WO2014114158A1 - 一种高强度钢板及其制造方法 - Google Patents

一种高强度钢板及其制造方法 Download PDF

Info

Publication number
WO2014114158A1
WO2014114158A1 PCT/CN2013/090268 CN2013090268W WO2014114158A1 WO 2014114158 A1 WO2014114158 A1 WO 2014114158A1 CN 2013090268 W CN2013090268 W CN 2013090268W WO 2014114158 A1 WO2014114158 A1 WO 2014114158A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel sheet
strength steel
rolling
strength
sheet according
Prior art date
Application number
PCT/CN2013/090268
Other languages
English (en)
French (fr)
Inventor
赵四新
姚连登
Original Assignee
宝山钢铁股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宝山钢铁股份有限公司 filed Critical 宝山钢铁股份有限公司
Priority to JP2015552984A priority Critical patent/JP6426621B2/ja
Priority to US14/762,216 priority patent/US11268176B2/en
Priority to EP13872709.4A priority patent/EP2949773B1/en
Priority to RU2015136605A priority patent/RU2711698C2/ru
Priority to KR1020157022770A priority patent/KR102229530B1/ko
Priority to AU2013375523A priority patent/AU2013375523B2/en
Publication of WO2014114158A1 publication Critical patent/WO2014114158A1/zh
Priority to ZA2015/05249A priority patent/ZA201505249B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/021Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips involving a particular fabrication or treatment of ingot or slab
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0421Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the working steps
    • C21D8/0426Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0447Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment
    • C21D8/0463Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron

Definitions

  • the invention relates to the field of metallurgy, in particular to a steel plate and a manufacturing method thereof. Background technique
  • High-strength steel sheets are commonly used in the manufacture of structural parts for construction machinery, mining machinery and port machinery.
  • the improvement of social productivity requires the improvement of the efficiency of mechanical equipment, the reduction of energy consumption and the extension of service life.
  • the high strength and toughening characteristics of steel sheets for mechanical structural parts are the key means to achieve mechanical equipment to enhance weight reduction.
  • the contribution of various factors to strength can be expressed by the following formula:
  • Fine grain strengthening generally refers to the refinement of ferrite grains to increase the strength.
  • the refined bainite sub-sheet layer and sheet size have also been used as means for fine grain strengthening.
  • Precipitation strengthening is carried out by a suitable heat treatment process such that strong carbide forming elements such as Cr, Mo and V and C or N form finely dispersed carbonitrides, which hinder dislocations and grain boundary motion and increase the strength of the steel sheet.
  • Solid solution strengthening is divided into two cases: One is that alloying elements such as Si, Mn and Ni are dissolved in the FCC structure instead of Fe atoms, hindering the movement of dislocations to increase the strength; the other is the interstitial atom of N In the gap between solid solution and lattice tetrahedron or octahedron, the lattice constant is changed to achieve solid solution strengthening. Among them, the solid solution strengthening effect of interstitial atoms is more effective than the solid solution strengthening effect of replacement atoms, but it will lead to the reduction of low temperature impact energy. .
  • Dislocation strengthening is the introduction of a large number of dislocations in the grain, which increases the intensity by increasing the energy of dislocations and the energy dissipated in motion.
  • the composite action of the above four strengthening means is generally used to increase the strength of the steel sheet, to ensure the low-temperature impact of the steel sheet, and at the same time to take into account the welding performance of the steel sheet.
  • High-strength and toughness steel sheets are usually produced by a combination of quenching and tempering (tempering + tempering) and TMCP (Thermal-mechanical Controlling Process).
  • the inductive index Pcm value is also relatively high.
  • TMCP technology combines specific chemical compositions to deform within a specified temperature range. After rolling to a specified thickness, a phase change occurs in a specific temperature range by controlling the cooling rate and the final cooling temperature to obtain a structure with good performance.
  • using TMCP technology combined with optimized alloy composition combined with the strengthening effect of fine grain strengthening and dislocation strengthening, a steel plate with good toughness matching and low carbon equivalent can be obtained.
  • Welding performance is one of the important performance properties of steel for mechanical structures.
  • the means to improve the weldability is to reduce the carbon equivalent CEV and the weld crack sensitivity index Pcm of the steel alloy composition.
  • the carbon equivalent of the steel plate can be calculated as follows:
  • the international publication number is WO1999005335, and the publication date is February 4, 1999.
  • the patent document entitled "An ultra-high-strength ultra-low temperature toughness steel with good weldability" discloses a TMCP process based on two temperature stages.
  • the low-alloy high-strength steel produced has a tensile strength of 930 MPa, and the impact energy at -20 °C is 120 J.
  • the chemical composition (wt.%) is: C: 0.05-0.10%, Mn: 1.7-2.1%, Ni: 0.2-1.0%, Mo: 0.25-0.6%, Nb: 0.01-0 ⁇ 10%, Ti: 0.005-0.03%, P ⁇ 0.015%, S ⁇ 0.003%.
  • the publication number is CN101906594A, and the publication date is December 8, 2010, the Chinese patent document entitled "A 900MPa grade yield strength quenched and tempered steel sheet and a manufacturing method thereof", relating to a quenched and tempered steel sheet with high yield strength and Manufacturing method, its chemical composition (wt.%) is: C: 0.15-0.25%, Si: 0.15-0.35%, Mn: 0.75-1.60%, P: ⁇ 0.020%, S: ⁇ 0.020%, Ni: 0.08-0.30%, Cu: 0.20-0.60%, Cr: 0.30-1.00 %, Mo: 0.10-0.30%, Als: 0.015-0.045%, B: 0.001-0.003%, the balance being Fe and unavoidable impurities.
  • the obtained steel sheet was -40 ° CAkv ⁇ 21 J (longitudinal), and the carbon equivalent was less than 0.60%.
  • the patent of the present invention contains precious alloying elements such as Ni and Cu. Summary of the invention
  • An object of the present invention is to provide a high-strength steel sheet which has high strength, high toughness, and good weldability, and can satisfy the two-way requirement of the mechanical equipment industry for high strength, low toughness and high quality welding performance of steel sheets.
  • the present invention provides a high strength steel sheet having a chemical element mass percentage of:
  • the balance is Fe and other unavoidable impurities.
  • the microstructure of the high-strength steel sheet according to the present invention is ultra-fine bainite lath and martensite.
  • Welding performance is one of the important performance properties of steel for mechanical structure, and means for improving welding performance This includes reducing the carbon equivalent CEV of the steel alloy composition. In order to obtain good weldability of the steel sheet, it is necessary to reduce the carbon equivalent CEV of the alloy composition as much as possible.
  • Adding alloying elements to steel can increase the strength of the steel sheet, but it also increases the carbon equivalent and weld crack sensitivity index, which deteriorates the weldability of the steel sheet.
  • the carbon content is low, the steel sheet will form a lower strength ferrite structure in the TMCP process, which will lower the yield strength and tensile strength of the steel sheet.
  • the C content of the present invention should be controlled to be 0.070-0.115%.
  • Si does not form carbides in steel, exists in a solid solution form in the Fee or Bcc lattice, and improves the strength of the steel sheet by solid solution strengthening. Since the solubility of Si in cementite is small, when the Si content is increased to a certain extent, a mixed structure of retained austenite and martensite is formed. At the same time, the increase in Si content not only increases the weld crack sensitivity index of the steel sheet, but also increases the hot crack tendency of the steel sheet.
  • the content of Si in the present invention is controlled to be 0.20 to 0.50% by comprehensive solid solution strengthening and influence on weldability.
  • Mn is an element formed of weak carbides and is usually present in a steel sheet by solid solution formation.
  • Steel plate adopting TMCP technology Mn mainly plays the role of suppressing the diffusion control interface; refining ferrite or bainite lath, improving the mechanical properties of the steel plate by fine grain strengthening and solid solution strengthening. If the Mn content is too high, the crack tendency of the steel sheet slab is increased, and cracks are easily formed on the slab.
  • the Mn content to be added in the present invention needs to be designed to be 1.80 to 2.30%.
  • Cr increases the hardenability of the steel sheet and forms a structure with high hardness and strength.
  • the increase in Cr content has no significant effect on the strength of the steel sheet with a yield strength of 690 MPa or higher.
  • the Cr content in the present invention is controlled to be not more than 0.35%.
  • Mo is a strong carbide forming element and can form MC type carbide with C.
  • Mo plays a major role in suppressing the diffusion phase transition and refining the bainite structure.
  • Mo and C form fine carbides, which have the effect of precipitation strengthening, improve the tempering stability of the steel sheet, and expand the tempering platform.
  • too high a Mo content leads to an increase in the cost of the steel sheet, which lowers the market competitiveness, and also leads to an increase in carbon equivalent and a decrease in the weldability of the steel sheet. Therefore in the present invention
  • the Mo content is controlled to be 0.10-0.40%.
  • Nb plays the following role in the steel of TMCP process: Nb dissolved in austenite after austenitizing in heating furnace can inhibit the recrystallization grain boundary motion, increase recrystallization temperature, and make steel plate When rolling at a lower temperature, a large number of dislocations can be accumulated to achieve the purpose of finally refining the crystal grains; the Nb element in the tempering process combines with C and N to form MC type carbonitride. However, if the Nb content is too high, coarse carbonitrides are formed in the steel, which affects the mechanical properties of the steel sheet. Therefore, in order to control the microstructure and mechanical properties of the steel sheet, the content of Nb added in the present invention is controlled to be from 0.03 to 0.06%.
  • V forms C-type carbide with C and ⁇ in steel, which can increase the yield strength of the steel plate during tempering.
  • the V content added in the present invention is 0.03-0.06% to ensure a high yield strength of the steel sheet after tempering.
  • Ti combines with N, 0 and C to form compounds at different temperatures.
  • the TiN formed in the molten steel refines the austenite grains.
  • the residual Ti in austenite forms TiC with C, and the refined TiC contributes to the low temperature impact toughness of the steel sheet.
  • the Ti content in the present invention is controlled to be 0.002-0.04%.
  • A1 is added to the steel as a deoxidizer.
  • A1 combines with 0 and N in the molten steel to form oxides and nitrides.
  • the oxides and nitrides of A1 inhibit the grain boundary motion and refine the role of austenite grains.
  • the content of A1 in the present invention is designed to be 0.01 to 0.08%.
  • B is dissolved in steel as a gap atom, which can reduce the energy of the grain boundary and make the new phase difficult to nucleate at the grain boundary, so that the steel plate forms a low temperature structure during cooling and increases the strength of the steel plate.
  • an increase in the B content leads to a significant decrease in the grain boundary energy, thereby increasing the tendency of the steel plate to crack and increasing the weld crack sensitivity index Pcm. Therefore, in the present invention, the amount of B added is 0.0006-0.0020%.
  • N Alloying elements such as Nb, Ti, and V in steel form nitrides or carbonitrides with N and C in steel.
  • part of the nitride dissolves, and the undissolved nitride hinders the movement of the austenite grain boundary and achieves the effect of refining the austenite grains.
  • the N element content is too high, it will form a coarse TiN with Ti, which deteriorates the mechanical properties of the steel sheet because the N atom will be in the steel.
  • the defects are enriched, forming pores and loose. Therefore, the N content in the present invention is controlled to be not more than 0.0060%.
  • 0 Alloying elements of steel grades Al, Si and Ti and 0 form oxides. During the heating austenitizing process, the oxide of A1 acts to inhibit the growth of austenite and refine the grains. However, steel having a high content of 0 has a tendency to cause hot cracking during welding. Therefore, the 0 content in the present invention is controlled to be not more than 0.0040%.
  • Ca is added to the steel to form CaS with the S element, which acts as a spheroidized sulfide and improves the low temperature impact edge of the steel sheet.
  • the Ca content in the present invention is controlled to be not more than 0.0045%.
  • the present invention also provides a method of manufacturing the high-strength steel sheet, which in turn includes the steps of: smelting, casting, heating, rolling, cooling, and tempering.
  • the slab is heated to 1040 to 1250 ° C in the heating step.
  • the steel sheet undergoes austenitization, austenite grain growth and carbonitride dissolution.
  • the heating temperature is lower, the austenite grains are finer, but the carbonitrides are not sufficiently dissolved, and the alloy elements Nb, Mo, etc. do not play a corresponding role in the rolling and cooling processes. If the heating temperature is too high, the austenite grains will be coarsened, and the carbonitrides will be sufficiently dissolved, which may cause abnormal growth of austenite grains.
  • the austenite grain growth and the carbonitride dissolution process in the heating process are comprehensively considered. Therefore, the present invention heats the slab to 1040 to 1250 °C.
  • the rolling crucible is rolled in two stages, wherein the first stage of the rolling temperature is 1010 to 1240 ° C, and the first stage is subjected to multi-pass rolling, each lane
  • the secondary deformation rate ranges from 8 to 30%
  • the second stage has an open rolling temperature of 750 to 870 ° C
  • the final rolling temperature is 740 to 850 ° C.
  • the second stage performs multi-pass rolling, and each pass deformation rate range It is 5 ⁇ 30%.
  • the first stage rolling is carried out.
  • austenite recrystallization occurs and the austenite grains are refined.
  • the rolling temperature and the ballistic deformation rate of the first stage need to be met. The requirements of the manufacturing method described in the present invention.
  • the steel is cooled to 750 ⁇ 870 °C for the second stage rolling.
  • a large number of dislocations are accumulated in the austenite, which is beneficial to the subsequent cooling process.
  • the refined microstructure is formed to improve the toughness of the steel sheet.
  • the rolled steel sheet in the cooling step, is water-cooled to ⁇ 450 ° C at a rate of 15 to 50 ° C/s, and then air-cooled to room temperature.
  • the cooling temperature of the steel sheet is set to be not more than 450 ° C, and the cooling rate and the mode are water cooling of 15 to 50 ° C / s.
  • the tempering temperature is 450 to 650 °C.
  • the high-strength steel sheet is rolled and cooled to form a high-strength microstructure having refined bainite and martensite. If the tempering temperature is too high, it will cause tempering to soften and reduce the strength of the steel sheet. If the tempering temperature is too low, the internal stress in the steel sheet is large, and fine dispersed precipitates are not formed, and the low-temperature impact toughness of the steel sheet is lowered.
  • the high-strength structure has a large phase transformation stress. In order to eliminate the phase transformation stress to obtain a steel sheet having uniform mechanical properties, the tempering temperature in the manufacturing method of the present invention is controlled to be between 450 and 650 °C.
  • the method for producing a high-strength steel sheet according to the present invention further includes performing air cooling after tempering.
  • the composition design of certain chemical elements can have an associated influence on the manufacturing process, wherein the optimized ratio of the alloying element Cr and other elements is subjected to the above rolling and cooling processes, thereby ensuring the strength of the steel sheet and avoiding The excessive carbon equivalent affects the welding performance of the steel sheet; in addition, due to the low carbon content in the patent of the present invention, combined with the optimized Mn and Mo contents, the rolling is controlled at a lower temperature and cooled to 450 at a relatively fast cooling rate.
  • the refined bainite and martensite microstructure can be obtained, thereby improving the toughness of the steel sheet; in addition, the proper control of the alloying element B enables the steel sheet to be obtained in a wide range of cooling rates. Microstructure of high strength and toughness mechanical properties.
  • the present invention employs a reasonable composition design and a low carbon equivalent, combined with an optimized heating, rolling, cooling and tempering process. Compared with the prior art, the high strength steel sheet of the present invention has the following advantages:
  • the method for manufacturing the high-strength steel sheet according to the present invention does not require any additional adjustment
  • the controlled rolling and controlled cooling technology combined with reasonable composition design and improved manufacturing steps, can achieve high strength microstructure and good welding performance, thus simplifying the manufacturing process and manufacturing process. It is easy to implement and can be widely used in stable production on medium and thick steel production lines.
  • Fig. 1 shows the microstructure of the high-strength steel sheet of Example 4 under an optical microscope. detailed description
  • the high strength steel sheet of the present invention is produced in accordance with the following procedure:
  • Heating temperature is 1040 ⁇ 1250 °C;
  • Rolling Rolling in two stages, wherein the first stage of rolling temperature is 1010 ⁇ 1240 °C, the first stage is multi-pass rolling, and the deformation rate of each rolling pass ranges from 8 to 30%. After the first stage of rolling, cooling can be carried out. The cooling can be carried out by air cooling on the roller table or by water spray or mist cooling of the spray device, or a combination of the two.
  • the second stage of the rolling temperature is 750 ⁇ 870. °C, the finishing temperature is 740 ⁇ 850 °C, the second stage is multi-pass rolling, the deformation rate of each rolling pass ranges from 5 to 30%;
  • the rolled steel plate is water-cooled to ⁇ 450 °C at a speed of 15 ⁇ 50 °C/s, then air-cooled to room temperature, and the microstructure of the steel plate is ultra-fine bainite lath and martensite. ;
  • Tempering The tempering temperature is 450 ⁇ 650°C. After tempering, air cooling is performed. The air cooling can be cooled by stacking or cooling.
  • Fig. 1 shows the microstructure of the high-strength steel sheet of Example 4 of the present invention under an optical microscope.
  • Table 2 shows the specific process parameters of Examples 1-6. Among them, the specific process parameters of the respective examples in Table 2 correspond to the corresponding Examples 1-6 in Table 1. Table 2 Specific process parameters in the manufacturing process of Examples 1-6
  • the high-strength steel sheet of the present invention has a low carbon equivalent and a low weld crack sensitivity index, CEV ⁇ 0.56%, Pcm ⁇ 0.27%, and a hardenability coefficient 3.4 ⁇ Qm ⁇ 4.2.
  • Lower carbon equivalent CEV and weld crack sensitivity index Pcm are good for good welding of steel plates Performance.
  • the high-strength steel plate has a yield strength of >900 MPa, a tensile strength of >100 MPa, an elongation of 12%, and an impact energy Akv (-40 °C) of >80 J, so the steel sheet has good welding performance and High mechanical properties, can meet the requirements of high strength, low temperature toughness and easy welding of steel plates for mechanical structures, and can be widely applied to structural parts manufacturing of engineering machinery, mining machinery and port machinery.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

本发明公开了一种高强度钢板,其各化学元素质量百分含量为:C:0.070~0.115%,Si:0.20~0.50%,Mn:1.80~2.30%,Cr:0~0.35%,Mo:0.10~0.40%,Nb:0.03~0.06%,V:0.03~0.06%,Ti:0.002~0.04%,Al:0.01~0.08%,B:0.0006~0.0020%,N≤0.0060%,O≤0.0040%,Ca:0~0.0045%,余量为Fe和其他不可避免杂质。本发明还公开了该高强度钢板的制造方法。

Description

一种高强度钢板及其制造方法
技术领域
本发明涉及冶金领域, 尤其涉及一种钢板及其制造方法。 背景技术
高强韧钢板通常广泛地制造用于工程机械、 矿山机械和港口机械的结构 件。社会生产力的提高需要机械装备的效率提高、能耗降低和使用寿命延长。 机械结构件用钢板的高强韧化特性是实现机械装备增强减重的关键手段。 在 高强度机械结构用钢板中, 各种因素对强度的贡献可以用下式表示:
a = af + ap + asl + ad, 式中 为细晶强化, 为析出强化, 为固溶强化, 为位错强化。 细晶 强化通常指细化铁素体晶粒提高强度, 近年来, 细化贝氏体亚片层和片层尺 寸也作为细晶强化的手段。 析出强化是通过合适的热处理工艺, 使得强碳化 物形成元素如 Cr、 Mo和 V和 C或 N形成细小弥散的碳氮化物析出, 阻碍位 错和晶界的运动提高钢板的强度。 固溶强化分为两种情况: 一种是合金元素 如 Si、 Mn和 Ni等置换原子固溶于 FCC结构中替代 Fe原子, 阻碍位错运动 从而提高强度; 另一种是 、 N等间隙原子固溶与晶格的四面体或八面体间 隙中, 改变晶格常数而实现固溶强化; 其中, 间隙原子固溶强化效果较置换 原子固溶强化效果明显, 但是其会导致低温冲击功的降低。 位错强化是在晶 粒中引入大量的位错,通过提高位错开动能量和运动中耗散的能量提高强度。 为了获得具有良好综合机械性能和使用性能的高强度钢板, 通常采用上述四 种强化手段的复合作用, 提高钢板的强度, 保证钢板的低温冲击, 同时兼顾 钢板的焊接性能。
高强韧钢板通常采用调质 (淬火 +回火) 和 TMCP (Thermal-mechanical Controlling Process, 热机械控制工艺)结合的工艺生产。采用淬火 +回火工艺 生产的屈服强度 890MPa及以上级别的钢板, 通过获得回火马氏体或回火索 氏体组织, 钢板中碳含量通常较高 (≥0.14%), 且碳当量 CEV和焊接裂纹敏 感性指数 Pcm值也相对较高。 TMCP技术通过结合特定的化学成分, 在指定 的温度范围内发生变形,轧制到指定厚度后,通过控制冷却速度和终冷温度, 在特定的温度区间发生相变, 获得具有良好性能的组织。 同时, 采用 TMCP 技术结合优化的合金成分, 综合利用细晶强化和位错强化等强化效果, 可获 得具有良好强韧性匹配和较低碳当量的钢板。
焊接性能是机械结构用钢的重要使用性能之一。 提高焊接性能的手段是 降低钢板合金成分的碳当量 CEV和焊接裂纹敏感性指数 Pcm值。 钢板的碳 当量可按下式进行计算:
CEV=C+Mn/6+ (Cr+Mo+V) 15+ (Ni+Cu) /15 ( 1 ) 且钢板的焊接裂纹敏感性指数 Pcm值可按下式予以确定:
Pcm=C+Si/30+Ni/60+(Mn+Cr+Cu)/20+Mo/15+V/10+5B (2) 根据中华人民共和国黑色冶金行业标准 YB/T 4137— 2005规定, 屈服强 度为 800MPa, 牌号为 Q800CF 的钢种, Pcm值需低于 0.28%。 根据欧标 10025-6:2004和国标 GB/T16270: 2009的规定, 屈服强度 890MPa钢板的碳 当量 CEV限定为≤0.72%。
钢板的碳当量和焊接裂纹敏感性指数较高时, 可添加较多的合金元素, 比较容易获得具有良好机械性能的钢板,但这会引起钢板的焊接性能的降低, 不仅在焊接时容易出现热裂纹, 还容易焊接后放置过程中出现冷裂纹。 企业 希望采用较少的合金元素含量, 使得机械结构用钢板具有较低的碳当量和焊 接裂纹敏感性指数, 同时还具备较高的力学性能。
国际公布号为 WO1999005335 , 公开日为 1999年 2月 4日, 名称为 "一 种超高强度的具有良好可焊接性的超低温韧钢材" 的专利文献公布了一种以 TMCP工艺基于两个温度阶段生产的低合金高强钢, 其具有 930MPa的抗拉 强度, -20°C冲击功为 120J, 其化学成分 (wt.%) 为: C: 0.05-0.10%、 Mn: 1.7-2.1%, Ni: 0.2-1.0%, Mo: 0.25-0.6%, Nb: 0.01-0· 10%、 Ti: 0.005-0.03%、 P≤0.015%、 S≤0.003%。 在本发明专利中含有较多的合金元素 Ni: 0.2-1.0%, 但并未规定碳当量和焊接裂纹敏感性指数。
公开号为 CN101906594A, 公开日为 2010年 12月 8日, 名称为 "一种 900MPa级屈服强度调质钢板及其制造方法" 的中国专利文献, 其涉及一种 高屈服强度的调质钢板以及其制造方法, 其化学成分 (wt.% ) 为: C : 0.15-0.25%, Si: 0.15-0.35%, Mn: 0.75-1.60%, P: <0.020%, S: <0.020%, Ni: 0.08-0.30%, Cu: 0.20-0.60%, Cr: 0.30-1.00%, Mo: 0.10-0.30%, Als: 0.015-0.045%, B: 0.001-0.003%, 余量为 Fe和不可避免的杂质。获得的钢板 -40°CAkv≥21J (纵向), 同时碳当量小于 0.60%。 本发明专利中含有 Ni、 Cu等 贵重合金元素。 发明内容
本发明的目的在于提供一种高强度钢板, 该高强度钢板具有高强度、 强 韧性, 且焊接性能良好, 能够满足机械装备业对于钢板具备高强低韧且优质 焊接性能的双向要求。
为达到上述发明目的, 本发明提供了一种高强度钢板, 其化学元素质量 百分含量为:
C: 0·070〜0·115%,
Si: 0.20—0.50%,
Μη: 1·80〜2·30%,
Cr: 0〜0·35%,
Mo: 0.10—0.40%,
Nb: 0·03〜0·06%,
V: 0·03〜0·06%,
Ti: 0.002〜0·04%,
Α1: 0·01〜0·08%,
Β: 0.0006〜0.0020% ,
Ν<0.0060%,
Ο<0.0040%,
Ca: 0〜議 45%,
余量为 Fe和其他不可避免的杂质。
本发明所述的高强度钢板的微观组织为超细的贝氏体板条和马氏体。 本发明所述的高强度钢板中,碳当量满足 CEV≤0.56%,其中碳当量 CEV = C+Mn/6+ (Cr+Mo+V) 15+ (Ni+Cu) /15。
焊接性能是机械结构用钢的重要使用性能之一, 而提高焊接性能的手段 包括降低钢板合金成分的碳当量 CEV 。 为了使钢板获得良好的焊接性能, 需要尽可能地减少合金成分的碳当量 CEV。
此外, 控制焊接裂纹敏感性指数 Pcm值在较低范围, 也可以相应地提高 钢 板 的 焊 接 性 能 , 其 中 Pcm = C+Si/30+ ( Mn+Cr+Cu ) /20+Ni/60+Mo/15+V/10+5B。 因此, 进一歩地, 本技术方案中焊接裂纹敏感 性指数 Pcm≤0.27%。
本发明所述的高强度钢板中的各化学元素的设计原理如下:
C: 在钢中添加合金元素, 可提高钢板的强度, 但也会提高碳当量和焊 接裂纹敏感性指数, 恶化钢板的焊接性能。 当碳含量较低, 则钢板在 TMCP 工艺工程中会形成强度较低的铁素体组织, 使钢板的屈服强度和抗拉强度降 低。结合钢板强韧性需要的综合考虑,本发明 C含量应控制为 0.070-0.115%。
Si: Si在钢中不形成碳化物, 以固溶形式存在于 Fee或 Bcc晶格中, 通 过固溶强化提高钢板的强度。 由于 Si在渗碳体中的溶解度很小, 当 Si含量 增加到一定程度, 会形成残余奥氏体和马氏体的混合组织。 同时, Si含量的 增加不仅会提高钢板的焊接裂纹敏感性指数, 还会增加钢板的热裂纹倾向。 综合固溶强化和对焊接性能的影响,将本发明中 Si的含量控制为 0.20-0.50%。
Mn: Mn是弱碳化物形成的元素, 通常以固溶形成存在于钢板中。 采用 TMCP工艺的钢板, Mn主要起到抑制扩散性控制界面的运动; 细化铁素体 或贝氏体板条, 通过细晶强化和固溶强化提高钢板的力学性能。 如果 Mn含 量过高, 会增加钢板板坯的裂纹倾向, 容易在板坯上形成裂纹。 为了使钢板 形成细化的贝氏体组织而具有良好的强韧性, 因此本发明中所添加的 Mn含 量需要设计为 1.80-2.30%。
Cr: Cr会提高钢板的淬透性, 使钢板形成硬度和强度较高的组织。 Cr 含量的增加对屈服强度 690MPa级以上钢板的强度影响不显著。但是 Cr含量 过高,则会增加钢板的碳当量。因此本发明中的 Cr含量控制为不大于 0.35%。
Mo: Mo是强碳化物形成元素, 可以与 C形成 MC型碳化物。 在 TMCP 工艺过程中, Mo起到的主要作用是抑制扩散相变, 细化贝氏体组织。 在回 火过程中, Mo与 C形成细小的碳化物, 起到析出强化的效果, 提高钢板的 回火稳定性且扩展回火平台。 但是, Mo含量过高会导致钢板成本上升, 降 低市场竞争力, 同时还导致碳当量增加而降低钢板焊接性能。 因此本发明中 的 Mo含量控制为 0.10-0.40%。
Nb: Nb在 TMCP工艺的钢中主要起到以下作用: 加热炉奥氏体化后固 溶在奥氏体中的 Nb会起到抑制再结晶晶界运动的作用, 提高再结晶温度, 使钢板在较低温度轧制时能累计大量的位错, 实现最终细化晶粒的目的; 回 火过程中的 Nb元素会与 C和 N结合形成 MC型碳氮化物。 不过, Nb含量 过高, 则会在钢中形成粗大的碳氮化物, 影响钢板的力学性能。 因此, 为了 控制钢板的微观组织和力学性能, 将本发明中加入 Nb 的含量控制为 0·03-0·06%。
V: V与钢中的 C和 Ν形成 MC型碳化物, 可以在回火过程中提高钢板 的屈服强度。 随着 V含量的增加, 会导致钢板焊接时在焊接热影响区形成粗 大的碳化物, 降低热影响区的低温冲击韧性。 因此本发明中加入的 V含量为 0.03-0.06%, 以保证钢板在回火后有较高的屈服强度。
Ti: Ti在不同温度下能与 N、 0和 C结合形成化合物。 在钢液中形成的 TiN, 可细化奥氏体晶粒。 奥氏体中残留的 Ti会与 C形成 TiC, 细化的 TiC 有利于钢板的低温冲击韧性。 但是 Ti含量过高则会形成粗大的方形 TiN, 成 为微裂纹的起裂点, 降低钢板的低温冲击韧性和疲劳性能。综合考虑 Ti元素 在钢中所起的作用, 本发明中的 Ti含量控制在 0.002-0.04%。
Al: A1作为脱氧剂加入钢中, A1会在钢液中与 0和 N结合, 形成氧化 物和氮化物。 在钢液凝固过程中, A1的氧化物和氮化物会抑制晶界运动, 实 现细化奥氏体晶粒的作用。当 A1含量过高时,会在钢板中形成粗大的氧化物 或氮化物, 从而降低钢板的低温冲击韧性。 为了能达到细化晶粒, 提高钢板 的韧性并保证其焊接性能的目的, 本发明中 A1的含量设计为 0.01-0.08%。
B: B 作为间隙原子固溶在钢中, 能降低晶界的能量, 使新相不易在晶 界形核, 从而使钢板在冷却过程中形成低温组织, 提高钢板的强度。 但是 B 含量的增加会导致晶界能量降低明显, 从而增加钢板开裂倾向, 并提高焊接 裂纹敏感性指数 Pcm。 因此, 本发明中 B的加入量为 0.0006-0.0020%。
N: 钢中的合金元素如 Nb、 Ti和 V等与钢中的 N和 C形成氮化物或碳 氮化物。 钢板在加热奥氏体化过程中, 部分氮化物溶解, 未溶解的氮化物会 阻碍奥氏体晶界运动, 实现细化奥氏体晶粒的效果。 如果 N元素含量过高, 则其会与 Ti形成粗大的 TiN,恶化钢板的力学性能, 因为 N原子会在钢中的 缺陷处富集, 形成气孔和疏松。 所以, 在本发明中的 N含量控制为不大于 0.0060%。
0: 钢种的合金元素 Al、 Si和 Ti与 0会形成氧化物。 钢板在加热奥氏 体化过程中, A1的氧化物会起到抑制奥氏体长大, 细化晶粒的作用。 不过, 0含量较多的钢在焊接时具有热裂纹倾向。故本发明中的 0含量控制为不大 于 0.0040%。
Ca: Ca加入钢中, 会与 S元素形成 CaS, 起到球化硫化物的作用, 提高 钢板的低温冲击刃型。 本发明中的 Ca含量控制为不大于 0.0045%。
相应地, 本发明还提供了该高强度钢板的制造方法, 其依次包括歩骤: 冶炼、 浇铸、 加热、 轧制、 冷却和回火。
在上述高强度钢板的制造方法中, 在所述加热歩骤, 将板坯加热至 1040〜1250°C。
在加热过程中, 钢板会发生奥氏体化、 奥氏体晶粒长大和碳氮化物溶解 等过程。 加热温度较低, 奥氏体晶粒较细, 但碳氮化物溶解不充分, 合金元 素 Nb、 Mo等在轧制和冷却过程中不能起到相应作用。 加热温度过高, 则会 导致奥氏体晶粒粗化,碳氮化物溶解充分,可能引起奥氏体晶粒的反常长大。 综合考虑加热过程中奥氏体晶粒长大和碳氮化物溶解过程, 因此, 本发明将 板坯加热至 1040〜1250°C。
在上述高强度钢板的制造方法中, 在所述轧制歩骤分两阶段轧制, 其中 第一阶段的开轧温度为 1010〜1240°C, 第一阶段进行多道次轧制, 各道次变 形率范围为 8〜30%,第二阶段的开轧温度为 750〜870°C,终轧温度为 740〜 850°C, 第二阶段进行多道次轧制, 各道次变形率范围为 5〜30%。
钢板出炉后进行第一阶段轧制, 为了保证钢板在第一阶段变形充分, 发 生奥氏体再结晶, 细化奥氏体晶粒, 第一阶段的轧制温度和道次变形率需要 符合达到本发明所述的制造方法的要求。 第一阶段轧制后, 需将钢材冷却至 750〜870°C进行第二阶段轧制, 在第二阶段轧制中, 奥氏体中累计了大量的 位错, 其利于在随后的冷却过程中形成细化的微观组织, 进而提高钢板的强 韧性。
在上述高强度钢板的制造方法中, 在所述冷却歩骤, 轧制后的钢板以 15〜50°C/s的速度水冷至≤450°C, 然后空冷至室温。 在冷却过程中, 由于钢板在经过二次轧制后累计了大量的位错, 为了保 证钢板有较大的过冷度, 轧制后的钢板必须以较快的速度冷却, 本发明通过 采用较快的冷却速度和较低的停冷温度,使钢板会形成低温相变的微观组织- 超细贝氏体板条和马氏体, 此类微观组织具有良好的强韧性。 所以, 在本发 明中钢板的停冷温度设定为不大于 450°C, 冷却速度和方式为 15〜50°C/s的 水冷。
在上述高强度钢板的制造方法中, 在所述回火歩骤, 回火温度为 450〜 650 °C。
在回火过程中, 高强度钢板通过轧制和冷却后, 形成了具有细化贝氏体 和马氏体的高强度微观组织。 回火温度过高, 则会导致回火软化, 降低钢板 的强度。 回火温度过低, 则会导致钢板中内应力较大, 且未形成细小弥散的 析出物, 降低钢板的低温冲击韧性。 高强度组织内部会有较大的相变应力, 为了消除相变应力以获得力学性能均匀稳定的钢板, 本发明所述的制造方法 中的回火温度控制在 450〜650°C之间。
进一歩地,本发明所述的高强度钢板的制造方法还包括回火后进行空冷。 在本技术方案中, 某些化学元素的成分设计能够与制造工艺产生关联影 响,其中,合金元素 Cr和其它元素的优化配比经过上述轧制和冷却工艺过程, 既可保证钢板的强度也避免了碳当量过高影响钢板焊接性能; 另外, 由于本 发明专利中碳含量较低, 结合优化的 Mn和 Mo含量, 控制在较低温度下进 行轧制, 并以较快的冷却速度冷却到 450°C以下, 即可获得细化的贝氏体和 马氏体微观组织, 从而提高钢板的强韧性; 此外, 合金元素 B的适当控制, 使钢板在较宽的冷却速度范围内均可获得具有高强韧力学性能的微观组织。
本发明采用合理的成分设计及较低的碳当量, 结合优化的加热、 轧制、 冷却和回火工艺, 与现有技术相比, 本发明所述的高强度钢板, 具有优点为:
1 ) 具备高强度的超细贝氏体板条和马氏体的微观组织;
2) 屈服强度大于等于 890MPa;
3 ) 优质的焊接性能, 优良的低温韧性, 良好的延伸率;
4) 较少的合金元素, 具有低碳当量 CEV≤0.56%, 生产成本降低; 5 ) 满足机械装备领域的高强韧的需求。
同时, 本发明所述的高强度钢板的制造方法, 在不需进行任何额外的调 质热处理的前提下, 采用控轧控冷技术, 结合合理的成分设计和改良的制造 歩骤, 就可以使钢板获得高强度的微观组织及良好的焊接性能, 从而简化了 制造工序, 并且制造工艺容易实现, 可以广泛应用于中、 厚钢板产线上的稳 定生产。 附图说明
图 1显示了实施例 4中的高强度钢板在光学显微镜下的微观组织。 具体实施方式
下面将根据具体实施例, 结合说明书附图对本发明的技术方案作进一歩 说明。
实施例 1-6
按照下述歩骤制造本发明所述的高强度钢板:
1 ) 冶炼, 控制各组分的配比如表 1所示, 且满足碳当量 CEV≤0.56%;
2) 浇铸;
3 ) 加热: 加热温度为 1040〜1250°C ;
4) 轧制: 分两阶段轧制, 其中第一阶段的开轧温度为 1010〜1240°C, 第一阶段为多道次轧制, 各轧制道次的变形率范围为 8〜30%, 经过第一阶 段轧制后进行冷却, 冷却可采用放置在辊道上空冷或通过喷淋装置水冷或雾 冷中的一种, 也可两者结合, 第二阶段的开轧温度为 750〜870°C, 终轧温度 为 740〜850°C, 第二阶段为多道次轧制, 各轧制道次的变形率范围为 5〜 30%;
5 ) 冷却: 轧制后的钢板以 15〜50°C/s的速度水冷至≤450°C, 然后出水 后空冷至室温, 获得钢板的微观组织为超细贝氏体板条和马氏体;
6) 回火: 回火温度为 450〜650°C, 回火后进行空冷, 空冷可采用堆垛 或冷床冷却。
图 1显示了本案实施例 4的高强度钢板在光学显微镜下的微观组织。
表 1 实施例 1-6中的高强度钢板的各组分的质量百分配比
(wt.%, 余量为 Fe和其他不可避免的杂质) 实施例 C Si Mn Cr Mo Nb V Ti Al B N 0 Ca CEV
1 0.115 0.3 1.8 0.2 0.4 0.05 0.05 0.04 0.08 0.002 0.005 0.003 0.003 0.545
2 0.105 0.35 1.9 0.25 0.3 0.04 0.04 0.03 0.07 0.0015 0.004 0.004 0.004 0.540
3 0.1 0.25 2 0 0.4 0.04 0.04 0.015 0.05 0.001 0.006 0.003 0.002 0.521
4 0.09 0.5 2.1 0.15 0.2 0.05 0.04 0.01 0.06 0.001 0.003 0.002 0.002 0.518
5 0.08 0.2 2.2 0.35 0.1 0.03 0.03 0.008 0.01 0.0006 0.002 0.003 0.001 0.543
6 0.07 0.4 2.3 0.05 0.4 0.06 0.06 0.002 0.03 0.0015 0.003 0.004 0 0.555 表 2显示了实施例 1-6的具体工艺参数。其中, 表 2中的各实施例的具 体工艺参数对应于表 1中相应实施例 1-6。 表 2 实施例 1-6的制造工艺中的具体工艺参数
Figure imgf000011_0001
表 3 本技术方案中实施例 1-6所涉及的高强度钢板的相关性能
Figure imgf000011_0002
*注: Pcm为焊接裂纹敏感性指数,其满足公式 Pcm=C+Si/30+(Mn+Cr+CuV20+Ni/60+Mo/15+V 0+5B。
Qm为钢板的淬透性系数, 其满足公式 Qm=1.379C+0.218Si+1.253Mn+2.113Mo+0.879Cr+101.21B。 由表 3和表 1可以看出, 本发明所述的高强度钢板具有低碳当量和低焊 接裂纹敏感性指数, CEV<0.56%, Pcm<0.27%,淬透性系数 3.4<Qm<4.2。 较低的碳当量 CEV和焊接裂纹敏感性指数 Pcm有利于钢板获得良好的焊接 性能。从表 3还可以看出, 该高强度钢板的屈服强度〉 900MPa、 抗拉强度〉 lOOOMPa, 延伸率 12%、 冲击功 Akv (-40°C ) 〉80J, 因此钢板具有良好的 焊接性能及较高的力学性能, 能够满足机械结构用钢板高强度, 低温韧性, 易焊接的要求,可广泛适用于工程机械、矿山机械和港口机械的结构件制造。 本技术领域中的普通技术人员应当认识到, 以上的实施例仅是用来说明 本发明, 而并非用作为对本发明的限定, 只要在本发明的实质精神范围内, 对以上所述实施例的变化、 变型都将落在本发明的权利要求书范围内。

Claims

权利要求书
1. 一种高强度钢板, 其特征在于, 其化学元素质量百分含量为:
C: 0.070-0.115%,
Si: 0.20-0.50%,
Mm 1.80-2.30%,
Cr: 0-0.35%,
Mo: 0.10-0.40%,
Nb: 0.03-0.06%,
V: 0.03-0.06%,
Ti: 0.002-0.04%,
Al: 0.01-0.08%,
B: 0.0006-0.0020% ,
N<0.0060%,
O<0.0040%,
Ca: 0-0.0045%,
余量为 Fe和其他不可避免的杂质。
2. 如权利要求 1所述的高强度钢板, 其特征在于, 其碳当量 CEV≤0.56%。
3. 如权利要求 1 所述的高强度钢板, 其特征在于, 其焊接裂纹敏感性指数 Pcm≤0.27%。
4. 如权利要求 1所述的高强度钢板,其特征在于,其微观组织为贝氏体板条 和马氏体。
5. 如权利要求 1-4中任意一项所述的高强度钢板的制造方法, 其特征在于, 依次包括歩骤: 冶炼、 浇铸、 加热、 轧制、 冷却和回火。
6. 如权利要求 5所述的高强度钢板的制造方法,其特征在于,在所述加热歩 骤, 将板坯加热至 1040〜1250°C。
7. 如权利要求 5所述的高强度钢板的制造方法,其特征在于,在所述轧制歩 骤分两阶段轧制, 其中第一阶段的开轧温度为 1010〜1240°C, 第一阶段 进行多道次轧制, 各道次变形率范围为 8〜30%, 第二阶段的开轧温度为 750〜870°C, 终轧温度为 740〜850°C, 第二阶段进行多道次轧制, 各道 次变形率范围为 5〜30%。
8. 如权利要求 5所述的高强度钢板的制造方法,其特征在于,在所述冷却歩 骤, 轧制后的钢板以 15〜50°C/s的速度水冷至≤450°C, 然后空冷至室温。
9. 如权利要求 5所述的高强度钢板的制造方法,其特征在于,在所述回火歩 骤, 回火温度为 450〜650°C。
10.如权利要求 5所述的高强度钢板的制造方法,其特征在于, 回火后进行空 冷。
PCT/CN2013/090268 2013-01-22 2013-12-24 一种高强度钢板及其制造方法 WO2014114158A1 (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2015552984A JP6426621B2 (ja) 2013-01-22 2013-12-24 高強度鋼板及びその製造方法
US14/762,216 US11268176B2 (en) 2013-01-22 2013-12-24 High strength steel plate and manufacturing method thereof
EP13872709.4A EP2949773B1 (en) 2013-01-22 2013-12-24 High strength steel sheet and manufacturing method therefor
RU2015136605A RU2711698C2 (ru) 2013-01-22 2013-12-24 Высокопрочная стальная полоса и способ ее производства
KR1020157022770A KR102229530B1 (ko) 2013-01-22 2013-12-24 고강도 강판 및 그의 제조방법
AU2013375523A AU2013375523B2 (en) 2013-01-22 2013-12-24 High strength steel sheet and manufacturing method therefor
ZA2015/05249A ZA201505249B (en) 2013-01-22 2015-07-21 High strength steel sheet and manufacturing method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310022008.3 2013-01-22
CN2013100220083A CN103060690A (zh) 2013-01-22 2013-01-22 一种高强度钢板及其制造方法

Publications (1)

Publication Number Publication Date
WO2014114158A1 true WO2014114158A1 (zh) 2014-07-31

Family

ID=48103579

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/090268 WO2014114158A1 (zh) 2013-01-22 2013-12-24 一种高强度钢板及其制造方法

Country Status (9)

Country Link
US (1) US11268176B2 (zh)
EP (1) EP2949773B1 (zh)
JP (1) JP6426621B2 (zh)
KR (1) KR102229530B1 (zh)
CN (1) CN103060690A (zh)
AU (1) AU2013375523B2 (zh)
RU (1) RU2711698C2 (zh)
WO (1) WO2014114158A1 (zh)
ZA (1) ZA201505249B (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103060690A (zh) 2013-01-22 2013-04-24 宝山钢铁股份有限公司 一种高强度钢板及其制造方法
CN103898406B (zh) * 2014-03-25 2016-08-24 宝山钢铁股份有限公司 一种屈服强度890MPa级低焊接裂纹敏感性钢板及其制造方法
CN105506494B (zh) * 2014-09-26 2017-08-25 宝山钢铁股份有限公司 一种屈服强度800MPa级高韧性热轧高强钢及其制造方法
CN104278206A (zh) * 2014-10-15 2015-01-14 山东钢铁股份有限公司 一种厚度60mm以下屈服强度690MPa级钢板及其制备方法
CN104513937A (zh) * 2014-12-19 2015-04-15 宝山钢铁股份有限公司 一种屈服强度800MPa级别高强钢及其生产方法
CN109207839A (zh) * 2017-06-29 2019-01-15 宝山钢铁股份有限公司 一种高强高韧射孔枪管及其制造方法
CN110819878B (zh) * 2019-10-23 2021-10-29 舞阳钢铁有限责任公司 一种爆炸复合用具备优良低温韧性钢板及其生产方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02170943A (ja) * 1988-12-23 1990-07-02 Nkk Corp 建築用耐火鋼材
JPH06145787A (ja) * 1992-11-02 1994-05-27 Sumitomo Metal Ind Ltd 溶接性に優れた高張力鋼の製造方法
JPH0913145A (ja) * 1996-08-15 1997-01-14 Nkk Corp 建築用耐火鋼材
WO1999005335A1 (en) 1997-07-28 1999-02-04 Exxonmobil Upstream Research Company Ultra-high strength, weldable steels with excellent ultra-low temperature toughness
WO2003006699A1 (fr) * 2001-07-13 2003-01-23 Nkk Corporation Tube d'acier a resistance elevee, superieure a celle de la norme api x6
CN101418416A (zh) * 2007-10-26 2009-04-29 宝山钢铁股份有限公司 屈服强度800MPa级低焊接裂纹敏感性钢板及其制造方法
CN101906594A (zh) 2009-06-08 2010-12-08 鞍钢股份有限公司 一种900MPa级屈服强度调质钢板及其制造方法
CN102260283A (zh) * 2011-04-14 2011-11-30 华东理工大学 杂环取代双齿胺基配体铝络合物及其制备方法和应用
CN102618793A (zh) * 2012-03-30 2012-08-01 宝山钢铁股份有限公司 一种屈服强度 960MPa 级钢板及其制造方法
CN102787272A (zh) * 2012-07-26 2012-11-21 北京科技大学 一种汽车厢体用热轧酸洗高强钢的制备方法
CN103060690A (zh) * 2013-01-22 2013-04-24 宝山钢铁股份有限公司 一种高强度钢板及其制造方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63121618A (ja) 1986-11-11 1988-05-25 Sumitomo Metal Ind Ltd 高延性、高靭性Nb添加熱延鋼板の製造方法
BR9811059A (pt) 1997-07-28 2000-09-19 Exxonmobil Upstream Res Co Aço de baixa liga
UA57797C2 (uk) 1997-07-28 2003-07-15 Ексонмобіл Апстрім Рісерч Компані Низьколегована, боровмісна сталь
EP1017862B1 (en) 1997-07-28 2006-11-29 Exxonmobil Upstream Research Company Method for producing ultra-high strength, weldable steels with superior toughness
JP4445365B2 (ja) * 2004-10-06 2010-04-07 新日本製鐵株式会社 伸びと穴拡げ性に優れた高強度薄鋼板の製造方法
CN100494451C (zh) * 2005-03-30 2009-06-03 宝山钢铁股份有限公司 屈服强度960MPa以上超高强度钢板及其制造方法
JP4848960B2 (ja) 2007-01-12 2011-12-28 Jfeスチール株式会社 薄肉低降伏比高張力鋼板およびその製造方法
JP5433964B2 (ja) 2008-03-31 2014-03-05 Jfeスチール株式会社 曲げ加工性および低温靭性に優れる高張力鋼板の製造方法
JP5476763B2 (ja) * 2009-03-30 2014-04-23 Jfeスチール株式会社 延性に優れた高張力鋼板及びその製造方法
KR101450977B1 (ko) 2009-09-30 2014-10-15 제이에프이 스틸 가부시키가이샤 저항복비, 고강도 및 고일정 연신을 가진 강판 및 그 제조 방법
US20120328901A1 (en) * 2010-01-13 2012-12-27 Toshiki Nonaka High tensile steel sheet superior in formability and method of manufacturing the same
JP4897127B2 (ja) 2010-05-27 2012-03-14 新日本製鐵株式会社 溶接構造用高強度鋼板の製造方法
JP5742123B2 (ja) 2010-07-16 2015-07-01 Jfeスチール株式会社 ラインパイプ用高強度溶接鋼管向け高張力熱延鋼板およびその製造方法
CN103476960B (zh) * 2011-03-28 2016-04-27 新日铁住金株式会社 冷轧钢板及其制造方法
MX361690B (es) * 2011-05-25 2018-12-13 Nippon Steel & Sumitomo Metal Corp Láminas de acero laminadas en frío y proceso para la producción de las mismas.
CN102618800A (zh) * 2012-03-30 2012-08-01 宝山钢铁股份有限公司 一种屈服强度1150MPa级钢板及其制造方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02170943A (ja) * 1988-12-23 1990-07-02 Nkk Corp 建築用耐火鋼材
JPH06145787A (ja) * 1992-11-02 1994-05-27 Sumitomo Metal Ind Ltd 溶接性に優れた高張力鋼の製造方法
JPH0913145A (ja) * 1996-08-15 1997-01-14 Nkk Corp 建築用耐火鋼材
WO1999005335A1 (en) 1997-07-28 1999-02-04 Exxonmobil Upstream Research Company Ultra-high strength, weldable steels with excellent ultra-low temperature toughness
WO2003006699A1 (fr) * 2001-07-13 2003-01-23 Nkk Corporation Tube d'acier a resistance elevee, superieure a celle de la norme api x6
CN101418416A (zh) * 2007-10-26 2009-04-29 宝山钢铁股份有限公司 屈服强度800MPa级低焊接裂纹敏感性钢板及其制造方法
CN101906594A (zh) 2009-06-08 2010-12-08 鞍钢股份有限公司 一种900MPa级屈服强度调质钢板及其制造方法
CN102260283A (zh) * 2011-04-14 2011-11-30 华东理工大学 杂环取代双齿胺基配体铝络合物及其制备方法和应用
CN102618793A (zh) * 2012-03-30 2012-08-01 宝山钢铁股份有限公司 一种屈服强度 960MPa 级钢板及其制造方法
CN102787272A (zh) * 2012-07-26 2012-11-21 北京科技大学 一种汽车厢体用热轧酸洗高强钢的制备方法
CN103060690A (zh) * 2013-01-22 2013-04-24 宝山钢铁股份有限公司 一种高强度钢板及其制造方法

Also Published As

Publication number Publication date
US20150361531A1 (en) 2015-12-17
KR20150109461A (ko) 2015-10-01
CN103060690A (zh) 2013-04-24
JP2016509129A (ja) 2016-03-24
EP2949773B1 (en) 2020-07-01
ZA201505249B (en) 2016-07-27
RU2711698C2 (ru) 2020-01-21
KR102229530B1 (ko) 2021-03-18
AU2013375523B2 (en) 2018-06-07
EP2949773A4 (en) 2016-08-31
EP2949773A1 (en) 2015-12-02
US11268176B2 (en) 2022-03-08
RU2015136605A (ru) 2017-09-28
JP6426621B2 (ja) 2018-11-21
AU2013375523A1 (en) 2015-08-06

Similar Documents

Publication Publication Date Title
US10378073B2 (en) High-toughness hot-rolling high-strength steel with yield strength of 800 MPa, and preparation method thereof
WO2016082669A1 (zh) 一种低合金高强高韧钢板及其制造方法
WO2022022047A1 (zh) 一种低温环境下使用的低屈强比粒状贝氏体高强钢板及其制造方法
JP5871109B1 (ja) 厚鋼板及びその製造方法
WO2014114158A1 (zh) 一种高强度钢板及其制造方法
WO2016095720A1 (zh) 一种屈服强度800MPa级别高强钢及其生产方法
WO2009056055A1 (fr) Tôle d&#39;acier à limite d&#39;élasticité de grade 800 mpa et faible sensibilité à la fissuration de soudure, et son procédé de fabrication
WO2015143932A1 (zh) 一种屈服强度890MPa级低焊接裂纹敏感性钢板及其制造方法
US20170283901A1 (en) Grade 550mpa high-temperature resistant pipeline steel and method of manufacturing same
JP6684353B2 (ja) 低温靭性と耐水素誘起割れ性に優れた厚板鋼材、及びその製造方法
CN109943771B (zh) 一种高韧性可焊接细晶粒结构钢板及其生产方法
CN111542621B (zh) 高强度高韧性的热轧钢板及其制造方法
WO2017107778A1 (zh) 一种大线能量焊接热影响区韧性优异的厚钢板及其制造方法
JPWO2020039485A1 (ja) 鋼板およびその製造方法
CN104294154A (zh) 低温韧性优良的Rm为630MPa级结构用厚钢板及生产方法
JP2004043963A (ja) 靭性および延性に優れたパーライト系レールおよびその製造方法
CN111979474B (zh) 一种热连轧细晶贝氏体钢板及其制备方法
CN113832415A (zh) 一种x80级耐高温管线钢及其制造方法
JP5206507B2 (ja) 水圧鉄管用高張力鋼材およびその製造方法ならびに水圧鉄管
CN115323261B (zh) 一种调质型抗酸管线用钢板及其制造方法
CN112593155B (zh) 一种高强度建筑结构用抗震耐火耐候钢板及制备方法
KR101185227B1 (ko) 열처리 특성이 우수한 유정용 api 강판 및 그 제조 방법
KR102175575B1 (ko) 연신율이 우수한 고강도 열연강판 및 그 제조방법
JP2022547839A (ja) 強度及び低温衝撃靭性に優れた鋼材及びその製造方法
CN117467894A (zh) 一种460MPa级特厚热轧H型钢及其生产方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13872709

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015552984

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14762216

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2013375523

Country of ref document: AU

Date of ref document: 20131224

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2013872709

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20157022770

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2015136605

Country of ref document: RU

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2015136605

Country of ref document: RU

Kind code of ref document: A