WO2014114160A1 - 一种高耐蚀型高强度含Al耐候钢板及其制造方法 - Google Patents

一种高耐蚀型高强度含Al耐候钢板及其制造方法 Download PDF

Info

Publication number
WO2014114160A1
WO2014114160A1 PCT/CN2013/090274 CN2013090274W WO2014114160A1 WO 2014114160 A1 WO2014114160 A1 WO 2014114160A1 CN 2013090274 W CN2013090274 W CN 2013090274W WO 2014114160 A1 WO2014114160 A1 WO 2014114160A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel
resistant
strength
corrosion
steel plate
Prior art date
Application number
PCT/CN2013/090274
Other languages
English (en)
French (fr)
Inventor
宋凤明
温东辉
李自刚
胡晓萍
杨阿娜
李建业
Original Assignee
宝山钢铁股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宝山钢铁股份有限公司 filed Critical 宝山钢铁股份有限公司
Priority to US14/762,592 priority Critical patent/US10760149B2/en
Priority to KR1020157022772A priority patent/KR102240599B1/ko
Priority to JP2015554025A priority patent/JP6415453B2/ja
Publication of WO2014114160A1 publication Critical patent/WO2014114160A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/04Making ferrous alloys by melting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/021Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips involving a particular fabrication or treatment of ingot or slab
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals

Definitions

  • the present invention relates to the field of weathering steel manufacturing, and in particular to a high corrosion resistant high strength A1 weather resistant steel sheet and a method of manufacturing the same. Background technique
  • Weathering steel or atmospheric corrosion resistant steel such as “needle-like high-strength weathering steel and its production method” disclosed in Chinese patent CN1609257, "a high-strength low-alloy weather-resistant steel and its production method” disclosed in Chinese patent CN1986864 And “HIGH CORROSION RESISTANT STEEL SHEE” disclosed in Japanese Patent No. JP04235250A, "Ultra low carbon bainitic weathering steel” disclosed in U.S. Patent No. US6315946, and the like.
  • the steels involved in the above patents belong to the traditional CORTEN steel series steel, and the component system belongs to Cu-P-Cr-Ni system or Cr-Mn-Cu system. By adding other trace alloy elements and in certain rolling process conditions. Different tissue morphology is obtained to achieve the desired mechanical properties and corrosion resistance.
  • the alloy composition is low Cr weathering steel, the Cr content is generally below 0.7%, and the A1 content is not more than 0.1%.
  • the steels involved in the above five patents all contain high Al and Cr components, and at the same time, combined with other alloying elements to achieve specific mechanical properties.
  • the first two patents belong to the high A1 weathering steel.
  • the patent A1 content of JP01079346A steel is as high as 7-20%, while the patent JP05302148A steel contains Si and Cr far higher than the ordinary weathering steel in addition to the high A1 content .
  • Patent in progress The sub-system belongs to the high-Cr system weathering steel, and the Cr content is generally above 7%, mostly between 9-14%. Among them, the patent JP10025550A even contains up to 0.45-0.65%.
  • the above patents also contain unequal amounts of components such as Co, W, Mo, B, and Zr.
  • the high A1 system and high Cr weathering steel represented by the above patents have a high alloying composition, which increases the difficulty in production of steel making and steel rolling, and at the same time greatly increases the cost.
  • An object of the present invention is to provide a high corrosion-resistant high-strength A1 weather-resistant steel sheet and a method for producing the same, which solve the above problems in the prior art.
  • the high corrosion-resistant high-strength A1 weather-resistant steel plate has a yield strength of 350-500 MPa, a relative corrosion rate of 27% or less, a Charpy impact energy of 60 J or more at -40 ° C, and an elongation of 20% or more; In the railway vehicle manufacturing industry, container manufacturing and bridge engineering, outdoor towers and other fields.
  • wt% chemical composition weight percentage
  • the high corrosion-resistant high-strength A1 weather-resistant steel sheet of the present invention further comprises one or more of Nb, Ti and V, wherein Nb: 0.01-0.06%, Ti: 0.01-0.10%, V: 0.02-0.10%, in weight percent.
  • the high corrosion-resistant high-strength A1 weather-resistant steel plate of the invention has a yield strength of 350-500 MPa, which satisfies the high strength requirement of the weathering steel; and the relative corrosion rate of the Q345B is reduced to 27% or less, which is far lower than the atmospheric corrosion resistance of the Q345B.
  • the normal weathering steel has a corrosion resistance of not more than 55% relative to Q345B, and the atmospheric corrosion resistance is doubled on the current basis. Its Charpy impact energy is above 60J at -40 °C; the elongation is above 20%.
  • Weathering steel interacts with each alloying element in the steel under atmospheric environmental conditions.
  • a dense rust layer with ⁇ -FeOOH as the main component is formed on the surface, which is thermodynamically stable and does not participate in the cathodic reduction process of electrochemical corrosion of steel.
  • the enrichment of elements such as copper and chromium in the rust layer allows the rust layer to have ion-selective transmission characteristics, which significantly improves the atmospheric corrosion resistance of the steel.
  • the present invention is based on the principle that the corrosion resistance of the main corrosion resistant alloy elements is improved, and the Al/Cr ratio is controlled to be between 0.5 and 8.0 by the combination of different Al and Cr components, and an appropriate alloying element is used to design a
  • the atmospheric corrosion steel of Al-Cr component system has a yield strength of 350-500 MPa, which meets the high strength requirements of weathering steel.
  • the relative corrosion rate of the steel grade of the invention is reduced to less than 27%, which is much lower than the conventional high weathering steel with respect to the corrosion rate of Q345B steel not exceeding 55%, and the atmospheric corrosion resistance is improved. 1 times.
  • the steel grade of the invention reduces the relative corrosion rate by a factor of two, satisfies the requirements for improving the corrosion resistance of railway vehicles and the like, and prolongs the service period and reduces the maintenance cost.
  • the steel of the present invention appropriately controls the rolling temperature and the appropriate cooling rate on the basis of the conventional hot-rolled weathering steel, and is easy to realize large-scale industrial production while obtaining excellent comprehensive performance.
  • A1 is the third largest element in the earth's crust that is second only to oxygen and silicon, and is abundant in reserves. The choice of A1 as the main corrosion-resistant element reduces the consumption of precious and rare resources and saves resources.
  • composition design of the high corrosion-resistant high-strength A1 weather-resistant steel sheet of the present invention :
  • A1 is usually added to steel as a deoxidizer during steelmaking.
  • a small amount of A1 is also beneficial for refining grains and improving the toughness of steel.
  • A1 has good oxidation resistance, and it can form a corrosion-resistant oxide layer on the surface when exposed to air.
  • Adding an appropriate amount of A1 to the mild steel can improve the atmospheric corrosion resistance of the steel.
  • A1 and 0 oxygen
  • A1 and 0 oxygen
  • A1 and 0 oxygen
  • A1 and 0 oxygen
  • the film contains the phase phase ⁇ - ⁇ 1 2 0 3 , AlFe0 3 , AlFe with good corrosion resistance. 3 substances, improved corrosion resistance.
  • too high A1 will increase the brittleness of the ferrite in the steel and lead to a decrease in the toughness of the steel, so the content is controlled to be 0.4-4%.
  • Cr has a significant effect on improving the passivation ability of steel. It can promote the formation of dense passivation film or protective rust layer on steel surface. Its enrichment in rust layer can effectively improve the selection of corrosive medium in rust layer. Sexual transmission characteristics.
  • the addition of Cr in A1 steel can effectively improve the plasticity and toughness, and the combination of Cr and A1 can significantly improve the atmospheric corrosion resistance of steel, and with the increase of Al/Cr ratio under certain A1 and Cr content, steel The corrosion rate has a tendency to decrease.
  • too high Cr increases the manufacturing cost of the steel sheet and is disadvantageous for welding and toughness. Consider differently The effect of Al and Cr content on the properties of the steel sheet controls the Al/Cr ratio between 0.5 and 8.0.
  • C is the main strengthening element in steel, which can significantly increase the strength of steel plates, but more C is detrimental to the welding, toughness and plasticity of steel plates.
  • the low C design limits the formation of pearlite structure and other carbides, ensures that the microstructure of the steel is homogeneous, avoids the potential difference between the heterophases and causes corrosion of the galvanic cells, and improves the corrosion resistance of the steel. Therefore, the content is limited to 0.02-0.07%.
  • Si content is controlled at 0.2-1.0%, Si has high solid solubility in steel, can increase ferrite volume fraction in steel, refine grain, and thus help to improve toughness, but excessive content will lead to its The weldability is degraded, so the upper limit is controlled at 1.0%.
  • Mn has a strong solid solution strengthening effect, and at the same time significantly reduces the phase transition temperature of the steel, refining the microstructure of the steel, is an important strengthening and toughening element, but the excessive Mn content increases the hardenability, thereby The weldability and toughness of the weld heat affected zone are deteriorated, so the content is controlled to be 0.2-2.2%.
  • S will deteriorate the atmospheric corrosion resistance of steel, while P can effectively improve the atmospheric corrosion resistance of steel, but too high P content will reduce the toughness and plasticity of steel. At the same time, the existence of P is prone to segregation.
  • the invented steel grade design uses extremely low S and P contents, and its control range is P 0.01%, S 0.006%.
  • Ni is an element that can increase the strength of steel while improving its toughness, and improves its hardenability, which can effectively prevent cracking caused by hot brittleness of Cu. Since Ni is a precious metal element, it is cost-effective, and too high Ni increases the adhesion of the scale, and pressing into the steel causes hot rolling defects on the surface. Therefore, its content is limited to 0.2-1.2%.
  • Cu has substantially the same effect as Ni, has solid solution and precipitation strengthening effect, and has a proper ratio with Ni, which can significantly improve the atmospheric corrosion resistance of steel, but too high is not good for welding, and it is prone to cleavage during hot rolling. Therefore, its content is controlled at 0.20-0.50%.
  • Nb is a strong carbide forming element, and the formed fine carbide particles can refine the structure and produce precipitation strengthening effect, which significantly improves the strength of the steel sheet.
  • more Nb is disadvantageous for welding, and it is optional to add. More than 0.06%.
  • Ti and V Adding 0.01-0.10% Ti mainly inhibits austenite grain growth during slab reheating, and inhibits ferrite grain growth during recrystallization and rolling, and improves steel toughness. Simultaneous addition of a small amount of V or Ti to A1 low carbon steel can significantly reduce the corrosion rate. Therefore, the amount of V added is controlled to be in the range of 0.02-0.1%.
  • A1 element in steel combines with N to form A1N, which makes the amount of nitride in steel Increase.
  • A1N is present as a non-metallic inclusion independently in steel, it destroys the continuity of the steel matrix.
  • the degree of damage is even worse. Therefore, the N content must be controlled below 0.0050%. .
  • Another key technique of the present invention relates to the selection and control of the production process of the high corrosion resistant high strength A1 weather resistant steel sheet.
  • the basic process flow is as follows:
  • the manufacturing method of the high corrosion-resistant high-strength A1 weather-resistant steel sheet of the present invention specifically includes the following steps:
  • the slab is formed by smelting, refining, and casting according to the following composition.
  • the chemical composition weight percentage is: C: 0.02-0.07%, Si: 0.2-1.0%, Mn: 0.2-2.2%, P ⁇ O.01% , 0.006%, Cu: 0.2-0.5%, Cr: 0.5-3.5%, Ni: 0.2-1.2%, Al: 0.4-4.0%, 0.005%, the balance being Fe and unavoidable impurities; and Al/Cr is 0.5 -8.0;
  • the molten steel chemical composition further includes one or more of Nb, Ti and V, wherein Nb: 0.01-0.06%, Ti: 0.01-0.10%, V: 0.02-0.10%, in weight percentage;
  • step 2) slab heating: the slab obtained in step 1) is heated, and the heating temperature is above 1220 ° C;
  • Rolling adopting two-stage controlled rolling process of rough rolling and finishing rolling, and the finishing rolling temperature of finishing rolling is 720-800 °C;
  • cooling cooling the steel plate after cooling, and cooling rate is 10-40 ° C / s;
  • the present invention relates to a steel containing a large amount of Al, and Al is a ferrite forming element, and its continuous cooling curve (CCT curve) is shown in Fig. 1.
  • CCT curve continuous cooling curve
  • the austenitizing temperature of the steel is above 1150 °C.
  • the present invention particularly emphasizes that the billet is reheated at 1220 ° C or more, using a two-stage controlled rolling process.
  • the matrix structure of the steel must be controlled to be ferrite + shell Clan.
  • the present invention relates to steel grades having a wide ferrite region.
  • the cumulative deformation above 950 °C is required to be 80%, and the finish rolling finishing temperature is not lower than 750 °C (the increase in finished product thickness can appropriately reduce the finishing temperature)
  • the finishing temperature is controlled at 720-800 °C, the finishing temperature exceeds 800 °C, the grain structure will grow and coarsen rapidly; if the temperature is too low, the rolling force will be too high. , energy consumption increased.
  • the ferrite + bainite structure can be obtained at a cooling rate of 50 ° C / s or less.
  • the cooling rate must be controlled above 10 °C / s; and the cooling rate is too high,
  • the ferrite structure content in the steel is low, resulting in poor plasticity of the steel, so the controlled cooling rate is below 40 ° C / s. Therefore, the post-rolling cooling rate of the steel of the present invention is controlled in the range of 10 - 40 ° C / s.
  • the coiling temperature is determined according to the phase transition point of the steel combined with the steel sheet structure. As seen from Fig. 1, the martensite transformation temperature of steel starts at about 460 ° C. When the cooling temperature is lower than this temperature, a large amount of martensite is formed, which increases the strength but seriously reduces the toughness and plasticity of the steel material; When the temperature exceeds 520 ° C, the structure of ferrite + bainite cannot be obtained, so it is necessary to control the steel to be taken up in the range of 460-520 ° C, and then cooled to room temperature.
  • the high corrosion-resistant high-strength A1 weather-resistant steel sheet of the present invention has chemical distribution ratio and mechanical properties as shown in Table 1, and is compared with chemical composition and properties of similar steels (see Table 1).
  • Comparative Patent 1 Chinese Patent CN101376953A, which is an ultra-low carbon component, has a very low Mn content, and is required to contain a certain amount of N and Ca.
  • Comparative Patent 2 Japanese Patent No. JP2002363704, which has a composition of 3-20% Mn, and optionally one or more of Cu, Ni, Mo, Nb, V, Ti, Zr, and Mg+Ca.
  • Comparative Patent 3 Japanese Patent No. JP2002285298, the composition must also add N, while adding B 4-9% Cr, and choose to add Cu, Ni, Mo, Nb, V, Ti, Ca and Mg,
  • One or more of elements such as Re.
  • Comparative patents 1 and 2 are high-corrosion-resistant weathering steels, of which comparative patent 1 is a steel grade with a yield strength of 700 MPa or more, requiring ultra-low carbon content (C: 0.002%-0.005%), and Mn and Al contents are all 0.05. Below %, the steelmaking is difficult, and the Cr content (4.5-5.5%) is also higher than the 0.5-3.5% content range required by the present embodiment, and a certain content of N is required; there is a significant difference from the present invention;
  • the range of Cr and Al components is wider, and the upper limit thereof is far exceeding the requirements of the Cr and Al components of the steel of the present invention, which has a great adverse effect in the present invention, such as an excessively high A1.
  • the increase of ferrite brittleness in steel leads to the decrease of steel toughness.
  • Excessive Cr is unfavorable to welding and toughness, and the ratio of Cr and Al also brings great disadvantages, which does not meet the design requirements of the present invention;
  • the Mn content is required to be 3-20%, and the Mn content of the steel of the present invention is 2.2%.
  • the steel of the comparative patent 2 has a yield strength ranging from 250 MPa to 650 MPa, as low as 250 MPa, and covers a wide range, and has no other corrosion resistance, yield ratio, elongation, _40 ° C Charpy impact work, etc. Comprehensive performance data from other aspects. Therefore, the two patents of Comparative Patentes 1 and 2 are significantly different from the present invention.
  • the chromium content of the steels referred to in Comparative Patent 3 is 4-9%, which is much higher than the Cr content of 0.5-3.5% of the steel of the present invention; and at the same time, it is required to contain up to 10% of Cu and Ni.
  • the steels involved in the patent 3 need to have 0.02% N, 0.01-1.0% Mo, 0.005-0.05% Mg,
  • the elemental component such as 0.001.0.1% of rare earth, the addition of these elements increases the manufacturing cost and the manufacturing difficulty, and is disadvantageous to the welding and toughness of the steel sheet, and the elemental component containing the above content is not required in the present invention.
  • the mechanical properties of the steel of the present invention are also different from the various steels of the comparative patent.
  • the high corrosion-resistant high-strength A1 weather-resistant steel sheet of the present invention requires a yield strength of 350-500 MPa, and the yield strength of the steel of Comparative Patent 1 is Above 700 MPa, the steel of Comparative Patent 2 has a wide range of strength; in addition, the steels of Comparative Patent 1-3 do not have any performance data on low temperature toughness.
  • the high corrosion-resistant high-strength A1 weather-resistant steel sheet of the invention has the following advantages and beneficial effects:
  • the steel grade of the present invention has a yield strength of 350 MPa to 500 MPa, and is a high-strength weathering steel, which satisfies the requirements of the vehicle to reduce the weight of the component.
  • A1 and Cr ensures that the steel of the present invention has excellent atmospheric corrosion resistance, especially controlling the ratio of Al and Cr, and ensuring good mechanical properties while making the steel of the present invention resistant to atmospheric corrosion. More than double the traditional weathering steel, it can replace the traditional high-strength weathering steel used in railway vehicles, containers, bridges and outdoor towers, reducing the cost of use and maintenance.
  • the steel of the invention has excellent cold bending and low temperature toughness, and the impact energy is above 60J at -40 °C, even if the impact energy of the semi-sample is not less than 40J, or even more than 60J (as shown in Table 3). ).
  • the steel of the invention is produced by the controlled rolling and controlled cooling (TMCP) production process, and does not need to be heat-treated after rolling, and can be supplied in a hot-rolled state, which effectively ensures the supply cycle and reduces the production cost.
  • TMCP controlled rolling and controlled cooling
  • the steel of the present invention is smelted in a 500 kg vacuum induction furnace in a laboratory according to the weight percentage content of the chemical composition of the high corrosion-resistant high-strength A1 weather-resistant steel sheet according to the present invention (the chemical distribution ratio is shown in Table 2).
  • the billet heating temperature is above 1220 ° C
  • the finishing temperature is 720-800 ° C
  • the coiling temperature is 460-520 ° C
  • Table 3 for the relevant mechanical properties of the example steel.
  • B 1 and B2 are made of molten steel using the chemical composition of B in Table 2; D1 and D2 are used in Table 2 The chemical composition of molten steel in the manufacture of D
  • the composition range of the high corrosion-resistant high-strength A1 weather-resistant steel according to the present invention and the yield strength of the steel obtained in the rolling process control are 350-500 MPa, the elongation is over 20%, and the impact toughness is good. And lower yield ratio; the comparison of atmospheric corrosion resistance results also shows that the atmospheric corrosion resistance of the steel of the present invention is more than doubled compared with the performance requirements of traditional high-strength weathering steel (relative corrosion rate 55%), relative corrosion rate Below 27%. Therefore, the high corrosion-resistant high-strength A1 weather-resistant steel of the present invention can completely replace the conventional weathering steel and the currently existing high-strength weathering steel, and can be widely used in atmospheric environment conditions to meet railway vehicles, container manufacturing and bridges. Demand in areas such as outdoor towers.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

一种高耐蚀型高强度含A1耐候钢板,其化学成分重量百分含量为:C:0.02—0.07%,Si:0.2-1.0%,Mn:0.2—2.2%,P≤0.01%,S≤0.006%,Cu:0.2—0.5%,Cr:0.5—3.5%,Ni:0.2—1.2%,Al:0.4—4.0%,N≤0.005%,并选择添加Nb:0.01-0.06%,Ti:0.01-0.10%,V:0.02-0.10%中的一种或多种,其余为Fe和不可避免的杂质;且Al/Cr为0.5—8.0。其屈服强度350—500MPa,延伸率在20%以上,相对腐蚀率在27%以下,同时具有良好的冲击韧性和较低的屈强比。还提供了一种制备该耐候钢板的方法。

Description

一种高耐蚀型高强度含 A1耐候钢板及其制造方法 技术领域
本发明涉及耐候钢制造领域, 特别涉及一种高耐蚀型高强度含 A1耐 候钢板及其制造方法。 背景技术
耐候钢或称耐大气腐蚀钢, 如中国专利 CN1609257 公开的 "针状组 织高强度耐候钢及其生产方法" 、 中国专利 CN1986864 公开的 "一种高 强度低合金耐大气腐蚀钢及其生产方法"以及日本专利号 JP04235250A公 开的 " HIGH CORROSION RESISTANT STEEL SHEE " 、 美国专利号 US6315946公开的 "Ultra low carbon bainitic weathering steel"等。 上述专 利所涉及的钢种均属传统 CORTEN钢系列钢种,成分体系属于 Cu-P-Cr-Ni 系或 Cr-Mn-Cu系, 通过辅助添加其他微量合金元素并在一定的轧制工艺 条件下获得不同组织形态, 从而达到所需的力学性能和耐蚀性能。 在合金 成分上为低 Cr耐候钢, Cr含量一般在 0.7%以下, A1含量不超过 0.1%。
然而, 依靠 P、 Re提高耐蚀性能存在 P的偏析开裂及 Re含量难以控 制等问题。 为进一歩提高耐大气腐蚀性能, 研究人员转向于通过大幅度提 高其它耐蚀元素的含量开发了高合金型的耐候钢。 如日本专利号 JP01079346A公开的 "耐海水腐蚀钢"、 日本专利号 JP05302148A公开的 "高耐蚀性强磁型制振合金"以及日本专利号 JP10025550A公开的 "耐蚀 钢"、日本专利号 JP2000336463公开的 " CORROSION RESISTANT STEEL IN THE SOIL"及日本专利号 JP2002285298 公开的 " Cr-CONTAINING CORROSION RESISTANT STEEL FOR BUILDING AND CONSTRUCTION STRUCTURE"等。
上述五个专利所涉及钢种均含有较高的 Al、 Cr成分, 同时配合其它 合金元素实现特定的力学性能。 其中前两个专利属于高 A1型耐候钢, 专 利 JP01079346A钢中 A1含量高达 7-20% , 而专利 JP05302148A钢中除了 高 A1含量外, 还含有远超普通耐候钢水平的 Si、 Cr; 而后三个专利在成 分体系上都属于高 Cr体系耐候钢, Cr含量一般在 7%以上, 多为 9-14%之 间。 其中专利 JP10025550A中甚至含有高达 0.45-0.65%的 。 另外, 上述 专利还含有不等量的 Co、 W、 Mo、 B、 Zr等成分。 由上述专利所代表的 高 A1系、 高 Cr系耐候钢, 由于其合金成分太高, 一方面增加了炼钢、 轧 钢的生产难度, 同时成本也大幅度提高。
现有技术的耐候钢, 在保证良好力学性能的同时, 其相对腐蚀率往往 不高, 甚至有的钢种的综合力学性能也保证不了, 只是某一方面的力学性 能优异, 满足不了铁路车辆等提高耐腐蚀的用钢要求, 服役期限较短, 维 修成本高。 发明内容
本发明的目的在于提供一种高耐蚀型高强度含 A1耐候钢板及其制造 方法, 以解决现有技术中存在的上述问题。 该高耐蚀型高强度含 A1耐候 钢板的屈服强度为 350-500MPa, 相对腐蚀率在 27%以下, -40°C条件下夏 比冲击功在 60J以上, 延伸率在 20%以上; 主要用于铁道车辆制造行业、 集装箱制造业及桥梁工程、 户外塔架等领域。
为实现上述目的, 本发明采用如下的技术方案:
一种高耐蚀型高强度含 A1耐候钢板,其化学成分重量百分含量(wt%) 为: C: 0.02-0.07%, Si: 0.2-1.0%, Mn: 0.2-2.2%, P^O.01%, 0.006%, Cu: 0.2-0.5%, Cr: 0.5-3.5%, Ni: 0.2-1.2%, Al: 0.4-4.0%, 0.005%, 其余为 Fe和不可避免的杂质; 且 Al/Cr为 0.5-8.0。
进一歩的, 本发明的高耐蚀型高强度含 A1耐候钢板, 还包括 Nb、 Ti 和 V中的一种或多种,其中 Nb: 0.01-0.06%, Ti: 0.01-0.10%, V: 0.02-0.10%, 以重量百分比计。
本发明的高耐蚀型高强度含 A1 耐候钢板, 其屈服强度达到 350-500MPa, 满足耐候钢的高强度要求; 相对 Q345B的耐大气腐蚀性能, 其相对腐蚀率降低到 27%以下, 远低于目前要求普通耐候钢相对 Q345B 腐蚀率不超过 55%的规定水平, 耐大气腐蚀性能在目前的基础上提高了 1 倍。 其在 -40°C条件下夏比冲击功在 60J以上; 延伸率在 20%以上。
耐候钢在大气服役环境条件下, 钢中各合金元素之间发生交互作用, 在表面生成以 α— FeOOH为主要成分的致密锈层, 其热力学稳定, 不参与 钢电化学腐蚀的阴极还原过程。 锈层内铜、 铬等元素的富集使锈层具有离 子选择性透过特性, 显著提高钢的耐大气腐蚀性能。 因此本发明根据主要 耐蚀合金元素相互作用提高耐蚀性能的原理, 通过不同 Al、 Cr成分的配 合, 控制 Al/Cr比在 0.5-8.0之间, 并配合适当的其它合金元素, 设计了一 种 Al-Cr成分体系的耐大气腐蚀钢,钢的屈服强度达到 350-500MPa,满足 耐候钢的高强度要求。 相对 Q345B 钢的耐大气腐蚀性能, 本发明钢种的 相对腐蚀率降低到 27%以下, 远低于传统高耐候钢相对 Q345B钢的腐蚀 率不超过 55%的规定水平, 耐大气腐蚀性能提高了 1倍。 本发明钢种在保 证良好力学性能的同时, 其相对腐蚀率降低了 1倍, 满足铁路车辆等提高 耐腐蚀的用钢要求, 达到延长服役期限, 降低维修成本。 同时, 本发明钢 种在目前普通热连轧耐候钢的基础上适当控制轧制温度并辅以适当的冷 却速度, 在获得优异综合性能的同时, 易于实现规模化工业生产。 而且, A1是地壳中含量仅次于氧和硅的第三大元素, 储量丰富。 选择 A1作为主 要的耐蚀元素, 减少了贵重稀有资源的消耗, 起到节约资源的作用。
在本发明的高耐蚀型高强度含 A1耐候钢板的成分设计中:
Al: A1通常在炼钢过程中作为脱氧剂在钢中添加, 微量的 A1同时有 利于细化晶粒, 改善钢材的强韧性能。 同时 A1具有良好的抗氧化性, 暴 露在空气中即可在表面生成一种耐腐蚀的氧化层。 低碳钢中加入适量的 A1可以提高钢的耐大气腐蚀性能。 添加 A1后, 钢的腐蚀电位提高, 同时 A1与 0 (氧) 能够在表层形成致密的 A1203薄膜, 薄膜内含有耐蚀性能好 的物相 α-Α1203, AlFe03, AlFe3等物质, 耐腐蚀性能提高。 但过高的 A1 将使钢中铁素体脆性增加而导致钢韧性的降低, 所以控制其含量为 0.4-4%。
Cr: Cr对改善钢的钝化能力具有显著的效果, 可促进钢表面形成致密 的钝化膜或保护性锈层, 其在锈层内的富集能有效提高锈层对腐蚀性介质 的选择性透过特性。 同时含 A1钢中 Cr的添加可以有效提高塑性、 韧性, 并且 Cr与 A1配合显著提高钢的耐大气腐蚀性能, 并且在一定的 A1及 Cr 含量条件下随着 Al/Cr比的提高, 钢的腐蚀速率有降低的趋势。 但过高的 Cr一方面提高了钢板的制造成本, 同时对焊接及韧性不利。综合考虑不同 Al、 Cr含量对钢板性能的影响, 控制 Al/Cr比在 0.5-8.0之间。
C: C 是钢中主要的强化元素, 能够显著提高钢板的强度, 但较多的 C对钢板焊接、 韧性及塑性不利。 低 C设计在于限制了珠光体组织及其它 碳化物的形成, 保证钢的显微结构为均相组织, 避免了异相之间的电位差 引起原电池腐蚀, 提高了钢的耐蚀性能。 所以限定其含量为 0.02-0.07%。
Si: Si含量控制在 0.2-1.0%, Si在钢中具有较高的固溶度, 能够增加 钢中铁素体体积分数, 细化晶粒, 因而有利于提高韧性, 但含量过高将导 致其焊接性能下降, 因此上限控制在 1.0%。
Mn: Mn具有较强的固溶强化作用, 同时显著降低钢的相变温度, 细 化钢的显微组织,是重要的强韧化元素,但是 Mn含量过多使淬透性增大, 从而导致可焊性和焊接热影响区韧性恶化,所以将其含量控制在 0.2-2.2%。
S: S 的存在将恶化钢的耐大气腐蚀性能, 而 P能有效提高钢的耐大 气腐蚀性能, 但 P含量过高会降低钢的韧性及塑性, 同时, P的存在易产 生偏析, 因而本发明钢种设计采用极低的 S、 P含量, 其控制范围为 P 0.01%, S 0.006%。
Ni: Ni是能够提高钢的强度同时改善其韧性的元素,并提高其淬透性, 可有效阻止 Cu的热脆引起的网裂。 由于 Ni为贵重金属元素, 出于成本因 素, 而且过高的 Ni会提高氧化皮的粘附性, 压入钢中会在表面形成热轧 缺陷。 所以其含量限定为 0.2-1.2%。
Cu: Cu与 Ni具有大体相同的作用, 有固溶和沉淀强化作用, 与 Ni 适当配比, 能够显著提高钢的耐大气腐蚀性能, 但过高对焊接不利, 且热 轧时易发生网裂, 所以其含量控制在 0.20-0.50%。
Nb: Nb 是强的碳化物形成元素, 所形成的微细碳化物颗粒能细化组 织, 并产生析出强化作用, 显著提高钢板的强度, 但较多的 Nb对焊接不 利, 可以选择添加, 建议不超过 0.06%。
Ti和 V: 添加 0.01-0.10% Ti主要是抑制板坯再热过程中的奥氏体晶 粒长大, 同时在再结晶控轧过程中抑制铁素体晶粒长大, 提高钢的韧性。 含 A1低碳钢中同时加入微量的 V或 Ti可以明显降低腐蚀速率。所以选择 添加的 V量控制在 0.02-0.1%范围内。
N: 钢中 A1元素与 N结合易形成 A1N, 从而使钢中的氮化物数量显 著增多。 A1N作为一种非金属夹杂物独立存在于钢中时, 破坏了钢基体的 连续性, 尤其是 A1N数量较多、 呈聚集分布时, 其危害程度更甚, 因此必 须控制 N含量在 0.0050%以下。
除了本发明上述钢种的化学成分范围的控制之外, 本发明的另一关键 技术涉及该高耐蚀型高强度含 A1耐候钢板生产工艺流程的选择和控制。 其基本工艺流程如下:
冶炼一炉外精炼一连铸一板坯再加热一控制轧制一控制冷却一卷取 →精整一交货。
本发明高耐蚀型高强度含 A1耐候钢板的制造方法, 具体包括如下歩 骤:
1 ) 冶炼、 炉外精炼、 连铸:
按下述成分冶炼、 炉外精炼、 铸造形成板坯, 化学成分重量百分含量 为: C: 0.02-0.07%, Si: 0.2-1.0%, Mn: 0.2-2.2%, P^O.01%, 0.006%, Cu: 0.2-0.5%, Cr: 0.5-3.5%, Ni: 0.2-1.2%, Al: 0.4-4.0%, 0.005%, 其余为 Fe和不可避免的杂质; 且 Al/Cr为 0.5-8.0;
或者钢水化学成分还包括 Nb、 Ti和 V中的一种或多种, 其中 Nb: 0.01-0.06%, Ti: 0.01-0.10%, V: 0.02-0.10%, 以重量百分比计;
2) 板坯加热: 将歩骤 1 ) 获得的板坯进行加热, 加热温度为 1220°C 以上;
3 ) 轧制: 采用粗轧、 精轧两段控制轧制工艺, 且精轧的终轧温度为 720-800 °C ;
4) 冷却: 将轧制后钢板进行冷却, 且冷却速度为 10-40°C/s;
5 )卷取、 精整: 控制钢板在 460-520°C范围内进行卷取, 之后再冷却 至室温, 并进行精整即可获得所述高耐蚀型高强度含 A1耐候钢。
本发明涉及钢种中含有较多的 Al, 而 Al为促进铁素体形成元素, 其 连续冷却曲线 (CCT曲线)如图 1所示。 从图 1中可以看出, 钢种的奥氏 体化温度在 1150°C以上。综合考虑微合金元素碳氮化物在奥氏体中的溶解 行为及加热过程中奥氏体晶粒长大行为,本发明特别强调钢坯在 1220°C以 上再加热, 采用两段控制轧制工艺。
为获得本发明钢所要求的性能, 必须控制钢的基体组织为铁素体 +贝 氏体。 从 CCT 曲线看, 本发明涉及钢种具有很宽的铁素体区。 为获得优 异的综合性能, 保证再结晶细化晶粒效果, 要求 950°C以上的累计变形量 80 %,精轧终轧温度不低于 750°C (成品厚度增加可适当降低终轧温度); 为保证形变细化晶粒效果, 终轧温度控制在 720-800 °C, 终轧温度超过 800 °C , 晶粒组织会迅速长大并粗化; 温度过低则导致轧制力过高, 能耗 增加。
从连续冷却曲线可以看出,冷却速度在 50°C/s以下均可以获得铁素体 +贝氏体组织。 考虑到快速冷却以细化组织及相变完成时间, 欲在短时间 内完成大部分铁素体一贝氏体相变, 冷却速度必须控制在 10°C/s以上; 而 冷却速度过高, 在组织相变点随之降低, 钢中的铁素体组织含量偏低, 导 致钢的塑性变差, 所以控制冷却速度在 40°C/s以下。 因此本发明的钢种的 轧后冷速控制在 10-40°C/s范围内。
卷取温度根据钢的相变点并结合钢板组织确定。 从图 1看, 钢的马氏 体相变开始温度约为 460°C, 停冷温度低于这个温度将形成大量马氏体, 虽然提高了强度但严重降低钢材料的韧性和塑性; 停冷温度超过 520°C则 无法获得铁素体 +贝氏体的组织,所以必须控制钢种在 460-520°C范围内卷 取, 之后再冷却至室温。
本发明的高耐蚀型高强度含 A1耐候钢板, 其化学成分配比和力学性 能如表 1所示, 并与相近钢种进行了化学成分、 性能的对比 (参见表 1 ) 。
其中, 对比专利 1 : 中国专利 CN101376953A, 其为超低碳成分, 同 时 Mn含量也极低, 且要求含有一定量的 N、 Ca。
对比专利 2 : 日本专利号 JP2002363704, 其成分上必须 3-20%的 Mn, 并选择添加 Cu、 Ni、 Mo、 Nb、 V、 Ti、 Zr及 Mg+Ca等元素中的一种或多 种。
对比专利 3 : 日本专利号 JP2002285298 , 其成分上还必须添加 N, 同 时添力 B 4-9%的 Cr, 并选择添加 Cu、 Ni、 Mo、 Nb、 V、 Ti、 Ca及 Mg、
Re等元素中的一种或多种。
表 1 本发明钢与对比钢种的化学成分、 力学性能的对比
Figure imgf000008_0001
Si 0.2-1.0 0.20-0.40 0.01-3.0 0.01-3.0
Mn 0.2-2.2 0.01-0.05 3-20 0.10-3 ¾ Φ
P 0.01 0.02 0.03 0.03 s 0.006 0.008 0.010 0.01
Al 0.4-4 0.01-0.05 0.8-10 0.1-5
Ti (0.01-0.10) 0.03 0.005-0.05 (0.005-0.03)
Cu 0.2-0.5 0.20-0.40 0.1-5 0.05-10
Cr 0.5-3.5 4.50-5.50 0.5-9.9 4-9
Ni 0.2-1.2 0.40 0.1-5 0.05-10
Nb (0.01-0.06) -- 0.005-0.05 0.005-0.05
V (0.02-0.1) -- 0.01-0.1 0.005-0.1
Zr -- -- 0.005-0.05 --
0.0005-0.5
Mg -- -- 0.0005-0.05
(Ca+Mg)
Mo -- -- 0.01-1
N 0.005 0.001-0.06 0.01 0.02
Ca -- 0.001-0.006 -- 0.01-1
RE -- -- -- 0.01-0.1 屈服强度 /MPa 350-500 ^700 250-650 -- 抗拉强度 /MPa ^450 -- 345-780 -- 屈强比 /% 80 -- ― -- 延伸率 /% ^20 ― -- 夏比 V型冲击
^60 -- 功值 /J (-40°0
从表 1的对比可知:
对比专利 1、 2 均为高耐蚀型耐候钢, 其中对比专利 1 为屈服强度 700MPa以上的钢种, 要求超低碳成分 (C: 0.002%-0.005%), 且 Mn、 Al 含量均在 0.05%以下, 炼钢难度大, 同时 Cr含量 (4.5-5.5%) 也高于本实 施例要求的 0.5-3.5%的含量范围, 并要求添加一定含量的 N; 与本发明有 明显的差异;
对比专利 2的钢种中 Cr、 Al成分范围更宽泛, 其上限均远超过本发 明钢种 Cr、 Al成分含量要求, 这在本发明中起到很大的不利作用, 如过 高的 A1将使钢中铁素体脆性增加而导致钢韧性的降低, 过高的 Cr同时对 焊接及韧性不利, 且 Cr、 Al 的配比也带来很大的不利, 不符合本发明的 成分设计要求;特别是 Mn含量要求 3-20%,而本发明钢种 Mn含量在 2.2% 以下, 其明显超过本发明钢中 Mn成分的含量, 并要求同时添加 Mo、 Zr 等合金元素。 该对比专利 2的钢种, 其屈服强度范围为 250MPa-650MPa, 低至 250 MPa, 涵盖范围较为宽泛, 且没有其他如耐腐蚀性、 屈强比、 延 伸率、 _40°C夏比冲击功等其他方面的综合性能数据。所以对比专利 1和 2 这两个专利与本发明均存在明显不同。
对比专利 3所涉及钢种 Cr含量为 4-9%, 远高于本发明钢的 0.5-3.5% 的 Cr含量; 并同时要求含有最高达 10%的 Cu和 Ni。 另外, 对比专利 3 所涉钢种还需要有 0.02% 的 N、 0.01-1.0%的 Mo、 0.005-0.05%的 Mg、
0.001.0.1%的稀土等元素成分, 这些元素的添加, 一方面增加了制造成本 及制造难度, 而且对钢板的焊接及韧性不利, 而本发明中不需要含有上述 含量的元素成分。
此外, 本发明钢的力学性能要求也与对比专利的各种钢不同, 本发明 的高耐蚀型高强度含 A1耐候钢板要求屈服强度为 350-500MPa, 而对比专 利 1的钢屈服强度则在 700MPa以上, 对比专利 2的钢强度范围较宽泛; 另外, 对比专利 1-3的钢均没有任何有关低温韧性的性能数据。
本发明与现有技术相比, 其高耐蚀型高强度含 A1耐候钢板具有如下 优点和有益效果:
1. 本发明钢种的屈服强度为 350MPa-500MPa, 属于高强度耐候钢, 可满 足车辆降低构件自重的要求。
2. 适量 A1和 Cr的加入保证了本发明钢种具有优良的耐大气腐蚀性能,特 别是控制 Al、 Cr的配比, 在保证良好力学性能的同时, 使得本发明钢 种耐大气腐蚀性能相对于传统耐候钢提高一倍以上,可取代传统高强耐 候钢应用于铁路车辆、 集装箱、 桥梁及户外塔架等领域, 降低了使用和 维修成本。
3. 本发明钢种具有优良的冷弯加工及低温韧性, -40 °C条件下冲击功在 60J 以上,即使半试样的冲击功也不低于 40J,甚至超过 60J (如表 3所示)。
4. 本发明钢种采用控轧控冷 (TMCP ) 生产工艺生产, 轧后不需要进行热 处理, 可热轧状态供货, 有效保证了供货周期, 降低了生产成本。 附图说明 图 1为本发明高耐蚀型高强度含 Al耐候钢板的 CCT曲线 (计算) 。 具体实施方式
下面通过具体实施例对本发明做进一歩的说明:
按照本发明的高耐蚀型高强度含 A1耐候钢板的化学成分的重量百分 比含量 (其化学成分配比见表 2 ) 要求, 在试验室 500kg真空感应炉上冶 炼本发明钢。 钢坯加热温度为 1220°C以上, 终轧温度为 720~800°C, 卷取 温度为 460~520°C, 随后空冷至室温。 实施例钢的相关力学性能参见表 3。
表 2 单位:
Figure imgf000011_0002
Figure imgf000011_0001
Figure imgf000011_0003
注: 1 ) B 1和 B2为采用表 2中 B的化学成分的钢水进行制造; D1和 D2为采用表 2 中 D的化学成分的钢水进行制造
2) 小于 10mm规格的钢板 A、 Bl、 C、 Dl, 其一 40°C冲击功为半试样的冲击功, 其余为全试样的一 40 V冲击功。
以普通碳钢 Q345B及高强耐候钢 Q450NQR1为对比样品, 按铁路用 耐候钢周期浸润腐蚀试验方法 (TB/T2375-93 ) 进行 72h 的周期浸润循环 腐蚀实验。 通过计算样品单位面积腐蚀失重量求得平均腐蚀速率, 进而求 得钢种的相对腐蚀速率。 9 种实施例钢种 (A-G) 及对比钢的耐大气腐蚀 性能如表 4所示。
表 4 9种实施例钢的耐大气腐蚀性能
Figure imgf000012_0001
按照本发明的高耐蚀型高强度含 A1耐候钢的成分设计范围及轧制工 艺控制所获得的实施例钢的屈服强度为 350-500MPa, 延伸率在 20%以上, 同时具有良好的冲击韧性和较低的屈强比; 耐大气腐蚀性能对比结果亦表 明本发明钢种的耐大气腐蚀性能相对于传统高强耐候钢的性能要求(相对 腐蚀率 55% ) 提高了一倍以上, 相对腐蚀率在 27%以下。 因此, 本发明 的高耐蚀型高强度的含 A1耐候钢种可完全取代传统耐候钢和当前已有高 强度耐候钢, 可广泛应用于大气环境条件下, 满足铁路车辆、 集装箱制造 和桥梁及户外塔架等领域的需求。

Claims

权利要求书
1. 一种高耐蚀型高强度含 Al耐候钢板, 其化学成分重量百分含量为: C:
0.02-0.07%, Si: 0.2-1.0%, Mn: 0.2-2.2%, P^O.01%, 0.006%, Cu: 0.2-0.5%, Cr: 0.5-3.5%, Ni: 0.2-1.2%, Al: 0.4-4.0%, 0.005%, 其余为 Fe 和不可避免的杂质; 且 Al/Cr为 0.5-8.0; 钢板屈服强度为 350-500MPa, 相对腐蚀率在 27%以下, -40°C条件下夏比冲击功在 60J 以上, 延伸率在 20%以上。
2. 如权利要求 1所述的高耐蚀型高强度含 A1耐候钢板, 其特征在于, 还 包括 Nb、 Ti和 V中的一种或多种,其中 Nb: 0.01 -0.06%, Ti :0.01-0.10%, V: 0.02-0.10%, 以重量百分比计。
3. 一种高耐蚀型高强度含 A1耐候钢板的制造方法, 包括如下歩骤:
1) 冶炼、 炉外精炼、 连铸;
按下述成分冶炼、 炉外精炼、 连铸形成板坯, 化学成分重量百分含 量为: C: 0.02-0.07%, Si: 0.2-1.0%, Mn: 0.2-2.2%, P^O.01%, 0.006%, Cu: 0.2-0.5%, Cr: 0.5-3.5%, Ni: 0.2-1.2%, Al: 0.4-4.0%, N^O.005%, 其余为 Fe和不可避免的杂质; 且 Al/Cr为 0.5-8.0;
2) 板坯加热: 将歩骤 1) 获得的板坯进行加热, 加热温度为 1220°C以 上;
3) 轧制: 采用粗轧、 精轧两段控制轧制工艺, 且精轧的终轧温度为 720-800 °C;
4) 冷却: 将轧制后钢板进行冷却, 冷却速度为 10-40°C/s;
5) 卷取、 精整:
控制钢板在 460-520°C范围内进行卷取, 之后再冷却至室温, 并进 行精整即可获得所述高耐蚀型高强度含 A1 耐候钢; 所获钢板的屈 服强度为 350-500MPa, 相对腐蚀率在 27%以下, -40°C条件下夏比 冲击功在 60J以上, 延伸率在 20%以上。
4. 如权利要求 3所述的高耐蚀型高强度含 A1耐候钢板的制造方法, 其特 征在于, 所述钢水化学成分还包括 Nb、 Ti和 V中的一种或多种, 其中 Nb: 0.01-0.06%, Ti: 0.01-0.10%, V: 0.02-0.10%, 以重量百分比计。
PCT/CN2013/090274 2013-01-24 2013-12-24 一种高耐蚀型高强度含Al耐候钢板及其制造方法 WO2014114160A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/762,592 US10760149B2 (en) 2013-01-24 2013-12-24 Highly corrosion-resistant, high strength, A1-containing weathering steel plate and process of manufacturing same
KR1020157022772A KR102240599B1 (ko) 2013-01-24 2013-12-24 고 내부식성 고강도 Al 함유 내후성 강판 및 그의 제조방법
JP2015554025A JP6415453B2 (ja) 2013-01-24 2013-12-24 高耐食性高強度のAl含有耐候性鋼板及びその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310026111.5 2013-01-24
CN201310026111.5A CN103074548B (zh) 2013-01-24 2013-01-24 一种高耐蚀型高强度含Al耐候钢板及其制造方法

Publications (1)

Publication Number Publication Date
WO2014114160A1 true WO2014114160A1 (zh) 2014-07-31

Family

ID=48151240

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/090274 WO2014114160A1 (zh) 2013-01-24 2013-12-24 一种高耐蚀型高强度含Al耐候钢板及其制造方法

Country Status (5)

Country Link
US (1) US10760149B2 (zh)
JP (1) JP6415453B2 (zh)
KR (1) KR102240599B1 (zh)
CN (1) CN103074548B (zh)
WO (1) WO2014114160A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107236907A (zh) * 2017-06-07 2017-10-10 苏州双金实业有限公司 一种环保耐候复合钢
CN113403460A (zh) * 2021-05-28 2021-09-17 包头钢铁(集团)有限责任公司 一种稀土处理的耐低温型铁路车厢用钢q450ewr1的制备方法
CN114774763A (zh) * 2022-03-11 2022-07-22 钢铁研究总院有限公司 一种含高稀土镧含量的耐蚀钢及其精炼控制方法
CN116121640A (zh) * 2022-12-01 2023-05-16 内蒙古包钢钢联股份有限公司 一种屈服强度235MPa级的稀土La耐候钢板及其制备方法

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103074548B (zh) * 2013-01-24 2016-02-24 宝山钢铁股份有限公司 一种高耐蚀型高强度含Al耐候钢板及其制造方法
CN103255353B (zh) * 2013-05-25 2015-10-07 马钢(集团)控股有限公司 一种屈服强度450MPa级含钒耐候热轧H型钢的轧制工艺
CN103602895B (zh) * 2013-11-29 2016-08-24 宝山钢铁股份有限公司 一种抗拉强度780MPa级高扩孔钢板及其制造方法
CN105506494B (zh) * 2014-09-26 2017-08-25 宝山钢铁股份有限公司 一种屈服强度800MPa级高韧性热轧高强钢及其制造方法
CN104789886A (zh) * 2015-03-20 2015-07-22 苏州科胜仓储物流设备有限公司 一种用于仓储设备的耐腐蚀钢及其制备方法
CN107587062B (zh) * 2016-07-08 2019-05-03 攀钢集团攀枝花钢铁研究院有限公司 一种含铌氮耐大气腐蚀型钢钢水和耐大气腐蚀型钢及其生产方法
CN107587037B (zh) * 2016-07-08 2019-04-02 攀钢集团攀枝花钢铁研究院有限公司 一种耐大气腐蚀型钢钢水和含铌氮耐大气腐蚀型钢及其生产方法
CN106011658A (zh) * 2016-07-11 2016-10-12 武汉钢铁股份有限公司 一种耐海洋气候耐蚀钢及其生产方法
CN106435360A (zh) * 2016-10-25 2017-02-22 武汉科技大学 高强韧耐腐耐候钢板及其制造方法
CN106521357A (zh) * 2016-12-19 2017-03-22 苏州金威特工具有限公司 一种耐腐蚀刀具钢
CN107312971A (zh) * 2017-07-12 2017-11-03 攀钢集团攀枝花钢铁研究院有限公司 耐蚀热轧钢板及其炼铸方法和轧制方法
CN107299297A (zh) * 2017-07-12 2017-10-27 攀钢集团攀枝花钢铁研究院有限公司 高强耐蚀热轧钢板及其炼铸方法和轧制方法
CN108251746B (zh) * 2018-01-31 2019-03-12 福建三宝钢铁有限公司 一种高耐候、低成本耐海水腐蚀钢筋及生产工艺
CN108754309A (zh) * 2018-05-28 2018-11-06 攀钢集团攀枝花钢铁研究院有限公司 一种钢材料及其制备方法
CN108707821B (zh) * 2018-05-28 2020-07-03 攀钢集团攀枝花钢铁研究院有限公司 一种钢材料及其制备方法
CN109046582A (zh) * 2018-07-27 2018-12-21 安徽卓煌机械设备有限公司 一种低成本复合耐磨层水泥原料磨辊
CN108588572A (zh) * 2018-07-27 2018-09-28 安徽卓煌机械设备有限公司 一种高强度易焊接磨辊基体材料
CN108855378A (zh) * 2018-07-27 2018-11-23 安徽卓煌机械设备有限公司 一种高结合力耐磨层水泥原料磨辊
CN111349847B (zh) * 2018-12-24 2022-03-18 宝山钢铁股份有限公司 一种耐海水腐蚀钢及其制造方法
JP7140211B2 (ja) * 2019-01-08 2022-09-21 日本製鉄株式会社 外装パネルおよび外装パネルを備える自動車
CN112522598A (zh) * 2019-09-19 2021-03-19 宝山钢铁股份有限公司 一种高耐蚀钢及其制造方法
CN112522594B (zh) * 2019-09-19 2022-10-21 宝山钢铁股份有限公司 一种薄规格耐火耐候钢板/带及其生产方法
CN112522590A (zh) * 2019-09-19 2021-03-19 宝山钢铁股份有限公司 一种高强高耐蚀钢及其制造方法
CN114107786A (zh) * 2020-08-27 2022-03-01 宝山钢铁股份有限公司 一种冷轧高耐蚀高强耐候钢及其制造方法
CN112080702B (zh) * 2020-09-16 2021-07-16 燕山大学 焊接粗晶热影响区-60℃冲击吸收功不低于60j的耐候桥梁钢
CN112813360B (zh) * 2020-12-29 2022-03-08 钢铁研究总院 一种低碳Cr-Ni-Al系高强韧耐蚀钢及其制备方法
CN113755751B (zh) * 2021-08-20 2023-07-07 首钢集团有限公司 一种235MPa级海洋大气环境涂装用低合金耐蚀钢及其制造工艺
CN113737105B (zh) * 2021-09-07 2022-05-17 燕山大学 一种含稀土耐候钢及其制备方法
CN113737104B (zh) * 2021-09-07 2022-05-10 燕山大学 一种高铝耐候钢及其制备方法
CN115821152A (zh) * 2021-09-16 2023-03-21 宝山钢铁股份有限公司 一种屈服强度350MPa级高耐蚀耐候钢及其制造方法
CN114561586A (zh) * 2021-12-02 2022-05-31 安阳钢铁股份有限公司 一种炉卷轧机薄规格桥梁耐候钢及其生产方法
CN114350911B (zh) * 2021-12-29 2024-03-29 日照钢铁控股集团有限公司 一种热轧700MPa级复相高强耐候钢制备方法
CN114574766B (zh) * 2022-03-04 2023-04-11 武安市裕华钢铁有限公司 一种Ni-RE系耐腐蚀低碳热轧钢带及生产工艺
CN115141974B (zh) * 2022-06-15 2024-05-14 宝山钢铁股份有限公司 一种具有高耐候性能的高强度高塑性热轧带钢及其制造方法
CN115449715B (zh) * 2022-09-21 2023-08-11 马鞍山钢铁股份有限公司 一种冷轧耐候钢板及其生产方法、一种在同种成分下生产不同级别冷轧耐候钢板的方法
CN117947333A (zh) * 2022-10-28 2024-04-30 宝山钢铁股份有限公司 一种光伏桩基用耐蚀钢及其制造方法
CN115786822B (zh) * 2023-01-13 2023-05-09 山西建龙实业有限公司 一种光伏支架用高强度耐候钢及其制备方法
CN116162855B (zh) * 2023-02-28 2024-01-30 马鞍山钢铁股份有限公司 一种600MPa级厚规格含磷热轧耐候钢板及其制造方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09176790A (ja) * 1995-12-27 1997-07-08 Sumitomo Metal Ind Ltd 耐候性鋼材
JP2006118011A (ja) * 2004-10-22 2006-05-11 Sumitomo Metal Ind Ltd 海浜耐候性に優れた鋼材と構造物
CN101033520A (zh) * 2006-03-08 2007-09-12 中国科学院金属研究所 一种AlSi型经济耐候钢
CN101994064A (zh) * 2009-08-18 2011-03-30 宝山钢铁股份有限公司 屈服强度为550MPa级的耐候钢及其制造方法
CN102127717A (zh) * 2010-01-18 2011-07-20 宝山钢铁股份有限公司 韧性优良的高耐蚀性含Cr耐候钢
CN102650015A (zh) * 2012-05-29 2012-08-29 江苏省沙钢钢铁研究院有限公司 一种经济型细晶粒高韧性耐候中厚钢板及其生产方法
CN103074548A (zh) * 2013-01-24 2013-05-01 宝山钢铁股份有限公司 一种高耐蚀型高强度含Al耐候钢板及其制造方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3139302B2 (ja) * 1994-09-12 2001-02-26 住友金属工業株式会社 耐食性に優れた自動車用熱延鋼板の製造方法
JP3783378B2 (ja) 1997-12-04 2006-06-07 Jfeスチール株式会社 溶接性および耐海水性に優れた高張力鋼及びその製造方法
KR100371960B1 (ko) * 2000-09-29 2003-02-14 주식회사 포스코 60킬로그램급 인장강도를 갖는 고내후성 및 고가공성열연강판 및 그 제조방법
JP2002266049A (ja) 2001-03-08 2002-09-18 Kobe Steel Ltd 均一伸びに優れた高張力厚鋼板
TW567231B (en) * 2001-07-25 2003-12-21 Nippon Steel Corp Multi-phase steel sheet excellent in hole expandability and method of producing the same
EP2072630A1 (en) * 2007-12-21 2009-06-24 ArcelorMittal Commercial RPS S.à r.l. Corrosion resistant steel for marine applications
JP5521482B2 (ja) * 2009-01-30 2014-06-11 Jfeスチール株式会社 低温靭性に優れた厚肉高張力熱延鋼板およびその製造方法
CN102168229B (zh) * 2010-02-25 2013-04-24 宝山钢铁股份有限公司 耐候钢板及其制造方法
BR112012024642B1 (pt) * 2010-03-29 2018-02-06 Arcelormittal Investigación Y Desarollo Sl Produto de aço com maior resistência a corrosão atmosférica em ambiente salino e uso de um produto de aço
IT1403688B1 (it) * 2011-02-07 2013-10-31 Dalmine Spa Tubi in acciaio con pareti spesse con eccellente durezza a bassa temperatura e resistenza alla corrosione sotto tensione da solfuri.
US9587287B2 (en) * 2011-03-31 2017-03-07 Nippon Steel and Sumitomo Metal Corporation Bainite-containing-type high-strength hot-rolled steel sheet having excellent isotropic workability and manufacturing method thereof
JP5776377B2 (ja) 2011-06-30 2015-09-09 Jfeスチール株式会社 耐サワー性に優れたラインパイプ用溶接鋼管向け高強度熱延鋼板およびその製造方法
FI20115702L (fi) * 2011-07-01 2013-01-02 Rautaruukki Oyj Menetelmä suurlujuuksisen rakenneteräksen valmistamiseksi ja suurlujuuksinen rakenneteräs

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09176790A (ja) * 1995-12-27 1997-07-08 Sumitomo Metal Ind Ltd 耐候性鋼材
JP2006118011A (ja) * 2004-10-22 2006-05-11 Sumitomo Metal Ind Ltd 海浜耐候性に優れた鋼材と構造物
CN101033520A (zh) * 2006-03-08 2007-09-12 中国科学院金属研究所 一种AlSi型经济耐候钢
CN101994064A (zh) * 2009-08-18 2011-03-30 宝山钢铁股份有限公司 屈服强度为550MPa级的耐候钢及其制造方法
CN102127717A (zh) * 2010-01-18 2011-07-20 宝山钢铁股份有限公司 韧性优良的高耐蚀性含Cr耐候钢
CN102650015A (zh) * 2012-05-29 2012-08-29 江苏省沙钢钢铁研究院有限公司 一种经济型细晶粒高韧性耐候中厚钢板及其生产方法
CN103074548A (zh) * 2013-01-24 2013-05-01 宝山钢铁股份有限公司 一种高耐蚀型高强度含Al耐候钢板及其制造方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107236907A (zh) * 2017-06-07 2017-10-10 苏州双金实业有限公司 一种环保耐候复合钢
CN113403460A (zh) * 2021-05-28 2021-09-17 包头钢铁(集团)有限责任公司 一种稀土处理的耐低温型铁路车厢用钢q450ewr1的制备方法
CN114774763A (zh) * 2022-03-11 2022-07-22 钢铁研究总院有限公司 一种含高稀土镧含量的耐蚀钢及其精炼控制方法
CN116121640A (zh) * 2022-12-01 2023-05-16 内蒙古包钢钢联股份有限公司 一种屈服强度235MPa级的稀土La耐候钢板及其制备方法
CN116121640B (zh) * 2022-12-01 2024-03-05 内蒙古包钢钢联股份有限公司 一种屈服强度235MPa级的稀土La耐候钢板及其制备方法

Also Published As

Publication number Publication date
JP2016511326A (ja) 2016-04-14
KR20150110719A (ko) 2015-10-02
US20150354041A1 (en) 2015-12-10
CN103074548B (zh) 2016-02-24
KR102240599B1 (ko) 2021-04-15
JP6415453B2 (ja) 2018-10-31
CN103074548A (zh) 2013-05-01
US10760149B2 (en) 2020-09-01

Similar Documents

Publication Publication Date Title
WO2014114160A1 (zh) 一种高耐蚀型高强度含Al耐候钢板及其制造方法
CN109402508B (zh) 一种低碳微合金化q690级高强耐候钢及其制备方法
CN100455692C (zh) 一种高强度耐候钢的生产方法
WO2023212972A1 (zh) 一种低屈强比易焊接耐候桥梁钢及其制造方法
CN101353766B (zh) 抗沟槽腐蚀高强度erw焊接套管用钢、套管及生产方法
WO2009056055A1 (fr) Tôle d'acier à limite d'élasticité de grade 800 mpa et faible sensibilité à la fissuration de soudure, et son procédé de fabrication
CN101994063A (zh) 屈服强度在700MPa以上的耐候钢及其制造方法
CN102127717A (zh) 韧性优良的高耐蚀性含Cr耐候钢
CN111235464B (zh) 一种钛微合金化经济型高强耐候钢及其生产方法
CN110578085A (zh) 一种屈服强度500MPa级耐大气腐蚀用热轧钢板
WO2020135437A1 (zh) 一种耐海水腐蚀钢及其制造方法
CN110527915A (zh) 一种460MPa级热轧H型钢及其生产方法
WO2021196365A1 (zh) 一种高塑性管线钢板及其制造方法
CN111187977B (zh) 一种690MPa级抗震耐蚀耐火中厚板钢及其制造方法
CN115386805A (zh) 一种低屈强比高韧性桥梁耐候钢及其制造方法
CN100352962C (zh) 具有抗hic性能x80管线钢及其热轧板制造方法
CN111534746B (zh) 宽幅450MPa级热轧集装箱用耐候钢及其制造方法
CN102517518A (zh) 一种低成本高性能x80管线钢及其生产方法
CN116179965A (zh) 一种经济型耐候结构钢板q355nhd及制造方法
CN109055858A (zh) 一种屈服强度≥620MPa的焊接结构用耐火耐候钢及其生产方法
CN114574782A (zh) 一种450MPa级耐磨损腐蚀钢及其制造方法
CN115161551A (zh) 一种高强度高成形性能超耐大气腐蚀钢及其制造方法
CN111349848A (zh) 一种抑制腐蚀的高强度覆铝基板用钢及其制造方法
CN111979474A (zh) 一种热连轧细晶贝氏体钢板及其制备方法
CN111690869A (zh) 一种冷弯钢板桩用热轧钢板及其制造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13872500

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14762592

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2015554025

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20157022772

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 13872500

Country of ref document: EP

Kind code of ref document: A1