え前後において少なくとも1つの共通するアームが双方向に導通可能な状態を継続するタイミングで、前記制御モードの切替えを行うことを特徴とする電力変換装置。
  15.  前記N個の入力端子のうち1の入力端子は前記第2の出力端子に接続されていることを特徴とする請求項14に記載の電力変換装置。
  16.  前記N個のアームのうちの1つのアームは、前記第1と第2の出力端子の間に接続されており、
     このアームは、双方向の導通を制御可能な双方向スイッチを含み、
     前記N個のアームのうち交流電圧を入力するアームは、双方向の導通を制御可能な双方向スイッチを含み、
     前記N個のアームのうち直流電圧を入力するアームは、入力端子から第1の交流端子に向かう方向の導通を制御可能なスイッチ素子を含んでいる、
    ことを特徴とする請求項15に記載の電力変換装置。
PCT/JP2013/000474 2013-01-30 2013-01-30 電力変換装置 WO2014118818A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201380035651.8A CN104428987B (zh) 2013-01-30 2013-01-30 电力转换装置
PCT/JP2013/000474 WO2014118818A1 (ja) 2013-01-30 2013-01-30 電力変換装置
JP2014559349A JP5850182B2 (ja) 2013-01-30 2013-01-30 電力変換装置
EP13873160.9A EP2953251B1 (en) 2013-01-30 2013-01-30 Power conversion device
US14/591,535 US9343995B2 (en) 2013-01-30 2015-01-07 Power conversion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/000474 WO2014118818A1 (ja) 2013-01-30 2013-01-30 電力変換装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/591,535 Continuation US9343995B2 (en) 2013-01-30 2015-01-07 Power conversion device

Publications (1)

Publication Number Publication Date
WO2014118818A1 true WO2014118818A1 (ja) 2014-08-07

Family

ID=51261570

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/000474 WO2014118818A1 (ja) 2013-01-30 2013-01-30 電力変換装置

Country Status (5)

Country Link
US (1) US9343995B2 (ja)
EP (1) EP2953251B1 (ja)
JP (1) JP5850182B2 (ja)
CN (1) CN104428987B (ja)
WO (1) WO2014118818A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024088121A1 (zh) * 2022-10-29 2024-05-02 华为数字能源技术有限公司 功率变换器及其控制方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2966770B1 (en) * 2013-10-08 2020-12-09 Fuji Electric Co., Ltd. Electrical power converter

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006112275A1 (ja) * 2005-04-15 2006-10-26 Kabushiki Kaisha Yaskawa Denki マトリクスコンバータ装置
WO2012067167A1 (ja) 2010-11-17 2012-05-24 富士電機株式会社 交流-交流変換装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5099410A (en) * 1990-11-13 1992-03-24 Wisconsin Alumni Research Foundation Single phase ac power conversion apparatus
TWI316166B (en) * 2006-05-30 2009-10-21 Delta Electronics Inc Bridgeless pfc converter with low common-mode noise and high power density
US7834597B1 (en) * 2007-08-24 2010-11-16 Fairchild Semiconductor Corporation System and method for AC voltage regulation
CN101999204B (zh) * 2009-01-19 2013-12-11 大金工业株式会社 双向开关电路及包括该双向开关电路的功率转换装置
US8208276B2 (en) * 2009-02-20 2012-06-26 Toshiba Mitsubishi-Electric Indsutrial Systems Corporation Power conversion device
JP5457449B2 (ja) * 2009-06-19 2014-04-02 三菱電機株式会社 電力変換装置
JP2012029428A (ja) * 2010-07-22 2012-02-09 Fuji Electric Co Ltd 電力変換装置
JP5732857B2 (ja) * 2011-01-07 2015-06-10 富士電機株式会社 交流電源装置
KR20140084328A (ko) * 2011-11-30 2014-07-04 가부시키가이샤 야스카와덴키 매트릭스 컨버터
JPWO2013099053A1 (ja) * 2011-12-28 2015-04-30 パナソニックIpマネジメント株式会社 マルチレベルインバータ装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006112275A1 (ja) * 2005-04-15 2006-10-26 Kabushiki Kaisha Yaskawa Denki マトリクスコンバータ装置
WO2012067167A1 (ja) 2010-11-17 2012-05-24 富士電機株式会社 交流-交流変換装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2953251A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024088121A1 (zh) * 2022-10-29 2024-05-02 华为数字能源技术有限公司 功率变换器及其控制方法

Also Published As

Publication number Publication date
US20150124498A1 (en) 2015-05-07
JP5850182B2 (ja) 2016-02-03
CN104428987B (zh) 2017-03-01
CN104428987A (zh) 2015-03-18
EP2953251A1 (en) 2015-12-09
JPWO2014118818A1 (ja) 2017-01-26
EP2953251B1 (en) 2017-11-08
US9343995B2 (en) 2016-05-17
EP2953251A4 (en) 2016-11-16

Similar Documents

Publication Publication Date Title
US9013906B2 (en) Power system-interconnected inverter device
TWI538351B (zh) 不斷電電源裝置
JP5939411B2 (ja) 電力変換装置
JP6706390B2 (ja) 電力変換装置
JP5370519B2 (ja) 電力変換装置
US9531298B2 (en) Inverter device
JPWO2018043367A1 (ja) 電力変換システム
JP6585872B1 (ja) 電力変換装置
JP5339018B1 (ja) 電力変換器、この電力変換器を備えるインバータ装置
JP5299541B1 (ja) インバータ回路
JP6140007B2 (ja) 電力変換装置
JP6142926B2 (ja) 電力変換装置
CN110546874B (zh) 电力转换系统
JPWO2017208639A1 (ja) 双方向絶縁型dc/dcコンバータおよびスマートネットワーク
JP5850182B2 (ja) 電力変換装置
JP5963197B2 (ja) 交流交流双方向電力変換器
JP2019058019A (ja) 電力変換装置
JP2012235557A (ja) 直流−交流変換回路及びこれを用いた電力変換装置
JP5403090B2 (ja) 電力変換装置
JP2013081309A (ja) 電力変換装置
Pal et al. A novel modulation strategy for active rectification of a snubber less soft-switched single stage 30 high frequency link DC-AC converter
JP6706389B2 (ja) 電力変換装置
JP6034143B2 (ja) 電力変換装置
JP2017093169A (ja) 電流形電力変換装置の制御装置及び制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13873160

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2013873160

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013873160

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2014559349

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE