WO2017208639A1 - 双方向絶縁型dc/dcコンバータおよびスマートネットワーク - Google Patents

双方向絶縁型dc/dcコンバータおよびスマートネットワーク Download PDF

Info

Publication number
WO2017208639A1
WO2017208639A1 PCT/JP2017/015061 JP2017015061W WO2017208639A1 WO 2017208639 A1 WO2017208639 A1 WO 2017208639A1 JP 2017015061 W JP2017015061 W JP 2017015061W WO 2017208639 A1 WO2017208639 A1 WO 2017208639A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
voltage
level inverter
power
circuit
Prior art date
Application number
PCT/JP2017/015061
Other languages
English (en)
French (fr)
Inventor
和法 真田
俊秀 中野
一輝 西村
隆夫 川畑
良尚 川畑
Original Assignee
東芝三菱電機産業システム株式会社
学校法人立命館
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東芝三菱電機産業システム株式会社, 学校法人立命館 filed Critical 東芝三菱電機産業システム株式会社
Priority to US16/303,230 priority Critical patent/US10587200B2/en
Priority to KR1020187037789A priority patent/KR102218804B1/ko
Priority to CN201780033264.9A priority patent/CN109196766B/zh
Priority to JP2018520699A priority patent/JP6785304B2/ja
Publication of WO2017208639A1 publication Critical patent/WO2017208639A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33576Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer
    • H02M3/33584Bidirectional converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/12Arrangements for reducing harmonics from ac input or output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0009Devices or circuits for detecting current in a converter

Definitions

  • the present invention relates to a bidirectional insulated DC / DC converter and a smart network including the same.
  • Some bidirectional insulated DC / DC converters include two inverters coupled by an insulated transformer (see, for example, Non-Patent Documents 1 and 2).
  • each of the two inverters is composed of a two-level inverter. Since the two-level inverter has a harmonic component in the output AC voltage, there is a problem that distortion of the output AC current due to the harmonic component increases, resulting in a decrease in conversion efficiency.
  • Non-Patent Document 2 discloses a technique for connecting a series resonant circuit composed of a reactor and a capacitor in series with the primary winding of the insulation transformer. Has been proposed.
  • an effective reactor value of 20 to 30% of the rated value is increased to 120 to 130%, and an effective reactor value is reduced by a capacitor that resonates with 100% of the reactor value. It is about 30%.
  • Non-Patent Document 2 Although the harmonic component can be reduced by increasing the reactor, there arises a problem that the apparatus is increased in size. In addition, since a loss occurs in the series resonant circuit, there arises a problem that a great improvement in conversion efficiency cannot be expected.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to provide a bidirectional insulated DC / DC converter that can suppress harmonic components with a small configuration. It is.
  • the bidirectional insulated DC / DC converter transfers DC power between the first and second DC circuits.
  • the bidirectional insulated DC / DC converter includes a first single-phase three-level inverter, a second single-phase three-level inverter, and an insulated transformer.
  • the first single-phase three-level inverter generates a first AC voltage between the first output terminal and the second output terminal based on the first DC voltage received from the first DC circuit.
  • the second single-phase three-level inverter generates a second AC voltage between the third output terminal and the fourth output terminal based on the second DC voltage received from the second DC circuit.
  • the insulated transformer includes a primary winding that receives the first AC voltage from the first and second output terminals, and a secondary winding that receives the second AC voltage from the third and fourth output terminals. Including.
  • a bidirectional insulation type DC / DC converter capable of suppressing harmonic components can be constructed with a small configuration.
  • FIG. 1 is an overall configuration diagram of a bidirectional insulated DC / DC converter according to a first embodiment of the present invention.
  • FIG. 2 is a circuit diagram for explaining in detail the configuration of the single-phase three-level inverter shown in FIG. 1. It is a wave form diagram which shows the relationship of the U-phase voltage, V-phase voltage, and alternating voltage of a single phase 3 level inverter. It is a functional block diagram of the control apparatus shown in FIG. It is a vector diagram of an alternating current fundamental voltage when power is transmitted from the single-phase three-level inverter INV-A to the single-phase three-level inverter INV-B.
  • 3 is a time chart showing a method of generating a control signal for single-phase three-level inverter INV-A according to the first embodiment.
  • FIG. 3 is a time chart showing a method of generating control signals for single-phase three-level inverters INV-A and INV-B according to the first embodiment. It is a functional block diagram of the control apparatus shown in FIG. 6 is a time chart showing a method of generating control signals for single-phase three-level inverters INV-A and INV-B according to the second embodiment. It is a figure which shows the example of a change of the 3 level circuit used for a single phase 3 level inverter.
  • FIG. 10 is a block diagram illustrating a configuration of a smart network according to a third embodiment. It is a circuit diagram which shows the structure of the bidirectional
  • FIG. 1 (Configuration of bidirectional insulated DC / DC converter) 1 is an overall configuration diagram of a bidirectional insulated DC / DC converter according to Embodiment 1 of the present invention.
  • a bidirectional insulated DC / DC converter 1 includes positive voltage terminals T1, T3, negative voltage terminals T2, T4, current detectors IS1, IS2, voltage detectors VS1 ⁇ VS4, capacitors C1 to C4, single-phase three-level inverters INV-A and INV-B, reactors L1 and L2, isolated transformer 3, control device 4, and drivers DR1 and DR2.
  • a DC circuit 5 is connected to the terminals T1 and T2, and a DC circuit 6 is connected to the terminals T3 and T4.
  • the DC circuit 5 includes a DC power source that generates DC power and a load that is driven by the DC power.
  • the DC circuit 6 includes a power storage device that stores DC power. Examples of the DC power source include a solar power generator and a wind power generator. Examples of the power storage device include a LiPo (lithium polymer) battery and an electric double layer capacitor.
  • the bidirectional insulated DC / DC converter 1 supplies the surplus DC power to the DC circuit 6, and in the case where the DC power is insufficient in the DC circuit 5.
  • DC power of the DC circuit 6 is supplied to the DC circuit 5.
  • the bidirectional insulated DC / DC converter 1 exchanges DC power regardless of the level of the DC voltage EdA of the DC circuit 5 and the DC voltage EdB of the DC circuit 6.
  • the single-phase three-level inverter INV-A (first single-phase three-level inverter) has three DC terminals (positive voltage terminal 1p, neutral point voltage terminal 1c, negative voltage terminal 1n), two AC terminals 1a, 1b.
  • the positive voltage terminal 1p of the single-phase three-level inverter INV-A is connected to the positive voltage terminal T1 via the current detector IS1, and the negative voltage terminal 1n of the single-phase three-level inverter INV-A is connected to the negative voltage terminal T2. Is done.
  • the capacitors C1 and C2 are connected in series between the positive voltage terminal 1p and the negative voltage terminal 1n of the single-phase three-level inverter INV-A, and smooth and stabilize the DC voltage EdA between the terminals 1p and 1n.
  • a neutral point voltage terminal 1c of the single-phase three-level inverter INV-A is connected to a connection point between the capacitors C1 and C2.
  • the single-phase three-level inverter INV-A is controlled by the output signal of the driver DR1, converts the DC voltage EdA between the positive voltage terminal 1p and the negative voltage terminal 1n into the AC voltage VA, and outputs it between the AC terminals 1a and 1b. .
  • the single-phase three-level inverter INV-B (second single-phase three-level inverter) includes three DC terminals (a positive voltage terminal 2p, a neutral point voltage terminal 2c, a negative voltage terminal 2n), two AC terminals 2a, 2b.
  • the positive voltage terminal 2p of the single-phase three-level inverter INV-B is connected to the positive voltage terminal T3 via the current detector IS2, and the negative voltage terminal 2n of the single-phase three-level inverter INV-B is connected to the negative voltage terminal T4. Is done.
  • Capacitors C3 and C4 are connected in series between the positive voltage terminal 2p and the negative voltage terminal 2n of the single-phase three-level inverter INV-B, and smooth and stabilize the DC voltage EdB between the terminals 2p and 2n.
  • a neutral point voltage terminal 2c of the single-phase three-level inverter INV-B is connected to a connection point between the capacitors C3 and C4.
  • Single-phase three-level inverter INV-B is controlled by the output signal of driver DR2, converts DC voltage EdB between positive voltage terminal 2p and negative voltage terminal 2n to AC voltage VB, and outputs the AC voltage between AC terminals 2a and 2b. .
  • the insulated transformer 3 includes a primary winding 3a and a secondary winding 3b that are insulated from each other.
  • the number of turns of the primary winding 3a and the number of turns of the secondary winding 3b are the same for simplicity of explanation.
  • One terminal of the primary winding 3a is connected to the AC terminal 1a of the single-phase three-level inverter INV-A via the reactor L1, and the other terminal of the primary winding 3a is the AC terminal of the single-phase three-level inverter INV-A. Connected to 1b.
  • One terminal of the secondary winding 3b is connected to the AC terminal 2a of the single-phase three-level inverter INV-B via the reactor L2, and the other terminal of the secondary winding 3b is the AC terminal of the single-phase three-level inverter INV-B. 2b.
  • the current detector IS1 detects a DC current flowing between the single-phase three-level inverter INV-A and the DC circuit 5, and outputs the detected value to the control device 4.
  • the current detector IS2 detects a direct current flowing between the single-phase three-level inverter INV-B and the direct current circuit 6, and outputs the detected value to the control device 4.
  • the voltage detector VS1 detects the voltage at both ends of the capacitor C1 (corresponding to the DC voltage between the terminals 1p and 1c) and outputs the detected value to the control device 4.
  • the voltage detector VS2 detects the voltage at both ends of the capacitor C2 (corresponding to the DC voltage between the terminals 1c and 1n) and outputs the detected value to the control device 4.
  • the voltage detector VS3 detects the voltage at both ends of the capacitor C3 (corresponding to the DC voltage between the terminals 2p and 2c) and outputs the detected value to the control device 4.
  • the voltage detector VS4 detects the voltage at both ends of the capacitor C4 (corresponding to the DC voltage between the terminals 2c and 2n) and outputs the detected value to the control device 4.
  • the control device 4 is composed of a microcomputer, for example, and controls the operation of the single-phase three-level inverters INV-A and INV-B.
  • each of the single-phase three-level inverters INV-A and INV-B includes a semiconductor switch including a semiconductor switching element.
  • an IGBT Insulated Gate Bipolar Transistor
  • PWM Pulse Width Modulation
  • the control device 4 receives the output signals from the voltage detectors VS1 to VS4 and the current detectors IS1 and IS2 and executes PWM control to generate control signals for the single-phase three-level inverters INV-A and INV-B. .
  • the driver DR1 amplifies the control signal of the inverter INV-A and supplies it to the inverter INV-A.
  • the driver DR2 amplifies the control signal of the inverter INV-B and supplies it to the inverter INV-B.
  • FIG. 2 is a circuit diagram illustrating in detail the configuration of the single-phase three-level inverters INV-A and INV-B shown in FIG.
  • each of single-phase three-level inverters INV-A and INV-B includes a U-phase arm and a V-phase arm.
  • Each of the U-phase arm and the V-phase arm is configured as a three-level circuit, and includes four IGBT elements and four diodes.
  • the U-phase arm (first circuit) of the single-phase three-level inverter INV-A includes IGBT elements QAU-1 to QAU-4 and diodes DAU-1 to DAU-4.
  • V-phase arm (second circuit) of single-phase three-level inverter INV-A includes IGBT elements QAV-1 to QAV-4 and diodes DAV-1 to DAV-4.
  • the IGBT elements QAU-1 and QAU-4 are connected in series between the positive voltage terminal 1p and the negative voltage terminal 1n.
  • Diodes DAU-1 and DAU-4 are connected in antiparallel to IGBT elements QAU-1 and QAU-4, respectively.
  • IGBT element QAU-2 and diode DAU-2 are connected in series between neutral point voltage terminal 1c and AC terminal 1a. Specifically, the collector of IGBT element QAU-2 is connected to neutral point voltage terminal 1c, and its emitter is connected to the anode of diode DAU-2. The cathode of the diode DAU-2 is connected to the AC terminal 1a.
  • IGBT element QAU-3 and diode DAU-3 are connected in series between neutral point voltage terminal 1c and AC terminal 1a. Specifically, the emitter of IGBT element QAU-3 is connected to neutral point voltage terminal 1c, and its collector is connected to the cathode of diode DAU-3. The anode of the diode DAU-3 is connected to the AC terminal 1a.
  • the IGBT elements QAV-1 and QAV-4 are connected in series between the positive voltage terminal 1p and the negative voltage terminal 1n.
  • Diodes DAV-1 and DAV-4 are connected in antiparallel to IGBT elements QAV-1 and QAV-4, respectively.
  • IGBT element QAV-2 and diode DAV-2 are connected in series between neutral point voltage terminal 1c and AC terminal 1b. Specifically, the collector of IGBT element QAV-2 is connected to neutral point voltage terminal 1c, and its emitter is connected to the anode of diode DAV-2. The cathode of the diode DAV-2 is connected to the AC terminal 1b.
  • IGBT element QAV-3 and diode DAV-3 are connected in series between neutral point voltage terminal 1c and AC terminal 1b. Specifically, the emitter of IGBT element QAV-3 is connected to neutral point voltage terminal 1c, and its collector is connected to the cathode of diode DAV-3. The anode of the diode DAV-3 is connected to the AC terminal 1b.
  • the U-phase arm (third circuit) of the single-phase three-level inverter INV-B includes IGBT elements QBU-1 to QBU-4 and diodes DBU-1 to DBU-4.
  • V-phase arm (fourth circuit) of single-phase three-level inverter INV-B includes IGBT elements QBV-1 to QBV-4 and diodes DBV-1 to DBV-4.
  • IGBT elements QBU-1 and QBU-4 are connected in series between a positive voltage terminal 2p and a negative voltage terminal 2n.
  • Diodes DBU-1 and DBU-4 are connected in antiparallel to IGBT elements QBU-1 and QBU-4, respectively.
  • IGBT element QBU-2 and diode DBU-2 are connected in series between neutral point voltage terminal 2c and AC terminal 2a. Specifically, the collector of IGBT element QBU-2 is connected to neutral point voltage terminal 2c, and its emitter is connected to the anode of diode DBU-2. The cathode of the diode DBU-2 is connected to the AC terminal 2a.
  • IGBT element QBU-3 and diode DBU-3 are connected in series between neutral point voltage terminal 2c and AC terminal 2a. Specifically, the emitter of IGBT element QBU-3 is connected to neutral point voltage terminal 2c, and its collector is connected to the cathode of diode DBU-3. The anode of the diode DBU-3 is connected to the AC terminal 2a.
  • IGBT elements QBV-1 and QBV-4 are connected in series between a positive voltage terminal 2p and a negative voltage terminal 2n.
  • Diodes DBV-1 and DBV-4 are connected in antiparallel to IGBT elements QBV-1 and QBV-4, respectively.
  • IGBT element QBV-2 and diode DBV-2 are connected in series between neutral point voltage terminal 2c and AC terminal 2b. Specifically, the collector of IGBT element QBV-2 is connected to neutral point voltage terminal 2c, and its emitter is connected to the anode of diode DBV-2. The cathode of the diode DBV-2 is connected to the AC terminal 2b.
  • IGBT element QBV-3 and diode DBV-3 are connected in series between neutral point voltage terminal 2c and AC terminal 2b. Specifically, the emitter of IGBT element QBV-3 is connected to neutral point voltage terminal 2c, and its collector is connected to the cathode of diode DBV-3. The anode of the diode DBV-3 is connected to the AC terminal 2b.
  • FIG. 3 shows the relationship between U-phase voltage VAU, V-phase voltage VAV and AC voltage VA of single-phase three-level inverter INV-A, U-phase voltage VBU, V-phase voltage VBV and AC of single-phase three-level inverter INV-B. It is a wave form diagram which shows the relationship of the voltage VB.
  • both the U-phase voltage VAU and the V-phase voltage VAV have three values of ⁇ EdA / 2, 0 with respect to the neutral point that is the connection point of the capacitors C1 and C2. Can do.
  • reference numerals AU and AV are collectively denoted as “Ax”.
  • the AC terminals 1a and 1b are collectively referred to as “AC terminal 1”.
  • the output voltage VAx is + EdA / 2 become.
  • the output voltage VAx Becomes 0.
  • both the U-phase voltage VBU and the V-phase voltage VBV are relative to the neutral point that is the connection point of the capacitors C3 and C4.
  • ⁇ EdB / 2, 0 three values of ⁇ EdB / 2, 0 can be taken.
  • the symbols BU and BV are collectively denoted as “Bx” in order to generally describe the U-phase IGBT element and diode and the V-phase IGBT element and diode of the single-phase three-level inverter INV-B.
  • the AC terminals 2a and 2b are collectively referred to as “AC terminal 2”.
  • the output voltage VBx Becomes 0.
  • VBU-VBV line voltage that is the difference between the U-phase voltage VBU and the V-phase voltage VBV is output. That is, the AC voltage VB takes five values of ⁇ EdB, ⁇ EdB / 2, 0.
  • the pulse width of the U-phase voltage VAU and the pulse width of the V-phase voltage VAV are the same pulse width ⁇ A, and the phase difference between the U-phase voltage VAU and the V-phase voltage VAV is ⁇ A. Further, the pulse width of the U-phase voltage VBU and the pulse width of the V-phase voltage VBV are set to the same pulse width ⁇ B, and the phase difference between the U-phase voltage VBU and the V-phase voltage VBV is set to ⁇ B. Further, ⁇ is a phase difference between the AC voltage VA and the AC voltage VB.
  • the U-phase voltage VU and the V-phase voltage VV can be expressed by the following equations (1) and (2) by expanding the voltage series of the U-phase voltage VU and the V-phase voltage VV shown in FIG. it can.
  • AC voltage V is the difference (line voltage) between U-phase voltage VU and V-phase voltage VV, and is given by the following equation (3).
  • the amplitude of the nth order harmonic component is Vn
  • the amplitude Vn is given by the following equation (5).
  • the amplitude Vn of the n-order harmonic component is determined by the U-phase voltage VU and the pulse width ⁇ of the V-phase voltage VV and the phase difference ⁇ between the U-phase voltage VU and the V-phase voltage VV.
  • the amplitude Vn of the nth-order harmonic component has two degrees of freedom (pulse width ⁇ and phase difference ⁇ ).
  • either one of the pulse width ⁇ and the phase difference ⁇ is set so that the amplitude Vn of the nth harmonic component of the AC voltage becomes zero. Thereby, the nth-order harmonic component can be suppressed.
  • a control method (first control method) is employed in which the phase difference ⁇ is set so that the amplitude Vn of the n-th harmonic component of the AC voltage becomes zero.
  • a control method (second control method) for setting the pulse width ⁇ so that the amplitude Vn of the nth-order harmonic component of the AC voltage becomes 0 will be described in a second embodiment to be described later.
  • the DC voltage EdA and the DC voltage EdB are adjusted according to the level of the DC voltage EdA so that the effective value of the fundamental wave component of the AC voltage VA matches the effective value of the fundamental wave component of the AC voltage B.
  • the pulse widths ⁇ A and ⁇ B are controlled.
  • FIG. 4 is a functional block diagram of the control device 4 shown in FIG. However, FIG. 4 shows a control configuration in the case where DC power is supplied from the DC circuit 5 to the DC circuit 6.
  • the voltage detectors VS1 and VS2 and the voltage detectors VS3 and VS4 are respectively replaced by a switching circuit, for example, and the current detector IS2 and the current detector are replaced. IS1 is replaced.
  • control device 4 includes adders 10 and 11, pulse width control unit 12, harmonic control unit 13, voltage command unit 14, subtractors 15 and 17, and voltage control unit 16. And a current control unit 18 and a control signal generation unit 19.
  • the control device 4 controls the operation of the single-phase three-level inverters INV-A and INV-B by executing the following four steps (1) to (4).
  • phase difference ⁇ The bidirectionally insulated DC / DC converter 1 provides a phase difference ⁇ between the AC voltage VA and the AC voltage VB, so that the DC circuit 5 and the single-phase three-level inverter INV-A. , INV-B can supply power to the DC circuit 6. Alternatively, power can be supplied from the DC circuit 6 to the DC circuit 5 via the single-phase three-level inverters INV-B and INV-A.
  • the principle will be described.
  • FIG. 5 shows a vector diagram of an AC fundamental wave voltage when power is transmitted from the single-phase three-level inverter INV-A to the single-phase three-level inverter INV-B.
  • the fundamental wave component of the AC voltage VA of the single-phase three-level inverter INV-A is the AC fundamental wave voltage Va
  • the fundamental wave component of the AC voltage VB of the single-phase three-level inverter INV-B is the AC fundamental wave voltage Vb. It is said.
  • the AC fundamental wave voltage Va is set as a lead
  • the AC fundamental wave voltage Vb is set as a delay.
  • the phase difference between Va and Vb is ⁇ .
  • ⁇ V is the voltage difference between Va and Vb.
  • i is a current that flows due to a voltage ⁇ V that is the difference between Va and Vb.
  • the current i can be expressed by the following equation (6).
  • is a power factor angle.
  • L is the sum of the leakage inductance of the insulated transformer 3 and the reactors L1 and L2.
  • the power supply between the DC circuit 5 and the DC circuit 6 can be controlled by controlling the phase difference ⁇ .
  • the voltage command unit 14 generates the target voltage EdB * of the DC voltage EdB.
  • the voltage control unit 16 generates a current command value IdB * based on the deviation obtained by the subtracter 15.
  • the current control unit 18 generates a phase difference ⁇ based on the deviation obtained by the subtracter 17.
  • FIGS. 6A to 6C show vector diagrams of AC fundamental wave voltages when power is transmitted from the single-phase three-level inverter INV-A to the single-phase three-level inverter INV-B.
  • ⁇ V is a voltage difference between Va and Vb.
  • i is a current that flows due to a voltage ⁇ V that is the difference between Va and Vb.
  • FIG. 6A shows the relationship between AC fundamental wave voltages Va and Vb when DC voltage EdA is higher than DC voltage EdB (EdA> EdB).
  • EdA DC voltage
  • EdB DC voltage
  • the power factor of the current i deteriorates in the clockwise direction with respect to both Va and Vb. Therefore, it can be said that the power factor is bad.
  • the power factor of the current i is as good as cos ( ⁇ / 2) for both Va and Vb. Therefore, it can be said that the power factor is good.
  • FIG. 6C shows the relationship between the AC fundamental wave voltages Va and Vb when the DC voltage EdA is lower than the DC voltage EdB (EdA ⁇ EdB).
  • the power factor of the current i deteriorates counterclockwise with respect to both Va and Vb. Therefore, it can be said that the power factor is bad.
  • the power factor is deteriorated when EdA> EdB (FIG. 6A) or EdA ⁇ EdB (FIG. 6C).
  • the effective value of the AC fundamental wave voltage Va is equal to the effective value of the AC fundamental wave voltage Vb.
  • the pulse widths ⁇ A and ⁇ B are controlled so that the effective value of the AC fundamental wave voltage Va is equal to the effective value of the AC fundamental wave voltage Vb.
  • the pulse width ⁇ of the AC voltage corresponding to the lower DC voltage of the two DC voltages EdA and EdB is fixed to ⁇
  • the pulse width ⁇ of the AC voltage corresponding to the higher DC voltage is set to ⁇ .
  • the adder 10 adds the voltage across the capacitor C1 detected by the voltage detector VS1 and the voltage across the capacitor C2 detected by the voltage detector VS2, and adds the positive voltage terminal 1p.
  • the DC voltage EdA between the negative voltage terminal 1n is output.
  • the adder 11 adds the voltage at both ends of the capacitor C3 detected by the voltage detector VS3 and the voltage at both ends of the capacitor C4 detected by the voltage detector VS4, and adds the voltage between the positive voltage terminal 2p and the negative voltage terminal 2n.
  • a DC voltage EdB is output.
  • the control signal generator 19 is generated by the phase differences ⁇ A and ⁇ B set by the harmonic controller 13, the phase difference ⁇ generated by the current controller 18, and the pulse width controller 12. Based on the pulse widths ⁇ A and ⁇ B, the control signal for the single-phase three-level inverter INV-A and the control signal for the single-phase three-level inverter INV-B are generated.
  • the single-phase three-level inverter INV-A is advanced, and the single-phase three-level inverter INV-B is delayed. That is, electric power is supplied from the single-phase three-level inverter INV-A to the single-phase three-level inverter INV-2.
  • FIG. 7 is a time chart showing a method of generating a control signal for the single-phase three-level inverter INV-A according to the first embodiment.
  • the control signal generator 19 generates a sawtooth wave signal STU having a frequency twice that of the AC fundamental wave voltage Va.
  • the sawtooth wave signal STU has an amplitude between 0 and ⁇ , and the period of the sawtooth wave signal STU is ⁇ .
  • the control signal generation unit 19 subsequently generates two reference signals (a1) and (a2), each of which is compared with the sawtooth wave signal STU.
  • the first reference signal (a1) is used to determine the rise and fall of the first rectangular wave QAU-1 (a1) of the IGBT element QAU-1 of the single-phase three-level inverter INV-A.
  • the first reference signal (a1) is given by the following equation (13).
  • the first reference signal (a1) and the sawtooth signal STU intersect each other.
  • the first rectangular wave QAU-1 (a1) rises from the L level to the H level.
  • the first rectangular wave QAU-1 (a1) falls from the H level to the L level when the sawtooth wave signal STU and the first reference signal (a1) intersect in the even-numbered cycle.
  • the second reference signal (a2) is used to determine the rise and fall of the second rectangular wave QAU-1 (a2) of the IGBT element QAU-1 of the single-phase three-level inverter INV-A.
  • the second reference signal (a2) is given by the following equation (14).
  • the second reference signal (a2) and the sawtooth signal STU intersect each other.
  • the second rectangular wave QAU-1 (a2) rises from the L level to the H level.
  • the second rectangular wave QAU-1 (a2) falls from the H level to the L level when the sawtooth wave signal STU and the second reference signal (a2) intersect in the even-numbered cycle.
  • the control signal generation unit 19 calculates the logical product (AND) of the first rectangular wave QAU-1 (a1) and the second rectangular wave QAU-1 (a2), thereby controlling the IGBT element QAU-1. Generate a signal.
  • the control signal generator 19 also calculates a logical product of the inverted signal (reverse phase signal) of the first rectangular wave QAU-1 (a1) and the second rectangular wave QAU-1 (a2), and The logical product of one rectangular wave QAU-1 (a1) and the inverted signal of the second rectangular wave QAU-1 (a2) is calculated. Then, a control signal for the IGBT elements QAU-2 and 3 is generated by calculating a logical sum (OR) of these two logical products.
  • the control signal generator 19 further calculates the logical product of the inverted signal of the first rectangular wave QAU-1 (a1) and the inverted signal of the second rectangular wave QAU-1 (a2), thereby obtaining an IGBT element.
  • a control signal for QAU-4 is generated.
  • the control signal generation unit 19 generates a sawtooth wave signal STV obtained by delaying the phase of the sawtooth wave signal STU by ⁇ / 3.
  • the sawtooth wave signal STV has an amplitude between 0 and ⁇ , and the period of the sawtooth wave signal STV is ⁇ .
  • the first reference signal (a1) is used to determine the rise and fall of the third rectangular wave QAV-1 (a1) of the IGBT element QAV-1 of the single-phase three-level inverter INV-A.
  • the first reference signal (a1) and the sawtooth wave signal STV intersect each other.
  • the third rectangular wave QAV-1 (a1) falls from the H level to the L level when the sawtooth wave signal STV and the first reference signal (a1) intersect in the odd-numbered cycle.
  • the third rectangular wave QAV-1 (a1) rises from the L level to the H level when the sawtooth wave signal STV and the first reference signal (a1) intersect in the even-numbered cycle.
  • the second reference signal (a2) is used to determine the rise and fall of the fourth rectangular wave QAV-1 (a2) of the IGBT element QAV-1 of the single-phase three-level inverter INV-A.
  • the second reference signal (a2) and the sawtooth wave signal STV intersect each other.
  • the fourth rectangular wave QAV-1 (a2) falls from the H level to the L level when the sawtooth wave signal STV and the second reference signal (a2) intersect in the odd-numbered cycle.
  • the fourth rectangular wave QAV-1 (a2) rises from the L level to the H level when the sawtooth wave signal STV and the second reference signal (a2) intersect in the even-numbered cycle.
  • the control signal generation unit 19 calculates the logical product of the inverted signal of the third rectangular wave QAV-1 (a1) and the inverted signal of the fourth rectangular wave QAV-1 (a2), so that the IGBT element QAV ⁇ 1 control signal is generated.
  • the control signal generation unit 19 also calculates a logical product of the third rectangular wave QAV-1 (a1) and the inverted signal of the fourth rectangular wave QAV-1 (a2), and the third rectangular wave QAV The logical product of the inverted signal of ⁇ 1 (a1) and the fourth rectangular wave QAV-1 (a2) is calculated. Then, a control signal for the IGBT elements QAV-2 and 3 is generated by calculating a logical sum of these two logical products.
  • the control signal generator 19 further calculates the control signal of the IGBT element QAV-4 by calculating the logical product of the third rectangular wave QAV-1 (a1) and the fourth rectangular wave QAV-1 (a2). Is generated.
  • FIG. 8 is a time chart showing a method for generating control signals of the single-phase three-level inverters INV-A and INV-B according to the first embodiment.
  • the method for generating the control signal of the single-phase three-level inverter INV-A is the same as that described with reference to FIG. Therefore, a method for generating a control signal for the single-phase three-level inverter INV-B will be described.
  • the control signal generator 19 generates two reference signals (b1) and (b2), each of which is compared with the sawtooth wave signal ST.
  • the third reference signal (b1) is used to determine the rise and fall of the first rectangular wave QBU-1 (b1) of the IGBT element QBU-1 of the single-phase three-level inverter INV-B.
  • the third reference signal (b1) is given by the following equation (15).
  • the third reference signal (b1) and the sawtooth wave signal ST intersect each other.
  • the first rectangular wave QBU-1 (b1) rises from the L level to the H level when the sawtooth wave signal ST and the third reference signal (b1) intersect in the odd-numbered cycle.
  • the first rectangular wave QBU-1 (b1) falls from the H level to the L level.
  • the fourth reference signal (b2) is used to determine the rise and fall of the second rectangular wave QBU-1 (b2) of the IGBT element QBU-1 of the single-phase three-level inverter INV-B.
  • the fourth reference signal (b2) is given by the following equation (16).
  • the fourth reference signal (b2) and the sawtooth wave signal ST cross each cycle.
  • the second rectangular wave QBU-1 (b2) rises from the L level to the H level when the sawtooth wave signal ST and the fourth reference signal (b2) intersect in the odd-numbered cycle.
  • the second rectangular wave QBU-1 (b2) falls from the H level to the L level when the sawtooth wave signal ST and the fourth reference signal (b2) intersect in the even-numbered cycle.
  • the control signal generator 19 generates a control signal for the IGBT element QBU-1 by calculating a logical product of the first rectangular wave QBU-1 (b1) and the second rectangular wave QBU-1 (b2). To do.
  • the control signal generator 19 also calculates the logical product of the inverted signal of the first rectangular wave QBU-1 (b1) and the second rectangular wave QBU-1 (b2), and also uses the first rectangular wave QBU. -1 (b1) and the logical product of the inverted signal of the second rectangular wave QBU-1 (b2) are calculated. Then, a control signal for the IGBT elements QBU-2 and 3 is generated by calculating a logical sum of these two logical products.
  • the control signal generator 19 further calculates the logical product of the inverted signal of the first rectangular wave QBU-1 (b1) and the inverted signal of the second rectangular wave QBU-1 (b2), thereby A control signal for QBU-4 is generated.
  • control signal generator 19 further includes a sawtooth wave signal STV obtained by delaying the phase of the sawtooth wave signal ST by ⁇ / 3, and third and fourth reference signals (b1) and (b2). To generate control signals for IGBT elements QBV-1 to QBV-4.
  • the effective values of the AC fundamental wave voltages Va and Vb are matched by narrowing the pulse width ⁇ of the AC voltage corresponding to the higher DC voltage of the DC voltages EdA and EdB.
  • the present invention is not limited to this, and the pulse width ⁇ of the AC voltage may be narrowed so that the difference between the effective values of the AC fundamental wave voltages Va and Vb is a predetermined value or less.
  • the pulse width ⁇ of the AC voltage may be narrowed so that the ratio between the effective value of the AC fundamental wave voltages Va and Vb and the effective value of Va or Vb is several percent or less.
  • the pulse width ⁇ may be set to 2 ⁇ / 3.
  • phase difference ⁇ A in accordance with the level of the DC voltage EdA and the DC voltage EdB so that the effective value of the AC fundamental wave voltage Va and the effective value of the AC fundamental wave voltage Vb coincide with each other.
  • FIG. 9 is a functional block diagram of the control device 4 shown in FIG. However, FIG. 9 shows a control configuration in the case where DC power is supplied from the DC circuit 5 to the DC circuit 6.
  • the voltage detectors VS1 and VS2 and the voltage detectors VS3 and VS4 are respectively replaced by, for example, a switching circuit, and the current detector IS2 and the current detector are replaced. IS1 is replaced.
  • control device 4 basically has the same configuration as control device 4 shown in FIG. 4, but instead of pulse width control unit 12 and harmonic control unit 13, a phase difference control unit 20 and the harmonic control part 21 are different.
  • the control device 4 controls the operations of the single-phase three-level inverters INV-A and INV-B by executing the above-described four steps (1) to (4).
  • Control of phase difference ⁇ The control device 4 controls the phase difference ⁇ by the same method as the control of the phase difference ⁇ described in the first embodiment.
  • phase differences ⁇ A and ⁇ B are controlled so that the effective value of AC fundamental wave voltage Va is equal to the effective value of AC fundamental wave voltage Vb.
  • the phase difference ⁇ of the AC voltage corresponding to the lower DC voltage of the two DC voltages EdA and EdB is fixed to ⁇
  • the phase difference ⁇ of the AC voltage corresponding to the higher DC voltage is set to ⁇ .
  • the adder 10 adds the voltage across the capacitor C1 detected by the voltage detector VS1 and the voltage across the capacitor C2 detected by the voltage detector VS2, and adds the positive voltage terminal 1p.
  • the DC voltage EdA between the negative voltage terminal 1n is output.
  • the adder 11 adds the voltage at both ends of the capacitor C3 detected by the voltage detector VS3 and the voltage at both ends of the capacitor C4 detected by the voltage detector VS4, and adds the voltage between the positive voltage terminal 2p and the negative voltage terminal 2n.
  • a DC voltage EdB is output.
  • the control signal generator 19 is generated by the pulse widths ⁇ A and ⁇ B set by the harmonic controller 21, the phase difference ⁇ generated by the current controller 18, and the phase difference controller 20. Based on the phase differences ⁇ A and ⁇ B, a control signal for the single-phase three-level inverter INV-A and a control signal for the single-phase three-level inverter INV-B are generated.
  • FIG. 10 is a time chart showing a method for generating control signals of the single-phase three-level inverters INV-A and INV-B according to the second embodiment.
  • the single-phase three-level inverter INV-A is advanced, and the single-phase three-level inverter INV-B is delayed. That is, electric power is supplied from the single-phase three-level inverter INV-A to the single-phase three-level inverter INV-2.
  • the control signal generator 19 generates a sawtooth wave signal STU and generates four reference signals (a1), (a2), (b1), and (b2), each of which is compared with the sawtooth wave signal STU.
  • the first reference signal (a1) is used to determine the rise and fall of the first rectangular wave QAU-1 (a1) of the IGBT element QAU-1 of the single-phase three-level inverter INV-A.
  • the first reference signal (a1) is given by the following equation (19).
  • the first reference signal (a1) and the sawtooth signal STU intersect each other.
  • the first rectangular wave QAU-1 (a1) rises from the L level to the H level when the sawtooth wave signal ST and the first reference signal (a1) intersect in the odd-numbered cycle.
  • the first rectangular wave QAU-1 (a1) falls from the H level to the L level when the sawtooth wave signal STU and the first reference signal (a1) intersect in the even-numbered cycle.
  • the second reference signal (a2) is used to determine the rise and fall of the second rectangular wave QAU-1 (a2) of the IGBT element QAU-1 of the single-phase three-level inverter INV-A.
  • the second reference signal (a2) is given by the following equation (20).
  • the second reference signal (a2) and the sawtooth signal STU intersect each other.
  • the second rectangular wave QAU-1 (a2) rises from the L level to the H level.
  • the second rectangular wave QAU-1 (a2) falls from the H level to the L level.
  • the control signal generator 19 generates a control signal for the IGBT element QAU-1 by calculating a logical product of the first rectangular wave QAU-1 (a1) and the second rectangular wave QAU-1 (a2). To do.
  • the control signal generator 19 also calculates a logical product of the inverted signal of the first rectangular wave QAU-1 (a1) and the second rectangular wave QAU-1 (a2), and also uses the first rectangular wave QAU. -1 (a1) and the inverted signal of the second rectangular wave QAU-1 (a2) are calculated. Then, a control signal for the IGBT elements QAU-2 and 3 is generated by calculating a logical sum of these two logical products.
  • the control signal generator 19 further calculates the logical product of the inverted signal of the first rectangular wave QAU-1 (a1) and the inverted signal of the second rectangular wave QAU-1 (a2), thereby obtaining an IGBT element.
  • a control signal for QAU-4 is generated.
  • control signal generator 19 further includes a sawtooth signal STV obtained by delaying the phase of the sawtooth signal STU by ( ⁇ A ⁇ ), and the first and second reference signals (a1) and (a2). And the control signals for the IGBT elements QAV-1 to QAV-4 are generated.
  • the third reference signal (b1) is used to determine the rise and fall of the first rectangular wave QBU-1 (b1) of the IGBT element QBU-1 of the single-phase three-level inverter INV-B.
  • the third reference signal (b1) is given by the following equation (21).
  • the third reference signal (b1) and the sawtooth signal STU intersect each other.
  • the first rectangular wave QBU-1 (b1) rises from the L level to the H level when the sawtooth wave signal ST and the third reference signal (b1) intersect in the odd-numbered cycle.
  • the first rectangular wave QBU-1 (b1) falls from the H level to the L level when the sawtooth wave signal STU and the third reference signal (b1) intersect in the even-numbered cycle.
  • the fourth reference signal (b2) is used to determine the rise and fall of the second rectangular wave QBU-1 (b2) of the IGBT element QBU-1 of the single-phase three-level inverter INV-B.
  • the fourth reference signal (b2) is given by the following equation (22).
  • the fourth reference signal (b2) and the sawtooth signal STU intersect each other.
  • the second rectangular wave QBU-1 (b2) rises from the L level to the H level.
  • the second rectangular wave QBU-1 (b2) falls from the H level to the L level when the sawtooth wave signal STU and the fourth reference signal (b2) intersect in the even-numbered cycle.
  • the control signal generator 19 generates a control signal for the IGBT element QBU-1 by calculating a logical product of the first rectangular wave QBU-1 (b1) and the second rectangular wave QBU-1 (b2). To do.
  • the control signal generator 19 also calculates the logical product of the inverted signal of the first rectangular wave QBU-1 (b1) and the second rectangular wave QBU-1 (b2), and also uses the first rectangular wave QBU. -1 (b1) and the logical product of the inverted signal of the second rectangular wave QBU-1 (b2) are calculated. Then, a control signal for the IGBT elements QBU-2 and 3 is generated by calculating a logical sum of these two logical products.
  • the control signal generator 19 further calculates the logical product of the inverted signal of the first rectangular wave QBU-1 (b1) and the inverted signal of the second rectangular wave QBU-1 (b2), thereby A control signal for QBU-4 is generated.
  • control signal generator 19 further compares the sawtooth wave signal STV with the third and fourth reference signals (b1) and (b2), so that the IGBT elements QBV-1 to QBV- 4 control signals are generated.
  • the effective values of the AC fundamental wave voltages Va and Vb are matched by narrowing the phase difference ⁇ of the AC voltage corresponding to the higher DC voltage of the DC voltages EdA and EdB.
  • the present invention is not limited to this, and the AC voltage phase difference ⁇ may be narrowed so that the difference between the effective values of the AC fundamental wave voltages Va and Vb is equal to or less than a predetermined value.
  • the phase difference ⁇ of the AC voltage may be narrowed so that the ratio between the effective value of the AC fundamental wave voltages Va and Vb and the effective value of Va or Vb is several percent or less.
  • FIG. 13 is a circuit diagram showing a configuration of a bidirectional insulated DC / DC converter according to a comparative example.
  • a bi-directional insulated DC / DC converter 100 according to a comparative example basically has the same configuration as bi-directional insulated DC / DC converter 1 shown in FIG. The difference is that INV1 and INV2 are constituted by two-level circuits.
  • the inverter (two-level inverter) INV1 configured by a two-level circuit includes a U-phase arm and a V-phase arm.
  • U-phase arm includes IGBT elements Q1, Q3 connected in series between positive voltage terminal 1p and negative voltage terminal 1n, and diodes D1, D3 connected in antiparallel to IGBT elements Q1, Q3, respectively.
  • An AC terminal 1a is connected to a connection point between IGBT elements Q1 and Q3.
  • V-phase arm includes IGBT elements Q2, Q4 connected in series between positive voltage terminal 1p and negative voltage terminal 1n, and diodes D2, D4 connected in antiparallel to IGBT elements Q2, Q4, respectively.
  • AC terminal 1b is connected to a connection point between IGBT elements Q2 and Q4.
  • 2 level inverter INV2 includes a U-phase arm and a V-phase arm.
  • U-phase arm includes IGBT elements Q11 and Q13 connected in series between positive voltage terminal 2p and negative voltage terminal 2n, and diodes D11 and D13 connected in antiparallel to IGBT elements Q11 and Q13, respectively.
  • An AC terminal 2a is connected to a connection point between IGBT elements Q11 and Q13.
  • V-phase arm includes IGBT elements Q12, Q14 connected in series between positive voltage terminal 2p and negative voltage terminal 2n, and diodes D12, D14 connected in antiparallel to IGBT elements Q12, Q14, respectively.
  • An AC terminal 2b is connected to a connection point between IGBT elements Q12 and Q14.
  • the capacitor C11 is connected between the terminals 1p and 1n of the inverter INV1, and smoothes and stabilizes the DC voltage EdA between the terminals 1p and 1n.
  • Capacitor C12 is connected between terminals 2p and 2n of inverter INV2, and smoothes and stabilizes DC voltage EdB between terminals 2p and 2n.
  • the two-level inverter INV1 is controlled by an output signal of a driver (not shown), converts the DC voltage EdA between the positive voltage terminal 1p and the negative voltage terminal 1n into an AC voltage VA, and outputs it between the AC terminals 1a and 1b.
  • the two-level inverter INV2 is controlled by an output signal of a driver (not shown), converts the DC voltage EdB between the positive voltage terminal 2p and the negative voltage terminal 2n into an AC voltage VB, and outputs it between the AC terminals 2a and 2b.
  • the AC voltage VA output between the AC terminals 1a and 1b is a rectangular wave AC voltage having a peak value EdA and a pulse width ⁇ A.
  • the AC voltage VB output between the AC terminals 2a and 2b is a rectangular wave AC voltage having a peak value EdB and a pulse width ⁇ B.
  • AC voltage V the AC voltages VA and VB are collectively referred to as “AC voltage V”
  • DC voltage Ed the DC voltages EdA and EdB
  • the pulse widths ⁇ A and ⁇ B are collectively referred to as “pulse width ⁇ ”.
  • the nth-order harmonic component vn is given by the following equation (24). It can be seen that the magnitude of the nth-order harmonic component is inversely proportional to its order.
  • the harmonic component represented by the equation (24) is generated, so that the harmonic component of the alternating current flowing between the two two-level inverters INV1 and INV2 is large. Become. The power loss caused by this harmonic component causes a reduction in conversion efficiency of the bidirectional insulated DC / DC converter 100.
  • the rated power of the two-level inverter is 100 [kW]
  • the switching frequency f is 10 [kHz]
  • the size of the reactor L is preferably about 1.59 to 4.77 ⁇ H because it is considered that about 10 to 30% of the rated reactor Lpu is appropriate.
  • L 1. 6 ⁇ H (10%).
  • the effective values of the fundamental wave component and the harmonic component of each of the AC voltage and AC current are as follows.
  • the magnitude of each order component when the magnitude of the fundamental wave component is 100% is also shown.
  • the fifth harmonic component has a low power loss ratio of about 3% with respect to the fundamental component. Therefore, when the fifth harmonic component is suppressed, it is estimated that the loss reduction effect is lower than when the third harmonic component is suppressed. According to this, since the ratio of the power loss decreases as the order of the harmonic component increases, it is considered that the loss reduction effect decreases. In other words, it is considered that the power loss can be most effectively reduced by suppressing the third harmonic component.
  • the two inverters included in the bidirectional insulated DC / DC converter 1 are constituted by single-phase three-level inverters, so that the output AC voltage of each inverter is converted to the U-phase. It can be controlled using two variables: a pulse width ⁇ of the voltage and the V-phase voltage, and a phase difference ⁇ between the U-phase voltage and the V-phase voltage. According to this, the amplitude of the nth-order harmonic component of the AC voltage can be made zero using either one of the pulse width ⁇ and the phase difference ⁇ . That is, by controlling one of the pulse width ⁇ and the phase difference ⁇ , the nth-order harmonic component can be suppressed.
  • the third-order harmonic component can be easily suppressed by setting the pulse width ⁇ or the phase difference ⁇ so that the amplitude of the third-order harmonic component becomes zero.
  • the effective value of the AC fundamental wave voltage of the two inverters can be matched by controlling the other of the pulse width ⁇ and the phase difference ⁇ . Therefore, even when the difference in DC voltage received by each inverter fluctuates greatly, power can be stably transferred between the two inverters.
  • the harmonic components can be suppressed by controlling the operations of the two single-phase three-level inverters, it is not necessary to install a series resonance circuit. Therefore, it is possible to prevent the apparatus from becoming large.
  • the increase in power loss due to the series resonant circuit can be suppressed, the conversion efficiency can be improved.
  • the three-level circuit constituting the U-phase arm and the V-phase arm may be configured as shown in FIG.
  • the three level circuit includes four IGBT elements and six diodes.
  • FIG. 13 representatively shows a three-level circuit constituting the U-phase arm of the single-phase three-level inverter INV-A.
  • the IGBT elements QAU-1 to QAU-4 are connected in series between the positive voltage terminal 1a and the negative voltage terminal 1b.
  • Diodes DAU-1 to DAU-4 are connected in antiparallel to IGBT elements QAU-1 to QAU-4, respectively.
  • the connection point of IGBT elements QAU-2 and QAU-3 is connected to AC terminal 1a.
  • the diode DAU-5 is connected between the connection point of the IGBT elements QAU-1 and QAU-2 and the neutral point voltage terminal 1c.
  • the diode DAU-6 is connected between the connection point of the IGBT elements QAU-3 and QAU-4 and the neutral point voltage terminal 1c.
  • the cathode of the diode DAU-5 is connected to the connection point of the IGBT elements QAU-1 and QAU-2, and the anode of the diode DAU-5 is connected to the neutral point voltage terminal 1c.
  • the anode of the diode DAU-6 is connected to the connection point of the IGBT elements QAU-3 and QAU-4, and the cathode of the diode DAU-6 is connected to the neutral point voltage terminal 1c.
  • the U-phase voltage VAU takes three values of ⁇ EdA / 2,0.
  • the V-phase voltage VAV also takes the three values ⁇ EdA / 2,0. Therefore, the AC voltage VA output between the AC terminal 1a and the AC terminal 1b of the single-phase three-level inverter INV-A has five values of ⁇ EdA, ⁇ EdA / 2, 0.
  • the voltage detectors VS1 and VS2 detect the DC voltage EdA between the terminals T1 and T2
  • the voltage detectors VS3 and VS4 detect the DC voltage EdB between the terminals T3 and T4.
  • the present invention is not limited to this, and the DC voltages EdA and EdB may be detected by other methods.
  • the output AC voltages VA and VB of the single-phase three-level inverters INV-A and INV-B are taken into the control device 4 through the signal transformer, the peak value of the acquired AC voltage is sampled, and the sampled peak value is calculated.
  • the DC voltages EdA and EdB may be detected indirectly.
  • two reactors L1 and L2 are provided (see FIG. 1), but one of the two reactors L1 and L2 may be removed.
  • the two reactors L1 and L2 may be removed.
  • a smart network according to Embodiment 3 of the present invention includes a bidirectional insulation type DC / DC converter 1 and two DC power systems 30 and 52.
  • the DC power system 30 includes a commercial AC power supply 40, a solar power generator 41, a wind power generator 42, a PWM converter 43, converters 44 and 45, a DC bus 46, charge / discharge control converters 47 and 48, and a LiPo battery 49. , An electric double layer capacitor 50, and a load 51.
  • the PWM converter 43 converts commercial AC power from the commercial AC power supply 40 into DC power of a predetermined DC voltage EdA (for example, 300 V) and supplies the DC power to the DC bus 46. Further, when the commercial AC power is insufficient, the PWM converter 43 converts the DC power from the DC bus 46 into AC power having a predetermined voltage at the commercial frequency and supplies the AC power to the commercial AC power supply 40.
  • EdA for example, 300 V
  • the solar power generator 41 converts light energy from the sun into direct current power.
  • the converter 44 converts the DC power generated by the solar power generator 41 into DC power having a predetermined DC voltage EdA and supplies the DC power to the DC bus 46.
  • the wind power generator 42 converts wind power into DC power.
  • the converter 45 converts the DC power generated by the wind power generator 42 into DC power of a predetermined DC voltage EdA and supplies it to the DC bus 46.
  • the charge / discharge control converter 47 extracts DC power from the DC bus 46 and stores the DC power in the LiPo battery 49, and the DC power in the DC power system 30. Is insufficient, the DC power is taken out from the LiPo battery 49 and supplied to the DC bus 46.
  • the charging / discharging control converter 48 extracts the DC power from the DC bus 46 and stores the DC power in the electric double layer capacitor 50.
  • the DC power is taken out from the electric double layer capacitor 50 and supplied to the DC bus 46.
  • the load 51 is a general house, an office, a factory facility, and the like, and is supplied with DC power from the DC bus 46.
  • DC power system 52 has a configuration similar to that of DC power system 30 and includes a DC bus 53 maintained at a predetermined DC voltage EdB (for example, 1000 V).
  • the bidirectional insulation type DC / DC converter 1 is the same as that described in the first and second embodiments, and exchanges DC power between the DC bus 46 and the DC bus 53.
  • DC bus 46 includes a DC positive bus and a DC negative bus connected to terminals T1 and T2, respectively.
  • DC bus 53 includes a DC positive bus and a DC negative bus connected to terminals T3 and T4, respectively.
  • the bi-directional insulation type DC / DC converter 1 includes each single-phase three-level inverter so that the amplitude of the n-th harmonic component of the output AC voltage of the two single-phase three-level inverters INV-A and INV-B becomes zero.
  • a phase difference ⁇ between the U-phase voltage and the V-phase voltage is set.
  • the U-phase voltage and the V-phase voltage in the single-phase three-level inverters INV-A and INV-B according to the level of the DC voltages EdA and EdB so that the effective values of the AC fundamental wave voltages Va and Vb match.
  • the pulse widths ⁇ A and ⁇ B are controlled.
  • the bi-directional insulation type DC / DC converter 1 is configured so that each single-phase three-phase three-phase inverters INV-A and INV-B have three-phase harmonic components so that the amplitude of the n-th harmonic component of the output AC voltage is zero.
  • the pulse width ⁇ of the U-phase voltage and V-phase voltage in the level inverter is set, so that the effective values of the AC fundamental wave voltages Va and Vb coincide with each other according to the levels of the DC voltages EdA and EdB.
  • the phase differences ⁇ A and ⁇ B between the U-phase voltage and the V-phase voltage in the inverters INV-A and INV-B are controlled.
  • the bidirectional insulation type DC / DC converter further sets the phase difference ⁇ of the AC voltages VA and VB according to the value and direction of the current to be passed.
  • the phase of the AC voltage VA is advanced from the AC voltage VB.
  • the phase of the AC voltage VB is advanced from the phase of the AC voltage VA.
  • this smart network also has the function of an uninterruptible power supply system.
  • the DC power systems 30, 52 can be obtained even when the DC voltages EdA, EdB of the DC power system fluctuate greatly. DC power can be exchanged stably between the two.
  • 1,100 Bidirectional insulation type DC / DC converter 1a, 1b, 2a, 2b AC terminal, 1p, 2p positive voltage terminal, 1n, 2n negative voltage terminal, 1c, 2c neutral point voltage terminal, 3 insulation type transformer 3a primary winding, 3b secondary winding, 4 control device, 5, 6 DC circuit, 10, 11 adder, 12 pulse width control unit, 13, 21 harmonic control unit, 14 voltage command unit, 15, 17 subtractor, 16 voltage control unit, 18 current control unit, 19 control signal generation unit, 20 phase difference control unit, 30, 52 DC power system, 40 commercial AC power supply, 41 solar power generator, 42 wind power generator, 43 PWM converter, 44, 45 converter, 46 DC bus, 47, 48 converter for charge / discharge control, 49 LiPo battery, 50 electric double layer capacitor, 51 load, I VA, INV-B single-phase three-level inverter, INV1, INV2, two-level inverter, DR1, DR2 driver, QAU-1 to QAU-4, QAV-1 to QAV-4, QBU-1 to QBU-4, QBV

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)
  • Dc-Dc Converters (AREA)

Abstract

双方向絶縁型DC/DCコンバータ(1)は、第1の単相3レベルインバータ(INV-A)と、第2の単相3レベルインバータ(INV-B)と、絶縁型変圧器(3)とを備える。第1の単相3レベルインバータ(INV-A)は、第1の直流回路(5)から受ける第1の直流電圧に基づいて、出力端子(1a,1b)間に交流電圧(VA)を生成する。第2の単相3レベルインバータ(INV-B)は、第2の直流回路(6)から受ける第2の直流電圧に基づいて、出力端子(2a,2b)間に第2の交流電圧VBを生成する。絶縁型変圧器(3)は、出力端子(1a,1b)から第1の交流電圧(VA)を受ける1次巻線(3a)と、出力端子(2a,2b)から第2の交流電圧(VB)を受ける2次巻線(3b)とを含む。

Description

双方向絶縁型DC/DCコンバータおよびスマートネットワーク
 この発明は、双方向絶縁型DC/DCコンバータおよびそれを備えるスマートネットワークに関する。
 複数の直流電力系統を備えたスマートネットワークでは、直流電力が余剰した直流電力系統から直流電力が不足した直流電力系統に直流電力を供給する必要がある。また、直流電力系統では、直流電力が余剰するときと不足するときとがあるため、直流電圧が変動する。
 直流電圧の変動の影響を受けることなく、直流電力を安定的に供給するため、2つの直流電力系統の間に双方向絶縁型DC/DCコンバータを設ける構成が提案されている。双方向絶縁型DC/DCコンバータとしては、絶縁型変圧器によって結合された2つのインバータを備えたものがある(たとえば、非特許文献1および2参照)。
川畑良尚、他4名、「双方向絶縁形DC/DCコンバータの新しい制御方式-変圧器の巻数比以上の出力電圧が可能な制御方式-」、JIPE-39-18、パワーエレクトロニクス学会誌VoL.39(2014.3) 中林編絹、他2名、「1次側/2次側位相シフト制御複合共振形ZVS-PWM双方向DC-DCコンバータ-電力制御原理とその実験評価-」、JIPE 39-16、パワーエレクトロニクス学会誌VoL.39(2014.3)
 非特許文献1および2に記載される双方向絶縁型DC/DCコンバータは、2つのインバータの各々が2レベルインバータで構成されている。2レベルインバータは出力交流電圧に高調波成分を有するため、この高調波成分による出力交流電流の歪みが大きくなり、結果的に変換効率を低下させてしまうという問題がある。
 このような出力交流電流の高調波成分を抑制する対策として、非特許文献2には、絶縁型変圧器の1次巻線に対して直列に、リアクトルおよびコンデンサからなる直列共振回路を接続する技術が提案されている。
 上記技術によれば、本来定格値の20~30%程度しか要らないリアクトルを120~130%程度まで大きくし、かつ、そのうちの100%のリアクトル値と共振するコンデンサによって、有効なリアクトル値を20~30%程度に収めている。
 しかしながら、非特許文献2に記載の技術によれば、リアクトルを大きくすることで高調波成分を低減することができるものの、装置の大型化を招くという課題が生じる。また、直列共振回路において損失が発生するため、変換効率の大きな改善が望めないという課題が生じる。
 この発明は、上記のような課題を解決するためになされたものであり、その目的は、小型な構成で、高調波成分を抑制することができる双方向絶縁型DC/DCコンバータを提供することである。
 この発明のある局面によれば、双方向絶縁型DC/DCコンバータは、第1および第2の直流回路間で直流電力の授受を行なう。双方向絶縁型DC/DCコンバータは、第1の単相3レベルインバータと、第2の単相3レベルインバータと、絶縁型変圧器とを備える。第1の単相3レベルインバータは、第1の直流回路から受ける第1の直流電圧に基づいて、第1の出力端子および第2の出力端子の間に第1の交流電圧を生成する。第2の単相3レベルインバータは、第2の直流回路から受ける第2の直流電圧に基づいて、第3の出力端子および第4の出力端子の間に第2の交流電圧を生成する。絶縁型変圧器は、第1および第2の出力端子から第1の交流電圧を受ける1次巻線と、第3および第4の出力端子から第2の交流電圧を受ける2次巻線とを含む。
 この発明によれば、高調波成分を抑制することが可能な双方向絶縁型DC/DCコンバータを、小型な構成で構築することができる。
この発明の実施の形態1による双方向絶縁型DC/DCコンバータの全体構成図である。 図1に示した単相3レベルインバータの構成を詳細に説明する回路図である。 単相3レベルインバータのU相電圧、V相電圧および交流電圧の関係を示す波形図である。 図1に示した制御装置の機能ブロック図である。 単相3レベルインバータINV-Aから単相3レベルインバータINV-Bへ電力を伝送するときの交流基本波電圧のベクトル図である。 単相3レベルインバータINV-Aから単相3レベルインバータINV-Bへ電力を伝送するときの交流基本波電圧のベクトル図である。 単相3レベルインバータINV-Aから単相3レベルインバータINV-Bへ電力を伝送するときの交流基本波電圧のベクトル図である。 単相3レベルインバータINV-Aから単相3レベルインバータINV-Bへ電力を伝送するときの交流基本波電圧のベクトル図である。 実施の形態1による単相3レベルインバータINV-Aの制御信号の生成方法を示すタイムチャートである。 実施の形態1による単相3レベルインバータINV-A,INV-Bの制御信号の生成方法を示すタイムチャートである。 図1に示した制御装置の機能ブロック図である。 実施の形態2による単相3レベルインバータINV-A,INV-Bの制御信号の生成方法を示すタイムチャートである。 単相3レベルインバータに用いられる3レベル回路の変更例を示す図である。 実施の形態3によるスマートネットワークの構成を示すブロック図である。 比較例による双方向絶縁型DC/DCコンバータの構成を示す回路図である。 比較例による双方向絶縁型DC/DCコンバータの2レベルインバータで発生する電力損失を考察するための図である。
 以下、この発明の実施の形態について図面を参照して詳しく説明する。なお、同一または相当する部分には同一の参照符号を付して、その説明を繰返さない。
 [実施の形態1]
 (双方向絶縁型DC/DCコンバータの構成)
 図1は、この発明の実施の形態1による双方向絶縁型DC/DCコンバータの全体構成図である。
 図1を参照して、実施の形態に1による双方向絶縁型DC/DCコンバータ1は、正電圧端子T1,T3、負電圧端子T2,T4、電流検出器IS1,IS2、電圧検出器VS1~VS4、コンデンサC1~C4、単相3レベルインバータINV-A,INV-B、リアクトルL1,L2、絶縁型変圧器3、制御装置4、およびドライバDR1,DR2を備える。
 端子T1,T2には直流回路5が接続され、端子T3,T4には直流回路6が接続される。たとえば、直流回路5は、直流電力を生成する直流電源と、直流電力によって駆動される負荷とを含む。直流回路6は、直流電力を蓄える電力貯蔵装置を含む。直流電源としては、太陽光発電機、風力発電機などがある。電力貯蔵装置としては、LiPo(リチウムポリマー)電池、電気二重層コンデンサなどがある。
 双方向絶縁型DC/DCコンバータ1は、直流回路5で直流電力が余剰している場合は余剰分の直流電力を直流回路6に供給し、直流回路5で直流電力が不足している場合は直流回路6の直流電力を直流回路5に供給する。そのとき、双方向絶縁型DC/DCコンバータ1は、直流回路5の直流電圧EdAと直流回路6の直流電圧EdBとの高低に関係なく、直流電力の授受を行なう。
 単相3レベルインバータINV-A(第1の単相3レベルインバータ)は、3つの直流端子(正電圧端子1p、中性点電圧端子1c、負電圧端子1n)と、2つの交流端子1a,1bとを含む。単相3レベルインバータINV-Aの正電圧端子1pは、電流検出器IS1を介して正電圧端子T1に接続され、単相3レベルインバータINV-Aの負電圧端子1nは負電圧端子T2に接続される。
 コンデンサC1,C2は、単相3レベルインバータINV-Aの正電圧端子1pおよび負電圧端子1nの間に直列に接続され、端子1p,1n間の直流電圧EdAを平滑化および安定化させる。単相3レベルインバータINV-Aの中性点電圧端子1cは、コンデンサC1およびC2の接続点に接続される。単相3レベルインバータINV-Aは、ドライバDR1の出力信号によって制御され、正電圧端子1pおよび負電圧端子1n間の直流電圧EdAを交流電圧VAに変換して交流端子1a,1b間に出力する。
 単相3レベルインバータINV-B(第2の単相3レベルインバータ)は、3つの直流端子(正電圧端子2p、中性点電圧端子2c、負電圧端子2n)と、2つの交流端子2a,2bとを含む。単相3レベルインバータINV-Bの正電圧端子2pは、電流検出器IS2を介して正電圧端子T3に接続され、単相3レベルインバータINV-Bの負電圧端子2nは負電圧端子T4に接続される。
 コンデンサC3,C4は、単相3レベルインバータINV-Bの正電圧端子2pおよび負電圧端子2nの間に直列に接続され、端子2p,2n間の直流電圧EdBを平滑化および安定化させる。単相3レベルインバータINV-Bの中性点電圧端子2cは、コンデンサC3およびC4の接続点に接続される。単相3レベルインバータINV-Bは、ドライバDR2の出力信号によって制御され、正電圧端子2pおよび負電圧端子2n間の直流電圧EdBを交流電圧VBに変換して交流端子2a,2b間に出力する。
 絶縁型変圧器3は、互いに絶縁された1次巻線3aおよび2次巻線3bを含む。本願明細書では、説明の簡単化のため、1次巻線3aの巻数と2次巻線3bの巻数と同じとする。1次巻線3aの一方端子はリアクトルL1を介して単相3レベルインバータINV-Aの交流端子1aに接続され、1次巻線3aの他方端子は単相3レベルインバータINV-Aの交流端子1bに接続される。2次巻線3bの一方端子はリアクトルL2を介して単相3レベルインバータINV-Bの交流端子2aに接続され、2次巻線3bの他方端子は単相3レベルインバータINV-Bの交流端子2bに接続される。
 電流検出器IS1は、単相3レベルインバータINV-Aおよび直流回路5の間に流れる直流電流を検出し、その検出値を制御装置4に出力する。電流検出器IS2は、単相3レベルインバータINV-Bおよび直流回路6の間に流れる直流電流を検出し、その検出値を制御装置4に出力する。
 電圧検出器VS1は、コンデンサC1の両端の電圧(端子1p,1c間の直流電圧に相当)を検出し、その検出値を制御装置4に出力する。電圧検出器VS2は、コンデンサC2の両端の電圧(端子1c,1n間の直流電圧に相当)を検出し、その検出値を制御装置4に出力する。
 電圧検出器VS3は、コンデンサC3の両端の電圧(端子2p,2c間の直流電圧に相当)を検出し、その検出値を制御装置4に出力する。電圧検出器VS4は、コンデンサC4の両端の電圧(端子2c,2n間の直流電圧に相当)を検出し、その検出値を制御装置4に出力する。
 制御装置4は、たとえばマイクロコンピュータで構成され、単相3レベルインバータINV-A,INV-Bの動作を制御する。後に詳細に説明するが、単相3レベルインバータINV-A,INV-Bの各々は、半導体スイッチング素子を含む半導体スイッチにより構成される。なお本実施の形態1では、半導体スイッチング素子としてIGBT(Insulated Gate Bipolar Transistor)が用いられる。また、本実施の形態1では、半導体スイッチング素子の制御方式としてPWM(Pulse Width Modulation)制御を適用することができる。制御装置4は、電圧検出器VS1~VS4および電流検出器IS1,IS2の出力信号を受けてPWM制御を実行することにより、単相3レベルインバータINV-A,INV-Bの制御信号を生成する。
 ドライバDR1は、インバータINV-Aの制御信号を増幅してインバータINV-Aに供給する。ドライバDR2は、インバータINV-Bの制御信号を増幅してインバータINV-Bに供給する。
 図2は、図1に示した単相3レベルインバータINV-A,INV-Bの構成を詳細に説明する回路図である。
 図2を参照して、単相3レベルインバータINV-A,INV-Bの各々は、U相アームおよびV相アームとを含む。U相アームおよびV相アームはいずれも3レベル回路として構成され、4つのIGBT素子と4つのダイオードとを含む。
 詳細には、単相3レベルインバータINV-AのU相アーム(第1の回路)は、IGBT素子QAU-1~QAU-4とダイオードDAU-1~DAU-4とを含む。単相3レベルインバータINV-AのV相アーム(第2の回路)は、IGBT素子QAV-1~QAV-4とダイオードDAV-1~DAV-4とを含む。
 IGBT素子QAU-1,QAU-4は正電圧端子1pおよび負電圧端子1nの間に直列に接続される。ダイオードDAU-1,DAU-4はIGBT素子QAU-1,QAU-4にそれぞれ逆並列に接続される。
 IGBT素子QAU-2およびダイオードDAU-2は中性点電圧端子1cおよび交流端子1aの間に直列に接続される。詳細には、IGBT素子QAU-2のコレクタは中性点電圧端子1cに接続され、そのエミッタはダイオードDAU-2のアノードに接続される。ダイオードDAU-2のカソードは交流端子1aに接続される。
 IGBT素子QAU-3およびダイオードDAU-3は中性点電圧端子1cおよび交流端子1aの間に直列に接続される。詳細には、IGBT素子QAU-3のエミッタは中性点電圧端子1cに接続され、そのコレクタはダイオードDAU-3のカソードに接続される。ダイオードDAU-3のアノードは交流端子1aに接続される。
 IGBT素子QAV-1,QAV-4は正電圧端子1pおよび負電圧端子1nの間に直列に接続される。ダイオードDAV-1,DAV-4はIGBT素子QAV-1,QAV-4にそれぞれ逆並列に接続される。
 IGBT素子QAV-2およびダイオードDAV-2は中性点電圧端子1cおよび交流端子1bの間に直列に接続される。詳細には、IGBT素子QAV-2のコレクタは中性点電圧端子1cに接続され、そのエミッタはダイオードDAV-2のアノードに接続される。ダイオードDAV-2のカソードは交流端子1bに接続される。
 IGBT素子QAV-3およびダイオードDAV-3は中性点電圧端子1cおよび交流端子1bの間に直列に接続される。詳細には、IGBT素子QAV-3のエミッタは中性点電圧端子1cに接続され、そのコレクタはダイオードDAV-3のカソードに接続される。ダイオードDAV-3のアノードは交流端子1bに接続される。
 単相3レベルインバータINV-BのU相アーム(第3の回路)は、IGBT素子QBU-1~QBU-4とダイオードDBU-1~DBU-4とを含む。単相3レベルインバータINV-BのV相アーム(第4の回路)は、IGBT素子QBV-1~QBV-4とダイオードDBV-1~DBV-4とを含む。
 IGBT素子QBU-1,QBU-4は正電圧端子2pおよび負電圧端子2nの間に直列に接続される。ダイオードDBU-1,DBU-4はIGBT素子QBU-1,QBU-4にそれぞれ逆並列に接続される。
 IGBT素子QBU-2およびダイオードDBU-2は中性点電圧端子2cおよび交流端子2aの間に直列に接続される。詳細には、IGBT素子QBU-2のコレクタは中性点電圧端子2cに接続され、そのエミッタはダイオードDBU-2のアノードに接続される。ダイオードDBU-2のカソードは交流端子2aに接続される。
 IGBT素子QBU-3およびダイオードDBU-3は中性点電圧端子2cおよび交流端子2aの間に直列に接続される。詳細には、IGBT素子QBU-3のエミッタは中性点電圧端子2cに接続され、そのコレクタはダイオードDBU-3のカソードに接続される。ダイオードDBU-3のアノードは交流端子2aに接続される。
 IGBT素子QBV-1,QBV-4は正電圧端子2pおよび負電圧端子2nの間に直列に接続される。ダイオードDBV-1,DBV-4はIGBT素子QBV-1,QBV-4にそれぞれ逆並列に接続される。
 IGBT素子QBV-2およびダイオードDBV-2は中性点電圧端子2cおよび交流端子2bの間に直列に接続される。詳細には、IGBT素子QBV-2のコレクタは中性点電圧端子2cに接続され、そのエミッタはダイオードDBV-2のアノードに接続される。ダイオードDBV-2のカソードは交流端子2bに接続される。
 IGBT素子QBV-3およびダイオードDBV-3は中性点電圧端子2cおよび交流端子2bの間に直列に接続される。詳細には、IGBT素子QBV-3のエミッタは中性点電圧端子2cに接続され、そのコレクタはダイオードDBV-3のカソードに接続される。ダイオードDBV-3のアノードは交流端子2bに接続される。
 (双方向絶縁型DC/DCコンバータの動作)
 図3は、単相3レベルインバータINV-AのU相電圧VAU、V相電圧VAVおよび交流電圧VAの関係と、単相3レベルインバータINV-BのU相電圧VBU、V相電圧VBVおよび交流電圧VBの関係とを示す波形図である。
 まず、図3を用いて単相3レベルインバータINV-Aの動作について説明する。
 単相3レベルインバータINV-Aにおいて、U相電圧VAUおよびV相電圧VAVはいずれも、コンデンサC1,C2の接続点である中性点に対して±EdA/2,0の3値をとることができる。以下では、単相3レベルインバータINV-AのU相のIGBT素子およびダイオードとV相のIGBT素子およびダイオードとを総括的に説明するため符号AU,AVをまとめて符号「Ax」と示す。また、交流端子1a,1bをまとめて「交流端子1」と示す。
 IGBT素子QAx-1がオンされ、IGBT素子QAx-2,QAx-3,QAx-4がオフされる期間は、正電圧端子1pおよび交流端子1が接続されるため、出力電圧VAxは+EdA/2になる。
 また、IGBT素子QAx-2,QAx-3がオンされ、IGBT素子QAx-1,QAx-4がオフされる期間は、中性点電圧端子1cおよび交流端子1が接続されるため、出力電圧VAxは0になる。
 一方、IGBT素子QAx-4がオンされ、IGBT素子QAx-1,QAx-2,QAx-3がオフされる期間は、負電圧端子1nおよび交流端子1が接続されるため、出力電圧VAxは-EdA/2になる。
 単相3レベルインバータINV-Aの交流端子1aおよび交流端子1bの間には、U相電圧VAUとV相電圧VAVとの差である線間電圧(=VAU-VAV)が出力される。すなわち、交流電圧VAは、±EdA,±EdA/2,0の5値をとる。
 次に、単相3レベルインバータINV-Bの動作について説明する。
 単相3レベルインバータINV-Bにおいても、単相3レベルインバータINV-Aと同様に、U相電圧VBUおよびV相電圧VBVはいずれも、コンデンサC3,C4の接続点である中性点に対して±EdB/2,0の3値をとることができる。以下では、単相3レベルインバータINV-BのU相のIGBT素子およびダイオードとV相のIGBT素子およびダイオードとを総括的に説明するため符号BU,BVをまとめて符号「Bx」と示す。また、交流端子2a,2bをまとめて「交流端子2」と示す。
 IGBT素子QBx-1がオンされ、IGBT素子QBx-2,QBx-3,QBx-4がオフされる期間は、正電圧端子2pおよび交流端子2が接続されるため、出力電圧VBxは+EdB/2になる。
 また、IGBT素子QBx-2,QBx-3がオンされ、IGBT素子QBx-1,QBx-4がオフされる期間は、中性点電圧端子2cおよび交流端子2が接続されるため、出力電圧VBxは0になる。
 一方、IGBT素子QBx-4がオンされ、IGBT素子QBx-1,QBx-2,QBx-3がオフされる期間は、負電圧端子2nおよび交流端子2が接続されるため、出力電圧VBxは-EdB/2になる。
 単相3レベルインバータINV-Bの交流端子2aおよび交流端子2bの間には、U相電圧VBUとV相電圧VBVとの差である線間電圧(=VBU-VBV)が出力される。すなわち、交流電圧VBは、±EdB,±EdB/2,0の5値をとる。
 以下では、U相電圧VAUのパルス幅とV相電圧VAVのパルス幅とを同じパルス幅θAとし、U相電圧VAUとV相電圧VAVとの位相差をφAとする。また、U相電圧VBUのパルス幅とV相電圧VBVのパルス幅とを同じパルス幅θBとし、U相電圧VBUとV相電圧VBVとの位相差をφBとする。さらに、交流電圧VAと交流電圧VBとの位相差をγとする。
 (単相3レベルインバータの出力交流電圧のn次高調波成分)
 次に、各単相3レベルインバータから出力される交流電圧のn次高調波成分について説明する。
 以下では、図3に示される単相3レベルインバータINV-Aの電圧波形と、単相3レベルインバータINV-Bの電圧波形とを総括的に説明するため、U相電圧VAUおよびVBUを総括して「U相電圧VU」と示し、V相電圧VAVおよびVBVを総括して「V相電圧VV」と示し、交流電圧VAおよびVBを総括して「交流電圧V」と示す。また、直流電圧EdAおよびEdBを総括して「直流電圧Ed」と示し、パルス幅θAおよびθBを総括して「パルス幅θ」と示し、位相差φAおよびφBを総括して「位相差φ」と示す。
 図3に示されるU相電圧VUおよびV相電圧VVの電圧波形をフーリエ級数展開することによって、U相電圧VUおよびV相電圧VVはそれぞれ、次式(1),(2)で表すことができる。
Figure JPOXMLDOC01-appb-M000001
 交流電圧Vは、U相電圧VUとV相電圧VVとの差(線間電圧)であり、次式(3)で与えられる。
Figure JPOXMLDOC01-appb-M000002
 この式(3)に対して式(1),(2)を代入すると、交流電圧Vのn次高調波成分vnは次式(4)で表される。
Figure JPOXMLDOC01-appb-M000003
 n次高調波成分の振幅をVnとすると、振幅Vnは次式(5)で与えられる。
Figure JPOXMLDOC01-appb-M000004
 式(5)からは、n次高調波成分の振幅Vnは、U相電圧VUおよびV相電圧VVのパルス幅θと、U相電圧VUとV相電圧VVとの位相差φとで決まることが分かる。言い換えれば、n次高調波成分の振幅Vnは2つの自由度(パルス幅θ、位相差φ)を有していることが分かる。
 上記知見に基づき、本実施の形態1では、交流電圧のn次高調波成分の振幅Vnが0となるように、パルス幅θおよび位相差φのいずれか一方を設定する。これにより、n次高調波成分を抑制することができる。
 詳細には、第1の制御方式として、式(5)においてsin(nφ/2)=0を満たす位相差φを設定する。この方式によれば、n次高調波成分の振幅Vnが0となるため、n次高調波成分が抑制される。あるいは、第2の制御方式として、式(5)においてsin(nθ/2)=0を満たすパルス幅θを設定する。本方式においても、n次高調波成分の振幅Vnが0となるため、n次高調波成分が抑制される。
 本実施の形態1では、交流電圧のn次高調波成分の振幅Vnが0となるように位相差φを設定する制御方式(第1の制御方式)を採用することとする。なお、交流電圧のn次高調波成分の振幅Vnが0となるようにパルス幅θを設定する制御方式(第2の制御方式)については、後述する実施の形態2において説明する。
 本実施の形態1では、3次高調波成分を低減するために、3次高調波成分の振幅Vn(n=3)が0となるように、位相差φを設定する。具体的には、π<φ<2πと定義すると、sin(3φ/2)=0を満たすためには、3φ/2=2πであればよい。すなわち、3次高調波成分を低減するためには、位相差φを4π/3に設定すればよい。
 さらに、本実施の形態1では、交流電圧VAの基本波成分の実効値と交流電圧Bの基本波成分の実効値とが一致するように、直流電圧EdAと直流電圧EdBとの高低に応じてパルス幅θA,θBを制御する。
 以下、本実施の形態1による双方向絶縁型DC/DCコンバータの制御構成について説明する。
 (双方向絶縁型DC/DCコンバータの制御構成)
 図4は、図1に示した制御装置4の機能ブロック図である。ただし、図4では、直流回路5から直流回路6に直流電力を供給する場合の制御構成が示されている。なお、直流回路6から直流回路5に直流電力を供給する場合は、たとえば切換回路により、電圧検出器VS1,VS2と電圧検出器VS3,VS4とがそれぞれ置き換えられ、電流検出器IS2と電流検出器IS1とが置き換えられる。
 図4を参照して、制御装置4は、加算器10,11と、パルス幅制御部12と、高調波制御部13と、電圧指令部14と、減算器15,17と、電圧制御部16と、電流制御部18と、制御信号生成部19とを含む。制御装置4は、以下の4つの工程(1)~(4)を実行することにより、単相3レベルインバータINV-A,INV-Bの動作を制御する。
 (1)位相差γの制御
 双方向絶縁型DC/DCコンバータ1は、交流電圧VAと交流電圧VBとの間に位相差γを設けることで、直流回路5から単相3レベルインバータINV-A,INV-Bを介して直流回路6に電力を供給することができる。あるいは、直流回路6から単相3レベルインバータINV-B,INV-Aを介して直流回路5に電力を供給することができる。以下、その原理について説明する。
 図5に、単相3レベルインバータINV-Aから単相3レベルインバータINV-Bへ電力を伝送するときの交流基本波電圧のベクトル図を示す。
 図5では、単相3レベルインバータINV-Aの交流電圧VAの基本波成分を交流基本波電圧Vaとし、単相3レベルインバータINV-Bの交流電圧VBの基本波成分を交流基本波電圧Vbとしている。また、交流基本波電圧Vaを進みとし、交流基本波電圧Vbを遅れとしている。VaとVbとの位相差はγである。
 図5において、ΔVはVaとVbとの差の電圧である。iはVaとVbとの差の電圧ΔVにより流れる電流である。電流iは次式(6)より表わすことができる。ρは力率角である。Lは絶縁型変圧器3の漏れインダクタンスおよびリアクトルL1,L2の和である。
Figure JPOXMLDOC01-appb-M000005
 図5のベクトル図において、線分ABの長さは次式(7)で与えられる。
Figure JPOXMLDOC01-appb-M000006
 有効電力はP=Vb・icosρであるから、式(7)を用いて次式(8)となる。
Figure JPOXMLDOC01-appb-M000007
 したがって、有効電力は位相差γによって変化することから、位相差γを制御することで直流回路5および直流回路6の間の電力供給を制御することができる。
 図4に戻って、電圧指令部14は、直流電圧EdBの目標電圧EdB*を生成する。減算器15は、目標電圧EdB*と、加算器11で求められた直流電圧EdBとの偏差(=EdB*-EdB)を求める。電圧制御部16は、減算器15で求められた偏差に基づいて電流指令値IdB*を生成する。
 減算器17は、電圧制御部16で生成された電流指令値IdB*と電流検出器IS2で検出された直流電流IdBとの偏差(=IdB*-IdB)を求める。電流制御部18は、減算器17で求められた偏差に基づいて位相差γを生成する。
 (2)位相差φの設定
 高調波制御部13は、交流電圧VA,VBのn次高調波成分の振幅が0となるように、位相差φA,φBを設定する。たとえば、高調波制御部13は、3次高調波成分を低減するため、3次高調波成分の振幅Vn(n=3)が0となるように、位相差φA,φBを設定する。具体的には、高調波制御部13は、式(5)においてsin(3φ/2)=0を満たすように、位相差φA,φBの各々を4π/3に設定する(φA=φB=4π/3)。
 (3)パルス幅θA,θBの制御
 上記(2)で説明したように、交流基本波電圧Vaおよび交流基本波電圧Vbの位相差γを制御することにより、直流回路5および直流回路6の間の電力供給を制御することができる。
 図6A~6Cに、単相3レベルインバータINV-Aから単相3レベルインバータINV-Bへ電力を伝送するときの交流基本波電圧のベクトル図を示す。図6A~6Cにおいて、ΔVはVaとVbとの差の電圧である。iはVaとVbとの差の電圧ΔVにより流れる電流である。
 交流基本波電圧Va,Vbは、式(4)にn=1を代入することより、次式(9),(10)で与えられる。
Figure JPOXMLDOC01-appb-M000008
 本実施の形態1では、上記(2)により、位相差φAと位相差φBとが同じである(=4π/3)。さらに、パルス幅θAとパルス幅θBとを同じとすると、交流基本波電圧Vaの実効値と交流基本波電圧Vbの実効値との高低は、直流電圧EdAと直流電圧EdBとの高低で決まる。
 図6Aは、直流電圧EdAが直流電圧EdBよりも高い場合(EdA>EdB)の交流基本波電圧VaとVbとの関係を示している。この場合、電流iの力率はVa,Vbの両者に対して時計回りの方向に悪くなる。したがって、力率が悪いといえる。
 図6Bは、直流電圧EdAと直流電圧EdBとが等しい場合(EdA=EdB)の交流基本波電圧VaとVbとの関係を示している。この場合、電流iの力率はVa,Vbの両者に対してcos(γ/2)と良好である。したがって、力率が良いといえる。
 図6Cは、直流電圧EdAが直流電圧EdBよりも低い場合(EdA<EdB)の交流基本波電圧VaとVbとの関係を示している。この場合、電流iの力率はVa,Vbの両者に対して反時計回りの方向に悪くなる。したがって、力率が悪いといえる。
 以上により、パルス幅θA=θBとすると、EdA>EdB(図6A)またはEdA<EdB(図6C)の場合に力率が悪くなる。力率を良好にするためには、交流基本波電圧Vaの実効値と交流基本波電圧Vbの実効値とが等しくなることが好ましい。
 そこで、本実施の形態1では、交流基本波電圧Vaの実効値と交流基本波電圧Vbの実効値とが等しくなるように、パルス幅θA,θBを制御する。具体的には、2つの直流電圧EdA,EdBのうちの低い方の直流電圧に対応する交流電圧のパルス幅θをπに固定し、高い方の直流電圧に対応する交流電圧のパルス幅θを絞ることにより、交流基本波電圧Vaの実効値と交流基本波電圧Vbの実効値とを一致させる。
 たとえば、EdA>EdBとなる場合には、式(9),(10)において、パルス幅θB=πとすることにより、Vaの実効値とVbの実効値とが一致するためのパルス幅θAは次式(11)で与えられる。
Figure JPOXMLDOC01-appb-M000009
 同様に、EdA<EdBとなる場合には、式(9),(10)において、パルス幅θA=πとすることにより、Vaの実効値とVbの実効値とが一致するためのパルス幅θBは次式(12)で与えられる。
Figure JPOXMLDOC01-appb-M000010
 図4に戻って、加算器10は、電圧検出器VS1が検出したコンデンサC1の両端の電圧と、電圧検出器VS2が検出したコンデンサC2の両端の電圧とを加算して、正電圧端子1pと負電圧端子1nとの間の直流電圧EdAを出力する。
 加算器11は、電圧検出器VS3が検出したコンデンサC3の両端の電圧と、電圧検出器VS4が検出したコンデンサC4の両端の電圧とを加算して、正電圧端子2pと負電圧端子2nとの間の直流電圧EdBを出力する。
 パルス幅制御部12は、x=EdB/EdA、θA=2sin-1(x)よりパルス幅θAを計算する。また、パルス幅制御部12は、y=EdA/EdB、θB=2sin-1(y)よりパルス幅θBを計算する。ただし、x、yの各々が1以下になるようにリミッタを設ける。
 たとえば、EdA=150,EdB=100である場合、EdB/EdA=2/3,EdA/EdB=3/2であるので、x=2/3,y=3/2となる。したがって、θA=2sin-1(2/3),θB=πとなる。
 また、EdA=100,EdB=150である場合、EdB/EdA=3/2、EdA/EdB=2/3であるので、x=3/2,y=2/3となる。したがって、θA=π,θB=2sin-1(2/3)となる。
 (4)制御信号の生成
 制御信号生成部19は、高調波制御部13により設定された位相差φA,φB、電流制御部18により生成された位相差γ、およびパルス幅制御部12により生成されたパルス幅θA,θBに基づいて、単相3レベルインバータINV-Aの制御信号と単相3レベルインバータINV-Bの制御信号とを生成する。
 次に、図7および図8を用いて、各単相3レベルインバータの制御信号の生成方法について説明する。
 図7および図8では、単相3レベルインバータINV-Aを進みとし、単相3レベルインバータINV-Bを遅れとしている。すなわち、単相3レベルインバータINV-Aから単相3レベルインバータINV-2に電力が供給される。
 また、図7および図8では、直流電圧EdAが直流電圧EdBよりも高い場合を想定している(EdA>EdB)。したがって、上述したパルス幅θA,θBの制御では、パルス幅θBをπに固定し、パルス幅θAを絞ることにより、交流基本波電圧Vaの実効値と交流基本波電圧Vbの実効値とを一致させる。
 図7は、実施の形態1による単相3レベルインバータINV-Aの制御信号の生成方法を示すタイムチャートである。
 制御信号生成部19は、交流基本波電圧Vaの2倍の周波数を有するノコギリ波信号STUを生成する。ノコギリ波信号STUは0とπとの間で振幅するものとし、ノコギリ波信号STUの周期をπとする。
 制御信号生成部19は、続いて、各々がノコギリ波信号STUと比較される、2つの参照信号(a1),(a2)を生成する。
 第1の参照信号(a1)は、単相3レベルインバータINV-AのIGBT素子QAU-1の第1の矩形波QAU-1(a1)の立上りおよび立下りを決めるために用いられる。第1の参照信号(a1)は次式(13)で与えられる。
Figure JPOXMLDOC01-appb-M000011
 第1の参照信号(a1)とノコギリ波信号STUとは各周期で交差する。奇数番目の周期においてノコギリ波信号STUと第1の参照信号(a1)とが交差したときに第1の矩形波QAU-1(a1)がLレベルからHレベルに立ち上がる。偶数番目の周期においてノコギリ波信号STUと第1の参照信号(a1)とが交差したときに第1の矩形波QAU-1(a1)がHレベルからLレベルに立ち下がる。
 第2の参照信号(a2)は、単相3レベルインバータINV-AのIGBT素子QAU-1の第2の矩形波QAU-1(a2)の立上りおよび立下りを決めるために用いられる。第2の参照信号(a2)は次式(14)で与えられる。
Figure JPOXMLDOC01-appb-M000012
 第2の参照信号(a2)とノコギリ波信号STUとは各周期で交差する。奇数番目の周期においてノコギリ波信号STUと第2の参照信号(a2)とが交差したときに第2の矩形波QAU-1(a2)がLレベルからHレベルに立ち上がる。偶数番目の周期においてノコギリ波信号STUと第2の参照信号(a2)とが交差したときに第2の矩形波QAU-1(a2)がHレベルからLレベルに立ち下がる。
 制御信号生成部19は、第1の矩形波QAU-1(a1)と第2の矩形波QAU-1(a2)との論理積(AND)を演算することにより、IGBT素子QAU-1の制御信号を生成する。
 制御信号生成部19は、また、第1の矩形波QAU-1(a1)の反転信号(逆相信号)と第2の矩形波QAU-1(a2)との論理積を演算するとともに、第1の矩形波QAU-1(a1)と第2の矩形波QAU-1(a2)の反転信号との論理積を演算する。そして、これら2つの論理積の論理和(OR)を演算することにより、IGBT素子QAU-2,3の制御信号を生成する。
 制御信号生成部19は、さらに、第1の矩形波QAU-1(a1)の反転信号と第2の矩形波QAU-1(a2)の反転信号との論理積を演算することにより、IGBT素子QAU-4の制御信号を生成する。
 次に、制御信号生成部19は、ノコギリ波信号STUをπ/3だけ位相を遅らせたノコギリ波信号STVを生成する。ノコギリ波信号STVは0とπとの間で振幅するものとし、ノコギリ波信号STVの周期をπとする。なお、ノコギリ波信号STUに対するノコギリ波信号STVの位相差π/3は、3次高調波成分の振幅を0とするための位相差φ(=4π/3)からπを引き算したものである。
 第1の参照信号(a1)は、単相3レベルインバータINV-AのIGBT素子QAV-1の第3の矩形波QAV-1(a1)の立上りおよび立下りを決めるために用いられる。第1の参照信号(a1)とノコギリ波信号STVとは各周期で交差する。奇数番目の周期においてノコギリ波信号STVと第1の参照信号(a1)とが交差したときに第3の矩形波QAV-1(a1)がHレベルからLレベルに立ち下がる。偶数番目の周期においてノコギリ波信号STVと第1の参照信号(a1)とが交差したときに第3の矩形波QAV-1(a1)がLレベルからHレベルに立ち上がる。
 第2の参照信号(a2)は、単相3レベルインバータINV-AのIGBT素子QAV-1の第4の矩形波QAV-1(a2)の立上りおよび立下りを決めるために用いられる。第2の参照信号(a2)とノコギリ波信号STVとは各周期で交差する。奇数番目の周期においてノコギリ波信号STVと第2の参照信号(a2)とが交差したときに第4の矩形波QAV-1(a2)がHレベルからLレベルに立ち下がる。偶数番目の周期においてノコギリ波信号STVと第2の参照信号(a2)とが交差したときに第4の矩形波QAV-1(a2)がLレベルからHレベルに立ち上がる。
 制御信号生成部19は、第3の矩形波QAV-1(a1)の反転信号と第4の矩形波QAV-1(a2)の反転信号との論理積を演算することにより、IGBT素子QAV-1の制御信号を生成する。
 制御信号生成部19は、また、第3の矩形波QAV-1(a1)と第4の矩形波QAV-1(a2)の反転信号との論理積を演算するとともに、第3の矩形波QAV-1(a1)の反転信号と第4の矩形波QAV-1(a2)との論理積を演算する。そして、これら2つの論理積の論理和を演算することにより、IGBT素子QAV-2,3の制御信号を生成する。
 制御信号生成部19は、さらに、第3の矩形波QAV-1(a1)と第4の矩形波QAV-1(a2)との論理積を演算することにより、IGBT素子QAV-4の制御信号を生成する。
 2つの参照信号(a1),(a2)において、π+(a2)-(a1)=θAとなっている。これにより、図7に示されるように、U相電圧VAUおよびV相電圧VAVのパルス幅はいずれもθAとなる。また、ノコギリ波信号STVをノコギリ波信号STUに対してπ/3だけ遅らせたことにより、U相電圧VAUとV相電圧VAVとの位相差φA=4π/3となっている。
 図8は、実施の形態1による単相3レベルインバータINV-A,INV-Bの制御信号の生成方法を示すタイムチャートである。単相3レベルインバータINV-Aの制御信号の生成方法は、図7で説明したものと同じである。したがって、単相3レベルインバータINV-Bの制御信号の生成方法について説明する。
 制御信号生成部19は、各々がノコギリ波信号STと比較される、2つの参照信号(b1),(b2)を生成する。
 第3の参照信号(b1)は、単相3レベルインバータINV-BのIGBT素子QBU-1の第1の矩形波QBU-1(b1)の立上りおよび立下りを決めるために用いられる。第3の参照信号(b1)は次式(15)で与えられる。
Figure JPOXMLDOC01-appb-M000013
 第3の参照信号(b1)とノコギリ波信号STとは各周期で交差する。奇数番目の周期においてノコギリ波信号STと第3の参照信号(b1)とが交差したときに第1の矩形波QBU-1(b1)がLレベルからHレベルに立ち上がる。偶数番目の周期においてノコギリ波信号STと第3の参照信号(b1)とが交差したときに第1の矩形波QBU-1(b1)がHレベルからLレベルに立ち下がる。
 第4の参照信号(b2)は、単相3レベルインバータINV-BのIGBT素子QBU-1の第2の矩形波QBU-1(b2)の立上りおよび立下りを決めるために用いられる。第4の参照信号(b2)は次式(16)で与えられる。
Figure JPOXMLDOC01-appb-M000014
 なお、図8では、パルス幅θB=πであるため、第3の参照信号(b1)と第4の参照信号(b2)とは等しくなっている。
 第4の参照信号(b2)とノコギリ波信号STとは各周期で交差する。奇数番目の周期においてノコギリ波信号STと第4の参照信号(b2)とが交差したときに第2の矩形波QBU-1(b2)がLレベルからHレベルに立ち上がる。偶数番目の周期においてノコギリ波信号STと第4の参照信号(b2)とが交差したときに第2の矩形波QBU-1(b2)がHレベルからLレベルに立ち下がる。
 制御信号生成部19は、第1の矩形波QBU-1(b1)と第2の矩形波QBU-1(b2)との論理積を演算することにより、IGBT素子QBU-1の制御信号を生成する。制御信号生成部19は、また、第1の矩形波QBU-1(b1)の反転信号と第2の矩形波QBU-1(b2)との論理積を演算するとともに、第1の矩形波QBU-1(b1)と第2の矩形波QBU-1(b2)の反転信号との論理積を演算する。そして、これら2つの論理積の論理和を演算することにより、IGBT素子QBU-2,3の制御信号を生成する。制御信号生成部19は、さらに、第1の矩形波QBU-1(b1)の反転信号と第2の矩形波QBU-1(b2)の反転信号との論理積を演算することにより、IGBT素子QBU-4の制御信号を生成する。
 図示は省略するが、制御信号生成部19は、さらに、ノコギリ波信号STをπ/3だけ位相を遅らせたノコギリ波信号STVと、第3および第4の参照信号(b1),(b2)とを比較することにより、IGBT素子QBV-1~QBV-4の制御信号を生成する。
 2つの参照信号(b1),(b2)が等しいため、π+(b2)-(b1)=πとなっている。これにより、図8に示されるように、U相電圧VBUおよびV相電圧VBVのパルス幅はともにθB=πとなる。また、ノコギリ波信号STVをノコギリ波信号STに対してπ/3だけ遅らせたことにより、U相電圧VBUとV相電圧VBVとの位相差φB=4π/3となっている。
 (実施の形態1の変更例)
 上記の実施の形態1では、直流電圧EdA,EdBのうちの高い方の直流電圧に対応する交流電圧のパルス幅θを狭めることで、交流基本波電圧VaおよびVbの実効値を一致させることとしたが、これに限るものではなく、交流基本波電圧VaおよびVbの実効値の差が所定値以下になるように、交流電圧のパルス幅θを狭めるようにしてもよい。または、交流基本波電圧VaおよびVbの実効値の差と、VaまたはVbの実効値との比が数%以下になるように、交流電圧のパルス幅θを狭めてもよい。
 [実施の形態2]
 実施の形態2では、交流電圧のn次高調波成分の振幅Vnが0となるように、パルス幅θを設定する制御方式について説明する。本方式では、たとえば、3次高調波成分を低減するために、3次高調波成分の振幅Vn(n=3)が0となるように、パルス幅θを設定する。具体的には、0<θ<πと定義すると、sin(3θ/2)=0を満たすためには、3θ/2=πであればよい。すなわち、3次高調波成分を低減するためには、パルス幅θを2π/3に設定すればよい。
 さらに、本実施の形態2では、交流基本波電圧Vaの実効値と交流基本波電圧Vbの実効値とが一致するように、直流電圧EdAと直流電圧EdBとの高低に応じて位相差φA,φBを制御する。
 以下、実施の形態2による双方向絶縁型DC/DCコンバータの制御構成について説明する。
 (双方向絶縁型DC/DCコンバータの制御構成)
 図9は、図1に示した制御装置4の機能ブロック図である。ただし、図9では、直流回路5から直流回路6に直流電力を供給する場合の制御構成が示されている。なお、直流回路6から直流回路5に直流電力を供給する場合は、たとえば切換回路により、電圧検出器VS1,VS2と電圧検出器VS3,VS4とがそれぞれ置き換えられ、電流検出器IS2と電流検出器IS1とが置き換えられる。
 図9を参照して、制御装置4は、基本的に図4に示した制御装置4と同様の構成を備えるが、パルス幅制御部12および高調波制御部13に代えて、位相差制御部20および高調波制御部21を含む点が異なっている。制御装置4は、上述した4つの工程(1)~(4)を実行することにより、単相3レベルインバータINV-A,INV-Bの動作を制御する。
 (1)位相差γの制御
 制御装置4は、実施の形態1で示した位相差γの制御と同様の方法によって位相差γを制御する。
 (2)パルス幅θの設定
 高調波制御部21は、交流電圧VA,VBのn次高調波成分の振幅が0となるように、パルス幅θA,θBを設定する。たとえば、高調波制御部21は、3次高調波成分を低減するために、3次高調波成分の振幅Vn(n=3)=0となるように、パルス幅θA,θBを設定する。具体的には、高調波制御部21は、式(5)においてsin(3θ/2)=0を満たすように、パルス幅θA,θBの各々を2π/3に設定する。
 (3)位相差φA,φBの制御
 本実施の形態2では、交流基本波電圧Vaの実効値と交流基本波電圧Vbの実効値とが等しくなるように、位相差φA,φBを制御する。具体的には、2つの直流電圧EdA,EdBのうちの低い方の直流電圧に対応する交流電圧の位相差φをπに固定し、高い方の直流電圧に対応する交流電圧の位相差φを絞ることにより、交流基本波電圧Vaの実効値と交流基本波電圧Vbの実効値とを一致させる。
 たとえば、EdA>EdBとなる場合には、式(9),(10)において、位相差φB=πとすることにより、Vaの実効値とVbの実効値とが一致するための位相差φAは次式(17)で与えられる。
Figure JPOXMLDOC01-appb-M000015
 同様に、EdA<EdBとなる場合には、式(9),(10)において、位相差φA=πとすることにより、Vaの実効値とVbの実効値とが一致するための位相差φBは次式(18)で与えられる。
Figure JPOXMLDOC01-appb-M000016
 図10に戻って、加算器10は、電圧検出器VS1が検出したコンデンサC1の両端の電圧と、電圧検出器VS2が検出したコンデンサC2の両端の電圧とを加算して、正電圧端子1pと負電圧端子1nとの間の直流電圧EdAを出力する。
 加算器11は、電圧検出器VS3が検出したコンデンサC3の両端の電圧と、電圧検出器VS4が検出したコンデンサC4の両端の電圧とを加算して、正電圧端子2pと負電圧端子2nとの間の直流電圧EdBを出力する。
 位相差制御部20は、x=EdB/EdA、φA=2sin-1(x)より位相差φAを計算する。また、位相差制御部20は、y=EdA/EdB、φB=2sin-1(y)より位相差φBを計算する。ただし、x、yの各々が1以下になるようにリミッタを設ける。
 (4)制御信号の生成
 制御信号生成部19は、高調波制御部21により設定されたパルス幅θA,θB、電流制御部18により生成された位相差γ、および位相差制御部20により生成された位相差φA,φBに基づいて、単相3レベルインバータINV-Aの制御信号と単相3レベルインバータINV-Bの制御信号とを生成する。
 次に、図10を用いて、各単相3レベルインバータの制御信号の生成方法について説明する。
 図10は、実施の形態2による単相3レベルインバータINV-A,INV-Bの制御信号の生成方法を示すタイムチャートである。図10では、単相3レベルインバータINV-Aを進みとし、単相3レベルインバータINV-Bを遅れとしている。すなわち、単相3レベルインバータINV-Aから単相3レベルインバータINV-2に電力が供給される。
 また、図10では、直流電圧EdAが直流電圧EdBよりも高い場合を想定している(EdA>EdB)。したがって、上述した位相差φA,φBの制御では、位相差φBをπに固定し、位相差φAを絞ることにより、交流基本波電圧Vaの実効値と交流基本波電圧Vbの実効値とを一致させる。
 制御信号生成部19は、ノコギリ波信号STUを生成するとともに、各々がノコギリ波信号STUと比較される、4つの参照信号(a1),(a2),(b1),(b2)を生成する。
 第1の参照信号(a1)は、単相3レベルインバータINV-AのIGBT素子QAU-1の第1の矩形波QAU-1(a1)の立上りおよび立下りを決めるために用いられる。第1の参照信号(a1)は次式(19)で与えられる。
Figure JPOXMLDOC01-appb-M000017
 第1の参照信号(a1)とノコギリ波信号STUとは各周期で交差する。奇数番目の周期においてノコギリ波信号STと第1の参照信号(a1)とが交差したときに第1の矩形波QAU-1(a1)がLレベルからHレベルに立ち上がる。偶数番目の周期においてノコギリ波信号STUと第1の参照信号(a1)とが交差したときに第1の矩形波QAU-1(a1)がHレベルからLレベルに立ち下がる。
 第2の参照信号(a2)は、単相3レベルインバータINV-AのIGBT素子QAU-1の第2の矩形波QAU-1(a2)の立上りおよび立下りを決めるために用いられる。第2の参照信号(a2)は次式(20)で与えられる。
Figure JPOXMLDOC01-appb-M000018
 第2の参照信号(a2)とノコギリ波信号STUとは各周期で交差する。奇数番目の周期においてノコギリ波信号STUと第2の参照信号(a2)とが交差したときに第2の矩形波QAU-1(a2)がLレベルからHレベルに立ち上がる。偶数番目の周期においてノコギリ波信号STと第2の参照信号(a2)とが交差したときに第2の矩形波QAU-1(a2)がHレベルからLレベルに立ち下がる。
 制御信号生成部19は、第1の矩形波QAU-1(a1)と第2の矩形波QAU-1(a2)との論理積を演算することにより、IGBT素子QAU-1の制御信号を生成する。
 制御信号生成部19は、また、第1の矩形波QAU-1(a1)の反転信号と第2の矩形波QAU-1(a2)との論理積を演算するとともに、第1の矩形波QAU-1(a1)と第2の矩形波QAU-1(a2)の反転信号との論理積を演算する。そして、これら2つの論理積の論理和を演算することにより、IGBT素子QAU-2,3の制御信号を生成する。
 制御信号生成部19は、さらに、第1の矩形波QAU-1(a1)の反転信号と第2の矩形波QAU-1(a2)の反転信号との論理積を演算することにより、IGBT素子QAU-4の制御信号を生成する。
 図示は省略するが、制御信号生成部19は、さらに、ノコギリ波信号STUを(φA-π)だけ位相を遅らせたノコギリ波信号STVと第1および第2の参照信号(a1),(a2)とを比較することにより、IGBT素子QAV-1~QAV-4の制御信号を生成する。
 2つの参照信号(a1),(a2)において、π+(a2)-(a1)=θAとなっている。これにより、図10に示されるように、U相電圧VAUおよびV相電圧VAVのパルス幅はいずれもθA(=2π/3)となる。また、ノコギリ波信号STVをノコギリ波信号STUに対してφA-πだけ遅らせたことにより、U相電圧VAUとV相電圧VAVとの位相差はφAとなっている。
 第3の参照信号(b1)は、単相3レベルインバータINV-BのIGBT素子QBU-1の第1の矩形波QBU-1(b1)の立上りおよび立下りを決めるために用いられる。第3の参照信号(b1)は次式(21)で与えられる。
Figure JPOXMLDOC01-appb-M000019
 第3の参照信号(b1)とノコギリ波信号STUとは各周期で交差する。奇数番目の周期においてノコギリ波信号STと第3の参照信号(b1)とが交差したときに第1の矩形波QBU-1(b1)がLレベルからHレベルに立ち上がる。偶数番目の周期においてノコギリ波信号STUと第3の参照信号(b1)とが交差したときに第1の矩形波QBU-1(b1)がHレベルからLレベルに立ち下がる。
 第4の参照信号(b2)は、単相3レベルインバータINV-BのIGBT素子QBU-1の第2の矩形波QBU-1(b2)の立上りおよび立下りを決めるために用いられる。第4の参照信号(b2)は次式(22)で与えられる。
Figure JPOXMLDOC01-appb-M000020
 第4の参照信号(b2)とノコギリ波信号STUとは各周期で交差する。奇数番目の周期においてノコギリ波信号STUと第4の参照信号(b2)とが交差したときに第2の矩形波QBU-1(b2)がLレベルからHレベルに立ち上がる。偶数番目の周期においてノコギリ波信号STUと第4の参照信号(b2)とが交差したときに第2の矩形波QBU-1(b2)がHレベルからLレベルに立ち下がる。
 制御信号生成部19は、第1の矩形波QBU-1(b1)と第2の矩形波QBU-1(b2)との論理積を演算することにより、IGBT素子QBU-1の制御信号を生成する。制御信号生成部19は、また、第1の矩形波QBU-1(b1)の反転信号と第2の矩形波QBU-1(b2)との論理積を演算するとともに、第1の矩形波QBU-1(b1)と第2の矩形波QBU-1(b2)の反転信号との論理積を演算する。そして、これら2つの論理積の論理和を演算することにより、IGBT素子QBU-2,3の制御信号を生成する。制御信号生成部19は、さらに、第1の矩形波QBU-1(b1)の反転信号と第2の矩形波QBU-1(b2)の反転信号との論理積を演算することにより、IGBT素子QBU-4の制御信号を生成する。
 図示は省略するが、制御信号生成部19は、さらに、ノコギリ波信号STVと第3および第4の参照信号(b1),(b2)とを比較することにより、IGBT素子QBV-1~QBV-4の制御信号を生成する。なお、図11では、位相差φB=πであるため、ノコギリ波信号STUとノコギリ波信号STVとの位相差はπ-π=0(同位相)となる。
 2つの参照信号(b1),(b2)において、π+(b2)-(b1)=θBとなっている。これにより、図10に示されるように、U相電圧VBUおよびV相電圧VBVのパルス幅はいずれもθB(=2π/3)となる。また、ノコギリ波信号STUとノコギリ波信号STVとを同位相としたことにより、U相電圧VBUとV相電圧VBVとの位相差φB=πとなっている。
 (実施の形態2の変更例)
 上記の実施の形態2では、直流電圧EdA,EdBのうちの高い方の直流電圧に対応する交流電圧の位相差φを狭めることで、交流基本波電圧VaおよびVbの実効値を一致させることとしたが、これに限るものではなく、交流基本波電圧VaおよびVbの実効値の差が所定値以下になるように、交流電圧の位相差φを狭めるようにしてもよい。または、交流基本波電圧VaおよびVbの実効値の差と、VaまたはVbの実効値との比が数%以下になるように、交流電圧の位相差φを狭めてもよい。
 [本実施の形態の作用効果]
 次に、本実施の形態に至った課題について説明しながら、本実施の形態の作用効果について説明する。
 図13は、比較例による双方向絶縁型DC/DCコンバータの構成を示す回路図である。図13を参照して、比較例による双方向絶縁型DC/DCコンバータ100は、基本的に図2に示す双方向絶縁型DC/DCコンバータ1と同様の構成を備えるが、2つの単相インバータINV1,INV2が2レベル回路により構成される点が異なっている。
 2レベル回路により構成されたインバータ(2レベルインバータ)INV1は、U相アームとV相アームとを含む。U相アームは、正電圧端子1pおよび負電圧端子1nの間に直列に接続されるIGBT素子Q1,Q3と、IGBT素子Q1,Q3にそれぞれ逆並列に接続されるダイオードD1,D3とを含む。IGBT素子Q1およびQ3の接続点には交流端子1aが接続される。V相アームは、正電圧端子1pおよび負電圧端子1nの間に直列に接続されるIGBT素子Q2,Q4と、IGBT素子Q2,Q4にそれぞれ逆並列に接続されるダイオードD2,D4とを含む。IGBT素子Q2およびQ4の接続点には交流端子1bが接続される。
 2レベルインバータINV2は、U相アームとV相アームとを含む。U相アームは、正電圧端子2pおよび負電圧端子2nの間に直列に接続されるIGBT素子Q11,Q13と、IGBT素子Q11,Q13にそれぞれ逆並列に接続されるダイオードD11,D13とを含む。IGBT素子Q11およびQ13の接続点には交流端子2aが接続される。V相アームは、正電圧端子2pおよび負電圧端子2nの間に直列に接続されるIGBT素子Q12,Q14と、IGBT素子Q12,Q14にそれぞれ逆並列に接続されるダイオードD12,D14とを含む。IGBT素子Q12およびQ14の接続点には交流端子2bが接続される。
 コンデンサC11は、インバータINV1の端子1p,1n間に接続され、端子1p,1n間の直流電圧EdAを平滑化および安定化させる。コンデンサC12は、インバータINV2の端子2p,2n間に接続され、端子2p,2n間の直流電圧EdBを平滑化および安定化させる。
 2レベルインバータINV1は、図示しないドライバの出力信号によって制御され、正電圧端子1pおよび負電圧端子1n間の直流電圧EdAを交流電圧VAに変換して交流端子1a,1b間に出力する。2レベルインバータINV2は、図示しないドライバの出力信号によって制御され、正電圧端子2pおよび負電圧端子2n間の直流電圧EdBを交流電圧VBに変換して交流端子2a,2b間に出力する。
 ここで、2レベルインバータINV1において、交流端子1a,1b間に出力される交流電圧VAは、波高値EdAおよびパルス幅θAを持つ矩形波の交流電圧となる。インバータINV2において、交流端子2a,2b間に出力される交流電圧VBは、波高値EdBおよびパルス幅θBを持つ矩形波の交流電圧となる。以下では、2レベルインバータINV1,INV2の電圧波形を総括的に説明するため、交流電圧VAおよびVBを総括して「交流電圧V」と示し、直流電圧EdAおよびEdBを総括して「直流電圧Ed」と示し、パルス幅θAおよびθBを総括して「パルス幅θ」と示す。
 2レベルインバータの電圧波形をフーリエ変換展開すると、次式(23)となり、多くの奇数次の高調波成分が含まれることが分かる。式(23)によれば、n次の高調波成分vnは次式(24)で与えられる。n次の高調波成分の大きさはその次数に反比例することが分かる。
Figure JPOXMLDOC01-appb-M000021
 比較例による双方向絶縁型DC/DCコンバータ100においては、式(24)で表される高調波成分が発生するため、2つの2レベルインバータINV1,INV2間を流れる交流電流の高調波成分が大きくなる。この高調波成分によって生じる電力損失は、双方向絶縁型DC/DCコンバータ100の変換効率の低下を招く。
 ここで、図14に示す回路において発生する電力損失について考察する。
 図14に示す回路では、2レベルインバータの定格電力を100[kW]とし、スイッチング周波数fを10[kHz]とし、直流電圧Edを100[V]としている。よって、2レベルインバータの定格電流は100[kW]/100[V]=100[A]となる。定格インピーダンスZpuは100[V]/100[A]=1[Ω]となる。定格リアクトルLpuは、Lpu=1/(2πf)より、15.9[μH]となる。
 なお、リアクトルLの大きさは、定格リアクトルLpuの10~30%程度が適当と考えられるため、1.59~4.77μH程度であることが好ましい、以下では、簡単のため、L=1.6μH(10%)とする。
 2レベルインバータの電圧波形において、矩形波のパルス幅θ=πとする。この場合、交流電圧および交流電流の各々の基本波成分および高調波成分の実効値は以下のようになる。なお、電流については、基本波成分の大きさを100%としたときの各次数成分の大きさを合わせて示す。
基本波成分:
V1=90V,I1=90V/(1+2πfL)1/2=85.8A(100%)
3次高調波成分:
V3=30V,I3=30V/(1+2π・3fL)1/2=26.3A(30.7%)5次高調波成分:
V5=18V,I5=50V/(1+2π・5fL)1/2=12.9A(17.1%)
 次に、基本波成分および各次数成分の電力損失の割合を計算する。電力損失は抵抗×(電流)である。以下では、抵抗を一定として各次数の電力損失の割合を計算する。
基本波成分のみ:100%
基本波成分+3次高調波成分:
(100%)2+(30.6%)=109.4%
基本波成分+5次高調波成分:
(100%)2+(17.5%)=103.1%
基本波成分+3次高調波成分+5次高調波成分:
(100%)2+(30.6%)+(17.5%)=112.4%
 上記の計算結果において、3次高調波成分は基本波成分に対する電力損失の割合が約10%と高くなっている。したがって、3次高調波成分を抑制することができれば、約10%損失を低減できるものと見積もられる。
 一方、5次高調波成分は基本波成分に対する電力損失の割合が約3%と低い。そのため、5次高調波成分を抑制した場合、3次高調波成分を抑制した場合に比べて損失低減効果が低いことが見積もられる。これによれば、高調波成分の次数が高くなるほど電力損失の割合が小さくなるため、損失低減効果が低くなるものと考えられる。換言すれば、3次高調波成分を抑制することで、電力損失を最も効果的に低減することができるものと考えられる。
 なお、高調波成分を抑制する対策として、2レベルインバータINV1と絶縁型変圧器3の1次巻線3aとの間に、リアクトルおよびコンデンサからなる直列共振回路を接続する構成が提案されている(たとえば、非特許文献2参照)。しかしながら、当該構成では、直列共振回路のリアクトルが大きくなるために装置の大型化を招くという課題がある。また、直列共振回路で発生する電力損失に起因して変換効率の大きな改善が望めないという課題がある。
 これに対して、本実施の形態によれば、双方向絶縁型DC/DCコンバータ1に含まれる2つのインバータを単相3レベルインバータで構成したことにより、各インバータの出力交流電圧を、U相電圧およびV相電圧のパルス幅θと、U相電圧とV相電圧との位相差φとの2つの変数を用いて制御することができる。これによれば、パルス幅θおよび位相差φのいずれか一方を用いて交流電圧のn次高調波成分の振幅を0にすることができる。すなわち、パルス幅θおよび位相差φの一方を制御することにより、n次高調波成分を抑制することができる。上述のように、損失低減には3次高調波成分を抑制することが有効である。本実施の形態によれば、3次高調波成分の振幅が0となるように、パルス幅θまたは位相差φを設定することで、3次高調波成分を容易に抑制することができる。
 さらに、本実施の形態では、パルス幅θおよび位相差φの他方を制御することにより、2つのインバータの交流基本波電圧の実効値を一致させることができる。したがって、各インバータが受ける直流電圧の差が大きく変動する場合でも、2つのインバータ間で安定に電力を授受することができる。
 このように本実施の形態によれば、2つの単相3レベルインバータの動作を制御することで高調波成分を抑制することができるため、直列共振回路の設置が不要となる。したがって、装置が大型化することを防ぐことができる。また、直列共振回路に起因する電力損失の増加が抑えられるため、変換効率を向上させることができる。
 [本実施の形態の変更例]
 (1)単相3レベルインバータINV-A,INV-Bにおいて、U相アームおよびV相アームを構成する3レベル回路は、図11に示すような構成であってもよい。3レベル回路は4つのIGBT素子と、6つのダイオードとを含む。図13には、単相3レベルインバータINV-AのU相アームを構成する3レベル回路を代表して示す。
 IGBT素子QAU-1~QAU-4は正電圧端子1aと負電圧端子1bとの間に直列に接続される。ダイオードDAU-1~DAU-4は、IGBT素子QAU-1~QAU-4にそれぞれ逆並列に接続される。IGBT素子QAU-2,QAU-3の接続点は交流端子1aに接続される。
 ダイオードDAU-5は、IGBT素子QAU-1,QAU-2の接続点と中性点電圧端子1cとの間に接続される。ダイオードDAU-6は、IGBT素子QAU-3,QAU-4の接続点と中性点電圧端子1cとの間に接続される。なお、ダイオードDAU-5のカソードはIGBT素子QAU-1,QAU-2の接続点に接続され、ダイオードDAU-5のアノードは中性点電圧端子1cに接続される。ダイオードDAU-6のアノードはIGBT素子QAU-3,QAU-4の接続点に接続され、ダイオードDAU-6のカソードは中性点電圧端子1cに接続される。
 IGBT素子QAU-1,QAU-2がオンされ、IGBT素子QAU-3,QAU-4がオフされる期間は、正電圧端子1pおよび交流端子1aが接続されるため、出力電圧VAUは+EdA/2になる。
 また、IGBT素子QAU-2,QAU-3がオンされ、IGBT素子QAU-1,QAU-4がオフされる期間は、中性点電圧端子1cおよび交流端子1aが接続されるため、出力電圧VAUは0になる。
 一方、IGBT素子QAU-3,QAU-4がオンされ、IGBT素子QAU-1,QAU-2がオフされる期間は、負電圧端子1nおよび交流端子1aが接続されるため、出力電圧VAUは-EdA/2になる。
 すなわち、U相電圧VAUは±EdA/2,0の3値をとる。同様にしてV相電圧VAVも±EdA/2,0の3値をとる。したがって、単相3レベルインバータINV-Aの交流端子1aおよび交流端子1bの間に出力される交流電圧VAは、±EdA,±EdA/2,0の5値をとる。
 (2)本実施の形態では、電圧検出器VS1,VS2によって端子T1,T2間の直流電圧EdAを検出し、電圧検出器VS3,VS4によって端子T3,T4間の直流電圧EdBを検出したが、これに限るものではなく、直流電圧EdA,EdBを他の方法で検出してもよい。たとえば、単相3レベルインバータINV-A,INV-Bの出力交流電圧VA,VBを信号変圧器を介して制御装置4に取り込み、取り込んだ交流電圧の波高値をサンプリングし、サンプリングした波高値から直流電圧EdA,EdBを間接的に検出してもよい。
 (3)本実施の形態では、2つのリアクトルL1,L2を設けたが(図1参照)、2つのリアクトルL1,L2のうちの1つのリアクトルを除去してもよい。絶縁型変圧器3が漏れインダクタンスを有する場合は、2つのリアクトルL1,L2を除去してもよい。
 [実施の形態3]
 (スマートネットワークの構成)
 実施の形態3では、図12を参照して、本実施の形態による双方向絶縁型DC/DCコンバータを用いたスマートネットワークの構成について説明する。
 この発明の実施の形態3によるスマートネットワークは、双方向絶縁型DC/DCコンバータ1と、2つの直流電力系統30,52とを備える。
 直流電力系統30は、商用交流電源40、太陽光発電機41、風力発電機42、PWMコンバータ43、変換器44,45、直流母線46、充電・放電制御用変換器47,48、LiPo電池49、電気二重層コンデンサ50、および負荷51を含む。
 商用交流電源40は、商用交流電力を生成する。PWMコンバータ43は、商用交流電源40からの商用交流電力を所定の直流電圧EdA(たとえば300V)の直流電力に変換して直流母線46に供給する。また、PWMコンバータ43は、商用交流電力が不足した場合には、直流母線46からの直流電力を商用周波数で所定電圧の交流電力に変換して商用交流電源40に供給する。
 太陽光発電機41は、太陽からの光エネルギーを直流電力に変換する。変換器44は、太陽光発電機41で生成された直流電力を所定の直流電圧EdAの直流電力に変換して直流母線46に供給する。風力発電機42は、風力を直流電力に変換する。変換器45は、風力発電機42で生成された直流電力を所定の直流電圧EdAの直流電力に変換して直流母線46に供給する。
 充電・放電制御用変換器47は、直流電力系統30において直流電力が余剰している場合は、直流母線46から直流電力を取り出してLiPo電池49に直流電力を蓄え、直流電力系統30において直流電力が不足している場合は、LiPo電池49から直流電力を取り出して直流母線46に供給する。
 充電・放電制御用変換器48は、直流電力系統30において直流電力が余剰している場合は、直流母線46から直流電力を取り出して電気二重層コンデンサ50に直流電力を蓄え、直流電力系統30において直流電力が不足している場合は、電気二重層コンデンサ50から直流電力を取り出して直流母線46に供給する。
 負荷51は、一般住宅、オフィス、工場設備などであり、直流母線46から直流電力の供給を受ける。直流電力系統52は、直流電力系統30と同様の構成であり、所定の直流電圧EdB(たとえば1000V)に維持される直流母線53を含む。
 双方向絶縁型DC/DCコンバータ1は、実施の形態1,2で説明したものであり、直流母線46と直流母線53との間で直流電力の授受を行なう。直流母線46は、それぞれ端子T1,T2に接続される直流正母線および直流負母線を含む。直流母線53は、それぞれ端子T3,T4に接続される直流正母線および直流負母線を含む。
 双方向絶縁型DC/DCコンバータ1は、2つの単相3レベルインバータINV-A,INV-Bの出力交流電圧のn次高調波成分の振幅が0となるように、各単相3レベルインバータにおけるU相電圧とV相電圧との位相差φを設定する。また、交流基本波電圧Va,Vbの実効値とが一致するように、直流電圧EdAおよびEdBの高低に応じて、単相3レベルインバータINV-A,INV-BにおけるU相電圧およびV相電圧のパルス幅θA,θBを制御する。
 あるいは、双方向絶縁型DC/DCコンバータ1は、2つの単相3レベルインバータINV-A,INV-Bの出力交流電圧のn次高調波成分の振幅が0となるように、各単相3レベルインバータにおけるU相電圧およびV相電圧のパルス幅θを設定し、交流基本波電圧Va,Vbの実効値とが一致するように、直流電圧EdAおよびEdBの高低に応じて、単相3レベルインバータINV-A,INV-BにおけるU相電圧とV相電圧との位相差φA,φBを制御する。
 双方向絶縁型DC/DCコンバータは、さらに、流したい電流の値および方向に応じて交流電圧VA,VBの位相差γを設定する。直流電力系統30から直流電力系統52に直流電力を供給する場合は、交流電圧VAの位相を交流電圧VBよりも進ませる。一方、直流電力系統52から直流電力系統30に直流電力を供給する場合は、交流電圧VBの位相を交流電圧VAの位相よりも進ませる。
 たとえば、直流電力系統30において商用交流電源が故障して直流電力が不足した場合は、直流電力系統52から直流電力系統30に直流電力が供給される。したがって、このスマートネットワークは無停電電源システムの機能をも有する。
 本実施の形態3では、双方向絶縁型DC/DCコンバータ1で2つの直流電力系統を結合したことで、直流電力系統の直流電圧EdA,EdBが大きく変動した場合でも、直流電力系統30,52間で直流電力を安定に授受することができる。
 今回開示された実施の形態は例示であって、上記内容のみに限定されるものではない。本発明の範囲は請求の範囲によって示され、請求の範囲と均等の意味および範囲内のすべての変更が含まれることが意図される。
 1,100 双方向絶縁型DC/DCコンバータ、1a,1b,2a,2b 交流端子、1p,2p 正電圧端子、1n,2n 負電圧端子、1c,2c 中性点電圧端子、3 絶縁型変圧器、3a 1次巻線、3b 2次巻線、4 制御装置、5,6 直流回路、10,11 加算器、12 パルス幅制御部、13,21 高調波制御部、14 電圧指令部、15,17 減算器、16 電圧制御部、18 電流制御部、19 制御信号生成部、20 位相差制御部、30,52 直流電力系統、40 商用交流電源、41 太陽光発電機、42 風力発電機、43 PWMコンバータ、44,45 変換器、46 直流母線、47,48 充電・放電制御用変換器、49 LiPo電池、50 電気二重層コンデンサ、51 負荷、INV-A,INV-B 単相3レベルインバータ、INV1,INV2 2レベルインバータ、DR1,DR2 ドライバ、QAU-1~QAU-4,QAV-1~QAV-4,QBU-1~QBU-4,QBV-1~QBV-4,Q1~Q4,Q11~Q14 IGBT素子、DAU-1~DAU-4,DAV-1~DAV-4,DBU-1~DBU-4,DBV-1~DBV-4,D1~D4,D11~D14 ダイオード、T1,T3 正電圧端子、T2,T4 負電圧端子、IS1,IS2 電流検出器、VS1~VS4 電圧検出器、C1~C4,C11,C12 コンデンサ、L1,L2 リアクトル。

Claims (9)

  1.  第1および第2の直流回路間で直流電力の授受を行なう双方向絶縁型DC/DCコンバータであって、
     前記第1の直流回路から受ける第1の直流電圧に基づいて、第1の出力端子および第2の出力端子の間に第1の交流電圧を生成する第1の単相3レベルインバータと、
     前記第2の直流回路から受ける第2の直流電圧に基づいて、第3の出力端子および第4の出力端子の間に第2の交流電圧を生成する第2の単相3レベルインバータと、
     前記第1および第2の出力端子から前記第1の交流電圧を受ける1次巻線と、前記第3および第4の出力端子から前記第2の交流電圧を受ける2次巻線とを含む絶縁型変圧器とを備える、双方向絶縁型DC/DCコンバータ。
  2.  前記第1の単相3レベルインバータは、
     前記第1の直流回路と前記第1の出力端子との間に接続され、第1相の電圧を生成する第1の回路と、
     前記第1の直流回路と前記第2の出力端子との間に接続され、第2相の電圧を生成する第2の回路とを含み、
     前記第1相の電圧と前記第2相の電圧との差を前記第1の交流電圧として生成するように構成され、
     前記第2の単相3レベルインバータは、
     前記第2の直流回路と前記第3の出力端子との間に接続され、前記第1相の電圧を生成する第3の回路と、
     前記第2の直流回路と前記第4の出力端子との間に接続され、前記第2相の電圧を生成する第4の回路とを含み、
     前記第1相の電圧と前記第2相の電圧の差を前記第2の交流電圧として生成するように構成され、
     前記双方向絶縁型DC/DCコンバータは、前記第1および第2の単相3レベルインバータを制御する制御装置をさらに備え、
     前記制御装置は、前記第1および第2の交流電圧の各々に含まれるn次高調波成分(nは3以上の奇数)の振幅が0となるように、前記第1相および前記第2相の電圧のパルス幅、および前記第1相および前記第2相の電圧の位相差のいずれか一方を設定する、請求項1に記載の双方向絶縁型DC/DCコンバータ。
  3.  前記第1および第2の単相3レベルインバータの各々において、前記第1相および前記第2相の電圧のパルス幅が互いに等しい場合、前記n次高調波成分の振幅は下式(1)で与えられ、
     Vn=4E/nπ・sin(nθ/2)・sin(nφ/2)・・・(1)
    (式(1)中、Vnは前記n次高調波成分の振幅を表わし、Eは前記第1および第2の直流電圧を表わし、θは前記パルス幅を表わし、φは前記位相差を表わす。)
     前記制御装置は、sin(nφ/2)=0を満たすように、前記第1相および前記第2相の電圧の位相差を設定する、請求項2に記載の双方向絶縁型DC/DCコンバータ。
  4.  前記制御装置は、
     前記第1の直流電圧が前記第2の直流電圧よりも高い場合は、前記第1および第2の交流電圧の基本波成分の実効値が一致するように、前記第1の単相3レベルインバータにおける前記第1相および前記第2相の電圧のパルス幅を狭め、
     前記第2の直流電圧が前記第2の直流電圧よりも高い場合は、前記第1および第2の交流電圧の基本波成分の実効値が一致するように、前記第2の単相3レベルインバータにおける前記第1相および前記第2相の電圧のパルス幅を狭める、請求項3に記載の双方向絶縁型DC/DCコンバータ。
  5.  前記第1および第2の単相3レベルインバータの各々において、前記第1相および前記第2相の電圧のパルス幅が等しい場合、前記n次高調波成分の振幅は下式(1)で与えられ、
     Vn=4E/nπ・sin(nθ/2)・sin(nφ/2)・・・(1)
    (式(1)中、Vnは前記n次高調波成分の振幅を表わし、Eは前記第1および第2の直流電圧を表わし、θは前記パルス幅を表わし、φは前記位相差を表わす。)
     前記制御装置は、sin(nθ/2)=0を満たすように前記第1相および前記第2相の電圧のパルス幅を設定する、請求項2に記載の双方向絶縁型DC/DCコンバータ。
  6.  前記制御装置は、
     前記第1の直流電圧が前記第2の直流電圧よりも高い場合は、前記第1および第2の交流電圧の基本波成分の実効値が一致するように、前記第1の単相3レベルインバータにおける前記第1相および前記第2相の電圧の位相差を狭め、
     前記第2の直流電圧が前記第2の直流電圧よりも高い場合は、前記第1および第2の交流電圧の基本波成分の実効値が一致するように、前記第2の単相3レベルインバータにおける前記第1相および前記第2相の電圧の位相差を狭める、請求項5に記載の双方向絶縁型DC/DCコンバータ。
  7.  前記制御装置はさらに、前記第1および第2の直流回路間で所望の直流電力が授受されるように、前記第1および第2の交流電圧の位相差を設定する、請求項2~6のいずれか1項に記載の双方向絶縁型DC/DCコンバータ。
  8.  請求項1~7のいずれか1項に記載の双方向絶縁型DC/DCコンバータと、
     前記第1および第2の直流回路とを備え、
     前記第1および第2の直流回路は、それぞれ第1および第2の直流電力系統である、スマートネットワーク。
  9.  前記第1および第2の直流電力系統の各々は、
     前記第1または第2の単相3レベルインバータに接続される直流母線と、
     前記直流母線に直流電力を供給する直流電源と、
     前記直流母線からの直流電力によって駆動される負荷と、
     前記直流母線からの直流電力を蓄える電力貯蔵装置とを含む、請求項8に記載のスマートネットワーク。
PCT/JP2017/015061 2016-05-31 2017-04-13 双方向絶縁型dc/dcコンバータおよびスマートネットワーク WO2017208639A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/303,230 US10587200B2 (en) 2016-05-31 2017-04-13 Bidirectional insulated DC/DC converter and smart network
KR1020187037789A KR102218804B1 (ko) 2016-05-31 2017-04-13 쌍방향 절연형 dc/dc 컨버터 및 스마트 네트워크
CN201780033264.9A CN109196766B (zh) 2016-05-31 2017-04-13 双向绝缘型dc/dc转换器及智能电网
JP2018520699A JP6785304B2 (ja) 2016-05-31 2017-04-13 双方向絶縁型dc/dcコンバータおよびスマートネットワーク

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-108804 2016-05-31
JP2016108804 2016-05-31

Publications (1)

Publication Number Publication Date
WO2017208639A1 true WO2017208639A1 (ja) 2017-12-07

Family

ID=60479399

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/015061 WO2017208639A1 (ja) 2016-05-31 2017-04-13 双方向絶縁型dc/dcコンバータおよびスマートネットワーク

Country Status (5)

Country Link
US (1) US10587200B2 (ja)
JP (1) JP6785304B2 (ja)
KR (1) KR102218804B1 (ja)
CN (1) CN109196766B (ja)
WO (1) WO2017208639A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10951110B2 (en) * 2017-07-25 2021-03-16 Global Energy Interconnection Research Institute Co., Ltd Control method and device for alternating-current and direct-current conversion circuit, and computer storage medium
WO2021256137A1 (ja) * 2020-06-17 2021-12-23 株式会社 東芝 電力変換装置、変電所用電源装置および回生電力貯蔵装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6370522B1 (ja) * 2018-01-30 2018-08-08 三菱電機株式会社 直列多重インバータ
CN111064371B (zh) * 2019-12-26 2024-04-05 杭州电子科技大学 混合五电平双向dc/dc变流器及其电压匹配调制方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014508495A (ja) * 2011-03-01 2014-04-03 ライニシュ−ヴェストファーリシュ−テクニシェ ホーホシューレ アーヘン 双方向dc−dcコンバータ
WO2015056503A1 (ja) * 2013-10-18 2015-04-23 東芝三菱電機産業システム株式会社 双方向絶縁型dc/dcコンバータおよびそれを用いたスマートネットワーク
JP2016039663A (ja) * 2014-08-06 2016-03-22 富士電機株式会社 電力変換装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3704051B2 (ja) 2001-03-09 2005-10-05 株式会社千代田 入出力絶縁型電力回生装置
US7839023B2 (en) * 2007-07-18 2010-11-23 Raytheon Company Methods and apparatus for three-phase inverter with reduced energy storage
US8570769B2 (en) * 2009-12-21 2013-10-29 Intersil Americas LLC Bidirectional signal conversion
CN102624243A (zh) * 2012-04-19 2012-08-01 中国矿业大学(北京) 隔离式半桥三电平双向dc/dc变换器
JP6008185B2 (ja) * 2012-11-19 2016-10-19 富士電機株式会社 3レベル電力変換装置及びその制御方法
US9263948B1 (en) * 2014-09-25 2016-02-16 Bae Systems Controls Inc. Input output balanced bidirectional buck-boost converters and associated systems and methods
US20190157986A1 (en) * 2015-09-16 2019-05-23 sonnen GmbH Inverter device, energy storage system and method of controlling an inverter device
GB201602044D0 (en) * 2016-02-04 2016-03-23 Eltek As Bidirectional DC-DC resonant converter
US9667157B1 (en) * 2016-04-27 2017-05-30 General Electric Company System and method for operating a power converter
CN109792216B (zh) * 2016-11-17 2021-01-15 东芝三菱电机产业系统株式会社 电力转换装置
CN110063011A (zh) * 2016-11-17 2019-07-26 东芝三菱电机产业系统株式会社 电力变换装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014508495A (ja) * 2011-03-01 2014-04-03 ライニシュ−ヴェストファーリシュ−テクニシェ ホーホシューレ アーヘン 双方向dc−dcコンバータ
WO2015056503A1 (ja) * 2013-10-18 2015-04-23 東芝三菱電機産業システム株式会社 双方向絶縁型dc/dcコンバータおよびそれを用いたスマートネットワーク
JP2016039663A (ja) * 2014-08-06 2016-03-22 富士電機株式会社 電力変換装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10951110B2 (en) * 2017-07-25 2021-03-16 Global Energy Interconnection Research Institute Co., Ltd Control method and device for alternating-current and direct-current conversion circuit, and computer storage medium
WO2021256137A1 (ja) * 2020-06-17 2021-12-23 株式会社 東芝 電力変換装置、変電所用電源装置および回生電力貯蔵装置
JP7475980B2 (ja) 2020-06-17 2024-04-30 株式会社東芝 電力変換装置、変電所用電源装置および回生電力貯蔵装置

Also Published As

Publication number Publication date
US20190207526A1 (en) 2019-07-04
CN109196766A (zh) 2019-01-11
US10587200B2 (en) 2020-03-10
JP6785304B2 (ja) 2020-11-18
CN109196766B (zh) 2020-09-29
KR102218804B1 (ko) 2021-02-22
KR20190008386A (ko) 2019-01-23
JPWO2017208639A1 (ja) 2019-02-14

Similar Documents

Publication Publication Date Title
US8508957B2 (en) Power conversion device for converting DC power to AC power
US20090244936A1 (en) Three-phase inverter
US9577545B2 (en) Power circuit, converter structure and wind power generation system thereof
US10998830B2 (en) Power conversion device and three-phase power conversion device
US20160126862A1 (en) Method and system for operating a multilevel inverter
US20170179836A1 (en) Power conversion device
WO2017208639A1 (ja) 双方向絶縁型dc/dcコンバータおよびスマートネットワーク
US20140233279A1 (en) Power conversion apparatus
DK201470472A1 (en) Power conversion system and method
JP6171022B2 (ja) 双方向絶縁型dc/dcコンバータおよびそれを用いたスマートネットワーク
JP5374336B2 (ja) 電力変換装置
US20160380551A1 (en) Converter arrangement having multi-step converters connected in parallel and method for controlling these
JP2013021895A (ja) インバータ装置、および、このインバータ装置を備えた系統連系インバータシステム
KR20220020955A (ko) 멀티레벨 변환기를 위한 전압 밸런스 시스템 및 방법
KR102318118B1 (ko) 전원 제어 장치, 전력 변환 시스템 및 전원 제어 방법
JP2013081309A (ja) 電力変換装置
JP5119992B2 (ja) 電力変換装置
US10848072B2 (en) Power supply control device, power conversion system, and power supply control method
KR101592227B1 (ko) 에너지저장시스템의 dc 버스 불균형 제어 회로
KR101312589B1 (ko) 멀티레벨 인버터 및 그 인버터의 구동 방법
Sha et al. Parallel-connected bidirectional current-fed dual active bridge DC-DC converters with decentralized control
KR101287444B1 (ko) 멀티레벨 인버터 및 그 인버터의 구동 방법
JP5752580B2 (ja) 電力変換装置
Scott et al. Multilevel, multiport, switched-capacitor based inverter for utility applications
Sagayaraj et al. Performance Analysis of Quazi Z-source inverter Fed Induction Motor under Semiconductor Failure Condition

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018520699

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17806199

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20187037789

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 17806199

Country of ref document: EP

Kind code of ref document: A1