CN111979474A - 一种热连轧细晶贝氏体钢板及其制备方法 - Google Patents

一种热连轧细晶贝氏体钢板及其制备方法 Download PDF

Info

Publication number
CN111979474A
CN111979474A CN201910430312.9A CN201910430312A CN111979474A CN 111979474 A CN111979474 A CN 111979474A CN 201910430312 A CN201910430312 A CN 201910430312A CN 111979474 A CN111979474 A CN 111979474A
Authority
CN
China
Prior art keywords
steel plate
equal
hot continuous
rolling
fine grain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910430312.9A
Other languages
English (en)
Other versions
CN111979474B (zh
Inventor
蔡珍
鲍思前
毛新平
赵刚
徐耀文
杨庚蔚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan University of Science and Engineering WUSE
Original Assignee
Wuhan University of Science and Engineering WUSE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan University of Science and Engineering WUSE filed Critical Wuhan University of Science and Engineering WUSE
Priority to CN201910430312.9A priority Critical patent/CN111979474B/zh
Publication of CN111979474A publication Critical patent/CN111979474A/zh
Application granted granted Critical
Publication of CN111979474B publication Critical patent/CN111979474B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/04Making ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/004Dispersions; Precipitations

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

本发明涉及一种热连轧细晶贝氏体钢板及其制备方法,上述热连轧细晶贝氏体钢板的化学成分按重量百分比为C:0.05‑0.10%、Si:0.03‑0.20%、Mn:1.1‑1.7%、P:≤0.015%、S:≤0.005%、Ti:0.07‑0.11%、Nb:0.015‑0.045%、N:≤0.005%、Als:0.02‑0.05%、Mn/C:15‑25、Ti/Nb:2.0‑3.5%,余量为Fe及杂质。本发明提供的热连轧细晶贝氏体钢板屈服强度大于590MPa,抗拉强度大于650MPa,冲击功稳定,‑20℃冲击功大于130J,‑40℃冲击功大于100J,延伸率A50大于17%,冷弯性能可达d=2a,180°合格。

Description

一种热连轧细晶贝氏体钢板及其制备方法
技术领域
本发明涉及钢铁冶金技术领域,尤其涉及一种热连轧细晶贝氏体钢板及其制备方法。
背景技术
低合金高强钢在工程机械行业和煤矿机械行业得到广泛应用。随着社会快速发展,用户对于强度、韧性和冷弯性能匹配要求越来越高,在众多强化机制中,析出强化、固溶强化在提高强度的同时,不可避免的会损伤塑韧性,细晶强化是唯一一种能同时提高强韧性的强化机制。
目前部分高级别高强钢采用Ti合金化,通过贝氏体+含Ti析出相来保证强度,但随着Ti含量增加,析出强化效果增强,冲击功下降明显,影响用户使用。
公开号为CN106591714A的发明专利公开了一种屈服强度700MPa级工程机械用钢板及其制备方法,上述钢板的化学成分按重量百分比为C:0.06-0.08%、Si:0.12-0.20%、Mn:1.70-1.80%、P:≤0.010%、S:≤0.005%、Nb:0.055-0.065%、Ti:0.095-0.105%,Mo:0.10-0.15%,合金成本相对较低,其加热时间≥270min,虽然没有提及晶粒尺寸,但长时间高温加热大概率引起晶粒粗大,影响强韧性匹配。
公开号为CN104264052A的发明专利公开了一种工程机械用钢板及其生产方法,其钢板的化学成分质量百分含量为:C:0.05-0.09%、Si:0.05-0.30%、Mn:1.5-2.0%、P:≤0.025%、S:≤0.005%、Nb:0-0.07%、Ti:0.08-0.15%、Mo:0.10-0.30%、Als:0.015-0.06%、Ca:0.0010-0.0030%、N≤0.006%、余量为Fe,其强度和延伸率富余大,冲击韧性良好,焊后失强率小,尤其表现为钢板各向异性小、不平度值小、折弯性能优越,平均晶粒尺寸为3-6μm,组织类型为准多边形铁素体+少量渗碳体,但由于含贵重金属Mo和需后续回火处理,合金和工序成本较高,对于8.5mm以上的钢板,不能生产。
发明内容
针对上述问题,现提供一种热连轧细晶贝氏体钢板及其制备方法,旨在利用微合金化技术和超快冷工艺技术,形成细晶贝氏体+纳米级析出相,得到强度、韧性和冷弯性能俱佳的产品。
具体技术方案如下:
本发明的第一个方面时提供一种热连轧细晶贝氏体钢板,具有这样的特征,其化学成分按重量百分比为C:0.07-0.10%、Si:0.03-0.15%、Mn:1.3-1.6%、P:≤0.015%、S:≤0.004%、Nb:0.01-0.08%、V:0.01-0.07%、Ti:0.06-0.13%、Als:0.01-0.05%、Cr:0.1-0.2%、Mo:0.1-0.2%、Nb+V+Ti:0.08-0.15%,Mo+Cr:0.15-0.30%,N≤0.006%,Als/N≥5,余量为Fe及不可避免的杂质。
本发明中上述热连轧细晶贝氏体钢板中成分范围的设置是基于如下原因:
1)、C是提高材料强度最廉价的元素,随着含碳量增加,材料的硬度、强度提高,但塑韧性和焊接性能降低,综合考虑,C重量百分含量为0.07-0.10%即可。
2)、在常见的固溶元素中,Si仅次于P,固溶于铁素体和奥氏体中,可提高强度,Si可降低碳在铁素体中的扩散速度,使回火时析出的碳化物不易聚集,提高回火稳定性,但Si过高易产生淬火裂纹,超快冷下裂纹倾向更大;钢在加热的过程中,Si与O结合产生SiO2,再与FeO发生一系列复杂的固相反应生成铁橄榄石Fe2SiO4,影响表面质量,综合考虑,Si重量百分含量为0.03-0.15%为宜。
3)、Mn可显著降低钢的Ar1温度、奥氏体的分解速度,与Fe无限固溶能提高强度,但Mn含量若太高,会增加钢的回火脆性,导致严重的中心偏析,综合考虑,Mn重量百分含量为1.3-1.6%为宜。
4)、Cr能提高淬透性,也能提高回火稳定性,但过高的Cr降低加工性和焊接性,综合考虑,Cr重量百分含量为0.1-0.2%为宜。
5)、Mo能够提高淬透性,可防止回火脆性并具有二次硬化作用,但过多时,会损害加工成形性能、焊接性能,而且影响生产成本,综合考虑,Mo重量百分含量为0.1-0.2%为宜。
6)、同时添加Mo、Cr的作用比单独添加的效果更好,也能节约合金成本,综合考虑,Mo+Cr重量百分含量为0.15-0.30%范围内为宜。
7)、Ti与C、N元素形成耐高温的TiN和TiC粒子,起到析出强化作用,钉扎在原始奥氏体晶界,阻止奥氏体晶粒长大,焊接时TiN和TiC粒子显著阻止热影响区晶粒长大,改善焊接性能,但当Ti含量较低时,析出强化和焊接性能改善作用小,当Ti含量过高时,塑性降低,且容易造成性能波动,综合考虑,Ti重量百分含量为0.06-0.13%为宜。
8)、V在钢中以碳化物形式存在,主要作用是细化组织和晶粒,综合考虑,V重量百分含量为0-0.07%为宜。
9)、Nb在钢中与C、N具有极强的亲和力,形成稳定的Nb(C,N)化合物,在控制轧制过程中诱导析出,沿奥氏体晶界弥散分布,作为相变的形核质点,可有效阻止再结晶,提高铁素体形核率,对细化晶粒作用显著,综合考虑,Nb重量百分含量为0.01-0.08%为宜。
10)、控制Nb+V+Ti含量的目的在于发挥Nb、V、Ti复合微合金化的作用,比单一添加某一种元素的作用更好,综合考虑,Nb+V+Ti重量百分含量为0.08-0.15%为宜。
11)、N对钢材性能的影响与C和P相似,随着N含量增加,强度显著提高,塑性特别是韧性显著降低,可焊性变差,冷脆性加剧,同时增加时效倾向,N与Ti有很好的亲和力,形成粗大TiN化合物,加热时难以充分溶解,形成夹杂物,成为拉伸和冲击过程中的裂纹源,也会造成合金浪费,因此综合考虑,N≤0.006%为宜。
12)、Als在钢中可脱氧,也能起到细化晶粒的作用,综合考虑,Als在0.02-0.05%为宜,同时控制Als/N≥5是为了降低钢板脆性,提高韧性。
13)、P、S是钢中有害的杂质元素,钢中P易在钢中形成偏析,降低钢的韧性和焊接性能,S易形成塑性硫化物,使钢板产生分层,恶化钢板性能,故P、S含量越低越好,综合考虑,P含量≤0.015%、S含量≤0.004%为宜。
本发明的第二个方面是提供一种上述热连轧细晶贝氏体钢板的制备方法,具有这样的特征,包括如下步骤:
1)、冶炼和浇铸,得到钢坯;
2)、将钢坯热装热送至加热炉进行加热,再施行由粗轧和精轧构成的热轧后施行由前段超快速冷却和后段空冷冷却构成的冷却工艺,再经卷取、开平、精整得一种热连轧细晶贝氏体钢板;
其中,步骤2)中,热装入炉温度大于500℃;加热出钢温度为1210-1250℃,加热时间≥140min;粗轧出口温度为1040-1080℃,精轧终轧温度为860-900℃,精轧总压下率大于60%,以加大材料在非再结晶奥氏体区的变形、增加变形奥氏体中的位错密度,并加强细晶强化;超快速冷却冷速为60-100℃/s,以将精轧的终轧温度冷至510-550℃,空冷冷却至卷取温度,卷取温度为500-550℃。
上述的制备方法,还具有这样的特征,步骤2)中卷取时控制钢板厚度为3-16mm。
本发明中热装热送工艺可在降低能耗的同时降低加热时间,有利于细化原奥晶粒;且由于采用热装热送,微合金元素和碳氮化物较冷装时的未固溶量少,采用较低的加热温度和时间即可,有利于细化原奥晶粒。
本发明中前段超快冷目的在于细化晶粒,同时减少微合金元素在奥氏体相中的析出和已形成的析出相的粗化,使其在更大过冷度下形成纳米级析出相;而后段空冷的目的在于使得纳米级析出相大量析出,提高析出强化作用效果的同时钉扎位错和晶界,防止晶粒长大,也可降低微合金元素用量,另外,空冷有利于钢卷温度均匀化,得到稳定的卷取温度,使得钢卷全长方向性能均匀。
上述方案的有益效果是:
1)、本发明提供的钢板屈服强度大于680MPa,抗拉强度大于750MPa,-20℃冲击功大于100J,延伸率大于20%,横纵向冷弯性能可达d=a,180°合格;
2)、本发明提供的钢板中组织均匀细小,最小晶粒尺寸仅为0.4μm,尺寸范围0.4-4.5μm,且其表面基本没有红色氧化铁皮,有利于钢铁企业和用户生产环境的优化;
3)、在同等强度下,本发明中采用超快冷工艺可起以水代合金作用,合金成本相对更低,采用热连轧工艺生产,工序成本低。
附图说明
图1为本发明的实施例1制备的钢板的显微组织图;
图2为本发明的实施例1制备的钢板的冷弯实物图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
需要说明的是,在不冲突的情况下,本发明中的实施例及实施例中的特征可以相互组合。
下面结合附图和具体实施例对本发明作进一步说明,但不作为本发明的限定。
本发明中提供了一种热连轧细晶贝氏体钢板,其化学成分按重量百分比为C:0.07-0.10%、Si:0.03-0.15%、Mn:1.3-1.6%、P:≤0.015%、S:≤0.004%、Nb:0.01-0.08%、V:0.01-0.07%、Ti:0.06-0.13%、Als:0.01-0.05%、Cr:0.1-0.2%、Mo:0.1-0.2%、Nb+V+Ti:0.08-0.15%,Mo+Cr:0.15-0.30%,N≤0.006%,Als/N≥5,余量为Fe及不可避免的杂质。
本发明中上述热连轧细晶贝氏体钢板的制备包括如下步骤:
1)、冶炼和浇铸,得到钢坯;
2)、将钢坯热装热送至加热炉进行加热,再施行由粗轧和精轧构成的热轧后施行由前段超快速冷却和后段空冷冷却构成的冷却工艺,再经卷取、开平、精整得一种热连轧细晶贝氏体钢板;
其中,步骤2)中,热装入炉温度大于500℃;加热出钢温度为1210-1250℃,加热时间≥140min;粗轧出口温度为1040-1080℃,精轧终轧温度为860-900℃,精轧总压下率大于60%;超快速冷却冷速为60-100℃/s,以将精轧的终轧温度冷至510-550℃,空冷冷却至卷取温度,卷取温度为500-550℃,卷取时控制钢板厚度为3-16mm。
具体的,本发明实施例1-4及对比例1、2中按如下成分冶炼并浇铸钢坯:
Figure BDA0002068778440000071
具体的,本发明实施例1-4及对比例1、2中对应制备工艺参数如下表所示:
Figure BDA0002068778440000072
如图1所示,本发明的实施例提供的钢板中存在细小的贝氏体晶团,上述晶团的存在有利于钢板的力学性能。
根据GB/T228和GB/T231国家标准,本发明实施例1-4及对比例1、2中制备的钢板性能测试如下表所示:
Figure BDA0002068778440000073
Figure BDA0002068778440000081
由上表可知,采用本发明提供的制备方法制备的钢板屈服强度685MPa以上,抗拉强度752MPa以上,A50在24%以上,-20℃低温韧性优异,横纵向冷弯性能可满足D=a,180°合格,晶粒尺寸范围为0.4-4μm,而对比例中合金含量更高,但低温韧性均值相对较低,冷弯性能相对较差,说明本发明提供的钢板在合金含量更低的前提下强度、韧性和冷弯性能更加优异。
以上所述仅为本发明较佳的实施例,并非因此限制本发明的实施方式及保护范围,对于本领域技术人员而言,应当能够意识到凡运用本发明说明书及图示内容所作出的等同替换和显而易见的变化所得到的方案,均应当包含在本发明的保护范围内。

Claims (3)

1.一种热连轧细晶贝氏体钢板,其特征在于,其化学成分按重量百分比为C:0.07-0.10%、Si:0.03-0.15%、Mn:1.3-1.6%、P:≤0.015%、S:≤0.004%、Nb:0.01-0.08%、V:0.01-0.07%、Ti:0.06-0.13%、Als:0.01-0.05%、Cr:0.1-0.2%、Mo:0.1-0.2%、Nb+V+Ti:0.08-0.15%,Mo+Cr:0.15-0.30%,N≤0.006%,Als/N≥5,余量为Fe及不可避免的杂质。
2.一种权利要求1所述热连轧细晶贝氏体钢板的制备方法,其特征在于,包括如下步骤:
1)、冶炼和浇铸,得到钢坯;
2)、将钢坯热装热送至加热炉进行加热,再施行由粗轧和精轧构成的热轧后施行由前段超快速冷却和后段空冷冷却构成的冷却,再经卷取、开平、精整得一种热连轧细晶贝氏体钢板;
其中,步骤2)中,热装入炉温度大于500℃;加热出钢温度为1210-1250℃,加热时间≥140min;粗轧出口温度为1040-1080℃,精轧终轧温度为860-900℃,精轧总压下率大于60%;超快速冷却冷速为60-100℃/s,以将精轧的终轧温度冷至510-550℃,空冷冷却至卷取温度,卷取温度为500-550℃。
3.根据权利要求1所述的制备方法,其特征在于,步骤2)中卷取时控制钢板厚度为3-16mm。
CN201910430312.9A 2019-05-22 2019-05-22 一种热连轧细晶贝氏体钢板及其制备方法 Expired - Fee Related CN111979474B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910430312.9A CN111979474B (zh) 2019-05-22 2019-05-22 一种热连轧细晶贝氏体钢板及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910430312.9A CN111979474B (zh) 2019-05-22 2019-05-22 一种热连轧细晶贝氏体钢板及其制备方法

Publications (2)

Publication Number Publication Date
CN111979474A true CN111979474A (zh) 2020-11-24
CN111979474B CN111979474B (zh) 2022-02-01

Family

ID=73436039

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910430312.9A Expired - Fee Related CN111979474B (zh) 2019-05-22 2019-05-22 一种热连轧细晶贝氏体钢板及其制备方法

Country Status (1)

Country Link
CN (1) CN111979474B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114892080A (zh) * 2022-04-27 2022-08-12 鞍钢股份有限公司 一种720MPa级析出强化型热轧贝氏体钢及其生产方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102534429A (zh) * 2012-02-29 2012-07-04 首钢总公司 高强度低屈强比x90热轧钢板及其生产方法
CN103108973A (zh) * 2010-09-17 2013-05-15 杰富意钢铁株式会社 冲裁加工性优良的高强度热轧钢板及其制造方法
CN103687975A (zh) * 2011-07-20 2014-03-26 杰富意钢铁株式会社 低温韧性优良的低屈服比高强度热轧钢板及其制造方法
CN106636911A (zh) * 2017-03-17 2017-05-10 武汉科技大学 用薄板坯直接轧制的900MPa级热轧薄钢板及其制造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103108973A (zh) * 2010-09-17 2013-05-15 杰富意钢铁株式会社 冲裁加工性优良的高强度热轧钢板及其制造方法
CN103687975A (zh) * 2011-07-20 2014-03-26 杰富意钢铁株式会社 低温韧性优良的低屈服比高强度热轧钢板及其制造方法
CN102534429A (zh) * 2012-02-29 2012-07-04 首钢总公司 高强度低屈强比x90热轧钢板及其生产方法
CN106636911A (zh) * 2017-03-17 2017-05-10 武汉科技大学 用薄板坯直接轧制的900MPa级热轧薄钢板及其制造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114892080A (zh) * 2022-04-27 2022-08-12 鞍钢股份有限公司 一种720MPa级析出强化型热轧贝氏体钢及其生产方法

Also Published As

Publication number Publication date
CN111979474B (zh) 2022-02-01

Similar Documents

Publication Publication Date Title
JP6466582B2 (ja) 降伏強度800MPa級高強度鋼及びその製造方法
WO2016045266A1 (zh) 一种屈服强度800MPa级高韧性热轧高强钢及其制造方法
WO2019119725A1 (zh) 一种布氏硬度大于550hb的高级别低合金耐磨钢板及制造方法
CN109957712A (zh) 一种低硬度x70m管线钢热轧板卷及其制造方法
CN113528944B (zh) 一种1000MPa易成形耐磨钢板及其制备方法
CN113416889B (zh) 焊接性能良好超高强热镀锌dh1470钢及制备方法
CN111607735B (zh) 一种布氏硬度≥420的热轧耐磨钢及生产方法
KR20210002621A (ko) 고강도 양면 스테인리스 스틸 클래드 시트 및 그 제조방법
WO2023087833A1 (zh) 一种具有优良耐候性能的高强度钢材及其制造方法
CN101633996A (zh) 低成本的700MPa级高强高韧调质钢板及其制造方法
CN109023149B (zh) 对产线冷却能力要求低的980MPa级冷轧双相钢及其制造方法
CN111607741B (zh) 一种布氏硬度≥370热轧耐磨钢及生产方法
CN102400062B (zh) 低屈强比超高强度x130管线钢
CN113403550A (zh) 高塑性耐疲劳的冷轧热镀锌dh1180钢板及制备方法
KR20230024905A (ko) 가소성이 우수한 초고강도 강 및 이의 제조 방법
CN108728728B (zh) 一种具有极低屈强比的高锰钢及其制造方法
CN114411059A (zh) 一种桥梁钢及其制造方法
CN110284066B (zh) 一种薄规格低屈强比管线钢及其制造方法
CN111748737B (zh) 一种冷裂纹敏感系数≤0.25的易焊接超高强钢及生产方法
CN104561825A (zh) 一种低成本x80管线用钢及其制造方法
CN110066966B (zh) 一种低内应力含钛高强钢及生产方法
CN113073260A (zh) 一种抗拉强度500MPa级高塑性冷弯成型用钢及生产方法
CN111979474B (zh) 一种热连轧细晶贝氏体钢板及其制备方法
CN113737108A (zh) 一种耐延迟开裂的电镀锌超强双相钢及其制造方法
CN111979393A (zh) 一种低温韧性优良的热轧高强钢板及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20220201

CF01 Termination of patent right due to non-payment of annual fee