CN114892080A - 一种720MPa级析出强化型热轧贝氏体钢及其生产方法 - Google Patents

一种720MPa级析出强化型热轧贝氏体钢及其生产方法 Download PDF

Info

Publication number
CN114892080A
CN114892080A CN202210450176.1A CN202210450176A CN114892080A CN 114892080 A CN114892080 A CN 114892080A CN 202210450176 A CN202210450176 A CN 202210450176A CN 114892080 A CN114892080 A CN 114892080A
Authority
CN
China
Prior art keywords
percent
steel
hot
rolling
equal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210450176.1A
Other languages
English (en)
Other versions
CN114892080B (zh
Inventor
孙成钱
时晓光
董毅
刘仁东
徐荣杰
王俊雄
韩楚菲
严平沅
范竞韬
赵宝纯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Angang Steel Co Ltd
Original Assignee
Angang Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Angang Steel Co Ltd filed Critical Angang Steel Co Ltd
Priority to CN202210450176.1A priority Critical patent/CN114892080B/zh
Publication of CN114892080A publication Critical patent/CN114892080A/zh
Application granted granted Critical
Publication of CN114892080B publication Critical patent/CN114892080B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/46Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling metal immediately subsequent to continuous casting
    • B21B1/463Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling metal immediately subsequent to continuous casting in a continuous process, i.e. the cast not being cut before rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/04Making ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/004Dispersions; Precipitations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

一种720MPa级析出强化型热轧贝氏体钢及其生产方法,钢中化学成分按重量百分比计:C0.080%~0.120%、Si0.200%~0.230%、Mn1.30%~2.00%、Al0.020%~0.040%、Ti0.090%~0.200%、Mo0.15%~0.20%、Cu0.80%~1.50%、Ni0.30%~0.50%、稀土元素(La+Ce)0.020%~0.030%、Ca0.0010%~0.0040%、P≤0.010%、S≤0.005%、N≤0.003%,余量为Fe和杂质。钢板屈服强度≥720MPa、抗拉强度≥815MPa,纵向伸长率A50≥22%,扩孔率≥85%。

Description

一种720MPa级析出强化型热轧贝氏体钢及其生产方法
技术领域
本发明涉及金属材料领域,尤其涉及一种720MPa级析出强化型热轧贝氏体钢及其生产方法。主要适用于制造汽车结构用钢。
背景技术
汽车工业、钢铁工业、石化和建筑工业是国民经济四大支柱产业,汽车工业和钢铁工业规模往往是一个国家工业发展的标志,世界主要工业发达国家都将汽车工业作为国民经济的支柱产业。同时,汽车行业是钢铁产品使用大户,钢铁产品的研发和应用与汽车产业的发展趋势密切相关。当今社会,汽车行业向低成本、高强化、绿色环保、安全性高等方向发展,对于热轧高强钢的需求日益增大。
公布号为CN105463329A的中国专利申请公开了一种980MPa级全铁素体基热轧超高强钢及其制造方法,是利用普
通C-Mn成分体系设计添加一定量的钒、钛等微合金元素,通过碳、锰元素的固溶强化及钒、钛元素的细晶强化和析出强化来提高强度,该钢板强度达到980MPa级,但无扩孔率说明,不符合难成形汽车零件的要求。
公布号为CN101928881A的中国专利申请公开了抗拉强度为590MPa热轧高扩孔钢板及其制造工艺,该发明通过在C-Si-Mn成分系统中添加Nb、Ti元素,在热轧后采用分段冷却模式,制得的高扩孔钢抗拉强度在590MPa以上,扩孔率为75%以上。扩孔率性能良好,适宜于制造形状复杂的汽车底盘零部件。但该钢种的强度偏低,并且该专利热轧后采用两段式层流冷却,对各段冷速要求严格,而在实际生产中,热轧带钢带速变化大,无法精确控制各段冷速,钢板实际温度波动大,易导致钢卷通卷性能不均匀,头中尾性能波动大。
公告号为CN110229999A的中国发明专利公开了一种900MPa级纳米析出强化高韧性钢板及其制造方法,是利用普通C-Mn成分体系设计和添加了多种微合金元素,生产的热轧钢板后续需要调制热处理,生产成本高,并且无扩孔率说明。
公告号为CN103602895A的中国发明专利公开了一种抗拉强度780MPa级高扩孔钢板及其制造方法。该发明采用低碳含Si、Mn、Nb、Ti成分,通过控制钢质纯净度和采用细晶强化的方法,得到了均匀铁素体单相组织的高扩孔钢,其抗拉强度>780MPa,扩孔率≥50%。单一形态铁素体组织屈服强度、抗拉强度和扩孔率较低。
发明内容
本发明的目的在于提供一种720MPa级析出强化型热轧贝氏体钢及其生产方法,钢板屈服强度≥720MPa、抗拉强度≥815MPa,纵向伸长率A50≥22%,扩孔率≥85%,组织为贝氏体组织+纳米析出碳化物+含铜析出相,贝氏体组织体积百分比为100%,其中纳米析出碳化物+含铜析出相尺寸在10nm以下含量在80%以上。
为了达到上述目的,本发明采用以下技术方案实现:
一种720MPa级析出强化型热轧贝氏体钢,钢中化学成分按重量百分比计为:C0.080%~0.120%、Si 0.200%~0.230%、Mn 1.30%~2.00%、Al 0.020%~0.040%、Ti 0.090%~0.200%、Mo 0.15%~0.20%、Cu 0.80%~1.50%、Ni 0.30%~0.50%、稀土元素(La+Ce)0.020%~0.030%、Ca 0.0010%~0.0040%、并限制P≤0.010%、S≤0.005%、N≤0.003%,余量为Fe和不可避免的杂质。
C碳是钢中最主要的固溶强化元素,是钢材强度的保证。碳元素的提高,有利于增加钢的淬透性,本发明中碳的最优范围为0.080-0.120%。
Si硅是固溶强化元素,可以通过固溶强化作用提高钢板的强度。同时还具有提高钢板的淬透性作用,然而,钢中过高的硅会影响热轧表面质量,出现大量氧化铁皮。本发明中硅的含量为0.200-0.230%。
Mn锰在钢中可以形成置换固溶体,起到较强的固溶强化作用,使屈服强度和抗拉强度线性增加,该元素含量在一定的范围内增加钢强度的同时几乎不降低钢的塑性和韧性,同时也可以提高钢的淬透性,但锰含量过高,可使钢的碳当量增加,并且会在冶炼及热轧过程中恶化钢板组织均匀性,易于使组织中出现严重的带状组织缺陷。因此,选定锰含量为1.30-2.00%。
P磷可以提高α相的形成温度,扩大形成α相的温度范围。但磷含量过多,会使钢板的加工性恶化,为了得到较高的延伸率,因此将其上限定为0.010%。
S硫通过形成MnS等硫化物夹杂,成为裂纹的起点而使加工性能恶化,因此含量越少越好,将其上限定为0.005%。
Al是钢中常用的脱氧剂,在冶炼过程中起到脱氧定氮作用,并能有效提高钢板抗氧化性能,但铝过多会导致大量的铝系夹杂,钢中加入少量的Al,可以形成AlN析出,起到一定的细化晶粒作用,因此,本发明中将Al含量限定在0.020-0.040%。
Ti钛能够有效地延迟变形奥氏体的再结晶、阻止奥氏体晶粒长大、提高奥氏体再结晶温度,细化晶粒,同时改善钢的强度和韧性,而且,Ti是强碳、氮化物形成元素,能够与碳、氮结合形成稳定细小的碳、氮化物,起到显著的析出强化作用,因此本发明中Ti含量的最优范围在0.090-0.200%之间。
Mo钼是碳化物形成元素,能够提高钢板强度和韧性,Mo能够显著提高奥氏体稳定性,增加钢材淬透性,因此本发明的Mo含量的选择在0.15-0.20%。
Cu铜作为析出强化元素提高钢板的强度,铜元素还可以扩大奥氏体相区,提高钢的耐候性,提高钢的可焊性,也可以有效的提高钢的耐腐蚀能力,但Cu含量高时,引起热脆,恶化钢板表面性能,此外,在一定Cu含量下,有利于钢板的强度和热加工性,有效降低钢板的热轧边裂倾向,显著改善了钢板的表面质量。Cu还具有降低加工硬化的作用,提高钢板的塑性。因此本发明的铜含量的选择在0.80-1.50%
Ni镍元素对钢的焊接热影响区硬化性及韧性没有不良影响,同时能够提高钢的耐腐蚀性和淬透性,因此,在本发明钢种中将Ni含量选择在0.30-0.50%。
RE稀土具有强的脱氧、脱硫能力,形成的球状硫化物或硫氧化物取代了长条状硫化锰夹杂,可提高钢板的塑性和各向异性,稀土能够提高钢板的疲劳性能,改善钢板的焊接性能,稀土与钢中其它杂质元素具有强的亲和力,可降低钢中的硫、氧、磷、氢等元素含量,消除其有害作用。因此本发明将稀土(La+Ce)含量限定在0.020-0.030%。
Ca钙可改变钢种硫化物(MnS)的形态,防止形成长条形的MnS夹杂物,提高钢板的塑性、韧性和疲劳性能。因此本发明将Ca含量控制在0.0010-0.0040%。
N氮在本发明中属于杂质元素,其含量越小越好,本发明通过添加强碳化物或氮化物形成元素Ti,主要是获得细小弥散的纳米碳化物而不是氮化物,而且Ti与N的结合力大于Ti与C之间的结合力,为了减少TiN的形成量,因此本发明中N含量≤0.003%。
钢中最终组织为贝氏体组织+纳米析出碳化物+含铜析出相,贝氏体组织体积百分比为100%,其中纳米析出碳化物+含铜析出相尺寸在10nm以下含量在80%以上。
钢板屈服强度≥720MPa、抗拉强度≥815MPa,纵向伸长率A50≥22%,扩孔率≥85%。
钢板凸度控制精度为±45μm,平直度控制在20I以内,厚度控制精度为±45μm。
成品钢板厚度为2.5~6.5mm。
一种720MPa级析出强化型热轧贝氏体钢的生产方法,该方法是经过冶炼、热轧、冷却、卷取工艺后,对卷取后的钢板再次进行加热。
具体方法包括:
1)冶炼工艺:采用RH+LF工艺,严格控制H、O含量,H≤0.0002%,O≤0.0015%,在精炼工序进行钙处理,保证w(Ca)/w(Al)=0.09-0.14,连铸过程中投入电磁搅拌和轻压下技术,铸坯拉速≤1.1m/min;铸坯下线后进行堆垛缓冷。
2)加热工艺:将(160-240)mm厚×(1510~1910)mm宽的连铸板坯直接热送热装到步进式加热炉内加热,热装温度>800℃,预热段以850~1050℃的炉气温度进行高温快速预热,预热时间20~35min,加热1段、加热2段的温度分别控制在1230~1260℃、1300~1350℃,加热1段和加热2段的总时间20~25min,均热段的温度1310~1350℃,均热时间110~165min,炉膛压力在动态中始终控制在微正压状态,正压力值控制在4~16Pa;降低氧化烧损。适当的加热温度和合适的保温时间使板坯中合金元素完全固溶、板坯成分均匀,并起到控制原始奥氏体晶粒尺寸等作用。
3)轧制工艺:粗轧采用3+3模式的轧制工艺,(R1采用3道次轧制,R2采用3道次轧制)共6道次轧制和4道次除鳞工艺,第一架R1粗轧机在1、3道次除鳞,除鳞箱上下2排喷水集管同时开启,高压水出口压力为18~25MPa,第二架R2粗轧机在4、6道次除鳞,除鳞箱上下2排喷水集管同时开启,高压水出口压力为20~32MPa,粗轧出口温度为1180~1210℃,中间坯厚度50~65mm,宽度1510~1910mm,中间坯进热轧精轧机组前采用保温罩保温,减轻中间坯在延迟辊道上的温降和头尾及板宽方向的温差,精轧为n机架(5≤n≤8)连续轧制,精轧前高压水除鳞,精轧入口温度不高于1180℃,终轧温度为900-950℃,精轧采用大张力轧制,保证精轧机F(n-4)与精轧机F(n-3)机架间张力控制在7~20N/mm2,精轧机F(n-3)与精轧机F(n-2)机架间张力控制在8~22N/mm2,精轧机F(n-2)与精轧机F(n-1)机架间张力控制在6~20N/mm2,精轧机F(n-1)与精轧机F(n)机架间张力控制在6~20N/mm2,同时,F(n-1)、F(n)机架采用高水压20~32MPa除鳞,其余机架间冷却水全部开启;
4)冷却工艺:终轧后采用前段快速连续层流冷却,冷却速率≥135℃/s;主要目的是为了获得细小的贝氏体组织;
5)卷取温度:卷取温度为540-580℃;卷取温度过高导致钢板强度不足,过低会使延伸率降低;
6)钢板卷取后立即进入带加热的缓冷罩中,加热温度为600~620℃,保温60-120min,取出钢卷,空冷至室温,保证碳化物充分析出,从而获得最大的析出强化效果。
与现有技术相比,本发明的有益效果是:
1)Ti的加入能够有效地延迟变形奥氏体的再结晶、阻止奥氏体晶粒长大、提高奥氏体再结晶温度,细化晶粒,同时改善钢的强度和韧性,而且,Ti是强碳、氮化物形成元素,能够与碳、氮结合形成稳定细小的碳、氮化物,起到显著的析出强化作用;
2)Mo的加入能够提高钢板强度和韧性,Mo能够显著提高奥氏体稳定性,增加钢材淬透性;
3)Cu作为析出强化元素提高钢板的强度和耐蚀能力;
4)Ni的加入能够提高钢的耐腐蚀性和淬透性;
5)RE的加稀土具有强的脱氧、脱硫能力,形成的球状硫化物或硫氧化物取代了长条状硫化锰夹杂,可提高钢板的塑性和各向异性,稀土能够提高钢板的疲劳性能,改善钢板的焊接性能;
6)Ca的加入可改变钢种硫化物的形态,提高钢板的塑性、韧性和疲劳性能;
7)钢板卷取后立即进入带加热的缓冷罩中,加热温度为600~620℃,保温60-120min,取出钢卷,空冷至室温,能够保证碳化物充分析出,从而获得最大的析出强化效果;
8)本发明具有优异的力学性能,屈服强度≥720MPa、抗拉强度≥815MPa,纵向伸长率A50≥22%,扩孔率≥85%,组织为贝氏体组织+纳米析出碳化物+含铜析出相,贝氏体组织体积百分比为100%,其中纳米析出碳化物+含铜析出相尺寸在10nm以下含量在80%以上。
具体实施方式
通过实施例对本发明进行更详细的描述,这些实施例仅仅是对本发明最佳实施方式的描述,并不对本发明的范围有任何的限制。
本发明的加热、轧制及热处理的工艺过程如下:
将(160-240)mm厚×(1510~1910)mm宽的连铸板坯直接热送热装到步进式加热炉内加热,热装温度>800℃,预热段以850~1050℃的炉气温度进行高温快速预热,预热时间20~35min,加热1段、加热2段的温度分别控制在1230~1260℃、1300~1350℃,加热1段和加热2段的总时间20~25min,均热段的温度1310~1350℃,均热时间110~165min,粗轧采用3+3模式的轧制工艺,(R1采用3道次轧制,R2采用3道次轧制)共6道次轧制和4道次除鳞工艺,第一架R1粗轧机在1、3道次除鳞,除鳞箱上下2排喷水集管同时开启,高压水出口压力为18~25MPa,第二架R2粗轧机在4、6道次除鳞,除鳞箱上下2排喷水集管同时开启,高压水出口压力为20~32MPa,粗轧出口温度为1180~1210℃,中间坯厚度50~65mm,宽度1510~1910mm,中间坯进热轧精轧机组前采用保温罩保温,减轻中间坯在延迟辊道上的温降和头尾及板宽方向的温差,精轧为n机架(5≤n≤8)连续轧制,精轧前高压水除鳞,精轧入口温度不高于1180℃,终轧温度为900-950℃,精轧采用大张力轧制,保证精轧机F(n-4)与精轧机F(n-3)机架间张力控制在7~20N/mm2,精轧机F(n-3)与精轧机F(n-2)机架间张力控制在8~22N/mm2,精轧机F(n-2)与精轧机F(n-1)机架间张力控制在6~20N/mm2,精轧机F(n-1)与精轧机F(n)机架间张力控制在6~20N/mm2,同时,F(n-1)、F(n)机架采用高水压20~32MPa除鳞,其余机架间冷却水全部开启;钢板凸度控制精度为±45μm,平直度控制在20I以内,厚度控制精度为±45μm,成品厚度为2.5~6.5mm,终轧后采用前段快速连续层流冷却,冷却速率≥135℃/s,卷取温度为540-580℃,钢板卷取后立即进入带加热的缓冷罩中,加热温度为600~620℃,保温60-120min,取出钢卷,空冷至室温。
本发明的6个实施例的具体成分见表1,温度制度见表2,精轧张力控制参数见表3,钢板的性能和组织体积百分比见表4。
表1本发明实施例的化学成分(wt,%)
Figure BDA0003618259160000061
Figure BDA0003618259160000071
表2本发明实施例的热轧温度制度
Figure BDA0003618259160000072
表3本发明实施例精轧张力控制参数(n取5)
Figure BDA0003618259160000073
Figure BDA0003618259160000081
表4本发明实施例的力学性能参数和组织体积百分比
Figure BDA0003618259160000082

Claims (8)

1.一种720MPa级析出强化型热轧贝氏体钢,其特征在于,钢中化学成分按重量百分比计为:C 0.080%~0.120%、Si 0.200%~0.230%、Mn 1.30%~2.00%、Al 0.020%~0.040%、Ti 0.090%~0.200%、Mo 0.15%~0.20%、Cu 0.80%~1.50%、Ni 0.30%~0.50%、稀土元素La+Ce 0.020%~0.030%、Ca 0.0010%~0.0040%、并限制P≤0.010%、S≤0.005%、N≤0.003%,余量为Fe和不可避免的杂质。
2.根据权利要求1所述的一种720MPa级析出强化型热轧贝氏体钢,其特征在于,钢中最终组织为贝氏体组织+纳米析出碳化物+含铜析出相,贝氏体组织体积百分比为100%,其中纳米析出碳化物+含铜析出相尺寸在10nm以下含量在80%以上。
3.根据权利要求1所述的一种720MPa级析出强化型热轧贝氏体钢,其特征在于,钢板屈服强度≥720MPa、抗拉强度≥815MPa,纵向伸长率A50≥22%,扩孔率≥85%。
4.根据权利要求1所述的一种720MPa级析出强化型热轧贝氏体钢,其特征在于,钢板凸度控制精度为±45μm,平直度控制在20I以内,厚度控制精度为±45μm。
5.根据权利要求1所述的一种720MPa级析出强化型热轧贝氏体钢,其特征在于,成品钢板厚度为2.5~6.5mm。
6.一种如权利要求1-5其中任意一项所述的720MPa级析出强化型热轧贝氏体钢的生产方法,其特征在于,该方法是经过冶炼、热轧、冷却、卷曲工艺后,对卷曲后的钢板再次进行加热。
7.根据权利要求6所述的一种720MPa级析出强化型热轧贝氏体钢的生产方法,其特征在于,具体方法包括:
1)冶炼工艺:采用RH+LF工艺,控制H、O含量,H≤0.0002%,O≤0.0015%,在精炼工序进行钙处理,保证w(Ca)/w(Al)=0.09~0.14,铸坯拉速≤1.1m/min;
2)加热工艺:将连铸板坯热送热装到步进式加热炉内加热,热装温度>800℃,预热段温度850~1050℃,预热时间20~35min,加热1段、加热2段的温度分别控制在1230~1260℃、1300~1350℃,加热1段和加热2段的总时间20~25min,均热段的温度1310~1350℃,均热时间110~165min;
3)轧制工艺:中间坯进热轧精轧机组前采用保温罩保温,精轧为n机架连续轧制,5≤n≤8,精轧前除鳞,精轧入口温度不高于1180℃,终轧温度为900~950℃,保证精轧机F(n-4)与精轧机F(n-3)机架间张力控制在7~20N/mm2,精轧机F(n-3)与精轧机F(n-2)机架间张力控制在8~22N/mm2,精轧机F(n-2)与精轧机F(n-1)机架间张力控制在6~20N/mm2,精轧机F(n-1)与精轧机F(n)机架间张力控制在6~20N/mm2,同时,F(n-1)、F(n)机架采用高水压20~32MPa除鳞;
4)冷却工艺:终轧后采用前段快速连续层流冷却,冷却速率≥135℃/s;
5)卷取温度:卷取温度为540~580℃;
6)钢板卷取后进入带加热的缓冷罩中,加热温度为600~620℃,保温60~120min,取出钢卷,空冷至室温。
8.根据权利要求7所述的一种720MPa级析出强化型热轧贝氏体钢的生产方法,其特征在于,粗轧采用3+3模式的轧制工艺,共6道次轧制和4道次除鳞工艺,第一架R1粗轧机在1、3道次除鳞,高压水出口压力为18~25MPa,第二架R2粗轧机在4、6道次除鳞,高压水出口压力为20~32MPa,粗轧出口温度为1180~1210℃。
CN202210450176.1A 2022-04-27 2022-04-27 一种720MPa级析出强化型热轧贝氏体钢及其生产方法 Active CN114892080B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210450176.1A CN114892080B (zh) 2022-04-27 2022-04-27 一种720MPa级析出强化型热轧贝氏体钢及其生产方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210450176.1A CN114892080B (zh) 2022-04-27 2022-04-27 一种720MPa级析出强化型热轧贝氏体钢及其生产方法

Publications (2)

Publication Number Publication Date
CN114892080A true CN114892080A (zh) 2022-08-12
CN114892080B CN114892080B (zh) 2023-06-20

Family

ID=82718754

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210450176.1A Active CN114892080B (zh) 2022-04-27 2022-04-27 一种720MPa级析出强化型热轧贝氏体钢及其生产方法

Country Status (1)

Country Link
CN (1) CN114892080B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115287533A (zh) * 2022-07-14 2022-11-04 莱芜钢铁集团银山型钢有限公司 一种汽车用热轧高强钢及制备方法
CN115404408A (zh) * 2022-08-30 2022-11-29 鞍钢股份有限公司 一种成形性能优良的高屈强比冷轧钢板及其制造方法

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998000569A1 (fr) * 1996-06-28 1998-01-08 Nippon Steel Corporation Acier ayant une excellente resistance de surface laterale scc pour canalisations
JP2001200316A (ja) * 2000-01-17 2001-07-24 Nkk Corp 高炭素熱延鋼板の製造方法
JP2004217980A (ja) * 2003-01-14 2004-08-05 Jfe Steel Kk 低降伏比高強度高靱性鋼板及びその製造方法
CN102409235A (zh) * 2010-09-21 2012-04-11 鞍钢股份有限公司 高强度冷轧相变诱导塑性钢板及其制备方法
CN103302255A (zh) * 2012-03-14 2013-09-18 宝山钢铁股份有限公司 一种薄带连铸700MPa级高强耐大气腐蚀钢制造方法
CN103526111A (zh) * 2013-10-17 2014-01-22 马鞍山市安工大工业技术研究院有限公司 屈服强度900MPa级热轧板带钢及其制备方法
CN105821301A (zh) * 2016-04-21 2016-08-03 河北钢铁股份有限公司邯郸分公司 一种800MPa级热轧高强度扩孔钢及其生产方法
CN106811684A (zh) * 2015-12-01 2017-06-09 上海梅山钢铁股份有限公司 屈服强度750Mpa级集装箱用热轧钢板及其制造方法
CN111979474A (zh) * 2019-05-22 2020-11-24 武汉科技大学 一种热连轧细晶贝氏体钢板及其制备方法
CN112410668A (zh) * 2020-11-11 2021-02-26 鞍钢股份有限公司 一种780MPa级汽车结构用钢及生产方法
WO2022022047A1 (zh) * 2020-07-30 2022-02-03 江阴兴澄特种钢铁有限公司 一种低温环境下使用的低屈强比粒状贝氏体高强钢板及其制造方法
WO2022042731A1 (zh) * 2020-08-31 2022-03-03 宝山钢铁股份有限公司 一种980MPa级贝氏体高扩孔钢及其制造方法
WO2022042622A1 (zh) * 2020-08-27 2022-03-03 宝山钢铁股份有限公司 一种具有超高屈强比的吉帕级贝氏体钢及其制造方法

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998000569A1 (fr) * 1996-06-28 1998-01-08 Nippon Steel Corporation Acier ayant une excellente resistance de surface laterale scc pour canalisations
JP2001200316A (ja) * 2000-01-17 2001-07-24 Nkk Corp 高炭素熱延鋼板の製造方法
JP2004217980A (ja) * 2003-01-14 2004-08-05 Jfe Steel Kk 低降伏比高強度高靱性鋼板及びその製造方法
CN102409235A (zh) * 2010-09-21 2012-04-11 鞍钢股份有限公司 高强度冷轧相变诱导塑性钢板及其制备方法
CN103302255A (zh) * 2012-03-14 2013-09-18 宝山钢铁股份有限公司 一种薄带连铸700MPa级高强耐大气腐蚀钢制造方法
CN103526111A (zh) * 2013-10-17 2014-01-22 马鞍山市安工大工业技术研究院有限公司 屈服强度900MPa级热轧板带钢及其制备方法
CN106811684A (zh) * 2015-12-01 2017-06-09 上海梅山钢铁股份有限公司 屈服强度750Mpa级集装箱用热轧钢板及其制造方法
CN105821301A (zh) * 2016-04-21 2016-08-03 河北钢铁股份有限公司邯郸分公司 一种800MPa级热轧高强度扩孔钢及其生产方法
CN111979474A (zh) * 2019-05-22 2020-11-24 武汉科技大学 一种热连轧细晶贝氏体钢板及其制备方法
WO2022022047A1 (zh) * 2020-07-30 2022-02-03 江阴兴澄特种钢铁有限公司 一种低温环境下使用的低屈强比粒状贝氏体高强钢板及其制造方法
WO2022042622A1 (zh) * 2020-08-27 2022-03-03 宝山钢铁股份有限公司 一种具有超高屈强比的吉帕级贝氏体钢及其制造方法
WO2022042731A1 (zh) * 2020-08-31 2022-03-03 宝山钢铁股份有限公司 一种980MPa级贝氏体高扩孔钢及其制造方法
CN112410668A (zh) * 2020-11-11 2021-02-26 鞍钢股份有限公司 一种780MPa级汽车结构用钢及生产方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115287533A (zh) * 2022-07-14 2022-11-04 莱芜钢铁集团银山型钢有限公司 一种汽车用热轧高强钢及制备方法
CN115404408A (zh) * 2022-08-30 2022-11-29 鞍钢股份有限公司 一种成形性能优良的高屈强比冷轧钢板及其制造方法

Also Published As

Publication number Publication date
CN114892080B (zh) 2023-06-20

Similar Documents

Publication Publication Date Title
CN110484827B (zh) 一种抗拉强度600MPa级低屈强比热轧酸洗钢板
CN109536846B (zh) 屈服强度700MPa级高韧性热轧钢板及其制造方法
CN104694822A (zh) 一种屈服强度700MPa级高强度热轧钢板及其制造方法
CN111910123B (zh) 一种具有优良磷化性能的冷轧连退超高强钢及其制备方法
CN108368590B (zh) 化学转化处理性及弯曲加工性优异的超高强度钢板及其制造方法
CN109536847B (zh) 屈服强度390MPa级焊管用热轧钢板及其制造方法
CN111500924A (zh) 一种高强车轮钢及其生产方法
CN114892080B (zh) 一种720MPa级析出强化型热轧贝氏体钢及其生产方法
JP4644075B2 (ja) 穴拡げ性に優れた高強度薄鋼板およびその製造方法
CN112226673A (zh) 一种抗拉强度650MPa级热轧钢板及其制造方法
CN110284066B (zh) 一种薄规格低屈强比管线钢及其制造方法
CN102719736B (zh) 一种屈强比≥0.9的超细晶粒滑道用钢及其生产方法
US20220341010A1 (en) Complex-phase steel having high hole expansibility and manufacturing method therefor
CN113025885A (zh) 一种具有良好抗hic性能的低屈强比高强管线钢板及其制造方法
CN110066966B (zh) 一种低内应力含钛高强钢及生产方法
CN115449709B (zh) 一种厚规格高强韧性l485m管线钢及其生产方法
CN103725956A (zh) 一种高强度轻量化自卸车车厢用钢及其生产方法
CN114908289B (zh) 一种650MPa级析出强化型热轧贝氏体钢及其生产方法
CN114908290B (zh) 一种520MPa级析出强化型热轧贝氏体钢及其生产方法
CN114908291B (zh) 一种850MPa级析出强化型热轧贝氏体钢及其生产方法
CN114836696A (zh) 一种热冲压用390MPa级汽车桥壳用钢及其生产方法
CN115852246B (zh) 一种焊接气瓶用含硼热轧钢板及其制造方法
CN114752724B (zh) 一种低内应力焊接性能优良的750MPa级桥梁钢及其制备方法
WO2024002043A1 (zh) 一种抗拉强度800MPa级热轧复相钢及其制造方法
CN116904853A (zh) 焊接性能优良的780MPa级连退用增强塑性双相钢及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant