WO2014115507A1 - 電気光学装置および電子機器 - Google Patents

電気光学装置および電子機器 Download PDF

Info

Publication number
WO2014115507A1
WO2014115507A1 PCT/JP2014/000154 JP2014000154W WO2014115507A1 WO 2014115507 A1 WO2014115507 A1 WO 2014115507A1 JP 2014000154 W JP2014000154 W JP 2014000154W WO 2014115507 A1 WO2014115507 A1 WO 2014115507A1
Authority
WO
WIPO (PCT)
Prior art keywords
pixel
capacitor
pixel capacitor
capacitance value
electrode
Prior art date
Application number
PCT/JP2014/000154
Other languages
English (en)
French (fr)
Inventor
川田 浩孝
準一 平
Original Assignee
セイコーエプソン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by セイコーエプソン株式会社 filed Critical セイコーエプソン株式会社
Priority to US14/763,098 priority Critical patent/US9659976B2/en
Priority to CN201480006037.3A priority patent/CN104981733B/zh
Publication of WO2014115507A1 publication Critical patent/WO2014115507A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136213Storage capacitors associated with the pixel electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1255Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs integrated with passive devices, e.g. auxiliary capacitors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133345Insulating layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L28/00Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
    • H01L28/40Capacitors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/52RGB geometrical arrangements

Definitions

  • the present invention relates to a technique for displaying an image using a plurality of pixels.
  • a display device in which a plurality of pixels including a pixel capacitance such as a liquid crystal capacitance and a switching element such as a TFT (Thin Film Transistor) is arranged in a matrix has been disclosed.
  • the switching element is disposed between a data line to which a gradation voltage corresponding to a display gradation is supplied and a pixel capacitor, and controls supply / cutoff of the gradation voltage to the pixel capacitor.
  • the pixel capacitor holds a gradation voltage and displays a gradation corresponding to the gradation voltage.
  • irradiation light having a wavelength corresponding to any of a plurality of display colors for example, red, green, and blue
  • a plurality of display colors for example, red, green, and blue
  • a part of the irradiation light for each pixel can reach the switching element of each pixel.
  • a light leakage current is generated in the switching element due to the light irradiation to the switching element, and the voltage held by the pixel capacitor is changed.
  • the amount of light leakage current differs depending on the wavelength of the irradiation light with respect to the switching element. Accordingly, there is a problem in that the degree of variation in the holding voltage in the pixel capacitance differs for each display color of each pixel, resulting in a reduction in display quality. For example, if the degree of variation in the holding voltage in the pixel capacitance is different for each display color, the degree of occurrence of flicker is different for each display color and the display quality is lowered.
  • an object of the present invention is to suppress a decrease in display quality due to a difference in leakage current in switching elements of each pixel.
  • an electro-optical device includes a first pixel capacitor and a first switching element that controls supply and cutoff of a voltage to the first pixel capacitor.
  • the first pixel that modulates the irradiation light of the first wavelength according to the first pixel, the second pixel capacitor, and the second switching element that controls the supply and cutoff of the voltage to the second pixel capacitor, and longer than the first wavelength
  • a second pixel that modulates the irradiation light of the second wavelength according to the voltage of the second pixel capacitor, and the capacitance value of the first pixel capacitor is larger than the capacitance value of the second pixel capacitor.
  • the capacitance value of the first pixel capacitance is larger than the capacitance value of the second pixel capacitance, the light leakage current is larger than that of the first pixel capacitance and the second pixel even though the first pixel is larger than the second pixel.
  • the difference in the amount of change in the holding voltage from the two-pixel capacitor can be reduced. Therefore, it is possible to suppress a decrease in display quality due to a difference in light leak amount between the first pixel and the second pixel.
  • An electro-optical device includes a third pixel capacitor and a third switching element that controls supply and cutoff of a voltage to the third pixel capacitor, and has a third wavelength shorter than the first wavelength.
  • a third pixel that modulates the irradiation light according to the voltage of the third pixel capacitor is provided, and the capacitance value of the third pixel capacitor is larger than the capacitance value of the first pixel capacitor.
  • a third pixel capacitor and a third switching element that controls supply and cut-off of voltage to the third pixel capacitor are provided, and irradiation light having a third wavelength shorter than the first wavelength is third.
  • a third pixel that modulates according to the voltage of the pixel capacitance is provided, and the capacitance value of the third pixel capacitance is equal to the capacitance value of the first pixel capacitance.
  • each of the first pixel capacitor and the second pixel capacitor includes a liquid crystal capacitor in which a liquid crystal is sandwiched between opposing electrodes, and an auxiliary capacitor connected in parallel to the liquid crystal capacitor,
  • the capacitance value of the liquid crystal capacitance is common to the first pixel capacitance and the second pixel capacitance, and the capacitance value of the auxiliary capacitance of the first pixel capacitance exceeds the capacitance value of the second pixel capacitance.
  • each auxiliary capacitor of the first pixel capacitor and the second pixel capacitor includes a first electrode and a second electrode, and a dielectric layer sandwiched between the first electrode and the second electrode.
  • An opening having an inner peripheral edge located inside the peripheral edges of the first electrode and the second electrode in a plan view includes an insulating layer formed for each of the first pixel and the second pixel. A portion around the portion is sandwiched between the first electrode and the second electrode, and the area of the opening corresponding to the first pixel is larger than the area of the opening corresponding to the second pixel.
  • the capacitance value of the auxiliary capacitance can be easily and reliably between the first pixel and the second pixel by making the area of the opening of the insulating layer different between the first pixel and the second pixel. It is possible to make it different.
  • the electro-optical device is employed in various electronic devices.
  • a projection display device that projects an image on a projection surface by modulating irradiation light from a light source device for each pixel is assumed as a suitable example of the electronic apparatus according to the present invention.
  • FIG. 1 is a cross-sectional view of an electro-optical device 100 according to the first embodiment of the present invention.
  • the electro-optical device 100 includes a first substrate 10 and a second substrate 20 facing each other with a predetermined interval, and a liquid crystal 90 sealed in a space between the first substrate 10 and the second substrate 20. Consists of. Irradiation light (white light) emitted from a light source device (not shown) enters the electro-optical device 100 from the surface 21 of the second substrate 20.
  • the second substrate 20 in FIG. 1 is a light-transmitting plate member made of glass, quartz, or the like.
  • the filter layer 22 is formed on the surface of the second substrate 20 on the liquid crystal 90 side, and the counter electrode 24 is formed on the surface of the filter layer 22.
  • the filter layer 22 includes a plurality of color filters 26 (26R, 26G, 26B) and a light shielding layer 28.
  • the plurality of color filters 26 correspond to any of a plurality of different display colors (red, green, blue).
  • the color filter 26R corresponding to red selectively transmits light (red light) having a wavelength corresponding to red (R) in the irradiation light
  • the color filter 26G has a wavelength corresponding to green (G) in the irradiation light.
  • the light shielding layer 28 is a film body having a light shielding property (a property of absorbing or reflecting light) that defines the outer edge of each color filter 26.
  • the counter electrode 24 is continuously formed over substantially the entire surface of the second substrate 20 with a light-transmitting conductive material such as ITO (Indium Tin Oxide).
  • the first substrate 10 is a light-transmitting plate member made of glass or quartz.
  • a wiring layer 12 and a plurality of pixel electrodes 16 are formed on the surface of the first substrate 10 on the liquid crystal 90 side.
  • the wiring layer 12 is a layered portion including a plurality of wirings (for example, scanning lines 40 and data lines 50 described later) and a plurality of TFTs 14.
  • the plurality of pixel electrodes 16 are formed of a light transmissive conductive material such as ITO on the surface of the wiring layer 12 and arranged in a matrix in plan view so as to face the color filters 26. In practice, elements such as an alignment film covering each pixel electrode 16 are also formed, but the illustration is omitted in FIG. 1 for convenience.
  • FIG. 2 is an explanatory diagram of an electrical configuration of the electro-optical device 100.
  • the wiring layer 12 includes a plurality of scanning lines 40 extending in the X direction and a plurality of data lines 50 extending in the Y direction intersecting the X direction.
  • Pixels 30 (30R, 30G, 30B) are arranged at each intersection of the scanning line 40 and the data line 50.
  • each pixel 30 corresponds to one of a plurality of different display colors. Red light transmitted through the color filter 26R is incident on the pixel 30R corresponding to red. Similarly, green light is incident on the green pixel 30G, and blue light is incident on the blue pixel 30B.
  • FIG. 3 is a circuit diagram of each pixel 30.
  • the pixel 30 of this embodiment includes a pixel capacitor 36 and a TFT 14.
  • the pixel capacitor 36 includes a liquid crystal capacitor 32 and an auxiliary capacitor 34.
  • the liquid crystal capacitor 32 is a capacitance in which the liquid crystal 90 is sandwiched between the pixel electrode 16 and the counter electrode 24.
  • the auxiliary capacitance 34 is an electrostatic capacitance in which the dielectric layer 72 is sandwiched between the first electrode 70 and the second electrode 74.
  • the second electrode 74 of the auxiliary capacitor 34 and the pixel electrode 16 of the liquid crystal capacitor 32 are commonly connected to the drain of the TFT 14.
  • the first electrode 70 of the auxiliary capacitor 34 and the counter electrode 24 of the liquid crystal capacitor 32 are electrically connected to a wiring to which a predetermined potential is supplied.
  • the liquid crystal capacitor 32 and the auxiliary capacitor 34 are electrically connected in parallel.
  • the capacitance value of the pixel capacitor 36 is the sum of the capacitance value of the liquid crystal capacitor 32 and the capacitance value of the auxiliary capacitor 34.
  • Irradiation light reaching the pixel 30 is caused by the phase difference of the liquid crystal capacitance that changes according to the voltage between the pixel electrode 16 and the counter electrode 24 (voltage between both ends of the liquid crystal capacitance 32 and the auxiliary capacitance 34).
  • the phase is modulated. That is, the pixel 30 functions as an element that modulates irradiation light (controls the amount of irradiation light) according to the voltage held by the pixel capacitor 36.
  • each TFT 14 in each pixel 30 is connected to a data line 50. That is, the TFT 14 is interposed between the data line 50 and the pixel capacitor 36 and controls electrical connection (conduction / non-conduction) between the two.
  • a gradation voltage corresponding to the gradation designated by the image signal is supplied to the data line 50.
  • the TFT 14 is controlled to be on or off according to a scanning signal supplied to the scanning line 40.
  • the gradation voltage supplied to the data line 50 is supplied to the pixel capacitor 36 via the TFT 14 and is held in the pixel capacitor 36.
  • the TFT 14 when the TFT 14 is controlled to be turned off, the supply of the gradation voltage from the data line 50 to the pixel capacitor 36 is stopped. As described above, the TFT 14 functions as a switching element that controls the supply and cutoff of the gradation voltage to the pixel capacitor 36.
  • a light shielding layer 28 is formed in a lattice shape corresponding to a region between the pixel electrodes 16 in a plan view, and light irradiation to the TFT 14 of each pixel 30 is performed. Is prevented. However, a part of the irradiated light can reach the TFT 14 after being incident on the wiring layer 12 and reflected or scattered at the boundary surface of each element in the wiring layer 12. The irradiation light reaching the TFT 14 generates a light leakage current (current leakage between the drain and the source due to the light irradiation) of the TFT 14 in the off state.
  • FIG. 4 is a graph showing the relationship between the wavelength of light applied to the TFT 14 of this embodiment and the amount of light leakage current (hereinafter referred to as “light leakage amount”).
  • light leakage amount Within the range of the wavelength of light transmitted through each color filter 26 (for example, 450 nm to 620 nm), there is a general tendency that the amount of light leakage of the TFT 14 increases as the wavelength of the irradiation light is shorter.
  • a typical wavelength of blue light that passes through the color filter 26B is about 450 nm
  • a typical wavelength of green light that passes through the color filter 26G is about 530 nm, and passes through the color filter 26R.
  • a typical wavelength of red light is about 620 nm.
  • the light leak amount IB when irradiated with blue light exceeds the light leak amount IG when irradiated with green light
  • the light leak amount IG when irradiated with green light is The amount of light leakage IR when irradiated with red light is exceeded (IB> IG> IR).
  • the red light (wavelength of about 620 nm) transmitted through the color filter 26R reaches the TFT 14 of the pixel 30R most.
  • the most amount of green light (wavelength of about 530 nm) that has passed through the color filter 26G reaches the TFT 14 of the pixel 30G.
  • Blue light (wavelength: about 450 nm) transmitted through the color filter 26B reaches the TFT 14 of the pixel 30B most. Therefore, the average light leak amount of the TFT 14 of the pixel 30B exceeds the average light leak amount of the TFT 14 of the pixel 30G, and the average light leak amount of the TFT 14 of the pixel 30G is the average light leak of the TFT 14 of the pixel 30R. There is a tendency to exceed the amount.
  • the voltage held in the pixel capacitor 36 decreases with time.
  • the greater the amount of light leakage the greater the voltage drop (eg, the amount of reduction per unit time) of the pixel capacitor 36. Therefore, when the capacitance value of the pixel capacitor 36 is common to all the pixels, the voltage drop at the pixel 30B exceeds the voltage drop at the pixel 30G, and the voltage drop at the pixel 30G exceeds the voltage drop at the pixel 30R. An equilibrium occurs.
  • the capacitance value of the pixel capacitance 36 of each pixel 30 is selected for each display color according to the amount of light leakage. Specifically, as shown in FIG. 5, the capacitance value CB of the pixel capacitance 36 of the pixel 30B exceeds the capacitance value CG of the pixel capacitance 36 of the pixel 30G, and the capacitance value CG of the pixel capacitance 36 of the pixel 30G is equal to that of the pixel 30R. It exceeds the capacitance value CR of the pixel capacitor 36 (CB> CG> CR). In the first embodiment, the capacitance value of the liquid crystal capacitor 32 is common to all the display color pixels 30.
  • the capacitance value of the pixel capacitor 36 is made different for each display color according to the capacitance value of the auxiliary capacitor 34 of each pixel 30. Specifically, the capacitance value cB of the auxiliary capacitor 34 of the pixel 30B exceeds the capacitance value cG of the auxiliary capacitor 34 of the pixel 30G, and the capacitance value cG of the pixel 30G exceeds the capacitance value cR of the auxiliary capacitor 34 of the pixel 30R (cB > CG> cR).
  • FIG. 6 is a cross-sectional view showing a specific configuration of the wiring layer 12 focusing on one pixel 30.
  • the insulating layer 60 in FIG. 6 is formed on the surface of the first substrate 10.
  • a semiconductor layer 62 is formed for each pixel 30 on the surface of the insulating layer 60 and is covered with a gate insulating layer 64.
  • a gate electrode 66 is formed on the surface of the gate insulating layer 64 so as to sandwich the gate insulating layer 64 with the semiconductor layer 62.
  • the gate electrode 66 is continuous with the scanning line 40.
  • a portion where the gate electrode 66 and the semiconductor layer 62 face each other with the gate insulating layer 64 interposed therebetween functions as the TFT 14.
  • An insulating layer 68 is formed over the surface of the gate electrode 66 and the surface of the gate insulating layer 64.
  • a second electrode 74 is formed for each pixel 30 on the surface of the insulating layer 68.
  • the second electrode 74 is electrically connected to the semiconductor layer 62 (drain region) through a contact hole that penetrates the insulating layer 68 and the gate insulating layer 64.
  • a dielectric layer 72 is formed on the surface of the second electrode 74.
  • An insulating layer 76 is formed over the surface of the second electrode 74 and the surface of the insulating layer 68.
  • a first electrode 70 is formed for each pixel 30 on the surface of the dielectric layer 72.
  • the auxiliary capacitor 34 is formed by the first electrode 70, the second electrode 74, and the dielectric layer 72.
  • An opening 77 is formed in the insulating layer 76.
  • the inner peripheral edge of the opening 77 is located inside the peripheral edge of the second electrode 74 in plan view. Therefore, a portion of the insulating layer 76 around the opening 77 is located between the first electrode 70 and the second electrode 74. That is, only the dielectric layer 72 is interposed between the first electrode 70 and the second electrode 74 in the region inside the opening 77, and the first electrode 70 and the second electrode 74 are disposed in the region outside the opening 77. Both the dielectric layer 72 and the insulating layer 76 are interposed therebetween. Therefore, the capacitance value of the auxiliary capacitor 34 depends on the area of the opening 77 (the area of the insulating layer 76 between the first electrode 70 and the second electrode 74).
  • the capacity value of the auxiliary capacitor 34 increases as the area of the opening 77 increases.
  • the area of the opening 77 of the auxiliary capacitor 34 in the pixel 30B is larger than the area of the opening 77 of the auxiliary capacitor 34 in the pixel 30G, and the area of the opening 77 of the auxiliary capacitor 34 in the pixel 30G is in the pixel 30R. It is larger than the area of the opening 77 of the auxiliary capacitor 34.
  • the insulating layer 78 is formed over the surface of the first electrode 70 and the surface of the insulating layer 76.
  • a data line 50 is formed on the surface of the insulating layer 78.
  • the data line 50 is electrically connected to the semiconductor layer 62 (source region) through a contact hole that penetrates the insulating layer 78, the insulating layer 76, the insulating layer 68, and the gate insulating layer 64.
  • An insulating layer 80 is formed over the surface of the data line 50 and the surface of the insulating layer 78.
  • a pixel electrode 16 is formed for each pixel 30 on the surface of the insulating layer 80.
  • the pixel electrode 16 is electrically connected to the second electrode 74 through a contact hole that penetrates the insulating layer 80, the insulating layer 78, and the insulating layer 76. That is, the pixel electrode 16 is electrically connected to the semiconductor layer 62 (drain region) through the second electrode 74.
  • the capacitance value of the pixel capacitor 36 of each pixel 30 is selected for each display color of each pixel 30 according to the amount of light leakage generated in the TFT 14 of each pixel 30. Therefore, although the amount of light leakage differs for each display color of each pixel 30, the difference in the amount of change in the holding voltage of the pixel capacitor 36 in each pixel 30 is reduced. Therefore, it is possible to suppress a deterioration in display quality due to a difference in light leak amount for each display color of each pixel 30.
  • the relationship that the capacitance value CB of the pixel capacitor 36 of the pixel 30B and the capacitance value CG of the pixel capacitor 36 of the pixel 30G exceeds the capacitance value CR of the pixel capacitor 36 of the pixel 30R is the same as in the first embodiment.
  • the same effect as in the first embodiment can be obtained. Further, in the second embodiment, since a capacitance value CG equivalent to the capacitance value CB of the pixel 30B is secured in the pixel 30G corresponding to green with high visibility, it is possible to suppress a reduction in display quality due to the amount of light leakage. This effect is particularly remarkable. Further, there is an advantage that the structure of the pixel capacitor 36 is shared by the pixel 30G and the pixel 30B.
  • the electro-optical device 100 includes a white pixel 30 (hereinafter, “white pixel 30W”) in addition to the red pixel 30R, the green pixel 30G, and the blue pixel 30B.
  • white pixel 30W a white pixel 30
  • the structure which formed the element is employ
  • the capacitance value CW of the pixel capacitance 36 of the white pixel 30W exceeds the capacitance values (CR, CG, CB) of the pixels 30 of other colors.
  • the relationship that the capacitance value CB exceeds the capacitance value CG and the capacitance value CG exceeds the capacitance value CR is the same as in the first embodiment (CW> CB> CG> CR).
  • the capacitance value of the liquid crystal capacitor 32 is common to the pixels 30 of all display colors including white.
  • the capacitance value cW of the auxiliary capacitor 34 of the pixel 30W exceeds the capacitance value (cR, cG, cB) of the auxiliary capacitor 34 of the other color pixel 30 (cW> cB> cG> cR).
  • the same effect as in the first embodiment can be obtained. Note that the configuration of the second embodiment in which the capacitance value CG of the pixel capacitor 36 of the pixel 30G is equal to the capacitance value CB of the pixel capacitor 36 of the pixel 30B is similarly applied to the third embodiment.
  • the irradiation light is separated into light of each wavelength by the filter layer 22 including the color filter 26, but means for separating the irradiation light into a plurality of color lights having different wavelengths is provided in the color filter 26.
  • a volume hologram that separates light of each color included in irradiation light by diffracting it at different angles for each color can be used.
  • the light of each color separated by the volume hologram is condensed by the microlens for each color and irradiated to the corresponding pixel 30.
  • the types of display colors of the pixels 30 are not limited to the examples in the above-described embodiments.
  • a pixel 30Y that modulates yellow light (wavelength of about 550 nm) may be provided.
  • the filter layer 22 is formed with a color filter 26Y that selectively transmits light having a wavelength corresponding to yellow (Y) in the irradiated light.
  • the capacitance value CY of the pixel capacitor 36 of the pixel 30Y is changed to the capacitance value CG of the green pixel 30G and the red pixel.
  • a configuration set to a value between the capacitance value CR of 30R is preferable.
  • the capacitance value of the liquid crystal capacitor 32 is made common to the pixels 30 of each display color. However, the capacitance value of the liquid crystal capacitor 32 may be different for each display color of each pixel 30. Regardless of the difference in the capacitance value of the liquid crystal capacitance 32 in each pixel 30, the total value (CR, CG, CB) of the capacitance value of the liquid crystal capacitance 32 and the auxiliary capacitance 34 in each pixel 30 in each of the above-described embodiments. It is only necessary to satisfy the relationship (CB> CG> CR).
  • the pixel capacitor 36 includes the liquid crystal capacitor 32 and the auxiliary capacitor 34, but the auxiliary capacitor 34 may be omitted.
  • the filter layer 22 is provided on the second substrate 20, but may be provided on the first substrate 10, or may be provided separately from the electro-optical device 100 and omitted. That is, as long as the color light having different wavelengths reaches the pixels 30 of the respective display colors, there is no limitation on the method for generating each color light.
  • the area of the opening 77 of the auxiliary capacitor 34 is made different for each display color of each pixel 30 in order to make the capacitance value C of the pixel capacitor 36 different for each display color of each pixel 30.
  • the configuration for making the capacitance value of the pixel capacitor 36 different for each display color is not limited to the above example.
  • a configuration in which the film thickness of the dielectric layer 72 of the auxiliary capacitor 34 is different for each display color, a configuration in which the areas of the first electrode 70 and the second electrode 74 are different for each display color, and a dielectric layer of each pixel 30 A configuration is possible in which 72 is formed of materials having different dielectric constants.
  • FIG. 7 is a diagram illustrating each element of a projection display device (projector) 200 that uses the electro-optical device 100 of each embodiment described above.
  • the projection display device 200 includes a light source device 300, an electro-optical device 100, and a projection optical system 400.
  • the irradiation light emitted from the light source device 300 is modulated by the electro-optical device 100, and the modulated irradiation light is projected onto the projection surface 500 via the projection optical system 400.
  • the electro-optical device 100 functions as an element (light valve) that modulates irradiation light in accordance with an image specified by an image signal.
  • examples of the electronic apparatus to which the electro-optical device according to the present invention is applied include a projection display device 200 illustrated in FIG. 7, a personal digital assistant (PDA), a digital still camera, a television, and a video camera.
  • PDA personal digital assistant
  • Car navigation devices in-vehicle displays (instrument panels), electronic notebooks, electronic paper, calculators, word processors, workstations, videophones, POS terminals, printers, scanners, copiers, video players, devices with touch panels, etc. Is mentioned.
  • Auxiliary capacity 20 ... Substrate, 22 ... Filter layer, 26 (26R, 26G, 26B) ... Color filter, 28 ... Light-shielding layer, 24 ... Counter electrode, 200 ... Projection type display device, 100 ... Electro-optical device, 300 ... Light source Apparatus 400... Projection optical system 500.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Nonlinear Science (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Mathematical Physics (AREA)
  • Optics & Photonics (AREA)
  • Computer Hardware Design (AREA)
  • Liquid Crystal (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Liquid Crystal Display Device Control (AREA)

Abstract

 各画素におけるリーク電流の相違に起因した表示品位の低下を抑制する。 画素30Gは、画素容量36と、画素容量36に対する電圧の供給および遮断を制御するスイッチング素子14とを含み、画素容量36の電圧に応じて第1波長(530nm)の照射光を変調する。画素30Rは、画素容量36と、画素容量36に対する電圧の供給および遮断を制御するスイッチング素子14とを含み、第1波長よりも長い第2波長(620nm)の照射光を画素容量36の電圧に応じて変調する。画素30Gの画素容量36の容量値は画素30Rの画素容量36の容量値よりも大きい。

Description

電気光学装置および電子機器
 本発明は、複数の画素を利用して画像を表示する技術に関する。
 液晶容量等の画素容量とTFT(Thin Film Transistor)等のスイッチング素子とを含む複数の画素を行列状に配列した表示装置が従来から開示されている。スイッチング素子は、表示階調に応じた階調電圧が供給されるデータ線と画素容量との間に配置され、画素容量に対する階調電圧の供給/遮断を制御する。画素容量は、階調電圧を保持するとともに階調電圧に応じた階調を表示する。例えば、投射型の表示装置では、複数の表示色(例えば赤色,緑色および青色)の何れかに対応する波長の照射光が各画素の画素容量に照射されて画素容量により変調(光量制御)される。
特開2006-276118号公報
 各画素に対する照射光の一部は各画素のスイッチング素子にも到達し得る。スイッチング素子に対する光照射に起因してスイッチング素子には光リーク電流が発生し、画素容量が保持する電圧の変動を発生させる。光リーク電流の電流量はスイッチング素子に対する照射光の波長に応じて相違する。したがって、画素容量における保持電圧の変動の度合が各画素の表示色毎に相違し、結果的に表示品位が低下するという問題がある。例えば、画素容量における保持電圧の変動の度合が各画素の表示色毎に相違すると、フリッカーの発生の度合が表示色毎に相違して表示品位が低下する。以上の事情を考慮して、本発明は、各画素のスイッチング素子におけるリーク電流の相違に起因した表示品位の低下を抑制することを目的とする。
 以上の課題を解決するために、本発明の電気光学装置は、第1画素容量と、第1画素容量に対する電圧の供給および遮断を制御する第1スイッチング素子とを含み、第1画素容量の電圧に応じて第1波長の照射光を変調する第1画素と、第2画素容量と、第2画素容量に対する電圧の供給および遮断を制御する第2スイッチング素子とを含み、第1波長よりも長い第2波長の照射光を第2画素容量の電圧に応じて変調する第2画素とを具備し、第1画素容量の容量値は第2画素容量の容量値よりも大きい。以上の構成によれば、第1画素容量の容量値が第2画素容量の容量値より大きいため、光リーク電流は第1画素が第2画素より大きいにも関わらず、第1画素容量と第2画素容量との保持電圧の変化量の差を小さくすることができる。したがって、第1画素と第2画素との光リーク量の相違に起因した表示品位の低下を抑制することができる。
 本発明の好適な態様に係る電気光学装置は、第3画素容量と、第3画素容量に対する電圧の供給および遮断を制御する第3スイッチング素子とを含み、第1波長よりも短い第3波長の照射光を第3画素容量の電圧に応じて変調する第3画素を具備し、第3画素容量の容量値は第1画素容量の容量値よりも大きい。以上の構成によれば、第1画素と第2画素と第3画素との間で、各画素の画素容量における電圧の変化量の差を小さくすることができるから、光リーク量の相違に起因した表示品位の低下を抑制できるという効果は格別に顕著である。
 本発明の好適な態様において、第3画素容量と、第3画素容量に対する電圧の供給および遮断を制御する第3スイッチング素子とを含み、第1波長よりも短い第3波長の照射光を第3画素容量の電圧に応じて変調する第3画素を具備し、第3画素容量の容量値は第1画素容量の容量値と等しい。以上の構成によれば、各画素の画素容量における電圧の変化量の差を小さくしつつ、画素容量の構成を第1画素と第3画素とで共通化することが可能である。
 本発明の好適な態様において、第1画素容量および第2画素容量の各々は、相対向する電極間に液晶が挟まれた液晶容量と、液晶容量に並列に接続された補助容量とを含み、液晶容量の容量値は第1画素容量と第2画素容量とで共通し、第1画素容量の補助容量の容量値は第2画素容量の容量値を上回る。以上の構成によれば、補助容量の容量値が第1画素と第2画素とで相違するから、液晶容量の容量値を第1画素と第2画素とで共通化することが可能である。
 本発明の好適な態様において、第1画素容量および第2画素容量の各々の補助容量は、第1電極および第2電極と、第1電極および第2電極の間に挟まれた誘電体層とを含み、平面視で第1電極および第2電極の周縁の内側に内周縁が位置する開口部が第1画素および第2画素の各々について形成された絶縁層を具備し、絶縁層のうち開口部の周囲の部分は第1電極と第2電極との間に挟まれ、第1画素に対応する前記開口部の面積は、前記第2画素に対応する開口部の面積よりも大きい。以上の構成によれば、絶縁層の開口部の面積を第1画素と第2画素とで相違させることにより、補助容量の容量値を第1画素と第2画素との間で容易かつ確実に相違させることが可能である。
 以上の各態様に係る電気光学装置は、各種の電子機器に採用される。例えば、光源装置からの照射光を画素毎に変調することで画像を投射面に投射する投射型表示装置が、本発明に係る電子機器の好適例として想定される。
電気光学装置の断面図である。 電気光学装置の電気的な構成の説明図である。 1つの画素の回路図である。 TFTに照射される光の波長と光リーク量との関係を示すグラフである。 各画素における画素容量の容量値の関係を示す図である。 配線層の具体的な構成を示す断面図である。 電気光学装置を利用した投射型表示装置の各要素を示す図である。
<第1実施形態>
 図1は、本発明の第1実施形態における電気光学装置100の断面図である。電気光学装置100は、所定の間隔をあけて相互に対向する第1基板10および第2基板20と、第1基板10および第2基板20の間の空間に封止された液晶90とを含んで構成される。光源装置(図示略)から放射された照射光(白色光)が第2基板20の表面21から電気光学装置100に入射する。
 図1の第2基板20は、ガラスや石英等で形成された光透過性の板状部材である。第2基板20のうち液晶90側の面上にはフィルター層22が形成され、フィルター層22の面上には対向電極24が形成される。フィルター層22は複数のカラーフィルター26(26R,26G,26B)と遮光層28とを含んで構成される。複数のカラーフィルター26は、相異なる複数の表示色(赤色,緑色,青色)の何れかに対応する。赤色に対応するカラーフィルター26Rは、照射光のうち赤色(R)に対応する波長の光(赤色光)を選択的に透過させ、カラーフィルター26Gは照射光のうち緑色(G)に対応する波長の光(緑色光)を選択的に透過させ、カラーフィルター26Bは照射光のうち青色(B)に対応する波長の光(青色光)を選択的に透過させる。遮光層28は各カラーフィルター26の外縁を規定する遮光性(光を吸収または反射させる性質)の膜体である。対向電極24は、例えばITO(Indium Tin Oxide)等の光透過性の導電材料で第2基板20の略全面にわたり連続に形成される。
 第1基板10は、ガラスや石英等で形成された光透過性の板状部材である。第1基板10のうち液晶90側の面上には、配線層12と複数の画素電極16とが形成される。配線層12は、複数の配線(例えば後述の走査線40およびデータ線50)や複数のTFT14を含む層状の部分である。複数の画素電極16は、例えばITO等の光透過性の導電材料で配線層12の面上に形成され、各カラーフィルター26と対向するように平面視で行列状に配列する。実際には各画素電極16を被覆する配向膜等の要素も形成されるが図1では便宜的に図示を省略した。
 図2は、電気光学装置100の電気的な構成の説明図である。図2に示すように、配線層12は、X方向に延在する複数の走査線40と、X方向に交差するY方向に延在する複数のデータ線50とを含む。走査線40とデータ線50との各交差には画素30(30R,30G,30B)が配置される。図1および図2に示すように、各画素30は、相異なる複数の表示色の何れかに対応する。赤色に対応する画素30Rには、カラーフィルター26Rを透過した赤色光が入射する。同様に、緑色の画素30Gには緑色光が入射し、青色の画素30Bには青色光が入射する。
 図3は、各画素30の回路図である。図3に示すように、本実施形態の画素30は、画素容量36とTFT14とを含んで構成される。画素容量36は、液晶容量32と補助容量34とで構成される。液晶容量32は、画素電極16と対向電極24との間に液晶90を挟んだ静電容量である。補助容量34は、第1電極70と第2電極74との間に誘電体層72を挟んだ静電容量である。図3に示すように、補助容量34の第2電極74および液晶容量32の画素電極16は、TFT14のドレインに共通に接続される。一方、補助容量34の第1電極70および液晶容量32の対向電極24は、所定の電位が供給される配線に電気的に接続される。以上の通り、液晶容量32と補助容量34とは電気的に並列に接続される。したがって、画素容量36の容量値は、液晶容量32の容量値と補助容量34の容量値との合計となる。画素30に到達する照射光は、画素電極16と対向電極24との間の電圧(液晶容量32および補助容量34の各々の両端間の電圧)に応じて変化する液晶容量の位相差により、その位相が変調される。すなわち、画素30は、画素容量36が保持する電圧に応じて照射光を変調(照射光の光量を制御)する要素として機能する。
 図3に示すように、各画素30における各TFT14のソースはデータ線50に接続される。すなわち、TFT14は、データ線50と画素容量36との間に介在して両者間の電気的な接続(導通/非導通)を制御する。データ線50には、画像信号で指定された階調に応じた階調電圧が供給される。TFT14は、走査線40に供給される走査信号に応じてオン状態またはオフ状態に制御される。TFT14がオン状態に制御されると、データ線50に供給される階調電圧がTFT14を介して画素容量36に供給されて画素容量36に保持される。他方、TFT14がオフ状態に制御されると、データ線50から画素容量36に対する階調電圧の供給が停止する。以上に説明した通り、TFT14は、画素容量36に対する階調電圧の供給および遮断を制御するスイッチング素子として機能する。
 本実施形態における電気光学装置100においては、図1に示すように、平面視で各画素電極16の間の領域に対応する格子状に遮光層28が形成され、各画素30のTFT14に対する光照射が防止される。しかし、照射光の一部が、例えば配線層12に入射した後に配線層12内の各要素の境界面等で反射または散乱してTFT14に到達し得る。TFT14に到達した照射光は、オフ状態にあるTFT14の光リーク電流(光照射に起因したドレインとソースとの間の電流の漏れ)を発生させる。
 図4は、本実施形態のTFT14に照射される光の波長と光リーク電流の電流量(以下「光リーク量」という)との関係を示すグラフである。各カラーフィルター26を透過する光の波長の範囲内(例えば450nm~620nm)では、照射光の波長が短いほどTFT14の光リーク量が増加する、という概略的な傾向がある。第1実施形態では、カラーフィルター26Bを透過する青色光の代表的な波長は約450nmであり、カラーフィルター26Gを透過する緑色光の代表的な波長は約530nmであり、カラーフィルター26Rを透過する赤色光の代表的な波長は約620nmである。図4から理解される通り、青色光が照射されたときの光リーク量IBは、緑色光が照射されたときの光リーク量IGを上回り、緑色光が照射されたときの光リーク量IGは、赤色光が照射されたときの光リーク量IRを上回る(IB>IG>IR)。
 本実施形態においては、画素30RのTFT14には、カラーフィルター26Rを透過した赤色光(波長約620nm)が最も多く到達する。同様に、画素30GのTFT14には、カラーフィルター26Gを透過した緑色光(波長約530nm)が最も多く到達する。画素30BのTFT14には、カラーフィルター26Bを透過した青色光(波長約450nm)が最も多く到達する。したがって、画素30BのTFT14の平均的な光リーク量は画素30GのTFT14の平均的な光リーク量を上回り、画素30GのTFT14の平均的な光リーク量は画素30RのTFT14の平均的な光リーク量を上回る、という傾向がある。
 TFT14に光リーク電流が発生すると、画素容量36に保持された電圧が経時的に低下する。光リーク量が多いほど画素容量36の電圧低下(例えば単位時間あたりの低下量)は大きい。したがって、画素容量36の容量値が全画素で共通する場合、画素30Bでの電圧低下は画素30Gでの電圧低下を上回り、画素30Gでの電圧低下は画素30Rでの電圧低下を上回る、という不均衡が発生する。
 以上の不均衡を抑制する観点から、第1実施形態では、各画素30の画素容量36の容量値が光リーク量に応じて表示色毎に選定される。具体的には、図5に示すように、画素30Bの画素容量36の容量値CBは画素30Gの画素容量36の容量値CGを上回り、画素30Gの画素容量36の容量値CGは画素30Rの画素容量36の容量値CRを上回る(CB>CG>CR)。第1実施形態では、液晶容量32の容量値は全部の表示色の画素30にわたり共通する。したがって、各画素30の補助容量34の容量値に応じて画素容量36の容量値を表示色毎に相違させる。具体的には、画素30Bの補助容量34の容量値cBは画素30Gの補助容量34の容量値cGを上回り、画素30Gの容量値cGは画素30Rの補助容量34の容量値cRを上回る(cB>cG>cR)。
 図6は、1個の画素30に着目して配線層12の具体的な構成を示す断面図である。図6の絶縁層60は、第1基板10の面上に形成される。絶縁層60の面上には半導体層62が画素30毎に形成されてゲート絶縁層64で覆われる。ゲート絶縁層64の面上には、半導体層62との間でゲート絶縁層64を挟むようにゲート電極66が形成される。ゲート電極66は走査線40に連続する。ゲート電極66と半導体層62とがゲート絶縁層64を挟んで対向する部分がTFT14として機能する。ゲート電極66の面上およびゲート絶縁層64の面上に亘って絶縁層68が形成される。絶縁層68の面上には、第2電極74が画素30毎に形成される。第2電極74は、絶縁層68およびゲート絶縁層64を貫通するコンタクトホールを介して半導体層62(ドレイン領域)に電気的に接続される。第2電極74の面上には誘電体層72が形成される。第2電極74の面上および絶縁層68の面上に亘って絶縁層76が形成される。誘電体層72の面上に第1電極70が画素30毎に形成される。第1電極70と第2電極74と誘電体層72とで補助容量34が形成される。
 絶縁層76には開口部77が形成される。開口部77の内周縁は平面視で第2電極74の周縁の内側に位置する。したがって、絶縁層76のうち開口部77の周囲の部分は第1電極70と第2電極74との間に位置する。すなわち、開口部77の内側の領域では第1電極70と第2電極74との間に誘電体層72のみが介在し、開口部77の外側の領域では第1電極70と第2電極74との間に誘電体層72および絶縁層76の双方が介在する。したがって、補助容量34の容量値は開口部77の面積(絶縁層76のうち第1電極70と第2電極74との間に介在する領域の面積)に依存する。具体的には、開口部77の面積が大きいほど補助容量34の容量値は大きくなる。本実施形態においては、画素30Bにおける補助容量34の開口部77の面積は画素30Gにおける補助容量34の開口部77の面積より大きく、画素30Gにおける補助容量34の開口部77の面積は画素30Rにおける補助容量34の開口部77の面積より大きい。
 第1電極70の面上および絶縁層76の面上に亘って絶縁層78が形成される。絶縁層78の面上にはデータ線50が形成される。データ線50は、絶縁層78、絶縁層76、絶縁層68およびゲート絶縁層64を貫通するコンタクトホールを介して半導体層62(ソース領域)に電気的に接続される。データ線50の面上および絶縁層78の面上に亘って絶縁層80が形成される。絶縁層80の面上には画素30毎に画素電極16が形成される。画素電極16は、絶縁層80、絶縁層78、絶縁層76を貫通するコンタクトホールを介して第2電極74に電気的に接続される。すなわち、画素電極16は第2電極74を介して半導体層62(ドレイン領域)に電気的に接続される。
 以上の説明から理解される通り、本実施形態においては、各画素30の画素容量36の容量値が、各画素30のTFT14に発生する光リーク量に応じて各画素30の表示色毎に選定されるから、光リーク量が各画素30の表示色毎に異なるにも関わらず、各画素30における画素容量36の保持電圧の変化量の差が低減される。したがって、各画素30の表示色毎の光リーク量の相違に起因した表示品位の低下を抑制することが可能である。
<第2実施形態>
 本発明の第2実施形態を以下に説明する。なお、以下に例示する各構成において作用や機能が第1実施形態と同等である要素については、以上の説明で参照した符号を流用して各々の詳細な説明を適宜に省略する。
 緑色光に対する人間の視感度は青色光や赤色光に対する視感度を上回る。したがって、緑色の画素30Gにおける画素容量36の保持電圧の変化は、他色の画素30における保持電圧の変化と比較して観察者に知覚され易いという傾向がある。以上の事情を考慮して、第2実施形態においては、画素30Gの画素容量36の容量値CGを画素30Bの画素容量36の容量値CBと同等に確保する(CB=CG>CR)。以上のように容量値CBと容量値CGとは同等であるから、画素容量36の構造(開口部77の面積)は画素30Gと画素30Bとで共通する。他方、画素30Bの画素容量36の容量値CBや画素30Gの画素容量36の容量値CGが画素30Rの画素容量36の容量値CRを上回る、という関係は第1実施形態と同様である。
 第2実施形態においても第1実施形態と同様の効果が得られる。また、第2実施形態では、視感度が高い緑色に対応する画素30Gに画素30Bの容量値CBと同等の容量値CGが確保されるから、光リーク量に起因した表示品位の低下を抑制できるという効果は格別に顕著である。また、画素容量36の構造が画素30Gと画素30Bとで共通化されるという利点もある。
<第3実施形態>
 第3実施形態の電気光学装置100は、赤色の画素30Rと緑色の画素30Gと青色の画素30Bとに加えて白色の画素30(以下「白色画素30W」という)を含む。例えば、フィルター層22のうち白色画素30Wに対応する領域にカラーフィルター26を形成しない構成や、フィルター層22のうち白色画素30Wに対応する領域に透明層(照射光の全部の波長成分を透過させる要素)を形成した構成が採用される。白色画素30WのTFT14には、他色の画素30と比較して高い強度の照射光が到達する。したがって、白色画素30Wでは、他色の画素30(30R,30G,30B)と比較して光リーク量が大きいという傾向がある。
 以上の傾向を考慮して、第3実施形態においては、白色画素30Wの画素容量36の容量値CWは、他色の画素30の容量値(CR,CG,CB)を上回る。容量値CBが容量値CGを上回り、容量値CGが容量値CRを上回る、という関係は第1実施形態と同様である(CW>CB>CG>CR)。なお、第1実施形態と同様に、液晶容量32の容量値は、白色を含む全部の表示色の画素30にわたり共通する。したがって、画素30Wの補助容量34の容量値cWは、他色の画素30の補助容量34の容量値(cR,cG,cB)を上回る(cW>cB>cG>cR)。
 第3実施形態においても第1実施形態と同様の効果が得られる。なお、画素30Gの画素容量36の容量値CGを画素30Bの画素容量36の容量値CBと等しくした第2実施形態の構成は、第3実施形態にも同様に適用される。
<変形例>
 以上に例示した形態は多様に変形され得る。具体的な変形の態様を以下に例示する。以下の例示から任意に選択された2以上の態様は適宜に併合され得る。
 (1)前述の各形態では、カラーフィルター26を備えたフィルター層22で照射光を各波長の光に分離したが、波長が相違する複数の色光に照射光を分離する手段はカラーフィルター26に限られない。例えば、特開平10-253955に記載される技術のように、照射光に含まれる各色の光を、色毎に異なる角度で回折させることで分離する体積ホログラムを用いることができる。体積ホログラムで分離された各色の光は、各色毎にマイクロレンズで集光され、対応する画素30に照射される。
 (2)画素30の表示色の種類は前述の各形態での例示に限られない。例えば、黄色光(波長約550nm)を変調する画素30Yを備えてもよい。フィルター層22には、照射光のうち黄色(Y)に対応する波長の光を選択的に透過させるカラーフィルター26Yが形成される。照射光の波長が短いほどTFT14の光リーク量が増加する、という前述の傾向を前提とすれば、画素30Yの画素容量36の容量値CYを、緑色の画素30Gの容量値CGと赤色の画素30Rの容量値CRとの間の値に設定した構成が好適である。
 (3)前述の各形態では、液晶容量32の容量値を各表示色の画素30にわたり共通させたが、液晶容量32の容量値を各画素30の表示色毎に異ならせてもよい。各画素30における液晶容量32の容量値の異同に関わらず、各画素30における液晶容量32の容量値と補助容量34の容量値との合計値(CR,CG,CB)が前述の各形態における関係(CB>CG>CR)を満たしていればよい。
 (4)前述の各形態で例示した各要素は適宜に省略され得る。例えば、前述の各形態では画素容量36を液晶容量32と補助容量34とで構成したが、補助容量34を省略してもよい。また、フィルター層22は第2基板20に設けたが、第1基板10に設けてもよいし、電気光学装置100とは別個に設けて省略することもできる。すなわち、相異なる波長の色光が各表示色の画素30に到達する構成であれば、各色光を生成する方法の如何は不問である。
 (5)前述の各形態では、画素容量36の容量値Cを各画素30の表示色毎に異ならせるために、補助容量34の開口部77の面積を各画素30の表示色毎に異ならせたが、画素容量36の容量値を表示色毎に相違させるための構成は以上の例示に限られない。例えば、補助容量34の誘電体層72の膜厚を表示色毎に異ならせる構成や、第1電極70および第2電極74の面積を表示色毎に相違させる構成、各画素30の誘電体層72を異なる誘電率の素材で形成する構成が考えられる。
<応用例>
 前述の各形態の電気光学装置100は各種の電子機器に利用される。図7は、前述の各形態の電気光学装置100を利用した投射型表示装置(プロジェクター)200の各要素を示す図である。投射型表示装置200は、光源装置300と電気光学装置100と投射光学系400とを含む。光源装置300から放射された照射光が電気光学装置100で変調され、変調後の照射光が投射光学系400を介して投射面500に投射される。投射型表示装置200において、電気光学装置100は画像信号で指定される画像に応じて照射光を変調する要素(ライトバルブ)として機能する。
 なお、本発明に係る電気光学装置が適用される電子機器としては、図7に例示した投射型表示装置200のほか、携帯情報端末(PDA:Personal Digital Assistants),デジタルスチールカメラ,テレビ,ビデオカメラ,カーナビゲーション装置,車載用の表示器(インパネ),電子手帳,電子ペーパー,電卓,ワードプロセッサー,ワークステーション,テレビ電話,POS端末,プリンター,スキャナー,複写機,ビデオプレーヤー,タッチパネルを備えた機器等などが挙げられる。
 10……基板、12……配線層、40……走査線、50……データ線、60……絶縁層、62……半導体層、64……ゲート絶縁層、66……ゲート電極、68……絶縁層、70……第1電極、72……誘電体層、74……第2電極、76……絶縁層、77……開口部、78……絶縁層、80……絶縁層、16……画素電極、90……液晶、30(30R,30G,30B)……画素、14……TFT、36……画素容量、32……液晶容量、34……補助容量、20……基板、22……フィルター層、26(26R,26G,26B)……カラーフィルター、28……遮光層、24……対向電極、200……投射型表示装置、100……電気光学装置、300……光源装置、400……投射光学系、500……投射面。

Claims (6)

  1.  第1画素容量と、前記第1画素容量に対する電圧の供給および遮断を制御する第1スイッチング素子とを含み、前記第1画素容量の電圧に応じて第1波長の照射光を変調する第1画素と、
     第2画素容量と、前記第2画素容量に対する電圧の供給および遮断を制御する第2スイッチング素子とを含み、前記第1波長よりも長い第2波長の照射光を前記第2画素容量の電圧に応じて変調する第2画素とを具備し、
     前記第1画素容量の容量値は前記第2画素容量の容量値よりも大きい
     電気光学装置。
  2.  第3画素容量と、前記第3画素容量に対する電圧の供給および遮断を制御する第3スイッチング素子とを含み、前記第1波長よりも短い第3波長の照射光を前記第3画素容量の電圧に応じて変調する第3画素を具備し、
     前記第3画素容量の容量値は前記第1画素容量の容量値よりも大きい
     請求項1の電気光学装置。
  3.  第3画素容量と、前記第3画素容量に対する電圧の供給および遮断を制御する第3スイッチング素子とを含み、前記第1波長よりも短い第3波長の照射光を前記第3画素容量の電圧に応じて変調する第3画素を具備し、
     前記第3画素容量の容量値は前記第1画素容量の容量値と等しい
     請求項1の電気光学装置。
  4.  前記第1画素容量および前記第2画素容量の各々は、相対向する電極間に液晶が挟まれた液晶容量と、前記液晶容量に並列に接続された補助容量とを含み、
     前記液晶容量の容量値は前記第1画素容量と前記第2画素容量とで共通し、
     前記第1画素容量の前記補助容量の容量値は前記第2画素容量の容量値を上回る
     請求項1から請求項3の何れかの電気光学装置。
  5.  前記第1画素容量および前記第2画素容量の各々の前記補助容量は、
     第1電極および第2電極と、
     前記第1電極および前記第2電極の間に挟まれた誘電体層とを含み、
     平面視で前記第1電極および前記第2電極の周縁の内側に内周縁が位置する開口部が前記第1画素および前記第2画素の各々について形成された絶縁層を具備し、
     前記絶縁層のうち前記開口部の周囲の部分は前記第1電極と前記第2電極との間に挟まれ、前記第1画素に対応する前記開口部の面積は、前記第2画素に対応する前記開口部の面積よりも大きい
     請求項4の電気光学装置。
  6.  請求項1から請求項5の何れかの電気光学装置を具備する電子機器。
PCT/JP2014/000154 2013-01-25 2014-01-15 電気光学装置および電子機器 WO2014115507A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/763,098 US9659976B2 (en) 2013-01-25 2014-01-15 Electro-optic device and electronic equipment
CN201480006037.3A CN104981733B (zh) 2013-01-25 2014-01-15 电光装置及电子设备

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013011978A JP6111688B2 (ja) 2013-01-25 2013-01-25 電気光学装置および電子機器
JP2013-011978 2013-01-25

Publications (1)

Publication Number Publication Date
WO2014115507A1 true WO2014115507A1 (ja) 2014-07-31

Family

ID=51227304

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/000154 WO2014115507A1 (ja) 2013-01-25 2014-01-15 電気光学装置および電子機器

Country Status (4)

Country Link
US (1) US9659976B2 (ja)
JP (1) JP6111688B2 (ja)
CN (1) CN104981733B (ja)
WO (1) WO2014115507A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107357103B (zh) * 2017-07-17 2020-03-10 深圳市华星光电半导体显示技术有限公司 一种像素阵列基板及显示器

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000323698A (ja) * 1999-03-11 2000-11-24 Sharp Corp アクティブマトリクス基板、その製造方法、及び、該基板を用いたイメージセンサ
JP2005338264A (ja) * 2004-05-25 2005-12-08 Hitachi Displays Ltd 液晶表示装置
JP2007047615A (ja) * 2005-08-11 2007-02-22 Toshiba Matsushita Display Technology Co Ltd 液晶表示装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0926564A (ja) * 1995-07-10 1997-01-28 Matsushita Electric Ind Co Ltd 液晶表示装置
JP3688845B2 (ja) 1997-03-12 2005-08-31 富士通株式会社 液晶表示装置
JP2001228491A (ja) * 2000-02-16 2001-08-24 Toshiba Corp 液晶表示装置
JP4157307B2 (ja) * 2002-02-18 2008-10-01 松下電器産業株式会社 液晶表示素子及びそれを備えた画像表示応用装置
KR100997965B1 (ko) 2003-09-25 2010-12-02 삼성전자주식회사 액정 표시 장치
JP2006276118A (ja) 2005-03-28 2006-10-12 Seiko Epson Corp 電気光学装置及びその製造方法、並びに電子機器
US8841811B2 (en) 2010-08-18 2014-09-23 Remy Technologies Llc Conductor insulation arrangement for an electric machine
JP5772090B2 (ja) 2011-03-11 2015-09-02 セイコーエプソン株式会社 プロジェクター

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000323698A (ja) * 1999-03-11 2000-11-24 Sharp Corp アクティブマトリクス基板、その製造方法、及び、該基板を用いたイメージセンサ
JP2005338264A (ja) * 2004-05-25 2005-12-08 Hitachi Displays Ltd 液晶表示装置
JP2007047615A (ja) * 2005-08-11 2007-02-22 Toshiba Matsushita Display Technology Co Ltd 液晶表示装置

Also Published As

Publication number Publication date
CN104981733A (zh) 2015-10-14
US9659976B2 (en) 2017-05-23
US20150340386A1 (en) 2015-11-26
JP6111688B2 (ja) 2017-04-12
CN104981733B (zh) 2017-09-26
JP2014142537A (ja) 2014-08-07

Similar Documents

Publication Publication Date Title
CN108196406B (zh) 阵列基板及制造方法、显示面板及操作方法、电子装置
US8896793B2 (en) Electro-optical device and electronic equipment
US7298356B2 (en) Electro-optic device and electronic equipment
US20100194704A1 (en) Display device, touch sensor, and method for manufacturing display device
JP2009104179A (ja) アクティブマトリクス基板、表示装置、液晶表示装置およびテレビジョン装置
US9082854B2 (en) Electrooptic device substrate for shielding light from switching element, electrooptic device, and electronic apparatus
TWI634376B (zh) 靜電保護電路、光電裝置及電子機器
JP2014153385A (ja) 電気光学装置および電子機器
US11081588B2 (en) Electro-optical device and electronic apparatus
US10162233B2 (en) Electro-optical device and electronic apparatus
JP5919890B2 (ja) 電気光学装置、及び電子機器
JP2012088453A (ja) 電気光学装置および電子機器
US20140253857A1 (en) Active matrix and display panel
JP6111688B2 (ja) 電気光学装置および電子機器
US10795229B2 (en) Electro-optical device and electronic apparatus
JP2014182251A (ja) 電気光学装置、電気光学装置の製造方法、及び電子機器
JP4182766B2 (ja) アクティブマトリクス基板、電気光学装置、電子機器
JP2010039209A (ja) 電気光学装置及びその製造方法並びに電子機器
JP2011075773A (ja) 電気光学装置及び電子機器
JP2008102392A (ja) 電気光学装置、及びこれを備えた電子機器
JP2010072513A (ja) 電気光学装置用基板、並びに電気光学装置及び電子機器
JP2010186118A (ja) 電気光学装置及び電子機器
JP2024065466A (ja) 電気光学装置および電子機器
JP2014119683A (ja) 液晶装置、及び電子機器
JP2014142385A (ja) 電気光学装置、電気光学装置の製造方法、及び電子機器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14743727

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14763098

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14743727

Country of ref document: EP

Kind code of ref document: A1