JPWO2017208639A1 - 双方向絶縁型dc/dcコンバータおよびスマートネットワーク - Google Patents
双方向絶縁型dc/dcコンバータおよびスマートネットワーク Download PDFInfo
- Publication number
- JPWO2017208639A1 JPWO2017208639A1 JP2018520699A JP2018520699A JPWO2017208639A1 JP WO2017208639 A1 JPWO2017208639 A1 JP WO2017208639A1 JP 2018520699 A JP2018520699 A JP 2018520699A JP 2018520699 A JP2018520699 A JP 2018520699A JP WO2017208639 A1 JPWO2017208639 A1 JP WO2017208639A1
- Authority
- JP
- Japan
- Prior art keywords
- phase
- voltage
- power
- level inverter
- circuit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000002457 bidirectional effect Effects 0.000 claims abstract description 44
- 238000004804 winding Methods 0.000 claims abstract description 18
- 238000009413 insulation Methods 0.000 claims description 16
- 239000003990 capacitor Substances 0.000 description 30
- 230000007935 neutral effect Effects 0.000 description 30
- 238000000034 method Methods 0.000 description 28
- 238000010586 diagram Methods 0.000 description 20
- 230000007274 generation of a signal involved in cell-cell signaling Effects 0.000 description 14
- 101150110971 CIN7 gene Proteins 0.000 description 9
- 101150110298 INV1 gene Proteins 0.000 description 9
- 101100397044 Xenopus laevis invs-a gene Proteins 0.000 description 9
- 101100286980 Daucus carota INV2 gene Proteins 0.000 description 8
- 101100397045 Xenopus laevis invs-b gene Proteins 0.000 description 8
- 238000006243 chemical reaction Methods 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 5
- 238000003079 width control Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- 230000004048 modification Effects 0.000 description 4
- 238000012986 modification Methods 0.000 description 4
- 239000004065 semiconductor Substances 0.000 description 4
- 230000007423 decrease Effects 0.000 description 3
- 230000003111 delayed effect Effects 0.000 description 3
- 230000014509 gene expression Effects 0.000 description 3
- NCGICGYLBXGBGN-UHFFFAOYSA-N 3-morpholin-4-yl-1-oxa-3-azonia-2-azanidacyclopent-3-en-5-imine;hydrochloride Chemical compound Cl.[N-]1OC(=N)C=[N+]1N1CCOCC1 NCGICGYLBXGBGN-UHFFFAOYSA-N 0.000 description 2
- 239000000284 extract Substances 0.000 description 2
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 230000010363 phase shift Effects 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/12—Arrangements for reducing harmonics from ac input or output
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of dc power input into dc power output
- H02M3/22—Conversion of dc power input into dc power output with intermediate conversion into ac
- H02M3/24—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
- H02M3/28—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of dc power input into dc power output
- H02M3/22—Conversion of dc power input into dc power output with intermediate conversion into ac
- H02M3/24—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
- H02M3/28—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
- H02M3/325—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
- H02M3/335—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of dc power input into dc power output
- H02M3/22—Conversion of dc power input into dc power output with intermediate conversion into ac
- H02M3/24—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
- H02M3/28—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
- H02M3/325—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
- H02M3/335—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
- H02M3/33569—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
- H02M3/33576—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer
- H02M3/33584—Bidirectional converters
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/0003—Details of control, feedback or regulation circuits
- H02M1/0009—Devices or circuits for detecting current in a converter
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Inverter Devices (AREA)
- Dc-Dc Converters (AREA)
Abstract
Description
(双方向絶縁型DC/DCコンバータの構成)
図1は、この発明の実施の形態1による双方向絶縁型DC/DCコンバータの全体構成図である。
図3は、単相3レベルインバータINV−AのU相電圧VAU、V相電圧VAVおよび交流電圧VAの関係と、単相3レベルインバータINV−BのU相電圧VBU、V相電圧VBVおよび交流電圧VBの関係とを示す波形図である。
単相3レベルインバータINV−Aにおいて、U相電圧VAUおよびV相電圧VAVはいずれも、コンデンサC1,C2の接続点である中性点に対して±EdA/2,0の3値をとることができる。以下では、単相3レベルインバータINV−AのU相のIGBT素子およびダイオードとV相のIGBT素子およびダイオードとを総括的に説明するため符号AU,AVをまとめて符号「Ax」と示す。また、交流端子1a,1bをまとめて「交流端子1」と示す。
単相3レベルインバータINV−Bにおいても、単相3レベルインバータINV−Aと同様に、U相電圧VBUおよびV相電圧VBVはいずれも、コンデンサC3,C4の接続点である中性点に対して±EdB/2,0の3値をとることができる。以下では、単相3レベルインバータINV−BのU相のIGBT素子およびダイオードとV相のIGBT素子およびダイオードとを総括的に説明するため符号BU,BVをまとめて符号「Bx」と示す。また、交流端子2a,2bをまとめて「交流端子2」と示す。
次に、各単相3レベルインバータから出力される交流電圧のn次高調波成分について説明する。
図4は、図1に示した制御装置4の機能ブロック図である。ただし、図4では、直流回路5から直流回路6に直流電力を供給する場合の制御構成が示されている。なお、直流回路6から直流回路5に直流電力を供給する場合は、たとえば切換回路により、電圧検出器VS1,VS2と電圧検出器VS3,VS4とがそれぞれ置き換えられ、電流検出器IS2と電流検出器IS1とが置き換えられる。
双方向絶縁型DC/DCコンバータ1は、交流電圧VAと交流電圧VBとの間に位相差γを設けることで、直流回路5から単相3レベルインバータINV−A,INV−Bを介して直流回路6に電力を供給することができる。あるいは、直流回路6から単相3レベルインバータINV−B,INV−Aを介して直流回路5に電力を供給することができる。以下、その原理について説明する。
高調波制御部13は、交流電圧VA,VBのn次高調波成分の振幅が0となるように、位相差φA,φBを設定する。たとえば、高調波制御部13は、3次高調波成分を低減するため、3次高調波成分の振幅Vn(n=3)が0となるように、位相差φA,φBを設定する。具体的には、高調波制御部13は、式(5)においてsin(3φ/2)=0を満たすように、位相差φA,φBの各々を4π/3に設定する(φA=φB=4π/3)。
上記(2)で説明したように、交流基本波電圧Vaおよび交流基本波電圧Vbの位相差γを制御することにより、直流回路5および直流回路6の間の電力供給を制御することができる。
制御信号生成部19は、高調波制御部13により設定された位相差φA,φB、電流制御部18により生成された位相差γ、およびパルス幅制御部12により生成されたパルス幅θA,θBに基づいて、単相3レベルインバータINV−Aの制御信号と単相3レベルインバータINV−Bの制御信号とを生成する。
上記の実施の形態1では、直流電圧EdA,EdBのうちの高い方の直流電圧に対応する交流電圧のパルス幅θを狭めることで、交流基本波電圧VaおよびVbの実効値を一致させることとしたが、これに限るものではなく、交流基本波電圧VaおよびVbの実効値の差が所定値以下になるように、交流電圧のパルス幅θを狭めるようにしてもよい。または、交流基本波電圧VaおよびVbの実効値の差と、VaまたはVbの実効値との比が数%以下になるように、交流電圧のパルス幅θを狭めてもよい。
実施の形態2では、交流電圧のn次高調波成分の振幅Vnが0となるように、パルス幅θを設定する制御方式について説明する。本方式では、たとえば、3次高調波成分を低減するために、3次高調波成分の振幅Vn(n=3)が0となるように、パルス幅θを設定する。具体的には、0<θ<πと定義すると、sin(3θ/2)=0を満たすためには、3θ/2=πであればよい。すなわち、3次高調波成分を低減するためには、パルス幅θを2π/3に設定すればよい。
図9は、図1に示した制御装置4の機能ブロック図である。ただし、図9では、直流回路5から直流回路6に直流電力を供給する場合の制御構成が示されている。なお、直流回路6から直流回路5に直流電力を供給する場合は、たとえば切換回路により、電圧検出器VS1,VS2と電圧検出器VS3,VS4とがそれぞれ置き換えられ、電流検出器IS2と電流検出器IS1とが置き換えられる。
制御装置4は、実施の形態1で示した位相差γの制御と同様の方法によって位相差γを制御する。
高調波制御部21は、交流電圧VA,VBのn次高調波成分の振幅が0となるように、パルス幅θA,θBを設定する。たとえば、高調波制御部21は、3次高調波成分を低減するために、3次高調波成分の振幅Vn(n=3)=0となるように、パルス幅θA,θBを設定する。具体的には、高調波制御部21は、式(5)においてsin(3θ/2)=0を満たすように、パルス幅θA,θBの各々を2π/3に設定する。
本実施の形態2では、交流基本波電圧Vaの実効値と交流基本波電圧Vbの実効値とが等しくなるように、位相差φA,φBを制御する。具体的には、2つの直流電圧EdA,EdBのうちの低い方の直流電圧に対応する交流電圧の位相差φをπに固定し、高い方の直流電圧に対応する交流電圧の位相差φを絞ることにより、交流基本波電圧Vaの実効値と交流基本波電圧Vbの実効値とを一致させる。
制御信号生成部19は、高調波制御部21により設定されたパルス幅θA,θB、電流制御部18により生成された位相差γ、および位相差制御部20により生成された位相差φA,φBに基づいて、単相3レベルインバータINV−Aの制御信号と単相3レベルインバータINV−Bの制御信号とを生成する。
上記の実施の形態2では、直流電圧EdA,EdBのうちの高い方の直流電圧に対応する交流電圧の位相差φを狭めることで、交流基本波電圧VaおよびVbの実効値を一致させることとしたが、これに限るものではなく、交流基本波電圧VaおよびVbの実効値の差が所定値以下になるように、交流電圧の位相差φを狭めるようにしてもよい。または、交流基本波電圧VaおよびVbの実効値の差と、VaまたはVbの実効値との比が数%以下になるように、交流電圧の位相差φを狭めてもよい。
次に、本実施の形態に至った課題について説明しながら、本実施の形態の作用効果について説明する。
図14に示す回路では、2レベルインバータの定格電力を100[kW]とし、スイッチング周波数fを10[kHz]とし、直流電圧Edを100[V]としている。よって、2レベルインバータの定格電流は100[kW]/100[V]=100[A]となる。定格インピーダンスZpuは100[V]/100[A]=1[Ω]となる。定格リアクトルLpuは、Lpu=1/(2πf)より、15.9[μH]となる。
基本波成分:
V1=90V,I1=90V/(1+2πfL)1/2=85.8A(100%)
3次高調波成分:
V3=30V,I3=30V/(1+2π・3fL)1/2=26.3A(30.7%)5次高調波成分:
V5=18V,I5=50V/(1+2π・5fL)1/2=12.9A(17.1%)
次に、基本波成分および各次数成分の電力損失の割合を計算する。電力損失は抵抗×(電流)2である。以下では、抵抗を一定として各次数の電力損失の割合を計算する。
基本波成分のみ:100%
基本波成分+3次高調波成分:
(100%)2+(30.6%)2=109.4%
基本波成分+5次高調波成分:
(100%)2+(17.5%)2=103.1%
基本波成分+3次高調波成分+5次高調波成分:
(100%)2+(30.6%)2+(17.5%)2=112.4%
上記の計算結果において、3次高調波成分は基本波成分に対する電力損失の割合が約10%と高くなっている。したがって、3次高調波成分を抑制することができれば、約10%損失を低減できるものと見積もられる。
(1)単相3レベルインバータINV−A,INV−Bにおいて、U相アームおよびV相アームを構成する3レベル回路は、図11に示すような構成であってもよい。3レベル回路は4つのIGBT素子と、6つのダイオードとを含む。図13には、単相3レベルインバータINV−AのU相アームを構成する3レベル回路を代表して示す。
(スマートネットワークの構成)
実施の形態3では、図12を参照して、本実施の形態による双方向絶縁型DC/DCコンバータを用いたスマートネットワークの構成について説明する。
Claims (9)
- 第1および第2の直流回路間で直流電力の授受を行なう双方向絶縁型DC/DCコンバータであって、
前記第1の直流回路から受ける第1の直流電圧に基づいて、第1の出力端子および第2の出力端子の間に第1の交流電圧を生成する第1の単相3レベルインバータと、
前記第2の直流回路から受ける第2の直流電圧に基づいて、第3の出力端子および第4の出力端子の間に第2の交流電圧を生成する第2の単相3レベルインバータと、
前記第1および第2の出力端子から前記第1の交流電圧を受ける1次巻線と、前記第3および第4の出力端子から前記第2の交流電圧を受ける2次巻線とを含む絶縁型変圧器とを備える、双方向絶縁型DC/DCコンバータ。 - 前記第1の単相3レベルインバータは、
前記第1の直流回路と前記第1の出力端子との間に接続され、第1相の電圧を生成する第1の回路と、
前記第1の直流回路と前記第2の出力端子との間に接続され、第2相の電圧を生成する第2の回路とを含み、
前記第1相の電圧と前記第2相の電圧との差を前記第1の交流電圧として生成するように構成され、
前記第2の単相3レベルインバータは、
前記第2の直流回路と前記第3の出力端子との間に接続され、前記第1相の電圧を生成する第3の回路と、
前記第2の直流回路と前記第4の出力端子との間に接続され、前記第2相の電圧を生成する第4の回路とを含み、
前記第1相の電圧と前記第2相の電圧の差を前記第2の交流電圧として生成するように構成され、
前記双方向絶縁型DC/DCコンバータは、前記第1および第2の単相3レベルインバータを制御する制御装置をさらに備え、
前記制御装置は、前記第1および第2の交流電圧の各々に含まれるn次高調波成分(nは3以上の奇数)の振幅が0となるように、前記第1相および前記第2相の電圧のパルス幅、および前記第1相および前記第2相の電圧の位相差のいずれか一方を設定する、請求項1に記載の双方向絶縁型DC/DCコンバータ。 - 前記第1および第2の単相3レベルインバータの各々において、前記第1相および前記第2相の電圧のパルス幅が互いに等しい場合、前記n次高調波成分の振幅は下式(1)で与えられ、
Vn=4E/nπ・sin(nθ/2)・sin(nφ/2)・・・(1)
(式(1)中、Vnは前記n次高調波成分の振幅を表わし、Eは前記第1および第2の直流電圧を表わし、θは前記パルス幅を表わし、φは前記位相差を表わす。)
前記制御装置は、sin(nφ/2)=0を満たすように、前記第1相および前記第2相の電圧の位相差を設定する、請求項2に記載の双方向絶縁型DC/DCコンバータ。 - 前記制御装置は、
前記第1の直流電圧が前記第2の直流電圧よりも高い場合は、前記第1および第2の交流電圧の基本波成分の実効値が一致するように、前記第1の単相3レベルインバータにおける前記第1相および前記第2相の電圧のパルス幅を狭め、
前記第2の直流電圧が前記第2の直流電圧よりも高い場合は、前記第1および第2の交流電圧の基本波成分の実効値が一致するように、前記第2の単相3レベルインバータにおける前記第1相および前記第2相の電圧のパルス幅を狭める、請求項3に記載の双方向絶縁型DC/DCコンバータ。 - 前記第1および第2の単相3レベルインバータの各々において、前記第1相および前記第2相の電圧のパルス幅が等しい場合、前記n次高調波成分の振幅は下式(1)で与えられ、
Vn=4E/nπ・sin(nθ/2)・sin(nφ/2)・・・(1)
(式(1)中、Vnは前記n次高調波成分の振幅を表わし、Eは前記第1および第2の直流電圧を表わし、θは前記パルス幅を表わし、φは前記位相差を表わす。)
前記制御装置は、sin(nθ/2)=0を満たすように前記第1相および前記第2相の電圧のパルス幅を設定する、請求項2に記載の双方向絶縁型DC/DCコンバータ。 - 前記制御装置は、
前記第1の直流電圧が前記第2の直流電圧よりも高い場合は、前記第1および第2の交流電圧の基本波成分の実効値が一致するように、前記第1の単相3レベルインバータにおける前記第1相および前記第2相の電圧の位相差を狭め、
前記第2の直流電圧が前記第2の直流電圧よりも高い場合は、前記第1および第2の交流電圧の基本波成分の実効値が一致するように、前記第2の単相3レベルインバータにおける前記第1相および前記第2相の電圧の位相差を狭める、請求項5に記載の双方向絶縁型DC/DCコンバータ。 - 前記制御装置はさらに、前記第1および第2の直流回路間で所望の直流電力が授受されるように、前記第1および第2の交流電圧の位相差を設定する、請求項2〜6のいずれか1項に記載の双方向絶縁型DC/DCコンバータ。
- 請求項1〜7のいずれか1項に記載の双方向絶縁型DC/DCコンバータと、
前記第1および第2の直流回路とを備え、
前記第1および第2の直流回路は、それぞれ第1および第2の直流電力系統である、スマートネットワーク。 - 前記第1および第2の直流電力系統の各々は、
前記第1または第2の単相3レベルインバータに接続される直流母線と、
前記直流母線に直流電力を供給する直流電源と、
前記直流母線からの直流電力によって駆動される負荷と、
前記直流母線からの直流電力を蓄える電力貯蔵装置とを含む、請求項8に記載のスマートネットワーク。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016108804 | 2016-05-31 | ||
JP2016108804 | 2016-05-31 | ||
PCT/JP2017/015061 WO2017208639A1 (ja) | 2016-05-31 | 2017-04-13 | 双方向絶縁型dc/dcコンバータおよびスマートネットワーク |
Publications (2)
Publication Number | Publication Date |
---|---|
JPWO2017208639A1 true JPWO2017208639A1 (ja) | 2019-02-14 |
JP6785304B2 JP6785304B2 (ja) | 2020-11-18 |
Family
ID=60479399
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018520699A Active JP6785304B2 (ja) | 2016-05-31 | 2017-04-13 | 双方向絶縁型dc/dcコンバータおよびスマートネットワーク |
Country Status (5)
Country | Link |
---|---|
US (1) | US10587200B2 (ja) |
JP (1) | JP6785304B2 (ja) |
KR (1) | KR102218804B1 (ja) |
CN (1) | CN109196766B (ja) |
WO (1) | WO2017208639A1 (ja) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107565834B (zh) * | 2017-07-25 | 2020-03-24 | 全球能源互联网研究院有限公司 | 一种交直流变换电路的控制方法及装置 |
WO2019150443A1 (ja) * | 2018-01-30 | 2019-08-08 | 三菱電機株式会社 | 直列多重インバータ |
CN111064371B (zh) * | 2019-12-26 | 2024-04-05 | 杭州电子科技大学 | 混合五电平双向dc/dc变流器及其电压匹配调制方法 |
JP7475980B2 (ja) | 2020-06-17 | 2024-04-30 | 株式会社東芝 | 電力変換装置、変電所用電源装置および回生電力貯蔵装置 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014508495A (ja) * | 2011-03-01 | 2014-04-03 | ライニシュ−ヴェストファーリシュ−テクニシェ ホーホシューレ アーヘン | 双方向dc−dcコンバータ |
WO2015056503A1 (ja) * | 2013-10-18 | 2015-04-23 | 東芝三菱電機産業システム株式会社 | 双方向絶縁型dc/dcコンバータおよびそれを用いたスマートネットワーク |
JP2016039663A (ja) * | 2014-08-06 | 2016-03-22 | 富士電機株式会社 | 電力変換装置 |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3704051B2 (ja) * | 2001-03-09 | 2005-10-05 | 株式会社千代田 | 入出力絶縁型電力回生装置 |
US7839023B2 (en) * | 2007-07-18 | 2010-11-23 | Raytheon Company | Methods and apparatus for three-phase inverter with reduced energy storage |
US20110149611A1 (en) * | 2009-12-21 | 2011-06-23 | Intersil Americas Inc. | Bidirectional signal conversion |
CN102624243A (zh) * | 2012-04-19 | 2012-08-01 | 中国矿业大学(北京) | 隔离式半桥三电平双向dc/dc变换器 |
JP6008185B2 (ja) * | 2012-11-19 | 2016-10-19 | 富士電機株式会社 | 3レベル電力変換装置及びその制御方法 |
US9263948B1 (en) * | 2014-09-25 | 2016-02-16 | Bae Systems Controls Inc. | Input output balanced bidirectional buck-boost converters and associated systems and methods |
US20190157986A1 (en) * | 2015-09-16 | 2019-05-23 | sonnen GmbH | Inverter device, energy storage system and method of controlling an inverter device |
GB201602044D0 (en) * | 2016-02-04 | 2016-03-23 | Eltek As | Bidirectional DC-DC resonant converter |
US9667157B1 (en) * | 2016-04-27 | 2017-05-30 | General Electric Company | System and method for operating a power converter |
US10587203B2 (en) * | 2016-11-17 | 2020-03-10 | Toshiba Mitsubishi-Electric Industrial Systems Corporation | Power conversion apparatus |
US10644610B2 (en) * | 2016-11-17 | 2020-05-05 | Toshiba Mitsubishi-Electric Industrial Systems Corporation | Power conversion device |
-
2017
- 2017-04-13 US US16/303,230 patent/US10587200B2/en active Active
- 2017-04-13 JP JP2018520699A patent/JP6785304B2/ja active Active
- 2017-04-13 WO PCT/JP2017/015061 patent/WO2017208639A1/ja active Application Filing
- 2017-04-13 KR KR1020187037789A patent/KR102218804B1/ko active IP Right Grant
- 2017-04-13 CN CN201780033264.9A patent/CN109196766B/zh active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014508495A (ja) * | 2011-03-01 | 2014-04-03 | ライニシュ−ヴェストファーリシュ−テクニシェ ホーホシューレ アーヘン | 双方向dc−dcコンバータ |
WO2015056503A1 (ja) * | 2013-10-18 | 2015-04-23 | 東芝三菱電機産業システム株式会社 | 双方向絶縁型dc/dcコンバータおよびそれを用いたスマートネットワーク |
JP2016039663A (ja) * | 2014-08-06 | 2016-03-22 | 富士電機株式会社 | 電力変換装置 |
Also Published As
Publication number | Publication date |
---|---|
CN109196766B (zh) | 2020-09-29 |
JP6785304B2 (ja) | 2020-11-18 |
KR20190008386A (ko) | 2019-01-23 |
WO2017208639A1 (ja) | 2017-12-07 |
US20190207526A1 (en) | 2019-07-04 |
KR102218804B1 (ko) | 2021-02-22 |
US10587200B2 (en) | 2020-03-10 |
CN109196766A (zh) | 2019-01-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9923484B2 (en) | Method and system for operating a multilevel electric power inverter | |
US20090244936A1 (en) | Three-phase inverter | |
US20110170322A1 (en) | Power conversion device | |
JP6171022B2 (ja) | 双方向絶縁型dc/dcコンバータおよびそれを用いたスマートネットワーク | |
WO2017208639A1 (ja) | 双方向絶縁型dc/dcコンバータおよびスマートネットワーク | |
US20140233279A1 (en) | Power conversion apparatus | |
DK201470472A1 (en) | Power conversion system and method | |
JP5254922B2 (ja) | 電力変換装置 | |
JP5374336B2 (ja) | 電力変換装置 | |
US20160380551A1 (en) | Converter arrangement having multi-step converters connected in parallel and method for controlling these | |
KR102698112B1 (ko) | 멀티레벨 변환기를 위한 전압 밸런스 시스템 및 방법 | |
JP5753742B2 (ja) | インバータ装置、および、このインバータ装置を備えた系統連系インバータシステム | |
JP5362657B2 (ja) | 電力変換装置 | |
JP2013081309A (ja) | 電力変換装置 | |
JP5119992B2 (ja) | 電力変換装置 | |
US10848072B2 (en) | Power supply control device, power conversion system, and power supply control method | |
KR101592227B1 (ko) | 에너지저장시스템의 dc 버스 불균형 제어 회로 | |
KR101312589B1 (ko) | 멀티레벨 인버터 및 그 인버터의 구동 방법 | |
KR101287444B1 (ko) | 멀티레벨 인버터 및 그 인버터의 구동 방법 | |
US20210028719A1 (en) | Power conversion apparatus | |
JP5752580B2 (ja) | 電力変換装置 | |
Lambert et al. | Simplified modeling and control of a high-power high-voltage isolated dc-dc converter | |
Scott et al. | Multilevel, multiport, switched-capacitor based inverter for utility applications | |
Sagayaraj et al. | Performance Analysis of Quazi Z-source inverter Fed Induction Motor under Semiconductor Failure Condition | |
Mohammed et al. | Single Phase T-Type Multilevel Inverters for Renewable Energy Systems, Topology, Modulation, and Control Techniques: A Review. Energies 2022, 15, 8720 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20181004 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20181004 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20200107 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200303 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20200929 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20201026 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6785304 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |