WO2014112520A1 - 磁気共鳴イメージング装置、及び、rfコイル装置 - Google Patents

磁気共鳴イメージング装置、及び、rfコイル装置 Download PDF

Info

Publication number
WO2014112520A1
WO2014112520A1 PCT/JP2014/050560 JP2014050560W WO2014112520A1 WO 2014112520 A1 WO2014112520 A1 WO 2014112520A1 JP 2014050560 W JP2014050560 W JP 2014050560W WO 2014112520 A1 WO2014112520 A1 WO 2014112520A1
Authority
WO
WIPO (PCT)
Prior art keywords
coil
coil device
magnetic resonance
signal
unit
Prior art date
Application number
PCT/JP2014/050560
Other languages
English (en)
French (fr)
Inventor
石井 学
貞範 冨羽
浩 早川
Original Assignee
株式会社東芝
東芝メディカルシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社東芝, 東芝メディカルシステムズ株式会社 filed Critical 株式会社東芝
Priority to CN201480004871.9A priority Critical patent/CN104918547B/zh
Priority to US14/246,299 priority patent/US9817091B2/en
Publication of WO2014112520A1 publication Critical patent/WO2014112520A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/32Excitation or detection systems, e.g. using radio frequency signals
    • G01R33/36Electrical details, e.g. matching or coupling of the coil to the receiver
    • G01R33/3692Electrical details, e.g. matching or coupling of the coil to the receiver involving signal transmission without using electrically conductive connections, e.g. wireless communication or optical communication of the MR signal or an auxiliary signal other than the MR signal
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/32Excitation or detection systems, e.g. using radio frequency signals
    • G01R33/34Constructional details, e.g. resonators, specially adapted to MR
    • G01R33/341Constructional details, e.g. resonators, specially adapted to MR comprising surface coils
    • G01R33/3415Constructional details, e.g. resonators, specially adapted to MR comprising surface coils comprising arrays of sub-coils, i.e. phased-array coils with flexible receiver channels

Definitions

  • Embodiments described herein relate generally to a magnetic resonance imaging apparatus and an RF coil apparatus.
  • MRI is an imaging method in which a nuclear spin of a subject placed in a static magnetic field is magnetically excited with an RF pulse having a Larmor frequency, and an image is reconstructed from MR signals generated along with this excitation.
  • the MRI means magnetic resonance imaging
  • the RF pulse means radio frequency pulse
  • the MR signal means nuclear magnetic resonance signal. .
  • an RF coil device detects an generated MR signal by transmitting an RF pulse to a nuclear spin in a subject by passing an RF pulse current through the coil.
  • Some RF coil apparatuses are built in the MRI apparatus itself, but some are recognized by the control unit of the MRI apparatus by a connector connection with a connection port of the MRI apparatus, for example, a local RF coil apparatus.
  • the MR signal collection system is becoming multi-channel.
  • the channel here means each path of a plurality of MR signals that are output from each coil element in the RF coil apparatus and input to the RF receiver of the MRI apparatus.
  • the number of channels is set to be equal to or less than the number of inputs received by the RF receiver, but many RF coil devices can be connected to the MRI apparatus.
  • Patent Document 1 proposes a digital wireless transmission method in which MR signals are digitized and then wirelessly transmitted.
  • the problem of dynamic range restriction can be solved, but there are the following problems.
  • the MRI apparatus of one Embodiment has a 1st RF coil apparatus, a radio
  • the first RF coil device detects an MR signal emitted from the subject.
  • the first RF coil device has another coil connection part.
  • the other coil connection unit is wirelessly connected to the second RF coil device via an induction electric field and receives a digitized MR signal wirelessly transmitted from the second RF coil device.
  • the first RF coil device wirelessly transmits the MR signal detected by the first RF coil device and the MR signal received by the other coil connection unit to the wireless communication unit via the induction electric field.
  • the wireless communication unit receives the MR signal wirelessly transmitted from the first RF coil device via the induction electric field.
  • the image reconstruction unit reconstructs the image data of the subject based on the MR signal received by the wireless communication unit.
  • the MRI apparatus of (1) may be configured as follows. That is, the second RF coil apparatus is configured as a part of the MRI apparatus. Further, the second RF coil device includes a coil element, an A / D converter, and a signal transmission unit.
  • the coil element detects an MR signal emitted from the subject.
  • the A / D converter digitizes the nuclear magnetic resonance signal detected by the coil element.
  • the signal transmission unit is wirelessly connected to the other coil connection unit via the induction electric field, and wirelessly transmits the MR signal digitized by the A / D converter to the other coil connection unit via the induction electric field.
  • the MRI apparatus of (2) may further include a top plate on which the subject is placed and a cable.
  • the cable has one end connected to the wireless communication unit and the other end connected to the top plate, and electrically connects the wireless communication unit to the image reconstruction unit side via the wiring in the top plate.
  • the MRI apparatus of (3) above may be configured as follows. That is, a storage port for storing the wireless communication unit and the cable is formed on the top plate.
  • the MRI apparatus of (2) above may be configured as follows. That is, a top plate on which the subject is placed is further provided, and the wireless communication unit is fixedly installed on the top plate.
  • An MRI apparatus acquires MR signals from an RF coil apparatus that detects MR signals emitted from a subject, and includes a top board, a first wireless communication unit, and a second radio communication unit. A wireless communication unit; and an image reconstruction unit.
  • a subject is placed on the top board.
  • the first wireless communication unit acquires the MR signal detected by the RF coil device, and wirelessly transmits the digitized MR signal via the induction electric field.
  • the second wireless communication unit is wired to the wiring in the top panel and is arranged so that the position of the second wireless communication unit can be changed on the top panel.
  • the MR signal wirelessly transmitted from the first wireless communication unit is transmitted via an induction electric field.
  • the image reconstruction unit reconstructs the image data of the subject based on the MR signal received by the second wireless communication unit and transmitted via the wiring in the top panel.
  • An RF coil device transmits an MR signal to an MRI apparatus, and includes a coil element, a first communication unit, and a second communication unit.
  • the coil element detects an MR signal emitted from the subject.
  • the first communication unit is wirelessly connected to another RF coil device via an induction electric field and receives a digitized MR signal wirelessly transmitted from the other RF coil device.
  • the second communication unit wirelessly transmits the MR signal received by the first communication unit and the MR signal detected by the coil element to the MRI apparatus via the induced electric field in a digitized state.
  • MR signals digitized in the MRI can be satisfactorily wirelessly transmitted from the RF coil apparatus to the MRI apparatus by the new technology.
  • MR signals digitized in MRI can be satisfactorily wirelessly transmitted from the RF coil device to the MRI device by the new technology.
  • the perspective view which expanded the part of the storage port formed in the top plate in FIG. 1 is an overview diagram illustrating an example of a configuration of a chest RF coil device according to the present embodiment.
  • the block diagram which shows an example of the radio
  • Explanatory drawing which shows an example of a structure of a serial signal. 6 is a flowchart illustrating an example of a flow of an imaging operation by the MRI apparatus of the present embodiment.
  • the typical perspective view in case a data collection connector is fixedly arrange
  • the data transmission connector of the RF coil device is fixed to the wireless communication device (data collection connector) of the MRI device so as to be detachable within a close distance, and the digitized MR signal is transmitted via an induction electric field. It is wirelessly transmitted from the RF coil device to the wireless communication device.
  • connection method such as the installation location of the RF coil device is not sufficiently studied was there. For this reason, a connection method with a higher degree of freedom has been desired.
  • FIG. 1 is a block diagram showing the overall configuration of the MRI apparatus 20 in the present embodiment.
  • the MRI apparatus 20 includes a gantry 21, a bed 32, and a top plate 34.
  • the top plate 34 is movably disposed on the bed 32 so as to be supported by the bed 32.
  • a subject P is placed on the top surface of the top plate 34.
  • the MRI apparatus 20 includes a static magnetic field magnet 22, a shim coil 24, a gradient magnetic field coil 26, and a transmission RF coil 28 in a gantry 21 formed in a cylindrical shape, for example.
  • the gantry 21 corresponds to the two thick line frames in the figure.
  • the static magnetic field magnet 22 and the shim coil 24 are, for example, cylindrical, and the shim coil 24 is arranged on the inner side of the static magnetic field magnet 22 with the same axis as the static magnetic field magnet 22.
  • the X-axis, Y-axis, and Z-axis that are orthogonal to each other in the apparatus coordinate system are defined as follows.
  • the static magnetic field magnet 22 and the shim coil 24 are arranged so that their axial directions are perpendicular to the vertical direction, and the axial direction of the static magnetic field magnet 22 and the shim coil 24 is the Z-axis direction.
  • the vertical direction is the Y-axis direction
  • the top plate 34 is arranged so that the normal direction of the upper surface thereof is the Y-axis direction.
  • the MRI apparatus 20 has a static magnetic field power supply 40, a shim coil power supply 42, a gradient magnetic field power supply 44, an RF transmitter 46, an RF receiver 48, a top board driving device 50, and a system control unit 52.
  • the top board driving device 50 is provided in the bed 32.
  • the static magnetic field magnet 22 forms a static magnetic field in the imaging space by a current supplied from the static magnetic field power supply 40.
  • the imaging space means, for example, a space in the gantry 21 where the subject P is placed and a static magnetic field is applied.
  • the static magnetic field magnet 22 is often composed of a superconducting coil, and is connected to the static magnetic field power source 40 at the time of excitation and supplied with a current. It is common. In addition, you may comprise the static magnetic field magnet 22 with a permanent magnet, without providing the static magnetic field power supply 40.
  • FIG. 1 A block diagram illustrating an exemplary computing environment in accordance with the present disclosure.
  • the shim coil 24 is connected to the shim coil power source 42 and uniformizes the static magnetic field by the current supplied from the shim coil power source 42.
  • the gradient magnetic field coil 26 is formed in a cylindrical shape, for example, inside the static magnetic field magnet 22.
  • the gradient coil 26 forms a gradient magnetic field Gx in the X-axis direction, a gradient magnetic field Gy in the Y-axis direction, and a gradient magnetic field Gz in the Z-axis direction in the imaging region by current supplied from the gradient magnetic field power supply 44. That is, the gradient magnetic fields Gx, Gy, and Gz in the three-axis direction of the apparatus coordinate system are synthesized, and the slice selection direction gradient magnetic field Gss, the phase encode direction gradient magnetic field Gpe, and the readout direction (frequency encode direction) gradient magnetic field as logical axes. Each direction of Gro can be set arbitrarily.
  • the imaging region is, for example, a region that is an image and is at least a part of the MR signal collection range used for generating one image or one set of images.
  • the imaging region is part of the MR signal collection range.
  • the entire MR signal acquisition range may be an image, and the MR signal acquisition range may coincide with the imaging region.
  • the “one set of images” is a plurality of images when MR signals of a plurality of images are collected in a single pulse sequence, such as multi-slice imaging.
  • the RF transmitter 46 generates an RF pulse (RF current pulse) with a Larmor frequency for causing nuclear magnetic resonance based on the control information input from the system control unit 52 and transmits this to the RF coil 28 for transmission. To do.
  • the transmission RF coil 28 receives an RF pulse from the RF transmitter 46 and transmits the RF pulse to the subject P. Note that the transmission RF coil 28 includes a whole-body coil that is built in the gantry 21 and that also transmits and receives RF pulses (not shown).
  • a receiving RF coil 29 is disposed in the top plate 34.
  • the reception RF coil 29 detects an MR signal generated when the nuclear spin in the subject P is excited by an RF pulse, and transmits the detected MR signal to the RF receiver 48.
  • a chest RF coil device 700, a pelvis RF coil device 800, and a lower limb RF coil device 900 are attached to the subject P.
  • the chest RF coil device 700, the pelvic RF coil device 800, and the lower limb RF coil device 900 are, for example, wearable local coils for receiving MR signals.
  • the chest RF coil device 700, the pelvic RF coil device 800, and the lower limb RF coil device 900 are part of the MRI apparatus 20 as an example here, but may be regarded as separate from the MRI apparatus 20.
  • a plurality of data collection connectors that receive MR signals detected by the RF coil device 700, the pelvic part RF coil device 800, and the lower limb RF coil device 900 by wireless connection via an induction electric field are connected to the top plate 34.
  • Communication device 640 is arranged. Details of the arrangement will be described later with reference to FIGS.
  • the chest RF coil device 700, the pelvis RF coil device 800, and the lower limb RF coil device 900 are connected in series with each other, and only one of them is a data collection connector. It is directly connected to 640 (see FIGS. 6 to 8 described later).
  • One data collection connector 640 executes the above-described digitized MR signal wireless communication with one RF coil device.
  • only one data collection connector 640 is used, but this is only an example.
  • Multiple data collection connectors 640 may be used.
  • the chest RF coil device 700 and the pelvis RF coil device 800 are connected in series to each other and wirelessly connected to one data collection connector 640, and the lower limb RF coil device 900 is connected to another data collection connector 640 alone. It may be wirelessly connected.
  • FIG. 1 only two data collection connectors 640 are illustrated because it is complicated, but three or more data collection connectors 640 may be provided, or only one. However, it is preferable that a large number of discrete data collection connectors 640 are arranged, rather than a single arrangement. This is because there is more room for selection when the data transmission connector (see FIGS. 5 to 8 described later) of the RF coil device is fixed in proximity to the data collection connector 640.
  • the data transmission connector of the RF coil device can be fixed in proximity to the closest data collection connector 640 when there is more room for selection of the fixed location.
  • proximity fixation means, for example, fixing so as not to move physically within a range (closeness) electromagnetically coupled to each other to such an extent that wireless communication via an induction electric field is possible. It is.
  • Wireless communication consists of (1) between the data collection connector 640 and the chest RF coil device 700, (2) the chest RF coil device 700—the pelvis RF coil device 800, and (3) the pelvis RF coil device 800—the lower limb RF coil device 900. Executed between.
  • the RF receiver 48 performs predetermined signal processing on the received MR signal to generate digitized MR signal complex data (hereinafter referred to as MR signal raw data).
  • MR signal raw data digitized MR signal complex data
  • the RF receiver 48 inputs the generated raw data of the MR signal to the image reconstruction unit 56.
  • the system control unit 52 performs system control of the entire MRI apparatus 20 via wiring such as the system bus 54 in the imaging operation and the image display after imaging.
  • the system control unit 52 stores control information necessary for driving the gradient magnetic field power supply 44, the RF transmitter 46, and the RF receiver 48.
  • the control information here is, for example, sequence information describing operation control information such as the intensity, application time, and application timing of the pulse current applied to the gradient magnetic field power supply 44.
  • the system controller 52 generates gradient magnetic fields Gx, Gy, Gz, and RF pulses by driving the gradient magnetic field power supply 44, the RF transmitter 46, and the RF receiver 48 according to the stored predetermined sequence.
  • system control unit 52 controls the top plate driving device 50 to move the top plate 34 in the Z-axis direction so that the top plate 34 is taken in and out of the imaging space inside the gantry 21. Further, the system control unit 52 can raise and lower the top plate 34 in the Y-axis direction by controlling the top plate driving device 50 and changing the height of the bed 32. The system control unit 52 controls the position of the top plate 34 in this way, thereby positioning the imaging region of the subject P on the top plate 34 at the magnetic field center in the imaging space.
  • the system control unit 52 functions as an imaging condition setting unit. That is, the system control unit 52 sets the imaging conditions for the main scan based on the information about the subject P input by the operator to the input device 62 and some imaging conditions. For this purpose, the system control unit 52 causes the display device 64 to display imaging condition setting screen information.
  • the imaging condition means, for example, what kind of pulse sequence is used, what kind of condition is used to transmit an RF pulse or the like, and under what kind of condition the MR signal is collected from the subject P.
  • imaging conditions include an imaging area as positional information in the imaging space, an imaging site, the type of pulse sequence such as parallel imaging, the type of RF coil device to be used, the number of slices, the interval between slices, etc. It is done.
  • the imaging part means, for example, which part of the subject P such as the head, chest, and abdomen is imaged as an imaging region.
  • the “main scan” is a scan for capturing a target diagnostic image such as a proton density weighted image, and does not include a scan for acquiring MR signals for positioning images and a scan for calibration.
  • a scan refers to an MR signal acquisition operation and does not include image reconstruction.
  • the calibration scan refers to a scan that is performed separately from the main scan in order to determine uncertain imaging conditions of the main scan or conditions and data used for image reconstruction after the main scan. .
  • the pre-scan described later refers to a calibration scan that is performed before the main scan.
  • the input device 62 provides the operator with a function for setting imaging conditions and image processing conditions.
  • the image reconstruction unit 56 converts the raw data of the MR signal input from the RF receiver 48 into, for example, matrix data based on the number of phase encoding steps and the number of frequency encoding steps, and stores this as k-space data.
  • the k space means a frequency space (Fourier space).
  • the image reconstruction unit 56 generates image data of the subject P by performing image reconstruction processing including two-dimensional Fourier transform on the k-space data.
  • the image reconstruction unit 56 stores the generated image data in the image database 58.
  • the image processing unit 60 takes in the image data from the image database 58, performs predetermined image processing on the image data, and stores the image data after the image processing in the storage device 66 as display image data.
  • the storage device 66 stores the above-described display image data with the imaging conditions used to generate the display image data, information about the subject P (patient information), and the like attached thereto as incidental information.
  • the display device 64 displays an imaging condition setting screen for the main scan, an image indicated by image data generated by imaging, and the like according to control of the system control unit 52.
  • FIG. 2 is a schematic perspective view showing an arrangement example of the data collection connector 640 on the top board 34.
  • FIG. 3 is an enlarged perspective view of the storage port 34a formed in the top plate 34 in FIG.
  • eight storage ports 34 a are formed on the top surface of the top plate 34.
  • the cable 34b is exposed from the bottom surface of each storage port 34a.
  • each cable 34b is electrically connected to the image reconstruction unit 56 side (the RF receiver 48) via the wiring in the top plate 34 or the like.
  • the other end of each cable 34 b is electrically connected to each data collection connector 640.
  • each data collection connector 640 can be installed on the top surface of the top plate 34 as shown in FIG. 3, for example, or can be installed on the bottom surface of the storage port 34a as shown in FIG. That is, the installation location of each data collection connector 640 can be changed by the length of the cable 34b.
  • eight data collection connectors 640 are arranged on the upper surface side of the top board 34. That is, in this example, four data collection connectors 640 are arranged in a row along the longitudinal direction (Z-axis direction) of the top plate 34 on each side of the top plate 34 in the width direction.
  • the RF coil device only needs to be connected to one of the data collection connectors 640, so the length of the cable 34b is approximately the same as the interval between the storage ports 34a. There is no need. It is desirable that the length of each cable 34b is, for example, not more than half of the interval between the storage ports 34a, and so long as to fit in the storage port 34a. More specifically, the length of each cable 34b can be set to, for example, 5 cm, 10 cm, or 15 cm.
  • FIG. 4 is an overview diagram showing an example of the configuration of the chest RF coil device 700 in the present embodiment.
  • the chest RF coil device 700 includes a cover member 702, two cables CA, a data transmission connector 710, and another coil connection connector 720.
  • the cover member 702 is formed of a flexible material so that it can be bent and deformed.
  • a deformable material for example, a flexible circuit board (Flexible-Printed-Circuit: FPC) described in JP 2007-229004 A can be used.
  • a control unit (control circuit) 728 and coil elements 730a, 730b, 730c, 730d, 730e, and 730f are arranged.
  • the cover member 702 includes other components such as an A / D converter ADC (analog-to-digital converter), which will be described later in detail with reference to FIGS.
  • the coil elements 730a to 730f function as antennas that detect MR signals from the subject P.
  • six coil elements 730a to 730f are illustrated, but the number, shape, and arrangement of the coil elements are not limited to those illustrated.
  • One cable CA connects the data transmission connector 710 to the control unit 728, and the other cable CA connects the other coil connection connector 720 to the control unit 728.
  • the data transmission connector 710 wirelessly transmits the MR signal detected by each of the coil elements 730a to 730f to the other coil connection connector or the data collection connector 640 of another RF coil device via an induction electric field.
  • Other coil connection connector 720 connects RF coil devices in series. For this reason, when the chest RF coil device 700 is connected to the data collection connector 640 alone, the other coil connection connector 720 is not used. For the same reason, when the chest RF coil device 700 is connected to the most distal side from the data collection connector 640 in a series connection of a plurality of RF coil devices, the other coil coupling connector 720 is not used.
  • the other coil connection connector 720 receives an MR signal wirelessly transmitted from another RF coil device via an induction electric field, and transmits the received MR signal to the data transmission connector 710. In that case, the data transmission connector 710 wirelessly transmits the MR signal acquired by the other coil connection connector 720 in addition to the MR signals detected by the coil elements 730a to 730f.
  • the pelvic part RF coil device 800 and the lower limb RF coil device 900 are the same as those of the chest RF coil device 700 except for the number, arrangement, and shape of the coil elements, an overview is omitted. That is, the pelvic part RF coil device 800 and the lower limb RF coil device 900 have data transmission connectors 810 and 910 and other coil connection connectors 820 and 920 having the same configuration as the data transmission connector 710 and the other coil connection connector 720, respectively.
  • the order of connection of the RF coil devices is not specified.
  • the lower limb RF coil device 900, the pelvis RF coil device 800, and the chest RF coil device 700 are connected in series in this order from the data collection connector 640 side.
  • MR signals detected by the three RF coil devices may be transmitted from the lower limb RF coil device 900 to the data collection connector 640.
  • an example in which the chest RF coil device 700, the pelvis RF coil device 800, and the lower limb RF coil device 900 are connected in series in this order from the data collection connector 640 side will be described.
  • FIG. 5 is a schematic cross-sectional view showing an example of a method of fixing the data transmission connector 710 and the data collection connector 640 of the chest RF coil device 700. As shown in the upper part of FIG. 5, for example, two protrusions 744 a are formed on the housing 744 of the data transmission connector 710.
  • the protrusion 744a has a semicircular cross section, for example, to facilitate insertion and removal of the data transmission connector 710. This is because, in general, it is easier to insert the data transmission connector 710 when the chamfering is smoother than the structure where the surface of the protrusion 744a is rough.
  • the protrusion 744a may be, for example, a spherical shape, or may be a shape obtained by dividing a cylinder in half along the axial direction.
  • the housing 744 including the protrusion 744a is formed of a non-magnetic material that does not deform. By forming the non-magnetic material, it is possible to reliably avoid the influence on the wireless communication via the induction electric field.
  • the data collection connector 640 has two fixing plates 644 (hatched parts in the upper part of FIG. 5) fixed to the side surfaces on both sides of the housing 642 by, for example, bonding.
  • Each fixing plate 644 has, for example, a substantially flat plate shape and is disposed so as to face each other.
  • Each fixing plate 644 has a shape for fitting the data transmission connector 710 as shown in the lower part of FIG. That is, in the two fixing plates 644, the recesses 644a into which the protrusions 744a are fitted are chamfered on the surfaces facing each other at positions corresponding to the protrusions 744a (see the upper part of FIG. 5).
  • each fixing plate 644 the tip side (the side opposite to the housing 642) is chamfered obliquely so that the data transmission connector 710 can be easily inserted.
  • the fixing plate 644 is preferably formed of a non-magnetic elastic material that can be bent to the extent shown in the middle of FIG. Examples of such materials include plastics and synthetic resins. The reason for forming the non-magnetic material is the same as described above.
  • the data transmission connector 710 is inserted into the data collection connector 640 from the upper state of FIG.
  • the fixing plates 644 are temporarily bent in directions away from each other. This is because the longest width between the protrusions 744 a on both sides of the data transmission connector 710 is larger than the shortest width of both the fixing plates 644.
  • the protrusions 744a on both sides are fitted into the recesses 644a of the fixing plate 644a.
  • Each fixed plate 644 returns to its original shape (the upper shape in FIG. 5) by the shape restoring force.
  • the data transmission connector 710 is detachably fixed to the data collection connector 640.
  • the data transmission connector 710 has antennas 746a to 746d on the bottom surface side (the data collection connector 640 side when fixed). Further, the data collection connector 640 has antennas 646a to 646d on the upper surface side (the data transmission connector 710 side when fixed).
  • the antennas 646a to 646d are paired with the antennas 746a to 746d (4 pairs in total). Among these, at least the antennas 646a to 746a are, for example, inductive electric field coupling couplers described later.
  • the antennas 746a to 746d are disposed at positions facing the antennas 646a to 646d with the interval D therebetween.
  • the interval D is an interval in which wireless communication via an induction electric field is possible.
  • the above-described fitting is merely an example of a method for fixing the data transmission connector 710, and other methods may be used for the detachable fixing method.
  • one of the male and female sides of the hook-and-loop fastener may be fixed to the upper surface of the data collection connector 640 and the other may be fixed to the bottom surface of the data transmission connector 710.
  • An induced electric field is an electric field generated by a change in magnetic flux density over time.
  • a transfer jet registered trademark
  • an induction electric field coupling type coupler as an antenna may be used (see, for example, JP 2010-147922 A).
  • the induction electric field coupling type coupler has a coupling electrode, a resonant stub, a ground, and the like (not shown).
  • a coupling electrode When an electrical signal is input to the resonant stub on the transmission side of the inductive field coupled coupler, charges are accumulated in the coupling electrode, and virtual charges equivalent to the charges are generated on the ground.
  • micro electric dipole functions as a transmitting antenna. That is, data is transferred to the receiving side by a longitudinal wave induced electric field generated by a minute electric dipole. Longitudinal waves that oscillate in parallel with the traveling direction do not depend on the direction of the antenna, so that stable data transfer can be realized.
  • the antennas 646a to 646d are arranged apart from each other and the antennas 746a to 746d are arranged apart from each other. Interference between wireless communication paths can be avoided.
  • the radio frequency may be separated between the antennas 646a-746a, between the antennas 646b-746b, between the antennas 646c-746c, and between the antennas 646d-746d (frequency values may be greatly separated).
  • the housing 744 of the data transmission connector 710 and the data collection connector 640 may be contacted. This is because it is only necessary to secure an interval in which an induced electric field is generated between the transmitting antenna and the receiving antenna.
  • the other coil connection connector 720 of the chest RF coil device 700 has the same outer shape as the data collection connector 640, the data transmission connectors 810 and 910 of the pelvic part RF coil device 800 and the lower limb RF coil device 900 are connected ( Fitting) is possible.
  • FIG. 6 is a block diagram illustrating an example of wireless communication between the chest RF coil device 700 and the control side of the MRI apparatus.
  • FIG. 7 is a block diagram illustrating an example of wireless communication between the pelvic RF coil device 800 and the chest RF coil device 700.
  • FIG. 8 is a block diagram showing an example of wireless communication between the lower limb RF coil device 900 and the pelvic part RF coil device 800.
  • a P / S converter (Parallel / SerialerConverter) PSC and a rechargeable battery 740 are arranged.
  • coil elements 730c to 730f are omitted in FIG.
  • only two preamplifiers PMP and A / D converters ADC corresponding to the coil elements 730a to 730f are shown corresponding to the coil elements 730a and 730b (the same applies to FIGS. 7 and 8).
  • Each preamplifier PMP receives and amplifies MR signals detected by the coil elements 730a to 730f, and inputs the amplified MR signals to the A / D converter ADC.
  • Each A / D converter ADC digitizes an analog MR signal input from the preamplifier PMP at a timing described later, and inputs the digitized MR signal to the P / S converter PSC.
  • the P / S converter PSC converts a plurality of input MR signals from parallel signals to one serial signal for wireless transmission. Convert.
  • the data transmission connector 710 of the chest RF coil device 700 includes a signal synthesis unit 754, a data transmission unit 756, a reference signal reception unit 758, a power reception unit 760, and an ID (IdentificationIdentInformation). )
  • a transmission unit 762 and a gate signal reception unit 764 are further included.
  • the power receiving unit 760 has a coil 772.
  • wiring between the gate signal receiving unit 764-control unit 728, wiring between the coil 772-rechargeable battery 740, wiring between the reference signal receiving unit 758 and each A / D converter ADC, and P / S conversion The wiring between the device PSC and the signal synthesis unit 754 is accommodated in the cable CA (see FIG. 4). Since it becomes complicated, the cable CA is not shown in FIG.
  • the signal synthesizer 754 acquires the MR signal (as a serial signal) transmitted from the other coil connection connector 720.
  • MR signals transmitted from the other coil coupling connector 720 include only MR signals detected by one RF coil device directly connected to the other coil coupling connector 720 and MR detected by a plurality of RF coil devices. There are cases of signals.
  • the signal synthesizer 754 synthesizes the MR signal detected by the chest RF coil device 700 input from the P / S converter PSC and the MR signal detected by the other RF coil device, and Convert to serial signal. For example, if the length of the MR signal of the serial signal input from the P / S converter PSC of the chest RF coil device 700 is substantially equal to the length of the MR signal of the serial signal transmitted from the other coil connection connector 720, the synthesis is performed. For example, the signal length is doubled.
  • the signal synthesis unit 754 inputs the MR signal input from the P / S converter PSC to the data transmission unit 756 as it is.
  • the data transmission connector 810 of the pelvic part RF coil device 800 is connected to the other coil connection connector 720.
  • the function of the power receiving unit 760 will be described later as a wireless power transmission operation.
  • the functions of the data transmission unit 756, the reference signal reception unit 758, the ID transmission unit 762, and the gate signal reception unit 764 will be described later as the above-described four types of wireless communication operations.
  • the data collection connector 640 includes a data reception unit 656, a reference signal transmission unit 658, a power supply unit 660, an ID (Identification Information) reception unit 662, a gate.
  • the power supply unit 660 includes a coil L1.
  • the function of the power supply unit 660 will be described later as a wireless power transmission operation.
  • the functions of the data reception unit 656, the reference signal transmission unit 658, the ID reception unit 662, and the gate signal transmission unit 664 will be described later as the above-described four types of wireless communication operations.
  • the control system of the MRI apparatus 20 includes a frequency up-conversion unit 402, a pulse waveform generation unit 404, a fixed frequency generation unit 406, and a variable frequency generation unit 408 in addition to the components shown in FIG. It has further.
  • the RF receiver 48 includes a frequency down-conversion unit 410 and a signal processing unit 412.
  • the fixed frequency generation unit 406 generates a reference clock signal having a constant frequency.
  • the fixed frequency generation unit 406 includes, for example, a highly stable crystal oscillator in order to generate a reference clock signal.
  • the fixed frequency generation unit 406 inputs the reference clock signal to the reference signal transmission unit 658 and the variable frequency generation unit 408.
  • the fixed frequency generation unit 406 also inputs a reference clock signal to a place where clock synchronization is performed in the MRI apparatus 20 such as the image reconstruction unit 56 and the pulse waveform generation unit 404.
  • the variable frequency generation unit 408 includes a PLL (Phase-Locked Loop), a DDS (Direct Digital Synthesizer), a mixer, and the like.
  • the variable frequency generation unit 408 operates based on the reference clock signal.
  • the variable frequency generation unit 408 generates a local signal (clock signal) having a variable frequency that matches the set value input from the system control unit 52 as the center frequency of the RF pulse.
  • the system control unit 52 inputs the initial value of the center frequency of the RF pulse to the variable frequency generation unit 408 before the pre-scan. Further, the system control unit 52 inputs the correction value of the center frequency of the RF pulse to the variable frequency generation unit 408 after the prescan.
  • variable frequency generation unit 408 inputs the variable frequency local signal to the frequency down conversion unit 410 and the frequency up conversion unit 402.
  • the system control unit 52 Based on the imaging conditions input by the operator via the input device 62, the system control unit 52 captures the repetition time in the pulse sequence, the type of the RF pulse, the center frequency of the RF pulse, the bandwidth of the RF pulse, and the like. Determine the conditions. The system control unit 52 inputs the imaging conditions determined as described above to the pulse waveform generation unit 404.
  • the pulse waveform generation unit 404 generates a baseband pulse waveform signal using the reference clock signal input from the fixed frequency generation unit 406 in accordance with the imaging conditions input from the system control unit 52.
  • the pulse waveform generation unit 404 inputs a baseband pulse waveform signal to the frequency up-conversion unit 402.
  • the frequency up-conversion unit 402 multiplies the baseband pulse waveform signal by the local signal input from the variable frequency generation unit 408, and further passes only a desired signal band by filtering, thereby performing frequency conversion (up-conversion). Conversion).
  • the frequency up-conversion unit 402 inputs the baseband pulse waveform signal whose frequency is thus increased to the RF transmitter 46.
  • the RF transmitter 46 generates an RF pulse based on the input pulse waveform signal.
  • the other coil coupling connector 720 of the chest RF coil device 700 includes antennas 776a to 776d, a data relay unit 786, a reference signal transfer unit 788, a power transfer unit 790, and an ID receiving unit. Part 792 and gate signal transfer part 794.
  • the power transfer unit 790 includes a coil 791.
  • the function of the power transfer unit 790 will be described later as a wireless power transmission operation.
  • the functions of the antennas 776a to 776d, the data relay unit 786, the reference signal transfer unit 788, the ID reception unit 792, and the gate signal transfer unit 794 will be described later as the above-described four types of wireless communication operations.
  • the pelvic part RF coil device 800 includes a data transmission connector 810, a cover member 802, and another coil connection connector 820.
  • the data transmission connector 810 has the same configuration as the data transmission connector 710 of the chest RF coil device 700. That is, the data transmission connector 810 includes antennas 846a to 846d, a signal synthesis unit 854, a data transmission unit 856, a reference signal reception unit 858, a power reception unit 860, an ID transmission unit 862, and a gate signal reception unit 864. And have. In order to distinguish these constituent elements from the data transmission connector 710, only the most significant numeral is changed from 7 to 8.
  • a control unit 828 In the cover member 802 of the pelvic part RF coil device 800, a control unit 828, a plurality of coil elements (830a, 830b, etc.), and a plurality of preamplifiers PMP and A / D converters ADC respectively corresponding to the plurality of coil elements. And a P / S converter PSC and a rechargeable battery 840 are arranged.
  • the other coil connection connector 820 is connected to the data transmission connector 910 of the lower limb RF coil device 900 as an example here.
  • the other coil connection connector 820 of the pelvic part RF coil device 800 has the same configuration as the other coil connection connector 720 of the chest RF coil device 700. That is, the other coil connection connector 820 includes antennas 876a to 876d, a data relay unit 886, a reference signal transfer unit 888, a power transfer unit 890, an ID reception unit 892, and a gate signal transfer unit 894.
  • the power transfer unit 890 includes a coil 891. For the reference numerals of these components, only the most significant numeral is changed from 7 to 8 for distinction from the other coil connection connector 720.
  • the lower limb RF coil device 900 includes a data transmission connector 910, a cover member 902, and another coil connection connector 920.
  • the data transmission connector 910 has the same configuration as the data transmission connectors 710 and 810. That is, the data transmission connector 910 includes antennas 946a to 946d, a signal synthesis unit 954, a data transmission unit 956, a reference signal reception unit 958, a power reception unit 960, an ID transmission unit 962, and a gate signal reception unit 964. And have. In order to distinguish these constituent elements from the data transmission connectors 710 and 810, only the most significant numeral is changed to 9.
  • control unit 928 In the cover member 902 of the lower limb RF coil device 900, there are a control unit 928, a plurality of coil elements (930a, 930b, etc.), a plurality of preamplifiers PMP and A / D converters ADC respectively corresponding to the plurality of coil elements, , P / S converter PSC and rechargeable battery 940 are arranged.
  • the configuration of the other coil connection connector 920 is the same as that of the other coil connection connectors 720 and 820.
  • no other RF coil device is connected to the other coil coupling connector 920.
  • an electromotive force is generated in the coil 772 due to an induced magnetic field generated when the power supply unit 660 passes a primary current through the coil L1.
  • the secondary side current flowing in the coil 772 by this electromotive force flows into the cover member 702 via a cable CA (not shown), and the rechargeable battery 740 is charged by a part of the secondary side current (AC to DC).
  • a rectifier for conversion may be provided in each power receiving unit 760, 860, 960). The remainder of the secondary current flows through the coil 791 of the other coil connection connector 720 in FIG.
  • the data transmission connector 810 of the pelvic part RF coil device 800 is fixed to the other coil connection connector 720 of the chest RF coil device 700.
  • the coil 791 of the power transfer unit 790 is in a range close enough to be electromagnetically coupled to the coil 872 of the power receiving unit 860.
  • the data transmission connector 910 of the lower limb RF coil device 900 is fixed to the other coil connection connector 820 of the pelvis part RF coil device 800.
  • the coil 891 of the power transfer unit 890 is in a range close enough to be electromagnetically coupled to the coil 972 of the power receiving unit 960.
  • an electromotive force is generated in the coil 972 by the induced magnetic field generated by the primary current flowing in the coil 891.
  • the secondary current flowing in the coil 972 by this electromotive force flows into the cover member 902 and charges the rechargeable battery 940.
  • another RF coil device is not connected to the other coil connection connector 920 of the lower limb RF coil device 900, almost all the secondary current flowing in the coil 972 is used for charging the rechargeable battery 940.
  • control unit 928 supplies the power charged in the rechargeable battery 940 as described above to each unit of the lower limb RF coil device 900 via a wiring (not shown). The same applies to the pelvis RF coil device 800 and the chest RF coil device 700.
  • the rechargeable batteries 740, 840, 940 are used during the unused period. May be charged.
  • another rechargeable battery charged during an unused period and a rechargeable battery charged wirelessly as described above may be used in combination.
  • Each identification information is wirelessly transmitted to the data collection connector 640 side.
  • the wireless communication of the identification information may be the same means as RFID (Radio Frequency Identification) represented by an IC tag (Integrated Circuit Tag), for example. Further, the identification information is stored in advance in each ID transmission unit 762, 862, 962. However, the identification information may be input from the control units 728, 828, and 928 to the ID transmission units 762, 862, and 962 by wire.
  • RFID Radio Frequency Identification
  • IC tag Integrated Circuit Tag
  • the ID transmission unit 762 when the antenna 746c of the ID transmission unit 762 enters the communication range of the antenna 646c of the ID reception unit 662 by inserting the data transmission connector 710 into the data collection connector 640 in FIG. 6, the ID transmission unit 762 Is activated with power wirelessly transmitted from the ID receiving unit 662. That is, the ID transmission unit 762 automatically wirelessly transmits the identification information of the chest RF coil device 700 from the antenna 746c to the antenna 646c as a digital signal.
  • the ID receiving unit 662 inputs the identification information of the chest RF coil device 700 received by the antenna 646c to the system control unit 52.
  • the system control unit 52 recognizes that the chest RF coil device 700 is directly connected to the data collection connector 640, and permits communication between the chest RF coil device 700 and the data collection connector 640 of the MRI device 20. Input to each part on the control side.
  • the power supply unit 660 receives the above communication permission, starts wireless transmission of the power described above, and continues power transmission until the communication permission is stopped. As a result, the rechargeable batteries 740, 840, and 940 of the chest RF coil device 700, the pelvis RF coil device 800, and the lower limb RF coil device 900 are charged as described above. With this power, the pelvic part RF coil device 800 and the lower limb RF coil device 900 also start to operate, so that identification information can be transmitted.
  • the system control unit 52 sends an information request from the ID reception unit 662 to the ID transmission unit 762 as to whether another RF coil device is connected to the chest RF coil device 700. Let it transmit wirelessly.
  • control unit 928 of the lower limb RF coil device 900 on the distal side connects another RF coil device to the other coil connection connector 920 on condition that there is no input signal from the other coil connection connector 920, for example. Judge that it is not.
  • control unit 928 receives information indicating that the RF coil device is not connected to the other coil coupling connector 920 of the lower limb RF coil device 900 and identification information of the lower limb RF coil device 900 from the ID transmission unit 962. Let it transmit wirelessly. That is, the above information is transmitted to the ID receiving unit 892 of the pelvic part RF coil device 800 by wireless communication between the antennas 876c and 946c.
  • the ID receiving unit 892 inputs the received information to the control unit 828. Accordingly, the control unit 828 wirelessly transmits the following three items of information from the ID transmission unit 862 to the ID reception unit 792 of the chest RF coil device 700 in the wireless communication path between the antennas 776c-846c of FIG.
  • the information of the above three items includes (1) information indicating that only the lower limb RF coil device 900 is connected to the other coil coupling connector 820 of the pelvic part RF coil device 800, and (2) the lower limb RF coil device 900. Identification information, and (3) identification information of the pelvic part RF coil device 800.
  • the ID receiving unit 792 transmits the information on the above three items to the control unit 728. Based on the information of the above three items, the control unit 728 determines that the chest RF coil device 700, the pelvis RF coil device 800, and the lower limb RF coil device 900 are connected in series in this order from the data collection connector 640 side. The determination result is generated as connection information.
  • the connection information includes identification information of the chest RF coil device 700, the pelvis RF coil device 800, and the lower limb RF coil device 900.
  • the control unit 728 transmits the connection information from the ID transmission unit 762 to the ID reception unit 662 as a reply to the information request in the wireless communication path between the antennas 646c to 746c in FIG.
  • the connection information for example, the identification information of the chest RF coil device 700, the pelvis RF coil device 800, and the lower limb RF coil device 900 is sequentially transmitted as a serial signal to indicate the connection information. Also good.
  • the ID receiving unit 662 inputs the received connection information to the system control unit 52. Thereby, the system control unit 52 recognizes that the chest RF coil device 700, the pelvis RF coil device 800, and the lower limb RF coil device 900 are connected in series in this order from the data collection connector 640 side.
  • a digital gate signal is being captured by radio communication via an induced electric field, for example. Sent continuously.
  • an active trap circuit including, for example, a PIN diode (p-intrinsic-n Diode) as a switch for switching on and off each coil element of the chest RF coil device 700, the pelvic RF coil device 800, and the lower limb RF coil device 900 Etc. are used.
  • the gate signal is a control signal for the switch.
  • the chest RF coil device 700, the pelvis RF coil device 800, and the lower limb RF coil device via the gate signal transmission unit 664, the antennas 646d and 746d, the gate signal reception unit 764, and the like.
  • the gate signal input to 900 is normally turned on.
  • the switch is turned off, and each coil element (930a, etc.) is in a state where the loop is interrupted, and the MR signal cannot be detected.
  • the off-level gate signal is wirelessly transmitted.
  • the switch is turned on, and each coil element (such as 930a) can detect the MR signal.
  • the transmission of the gate signal is executed in real time from the data collection connector 640 to the lower extremity RF coil device 900 on the distal side.
  • “Real time” here means a delay time that does not interfere with MR signal detection operation compared to the application start timing and application period of each RF pulse and each gradient magnetic field pulse in the pulse sequence. It is.
  • a gate signal is transmitted from the gate signal transmission unit 664 of the data collection connector 640 to the gate signal reception unit 764 of the chest RF coil device 700 between the antennas 646d-746d in FIG.
  • the gate signal received by the gate signal receiving unit 764 is input to the control unit 728 and transmitted to the pelvic part RF coil device 800 via the control unit 728. That is, the gate signal is wirelessly transmitted from the gate signal transfer unit 794 to the gate signal reception unit 864 between the antennas 776d-846d in FIG.
  • the gate signal received by the gate signal receiving unit 864 is input to the control unit 828 and transmitted to the lower limb RF coil device 900 via the control unit 828. That is, the gate signal is wirelessly transmitted from the gate signal transfer unit 894 to the gate signal receiving unit 964 between the antennas 876d to 946d in FIG. 8, and the gate signal is input to the control unit 928.
  • the reference signal is used to synchronize the chest RF coil device 700, the pelvic RF coil device 800, the lower limb RF coil device 900, which is the MR signal transmitting side, and the reference frequency of the system based on the fixed frequency generator 406. Signal.
  • the reference signal transmission unit 658 generates a reference signal by performing processing such as modulation, frequency conversion, amplification, and filtering on the reference clock signal input from the fixed frequency generation unit 406.
  • a trigger signal (A / D conversion start signal) for determining sampling timing in each A / D converter ADC of the chest RF coil device 700, the pelvic RF coil device 800, and the lower limb RF coil device 900 is a system control unit 52.
  • a / D conversion start signal for determining sampling timing in each A / D converter ADC of the chest RF coil device 700, the pelvic RF coil device 800, and the lower limb RF coil device 900 is a system control unit 52.
  • the above sampling is, for example, taking the strength of an analog signal at regular intervals and making it into a form that can be digitally recorded.
  • the reference signal transmission unit 658 wirelessly transmits both the reference signal and the trigger signal to the reference signal reception unit 758 by superimposing the trigger signal on the reference signal.
  • the transmission of the reference signal and the trigger signal is also performed in real time from the data collection connector 640 to the distal leg RF coil device 900 in the same manner as the gate signal. Specifically, first, a reference signal and a trigger signal are wirelessly transmitted from the reference signal transmission unit 658 of the data collection connector 640 to the reference signal reception unit 758 of the chest RF coil device 700 between the antennas 646b to 746b of FIG. Sent.
  • the reference signal and the trigger signal received by the reference signal receiving unit 758 are input to each A / D converter ADC and the control unit 728 of the chest RF coil device 700, and also through the control unit 728, the pelvis Is transmitted to the RF coil device 800. That is, the reference signal and the trigger signal are wirelessly transmitted from the reference signal transfer unit 788 to the reference signal receiving unit 858 between the antennas 776b-846b of FIG.
  • the reference signal and the trigger signal received by the reference signal receiving unit 858 are input to each A / D converter ADC and the control unit 828 of the pelvic part RF coil device 800 and via the control unit 828. It is transmitted to the lower limb RF coil device 900. That is, between the antennas 876b to 946b in FIG. 8, the reference signal and the trigger signal are wirelessly transmitted from the reference signal transfer unit 888 to the reference signal receiving unit 958, and each A / D converter ADC and control unit of the lower limb RF coil device 900 are transmitted. 928.
  • digital MR signals are transmitted between the antennas 646a to 746a in FIG. 6, between the antennas 776a to 846a in FIG. 7, and between the antennas 876a to 946a in FIG.
  • MR signals detected by the respective coil elements (such as 930a) of the chest RF coil device 700, the pelvic RF coil device 800, and the lower limb RF coil device 900 are wirelessly transmitted in a time-division manner as serial signals. This is because in the example of the present embodiment, there is only one set of antenna for transmitting MR signals between the RF coil devices.
  • Each A / D converter ADC of the lower limb RF coil apparatus 900 starts sampling and quantization of the MR signal based on the reference signal (sampling clock signal) in synchronization with the timing at which the trigger signal is transmitted.
  • Each A / D converter ADC inputs a digital MR signal to the P / S converter PSC.
  • the P / S converter PSC converts a plurality of MR signals from parallel signals to serial signals.
  • the serial signal is configured to include the identification information of the RF coil device and the identification number of the coil element so that it can be separated into MR signals for each coil element in the subsequent stage.
  • the serial signal is, for example, from the earliest transmission time in the order of the identification information of the lower limb RF coil device 900, then the identification number of the coil element such as 930a, then the MR signal detected by the coil element, An identification number of another coil element, and then an MR signal... Detected by the other coil element (see FIG. 9 described later).
  • the P / S converter PSC inputs the generated serial signal to the signal synthesis unit 954.
  • the processing of each A / D converter ADC and P / S converter PSC described above is the same for the chest RF coil device 700 and the pelvis RF coil device 800.
  • the signal synthesis unit 954 receives one serial signal from the P / S converter PSC. Only the MR signal is input. Therefore, the signal synthesis unit 954 inputs the input serial signal to the data transmission unit 956 as it is.
  • the data transmission unit 956 performs processing such as error correction coding, interleaving, modulation, frequency conversion, amplification, filtering, and the like on the input serial MR signal, thereby performing wireless transmission (which is a serial signal and a digital signal). A trusted MR signal is generated. Then, the MR signal is transmitted from the data transmission unit 956 to the data relay unit 886 of the pelvic part RF coil device 800 between the antennas 876a to 946a in FIG.
  • the data relay unit 886 inputs the MR signal received as described above to the signal synthesis unit 854 of FIG.
  • the signal synthesizing unit 854 receives MR signals detected and digitized by the coil elements (830a, 830b, etc.) in the pelvic part RF coil device 800 as serial signals.
  • the signal synthesis unit 854 has one serial signal (MR signal detected by the lower limb RF coil device 900) input from the data relay unit 886 and one serial signal (pelvic part) input from the P / S converter PSC.
  • the MR signal detected by the RF coil device 800 is combined with one serial signal.
  • the serial signal here is also configured to include the identification information of each RF coil device and the identification number of each coil element so that it can be separated into MR signals for each coil element in the subsequent stage (see FIG. 9 described later). reference).
  • the signal synthesis unit 854 inputs the generated serial signal to the data transmission unit 856.
  • the serial signal is transmitted from the data transmission unit 856 to the data relay unit 786 of the chest RF coil device 700 between the antennas 776a-846a of FIG.
  • the data relay unit 786 inputs the serial signal received as described above to the signal synthesis unit 754 in FIG.
  • MR signals detected and digitized by the respective coil elements (730a, 730b, etc.) in the chest RF coil device 700 are also input to the signal synthesis unit 754 as serial signals.
  • the signal synthesis unit 754 receives one serial signal (MR signal detected by the lower limb RF coil device 900 and the pelvis RF coil device 800) input from the data relay unit 786 and the P / S converter PSC.
  • 1 serial signal (MR signal detected by the chest RF coil device 700) is synthesized into 1 serial signal so that it can be separated later.
  • the signal synthesis unit 754 inputs the generated serial signal to the data transmission unit 756.
  • the serial signal is transmitted from the data transmission unit 756 to the data reception unit 656 of the data collection connector 640 between the antennas 646a to 746a in FIG.
  • the above is the description regarding the four types of wireless communication.
  • FIG. 9 is an explanatory diagram showing an example of the configuration of the serial signal.
  • the serial signal can be separated into MR signals for each RF coil device and can be separated into MR signals for each coil element.
  • serial signals are serial signals in the order of the MR signal detected by the chest RF coil device 700, the MR signal detected by the pelvic RF coil device 800, and the MR signal detected by the lower limb RF coil device 900.
  • each of the signal synthesizers 754 and 854 connects the head of the serial signal input from the other coil connection connectors 720 and 820 to the end of the serial signal input from the P / S converter PSC, for example. By doing so, a new one serial signal is generated.
  • MR signals detected by the chest RF coil device 700 are sequentially given MR information for each coil element after the identification information of the chest RF coil device 700 is added to the head.
  • the MR signal of each coil element is constituted by digital data of the MR signal detected by the coil element having the identification number after the coil element identification number (730a, etc.) is given to the head.
  • FIG. 10 is a flowchart showing an example of the flow of the imaging operation by the MRI apparatus 20 in the present embodiment.
  • the operation of the MRI apparatus 20 will be described according to the step numbers shown in FIG.
  • Step S1 With the top 34 (see FIG. 1) outside the gantry 21, the chest RF coil device 700, the pelvis RF coil device 800, and the lower limb RF coil device 900 are attached to the subject P on the top 34. Is done. Further, for example, the data transmission connector 710 of the chest RF coil device 700 is detachably fixed to the nearest data collection connector 640 (see FIGS. 2 to 5).
  • the data transmission connector 810 is similarly fixed to the other coil connection connector 720 (see FIG. 6), and the data transmission connector 910 is similarly fixed to the other coil connection connector 820 (see FIG. 7).
  • the identification information of the chest RF coil device 700 is input to the system control unit 52 by the communication described above, and communication permission is output. Is done.
  • wireless transmission of power is started to the chest RF coil device 700, the pelvis RF coil device 800, and the lower extremity RF coil device 900, and the three RF coil devices. Connection information is input to the system control unit 52.
  • the reference signal transmission unit 658 starts input of the reference signal to each of the reference signal reception units 758, 858, and 958 according to the communication permission by the system control unit 52 as described with reference to FIGS.
  • the reference signal is continuously transmitted wirelessly).
  • a trigger signal is also superimposed on the reference signal.
  • the top board driving device 50 moves the top board 34 into the gantry 21 according to the control of the system control unit 52. Thereafter, the process proceeds to step S2.
  • Step S2 The system control unit 52 determines the imaging condition of the main scan based on the imaging condition input to the MRI apparatus 20 via the input device 62 and the connection information of the RF coil apparatus acquired in Step S1. Set a part. Thereafter, the process proceeds to step S3.
  • Step S3 The system control unit 52 controls each unit of the MRI apparatus 20 to execute a pre-scan.
  • a pre-scan for example, an imaging condition such as a correction value of the center frequency of the RF pulse is calculated. Thereafter, the process proceeds to step S4.
  • the system control unit 52 sets the remaining imaging conditions for the main scan based on the execution result of the pre-scan.
  • the imaging conditions include information on which coil element (930a, etc.) is used for MR signal detection in the main scan.
  • the system control unit 52 uses the information on the coil elements used for detection of the MR signal as the control units 728 of the chest RF coil device 700, the pelvis RF coil device 800, and the lower limb RF coil device 900 through any of the wireless communication paths. , 828 and 928.
  • step S5 information on the coil elements used for detecting MR signals on the path between the antennas 646d-746d in FIG. 6, between the antennas 776d-846d in FIG. 7, and between the antennas 876d-946d in FIG.
  • the data is input to the control units 728, 828, and 928. Thereafter, the process proceeds to step S5.
  • Step S5 The system control unit 52 controls each unit of the MRI apparatus 20 to execute the main scan. Specifically, a static magnetic field is formed in the imaging space by the static magnetic field magnet 22 excited by the static magnetic field power supply 40. Further, a current is supplied from the shim coil power source 42 to the shim coil 24, and the static magnetic field is made uniform.
  • the operation described with reference to FIGS. 6 to 8 causes the chest RF coil device 700, the pelvis RF coil device 800, and the lower limb RF coil device 900 to receive the gate signal from the gate signal transmission unit 664. Is continuously transmitted wirelessly.
  • MR signals from the subject P are collected by sequentially repeating the following processes ⁇ 1> to ⁇ 4>. .
  • the system control unit 52 drives the gradient magnetic field power supply 44, the RF transmitter 46, and the RF receiver 48 according to the pulse sequence, thereby forming a gradient magnetic field in the imaging region including the imaging region of the subject P.
  • the RF pulse is transmitted from the transmission RF coil 28 to the subject P. Only during the period when the RF pulse is transmitted to the subject P, the gate signal is turned on, for example, and the coil elements (930a, etc.) of the chest RF coil device 700, the pelvis RF coil device 800, and the lower limb RF coil device 900 are turned off. A state is established and coupling is prevented.
  • each coil element such as 930a
  • detects an MR signal generated by nuclear magnetic resonance in the subject P The detected analog MR signal is input from each coil element (such as 930a) to each preamplifier PMP.
  • Each preamplifier PMP amplifies the input MR signal and inputs it to each A / D converter ADC.
  • the preamplifier PMP and the A / D converter ADC corresponding to the coil elements not selected for detecting the MR signal in step S4 do not operate. Therefore, only the MR signal of the coil element selected for MR signal detection in step S4 is transmitted to the subsequent stage.
  • Each A / D converter ADC corresponding to each selected coil element samples and quantizes the MR signal based on the reference signal in synchronization with the timing at which the trigger signal is wirelessly transmitted.
  • Each A / D converter ADC inputs a digital MR signal to the P / S converter PSC.
  • Each P / S converter PSC converts a plurality of inputted MR signals from parallel signals to serial signals, and inputs them to the respective signal synthesis sections 754, 854, 954.
  • MR signals detected by the chest RF coil device 700, the pelvic RF coil device 800, and the lower limb RF coil device 900 are finally combined into one serial signal. (See FIG. 9) and transmitted to the data receiving unit 656.
  • the data receiving unit 656 performs processing such as amplification, frequency conversion, demodulation, deinterleaving, and error correction decoding on the MR signal received by the antenna 646a. As a result, the data receiving unit 656 extracts the original digital MR signal from the MR signal for wireless transmission.
  • the data receiving unit 656 extracts MR signals for each coil element of the chest RF coil device 700, the pelvis RF coil device 800, and the lower limb RF coil device 900 from the received one serial signal.
  • the data receiving unit 656 inputs each extracted MR signal to the frequency down conversion unit 410 of the RF receiver 48.
  • the frequency down-conversion unit 410 multiplies the local signal input from the variable frequency generation unit 408 by the MR signal input from the data reception unit 656, and further passes only a desired signal band by filtering. As a result, the frequency down-conversion unit 410 frequency-converts (down-converts) the MR signal and inputs the MR signal whose frequency is lowered to the signal processing unit 412.
  • the signal processing unit 412 performs predetermined signal processing to generate MR signal raw data, and inputs the MR signal raw data to the image reconstruction unit 56.
  • the image reconstruction unit 56 converts the raw data of the MR signal into, for example, matrix data and saves it as k-space data.
  • Step S6 The image reconstruction unit 56 (see FIG. 1) reconstructs image data by applying image reconstruction processing including Fourier transform to k-space data, and stores the obtained image data in the image database 58. save. Thereafter, the process proceeds to step S7.
  • the image processing unit 60 takes in the image data from the image database 58, performs predetermined image processing on the image data, generates display image data, and stores the display image data in the storage device 66.
  • the system control unit 52 transfers the display image data to the display device 64 and causes the display device 64 to display the image indicated by the display image data.
  • the data transmission connector 710 is detached from the data collection connector 640.
  • the communication between them and the power supply to the chest RF coil device 700 end.
  • the input of the reference signal is started in step S1, but this is only an example.
  • the input of the reference signal may be started immediately before the pre-scan in step S3 (that is, after the imaging condition is set in step S2).
  • the above is the description of the operation of the MRI apparatus 20 of the present embodiment.
  • the wireless output can be lowered. For this reason, there is no problem that the transmission radio waves are reflected around and the transmission data is deteriorated. Therefore, digital MR signals can be transmitted wirelessly from the chest RF coil device 700, the pelvic RF coil device 800, and the lower limb RF coil device 900 to the main body side (RF receiver 48 side) of the MRI apparatus 20.
  • a plurality of MR signals respectively detected by a plurality of coil elements are converted into serial signals and wirelessly transmitted. Therefore, one set of antennas (radio communication paths) for transmitting MR signals can be used, and it is not necessary to perform frequency separation for preventing interference between MR signals.
  • the data collection connector 640 may be provided at a plurality of locations, and the data transmission connector 710 (of the chest RF coil device 700) may be fixed to any one of the data collection connectors 640. Further, the position of each data collection connector 640 can be slightly changed by each cable 34b.
  • the RF coil apparatus and the data collection connector 640 are brought close to each other.
  • the MR signal can be transmitted wirelessly satisfactorily.
  • the configuration of the MRI apparatus can be simplified. As a result, the manufacturing cost of the MRI apparatus can be reduced.
  • the chest RF coil device 700, the pelvis RF coil device 800, and the lower limb RF coil device 900 have data transmission connectors 710, 810, 910 and other coil connection connectors 720, 820, 920 having the same configuration. Accordingly, since these three RF coil devices can be connected in series, the MR signals detected by the three RF coil devices can be wirelessly transmitted to one data collection connector 640 on the control side of the MRI apparatus 20. That is, the degree of freedom of the connection method of the RF coil device is improved.
  • digitized MR signals can be satisfactorily transmitted wirelessly from the RF coil apparatus to the MRI apparatus.
  • a plurality of RF coil devices can be connected in series, the degree of freedom in the connection method of the RF coil devices is improved.
  • Two or four or more RF coil devices are connected in series, and the MR is applied to only one data collection connector 640 on the control side of the MRI apparatus 20 from only one of the RF coil devices based on the same principle as the above embodiment.
  • the signal may be transmitted wirelessly.
  • the embodiment of the present invention is not limited to the chest RF coil device 700, the pelvis RF coil device 800, and the lower limb RF coil device 900, but for other imaging regions such as a head RF coil device and a shoulder RF coil device.
  • the same principle can be applied to an RF coil device.
  • the number and location of the data collection connectors 640 are not limited to those shown in FIGS.
  • the data collection connector 640 may be disposed so as to be exposed on the top plate 34 or the gantry 21 or may be disposed with respect to the bed 32.
  • the cables CA of the chest RF coil device 700, the pelvis RF coil device 800, and the lower limb RF coil device 900 may be lengthened. Good.
  • the data collection connector 640 may be fixed to the top surface of the top plate 34 without forming the storage port 34 a in the top plate 34.
  • the position of each data collection connector 640 need not be changeable within the length of the cable 34b.
  • the data collection connector 640 may be fixed to the bottom surface of the storage port 34a of the top plate 34 without the cable 34b.
  • the top surface of the top plate 34 may be formed flat without providing the storage port 34a.
  • the cable 34b is exposed from the upper surface of the top plate 34, and the data collection connector 640 is similarly connected to the tip of the cable 34b.
  • the MR signal is transmitted from the data collection connector 640 side to the RF receiver 48 (image reconstruction unit 56 side) via the wiring in the top plate 34 connected to the cable 34b.
  • the position of the data collection connector 640 can be changed on the top plate 34 within a predetermined range (the above-described range of the length of the cable 34b).
  • the data collection connector 640 may be detachably fixed to any position in the movable range of the data collection connector 640 on the top plate 34.
  • a hook-and-loop fastener such as VELCRO (registered trademark) is fixed to the bottom surface of the data collection connector 640, and the other (with the size of the above movable range). What is necessary is just to fix to the upper surface of. In this way, the movement of the subject during communication prevents the wireless communication connection unit via the induction electric field from moving together with the RF coil device, thereby causing a communication error.
  • the fixing method is not limited to the hook-and-loop fastener.
  • the MR signal is wirelessly transmitted in a time-division manner as a serial signal including the identification information of each RF coil device and the identification number of each coil element so that it can be separated into each MR signal detected by each coil element in the subsequent stage.
  • An example was described (see FIG. 9).
  • the embodiment of the present invention is not limited to such an aspect.
  • a separate wireless communication path is prepared and information indicating which MR element of which RF coil device is currently transmitted is transmitted wirelessly in synchronization with the transmission of the MR signal. May be.
  • the MR signal may be wirelessly transmitted as the parallel signal by means such as increasing the number of MR signal transmission and reception antennas to the same number as the coil elements.
  • the RF receiver 48 may be disposed inside the gantry 21 instead of outside the gantry 21.
  • an electronic circuit board corresponding to the RF receiver 48 is arranged in the gantry 21.
  • MR signals input from the chest RF coil device 700, the pelvic RF coil device 800, the lower limb RF coil device 900, and the reception RF coil 29 are output as digital signals to the outside of the gantry 21 and input to the image reconstruction unit 56. Is done.
  • the data collection connector 640 is an example of a wireless communication unit recited in the claims. 6 to 8, the chest RF coil device 700 is an example of the first RF coil device according to the claims, and the pelvis RF coil device 800 is an example of the second RF coil device according to the claims. It is.
  • the other coil connection connector 720 of the chest RF coil device 700 is an example of the other coil connection portion described in the claims, and the data transmission connector 810 of the pelvis RF coil device 800 is described in the claims. It is an example of the signal transmission part.
  • coil connection connectors 720, 820, and 920 are examples of the first communication unit recited in the claims.
  • the data transmission connectors 710, 810, and 910 are examples of the second communication unit recited in the claims.
  • MRI apparatus 21 Gantry, 22: Static magnetic field magnet, 24: Shim coil, 26: Gradient magnetic field coil, 32: bed, 34: top board, 700: chest RF coil device, 800: Pelvic RF coil device, 900: Lower limb RF coil device

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Signal Processing (AREA)
  • High Energy & Nuclear Physics (AREA)

Abstract

 一実施形態では、MRI装置(20)は、第1のRFコイル装置(700)と、無線通信部(640)と、画像再構成部(56)とを有する。第1のRFコイル装置は、誘導電界を介して第2のRFコイル装置に無線接続されると共に、第2のRFコイル装置(800)から無線送信されるデジタル化されたMR信号を受信する。第1のRFコイル装置は、第1のRFコイル装置により検出されたMR信号と、第2のRFコイル装置から取得したMR信号とを、誘導電界を介して無線通信部に無線送信する。無線通信部は、誘導電界を介して、第1のRFコイル装置から無線送信されるMR信号を受信する。画像再構成部は、無線通信部により受信されたMR信号に基づいて画像データを再構成する。

Description

磁気共鳴イメージング装置、及び、RFコイル装置
 本発明の実施形態は、磁気共鳴イメージング装置、及び、RFコイル装置に関する。
 MRIは、静磁場中に置かれた被検体の原子核スピンをラーモア周波数のRFパルスで磁気的に励起し、この励起に伴って発生するMR信号から画像を再構成する撮像法である。なお、上記MRIは磁気共鳴イメージング(Magnetic Resonance Imaging)の意味であり、RFパルスは高周波パルス(radio frequency pulse)の意味であり、MR信号は核磁気共鳴信号(nuclear magnetic resonance signal)の意味である。
 ここで、例えばRFパルス電流をコイルに流すことで、被検体内の原子核スピンにRFパルスを送信し、発生したMR信号を検出するのがRFコイル装置(Radio Frequency Coil Device)である。RFコイル装置には、MRI装置自体に内蔵されるものもあるが、例えば局所用RFコイル装置のようにMRI装置の接続ポートとのコネクタ接続によってMRI装置の制御部に認識されるものもある。
 MRIでは、MR信号の収集系統の多チャンネル化が進んでいる。ここでのチャンネルとは、RFコイル装置内の各コイル素子からそれぞれ出力され、MRI装置のRF受信器に入力されるまでの複数のMR信号の各経路の意味である。チャンネル数はRF受信器の入力受付数以下に設定されるが、多数のRFコイル装置をMRI装置に接続可能である。
 RFコイル装置とMRI装置との間の接続ケーブルの本数が多チャンネル化により増大すると、配線が煩雑となるので不便である。このため、RFコイル装置とMRI装置との間での信号の送信及び受信を無線化することが望まれているが、アナログ信号による無線送信は実現に至っていない。ダイナミックレンジの低下などの各種制約があるからである。
 より詳細には、MRI装置では、被検体から放射される微弱なMR信号に対する受信感度への影響を抑えるために、RFコイル装置とMRI装置との間で無線通信に用いる電磁波の出力を大きくすることができない。無線出力を大きくできない場合、送信信号が空間伝播する際の信号損失により、ダイナミックレンジが低下する。そこで、特許文献1では、MR信号をデジタル化してから無線送信するデジタル無線送信方式が提案されている。
特開2010-29644号公報
 MR信号をデジタル化してから無線送信すれば、ダイナミックレンジの制約の問題は解消可能であるが、以下の課題がある。
 第1に、無線に関しては各国毎に規制が異なり、同じ送信周波数或いは同じ送信電力がどの国でも使えるとは限らない。
 第2に、RFコイル装置からMRI装置にMR信号を無線送信する場合、送信電波が周りで反射して、自身の無線通信の送信データを劣化させることもある。
 このため、MRIにおいて、デジタル化されたMR信号をRFコイル装置からMRI装置に対して良好に無線送信する新規な技術が要望されていた。
 以下、本発明の実施形態が取り得る態様の数例を態様毎に説明する。
 (1)一実施形態のMRI装置は、第1のRFコイル装置と、無線通信部と、画像再構成部とを有する。
 第1のRFコイル装置は、被検体から発せられるMR信号を検出する。また、第1のRFコイル装置は、他コイル接続部を有する。
 他コイル接続部は、誘導電界を介して第2のRFコイル装置に無線接続されると共に、第2のRFコイル装置から無線送信されるデジタル化されたMR信号を受信する。
 第1のRFコイル装置は、第1のRFコイル装置により検出されたMR信号と、他コイル接続部により受信されたMR信号とを、誘導電界を介して無線通信部に無線送信する。
 無線通信部は、誘導電界を介して、第1のRFコイル装置から無線送信されるMR信号を受信する。
 画像再構成部は、無線通信部により受信されたMR信号に基づいて被検体の画像データを再構成する。
 (2)上記(1)のMRI装置は、以下のように構成してもよい。
 即ち、第2のRFコイル装置は、MRI装置の一部として構成される。
 また、第2のRFコイル装置は、コイル素子と、A/D変換器と、信号送信部とを有する。
 コイル素子は、被検体から発せられるMR信号を検出する。
 A/D変換器は、コイル素子により検出された前記核磁気共鳴信号をデジタル化する。
 信号送信部は、誘導電界を介して他コイル接続部に無線接続されると共に、A/D変換器によりデジタル化されたMR信号を、誘導電界を介して他コイル接続部に無線送信する。
 (3)上記(2)のMRI装置は、被検体が載置される天板と、ケーブルとをさらに備えてもよい。ケーブルは、一端側が無線通信部に接続されると共に他端側が天板に接続され、天板内の配線を介して無線通信部を画像再構成部側に電気的に接続する。
 (4)上記(3)のMRI装置は、以下のように構成してもよい。即ち、天板には、無線通信部及びケーブルが収納される収納口が形成される。
 (5)上記(2)のMRI装置は、以下のように構成してもよい。即ち、被検体が載置される天板をさらに備え、無線通信部は、天板に対して固定的に設置される。
 (6)別の一実施形態のMRI装置は、被検体から発せられるMR信号を検出するRFコイル装置から、MR信号を取得するものであり、天板と、第1無線通信部と、第2無線通信部と、画像再構成部とを有する。
 天板には、被検体が載置される。
 第1無線通信部は、RFコイル装置により検出されたMR信号を取得し、誘導電界を介して、デジタル化されたMR信号を無線送信する。
 第2無線通信部は、天板内の配線に有線で接続されると共に天板上で位置変更が可能に配置され、第1無線通信部から無線送信されたMR信号を、誘導電界を介して受信する。
 画像再構成部は、第2無線通信部により受信されて天板内の配線を経由して送信されるMR信号に基づいて、被検体の画像データを再構成する。
 (7)別の一実施形態のRFコイル装置は、MR信号をMRI装置に送信するものであって、コイル素子と、第1通信部と、第2通信部とを有する。
 コイル素子は、被検体から発せられるMR信号を検出する。
 第1通信部は、誘導電界を介して別のRFコイル装置に無線接続されると共に、上記別のRFコイル装置から無線送信されるデジタル化されたMR信号を受信する。
 第2通信部は、第1通信部により受信されたMR信号と、コイル素子により検出されたMR信号とを、デジタル化された状態で誘導電界を介してMRI装置に無線送信する。
 上記(1)~(6)のMRI装置によれば、新技術により、MRIにおいてデジタル化されたMR信号をRFコイル装置からMRI装置に対して良好に無線送信できる。
 上記(7)のRFコイル装置によれば、新技術により、MRIにおいてデジタル化されたMR信号をRFコイル装置からMRI装置に対して良好に無線送信できる。
本実施形態におけるMRI装置の全体構成を示すブロック図。 天板における無線通信装置の配置例を示す模式的斜視図。 図2において、天板に形成された収納口の部分を拡大した斜視図。 本実施形態における胸部RFコイル装置の構成の一例を示す概観図。 胸部RFコイル装置のデータ送信コネクタと、データ収集コネクタとの固定方法の一例を示す断面模式図。 胸部RFコイル装置と、MRI装置の制御側との間の無線通信の一例を示すブロック図。 骨盤部RFコイル装置と、胸部RFコイル装置との間の無線通信の一例を示すブロック図。 下肢RFコイル装置と、骨盤部RFコイル装置との間の無線通信の一例を示すブロック図。 シリアル信号の構成の一例を示す説明図。 本実施形態のMRI装置による撮像動作の流れの一例を示すフローチャート。 本実施形態の変形例として、天板上にデータ収集コネクタが固定的に配置される場合の模式的斜視図。 本実施形態の変形例として、天板の収納口の底面上にデータ収集コネクタが固定的に配置される場合の模式的斜視図。
 以下の実施形態では、RFコイル装置のデータ送信コネクタがMRI装置の無線通信装置(データ収集コネクタ)に対して近接距離内で離脱自在に固定され、デジタル化されたMR信号が誘導電界を介してRFコイル装置から無線通信装置に無線送信される。上記の新技術により、デジタル化されたMR信号をRFコイル装置からMRI装置に対して良好に無線送信するという前述の課題を達成できる。これは、本願の日本国出願時において未公開の新技術である。
 ここで、RFコイル装置側からMRI装置の制御側へのMR信号の送信において上記誘導電界を介した無線通信を適用するに際し、RFコイル装置の設置箇所などの接続方法について十分検討されていない部分があった。このため、より自由度の高い接続方法が望まれていた。
 そこで、以下の実施形態では、RFコイル装置側と、MRI装置の制御側との間の誘導電界を介した無線通信において、RFコイル装置の接続方法の自由度を向上させることをさらなる課題とする。
 以下、RFコイル装置、MRI装置及びMRI方法の実施形態について、添付図面に基づいて説明する。なお、各図において同一要素には原則として同一符号を付し、重複する説明を省略する。
 (本実施形態の構成)
 図1は、本実施形態におけるMRI装置20の全体構成を示すブロック図である。図1に示すように、MRI装置20は、ガントリ21と、寝台32と、天板34とを有する。
 天板34は、寝台32に支持されるように、寝台32上で移動可能に配置される。
 天板34の上面には被検体Pが載置される。
 また、MRI装置20は、例えば円筒状に形成されるガントリ21内において、静磁場磁石22と、シムコイル24と、傾斜磁場コイル26と、送信用RFコイル28とを有する。ガントリ21は、図中の2つの太線枠に対応する。
 静磁場磁石22及びシムコイル24は、例えば円筒状であり、シムコイル24は、静磁場磁石22の内側において静磁場磁石22と軸を同じにして配置される。
 ここでは一例として、装置座標系の互いに直交するX軸、Y軸、Z軸を以下のように定義する。まず、静磁場磁石22及びシムコイル24は、それらの軸方向が鉛直方向に直交するように配置されるものとし、静磁場磁石22及びシムコイル24の軸方向をZ軸方向とする。また、鉛直方向をY軸方向とし、天板34は、その上面の法線方向がY軸方向となるように配置されているものとする。
 MRI装置20は、その制御側として、静磁場電源40と、シムコイル電源42と、傾斜磁場電源44と、RF送信器46と、RF受信器48と、天板駆動装置50と、システム制御部52と、システムバス54と、画像再構成部56と、画像データベース58と、画像処理部60と、入力装置62と、表示装置64と、記憶装置66とを有する。
 なお、天板駆動装置50は寝台32内に設けられている。
 静磁場磁石22は、静磁場電源40から供給される電流により撮像空間に静磁場を形成させる。上記撮像空間とは、例えば、被検体Pが置かれて、静磁場が印加されるガントリ21内の空間を意味する。
 静磁場磁石22は、超伝導コイルで構成される場合が多く、励磁の際に静磁場電源40に接続されて電流が供給されるが、一旦励磁された後は非接続状態とされるのが一般的である。なお、静磁場電源40を設けずに、静磁場磁石22を永久磁石で構成してもよい。
 シムコイル24は、シムコイル電源42に接続され、シムコイル電源42から供給される電流により静磁場を均一化する。
 傾斜磁場コイル26は、例えば、静磁場磁石22の内側で筒状に形成される。傾斜磁場コイル26は、傾斜磁場電源44から供給される電流により、X軸方向の傾斜磁場Gx、Y軸方向の傾斜磁場Gy、Z軸方向の傾斜磁場Gzを撮像領域にそれぞれ形成する。
 即ち、装置座標系の3軸方向の傾斜磁場Gx、Gy、Gzを合成し、論理軸としてのスライス選択方向傾斜磁場Gss、位相エンコード方向傾斜磁場Gpe、及び、読み出し方向(周波数エンコード方向)傾斜磁場Groの各方向を任意に設定できる。
 なお、上記撮像領域とは、例えば、1画像又は1セットの画像の生成に用いるMR信号の収集範囲の少なくとも一部であって、画像となる領域である。例えば折り返しアーチファクトを防止するために、画像化される領域よりも広範囲でMR信号が収集される場合、撮像領域はMR信号の収集範囲の一部である。一方、MR信号の収集範囲の全てが画像となり、MR信号の収集範囲と撮像領域とが合致する場合もある。また、上記「1セットの画像」は、例えばマルチスライス撮像などのように、1のパルスシーケンスで複数画像のMR信号が一括的に収集される場合の複数画像である。
 RF送信器46は、システム制御部52から入力される制御情報に基づいて、核磁気共鳴を起こすためのラーモア周波数のRFパルス(RF電流パルス)を生成し、これを送信用RFコイル28に送信する。
 送信用RFコイル28は、RF送信器46からRFパルスを受けて、このRFパルスを被検体Pに送信する。なお、送信用RFコイル28には、ガントリ21に内蔵されると共にRFパルスの送信も受信も兼用する全身用コイルが含まれる(図示せず)。
 天板34内には、受信用RFコイル29が配置される。
 受信用RFコイル29は、被検体P内の原子核スピンがRFパルスによって励起されることで発生したMR信号を検出し、検出されたMR信号をRF受信器48に送信する。
 本実施形態の例では、被検体Pには、胸部RFコイル装置700、骨盤部RFコイル装置800、下肢RFコイル装置900が装着される。これら胸部RFコイル装置700、骨盤部RFコイル装置800、下肢RFコイル装置900は、例えば、MR信号の受信用の装着型局所コイルである。
 これら胸部RFコイル装置700、骨盤部RFコイル装置800、下肢RFコイル装置900は、ここでは一例としてMRI装置20の一部とするが、MRI装置20とは別個のものとして捉えてもよい。
 また、天板34には、誘導電界を介した無線接続によって上記RFコイル装置700、骨盤部RFコイル装置800、下肢RFコイル装置900で検出されたMR信号を受信する複数のデータ収集コネクタ(無線通信装置)640が配置される。配置の詳細については、図2、図3で後述する。
 前述の自由度の高い接続方法として、本実施形態の例では、胸部RFコイル装置700、骨盤部RFコイル装置800、下肢RFコイル装置900が互いに直列接続され、それらの1つのみがデータ収集コネクタ640に直接接続される(後述の図6~図8参照)。
 1のデータ収集コネクタ640は、1のRFコイル装置との間で、前述したデジタル化されたMR信号の無線通信を実行する。ここで、本実施形態では、1のデータ収集コネクタ640のみが使用されるが、これは一例にすぎない。複数のデータ収集コネクタ640が使用されてもよい。
 具体的には例えば、胸部RFコイル装置700及び骨盤部RFコイル装置800が互いに直列接続されると共に1のデータ収集コネクタ640に無線接続され、下肢RFコイル装置900が別のデータ収集コネクタ640に単独で無線接続されてもよい。
 なお、図1では煩雑となるので、データ収集コネクタ640を2つのみ図示しているが、データ収集コネクタ640は3つ以上でもよく、1つのみでもよい。但し、データ収集コネクタ640が離散して多数配置されている方が、1つのみの配置の場合よりも望ましい。その方が、RFコイル装置のデータ送信コネクタ(後述の図5~図8参照)をデータ収集コネクタ640に対して近接固定する際の選択の余地が多いからである。
 換言すれば、固定箇所の選択の余地が多い方が、最も近いデータ収集コネクタ640に対して、RFコイル装置のデータ送信コネクタを近接固定できるからである。上記の「近接固定」とは、例えば、誘導電界を介した無線通信が可能となる程度に、互いに電磁的に結合された範囲(近さ)において、互いに物理的に動かないように固定する意味である。
 なお、本実施形態では一例として、MRI装置20内における送信用RFコイル28までのRFパルスの送信や、被検体Pから検出したMR信号の伝達は、以下の3カ所の無線通信を除いて、有線で行われる。
 無線通信は、(1)データ収集コネクタ640-胸部RFコイル装置700間、(2)胸部RFコイル装置700-骨盤部RFコイル装置800、(3)骨盤部RFコイル装置800-下肢RFコイル装置900間で実行される。
 RF受信器48は、受信したMR信号に所定の信号処理を施すことで、デジタル化されたMR信号の複素データ(以下、MR信号の生データという)を生成する。RF受信器48は、生成したMR信号の生データを画像再構成部56に入力する。
 システム制御部52は、撮像動作及び撮像後の画像表示において、システムバス54等の配線を介してMRI装置20全体のシステム制御を行う。
 そのために、システム制御部52は、傾斜磁場電源44、RF送信器46及びRF受信器48の駆動に必要な制御情報を記憶する。ここでの制御情報とは、例えば、傾斜磁場電源44に印加するパルス電流の強度や印加時間、印加タイミング等の動作制御情報を記述したシーケンス情報である。
 システム制御部52は、記憶した所定のシーケンスに従って傾斜磁場電源44、RF送信器46及びRF受信器48を駆動させることで、傾斜磁場Gx、Gy、Gz及びRFパルスを発生させる。
 また、システム制御部52は、天板駆動装置50を制御することで天板34をZ軸方向に移動させ、ガントリ21内部の撮像空間に対して天板34を出し入れさせる。
 また、システム制御部52は、天板駆動装置50を制御して寝台32の高さを変えることで、天板34をY軸方向に昇降させることも可能である。
 システム制御部52は、このように天板34の位置を制御することで、天板34上の被検体Pの撮像部位を撮像空間内の磁場中心に位置させる。
 また、システム制御部52は、撮像条件設定部としても機能する。即ち、システム制御部52は、操作者が入力装置62に対して入力した被検体Pの情報や一部の撮像条件に基づいて、本スキャンの撮像条件を設定する。そのために、システム制御部52は、撮像条件の設定画面情報を表示装置64に表示させる。
 上記撮像条件とは、例えば、どの種類のパルスシーケンスにより、どのような条件でRFパルス等を送信して、どのような条件で被検体PからMR信号を収集するかを意味する。撮像条件の例としては、撮像空間内での位置的情報としての撮像領域、撮像部位、パラレルイメージングなどのパルスシーケンスの種類、使用するRFコイル装置の種類、スライス数、スライス間の間隔等が挙げられる。
 上記撮像部位とは、例えば、頭部、胸部、腹部などの被検体Pのどの部分を撮像領域として画像化するかを意味する。
 上記「本スキャン」は、プロトン密度強調画像などの、目的とする診断画像の撮像のためのスキャンであって、位置決め画像用のMR信号収集のスキャンや、較正用スキャンを含まないものとする。
 スキャンとは、MR信号の収集動作を指し、画像再構成を含まないものとする。
 較正用スキャンとは例えば、本スキャンの撮像条件の内の未確定のものや、本スキャン後の画像再構成時に用いる条件やデータなどを決定するために、本スキャンとは別に行われるスキャンを指す。
 後述のプレスキャンは、較正用スキャンの内、本スキャン前に行われるものを指す。
 入力装置62は、撮像条件や画像処理条件を設定する機能を操作者に提供する。
 画像再構成部56は、位相エンコードステップ数及び周波数エンコードステップ数に基づいて、RF受信器48から入力されるMR信号の生データを例えばマトリクスデータに変換し、これをk空間データとして保存する。k空間とは、周波数空間(フーリエ空間)の意味である。
 画像再構成部56は、k空間データに2次元フーリエ変換などを含む画像再構成処理を施すことで、被検体Pの画像データを生成する。画像再構成部56は、生成した画像データを画像データベース58に保存する。
 画像処理部60は、画像データベース58から画像データを取り込み、これに所定の画像処理を施し、画像処理後の画像データを表示用画像データとして記憶装置66に記憶させる。
 記憶装置66は、上記の表示用画像データに対し、その表示用画像データの生成に用いた撮像条件や被検体Pの情報(患者情報)等を付帯情報として付属させて記憶する。
 表示装置64は、システム制御部52の制御に従って、本スキャンの撮像条件の設定用画面や、撮像により生成された画像データが示す画像などを表示する。
 図2は、天板34におけるデータ収集コネクタ640の配置例を示す模式的斜視図である。
 図3は、図2において、天板34に形成された収納口34aの部分を拡大した斜視図である。図2及び図3に示すように、天板34の上面には、8つの収納口34a(例えば直方体状の穴)が形成される。各収納口34aの底面からは、ケーブル34bが露出している。
 各ケーブル34bの一端側は、天板34内の配線等を介して、画像再構成部56側(のRF受信器48)に電気的に接続される。一方、各ケーブル34bの他端側は、各データ収集コネクタ640に電気的に接続される。
 これにより、各データ収集コネクタ640は、例えば図3に示すように天板34の上面に設置することもできるし、図2に示すように収納口34aの底面に設置することもできる。即ち、ケーブル34bの長さの分だけ、各データ収集コネクタ640の設置箇所を変更可能である。
 図2の例では、データ収集コネクタ640は、天板34の上面側に8つ配置される。即ち、この例ではデータ収集コネクタ640は、天板34の幅方向の両端側においてそれぞれ、天板34の長手方向(Z軸方向)に沿った列状に離散して4つずつ配置される。
 なお、データ収集コネクタ640が複数配置される以上、RFコイル装置はいずれかのデータ収集コネクタ640に接続されればよいため、ケーブル34bの長さは、収納口34a同士の間隔と同程度である必要はない。各ケーブル34bの長さは、例えば、収納口34a同士の間隔の半分以下であって、収納口34aに収まるように程度であることが望ましい。各ケーブル34bの長さは、より具体的には例えば、5cm、10cm、15cmといった長さにすることができる。
 図4は、本実施形態における胸部RFコイル装置700の構成の一例を示す概観図である。図4に示すように、胸部RFコイル装置700は、カバー部材702と、2本のケーブルCAと、データ送信コネクタ710と、他コイル連結コネクタ720とを有する。
 カバー部材702は、可撓性を有する材料によって折り曲げ等の変形が可能に形成されている。このように変形可能な材料としては、例えば特開2007-229004号公報に記載の可撓性を有する回路基板(Flexible Printed Circuit:FPC)などを用いることができる。
 カバー部材702内には、制御部(制御回路)728と、コイル素子730a、730b、730c、730d、730e、730fとが配置される。カバー部材702内には、A/D変換器ADC(analog to digital converter)などの他の構成要素もあるが、その詳細については図6~図8を用いて後述する。
 各コイル素子730a~730fは、被検体PからのMR信号を検出するアンテナとして機能する。ここでは一例として、6個のコイル素子730a~730fを図示するが、コイル素子の数や形状、配置については、図示したものに限定されるものではない。
 一方のケーブルCAは、データ送信コネクタ710を制御部728に接続し、他方のケーブルCAは、他コイル連結コネクタ720を制御部728に接続する。
 データ送信コネクタ710は、各コイル素子730a~730fで検出されたMR信号を、誘導電界を介して、他のRFコイル装置の他コイル連結コネクタ又はデータ収集コネクタ640に対して無線送信する。
 他コイル連結コネクタ720は、RFコイル装置同士を直列接続するものである。このため、胸部RFコイル装置700が単独でデータ収集コネクタ640に接続される場合、他コイル連結コネクタ720は使用されない。同じ理由で、複数のRFコイル装置の直列接続において、データ収集コネクタ640から最も末端側に胸部RFコイル装置700が接続される場合、他コイル連結コネクタ720は使用されない。
 他コイル連結コネクタ720は、別のRFコイル装置から誘導電界を介して無線送信されるMR信号を受信し、受信したMR信号をデータ送信コネクタ710に送信する。その場合、データ送信コネクタ710は、各コイル素子730a~730fで検出されたMR信号に加え、他コイル連結コネクタ720で取得したMR信号も無線送信する。
 骨盤部RFコイル装置800、下肢RFコイル装置900の構成は、コイル素子の数、配置、形状を除き、胸部RFコイル装置700と同様であるため、概観図を省略する。即ち、骨盤部RFコイル装置800及び下肢RFコイル装置900はそれぞれ、データ送信コネクタ710及び他コイル連結コネクタ720と同一構成のデータ送信コネクタ810、910、他コイル連結コネクタ820、920を有する。
 従って、RFコイル装置の接続順は順不同であり、例えば、データ収集コネクタ640側から順に、下肢RFコイル装置900、骨盤部RFコイル装置800、胸部RFコイル装置700、の順に直列に接続し、これら3つのRFコイル装置で検出されたMR信号を下肢RFコイル装置900からデータ収集コネクタ640に送信してもよい。本実施形態では、データ収集コネクタ640側から順に、胸部RFコイル装置700、骨盤部RFコイル装置800、下肢RFコイル装置900の順で直列接続される例を述べる。
 図5は、胸部RFコイル装置700のデータ送信コネクタ710と、データ収集コネクタ640との固定方法の一例を示す断面模式図である。図5の上段に示すように、データ送信コネクタ710の筐体744上には、例えば、2つの突起744aが形成されている。
 突起744aは、データ送信コネクタ710の差し込み及び取り外しを容易にするため、例えば横断面が半円状に形成されている。一般に、突起744aの表面の起伏が激しい構造よりも、滑らかに面取りされている方がデータ送信コネクタ710の差し込みが容易だからである。突起744aは、例えば球面状であってもよいし、円筒をその軸方向に沿って半分に分割した形状でもよい。
 ここでは一例として、突起744aを含む筐体744は、変形しない非磁性体の材料で形成されているものとする。非磁性体の材料で形成することで、誘導電界を介した無線通信への影響を確実に回避できる。
 図5の上段に示すように、データ収集コネクタ640は、その筐体642の両側の側面に対して例えば接着などにより固定された2つの固定板644(図5の上段の斜線部分)を有する。
 各固定板644は、例えば略平板状であり、互いに対向するように配置される。各固定板644は、図5の下段に示すように、データ送信コネクタ710を嵌合させる形状である。即ち、2つの固定板644において、互いに対向する面には、突起744aに対応する位置に、突起744aを嵌合させる窪み部644aがそれぞれ面取りされている(図5の上段参照)。
 また、各固定板644において、その先端側(筐体642とは反対側)は、データ送信コネクタ710を差し込み易くするために、斜めに面取りされている。固定板644については、図5の中段に示す程度の湾曲が可能な非磁性体の弾性材料で形成することが望ましい。かかる材料としては、例えば、プラスチックや合成樹脂などが挙げられる。非磁性体の材料で形成する理由は、前述同様である。
 上記構成では、図5の上段の状態から、データ送信コネクタ710がデータ収集コネクタ640に差し込まれる。このとき、図5の中段に示すように、各固定板644は一時的に互いに離れる方向に曲がる。これは、データ送信コネクタ710の両側の突起744a間の最長幅が、両固定板644の最短幅よりも大きいためである。
 そして、データ送信コネクタ710の筺体744の底面と、データ収集コネクタ640の筺体642の上面との距離が間隔Dとなる位置において、両側の突起744aがそれぞれ固定板644aの窪み部644aに嵌合され、各固定板644は、形状復元力により元の形状(図5の上段の形状)に戻る。これにより、図5の下段に示すように、データ送信コネクタ710は、データ収集コネクタ640に対して離脱自在に固定される。
 ここで、データ送信コネクタ710は、その底面側(上記固定時におけるデータ収集コネクタ640側)において、アンテナ746a~746dを有する。また、データ収集コネクタ640は、その上面側(上記固定時におけるデータ送信コネクタ710側)において、アンテナ646a~646dを有する。
 アンテナ646a~646dは、アンテナ746a~746dとそれぞれ一対となるものである(計4対)。これらの内、少なくともアンテナ646a-746aは、例えば後述の誘導電界結合型カプラである。
 上記のようにデータ送信コネクタ710とデータ収集コネクタ640とが互いに近接固定された状態において、アンテナ746a~746dは、間隔Dを挟んでアンテナ646a~646dにそれぞれ対向する位置に配置される。間隔Dは、誘導電界を介した無線通信が可能な間隔である。撮像が終了した場合、データ送信コネクタ710を天板34から離すように固定板644から抜き外せばよい。
 なお、上記のような嵌合は、データ送信コネクタ710の固定方法の一例にすぎず、離脱自在な固定方法については、他の方法でもよい。例えば、面ファスナーのオス側及びメス側の内、一方をデータ収集コネクタ640の上面に固定し、他方をデータ送信コネクタ710の底面に固定してもよい。
 データ送信コネクタ710とデータ収集コネクタ640との間では、誘導電界を介した近接無線通信が実行される。誘導電界とは、磁束密度の時間変化によって生じる電界である。誘導電界を介した近接無線通信としては、例えば、誘導電界結合型カプラをアンテナとして用いるトランスファージェット(TransferJet:登録商標)などを用いればよい(例えば特開2010-147922号公報参照)。
 より詳細には、誘導電界結合型カプラは、結合電極、共振スタブ、グランドなどを有する(図示せず)。誘導電界結合型カプラの送信側の共振スタブに電気信号が入力されると、結合電極に電荷が蓄積され、その電荷と同等の仮想電荷がグランドに発生する。
 それらの電荷によって微小電気双極子が構成され、この微小電気双極子が送信側アンテナとして機能する。即ち、微小電気双極子が発生する縦波の誘導電界により、受信側にデータが転送される。進行方向と平行に振動する縦波は、アンテナの向きに依存しないため、安定したデータ転送を実現できる。
 但し、送信側と受信側とを離しすぎると、両者が電磁的に結合されないため、データ送信ができない。誘導電界結合型カプラにより形成される誘導電界は、離れると急激に減衰するからである。
 図5では各構成要素を区別するために、アンテナ646a~646dを互いに離間して配置すると共に、アンテナ746a~746dを互いに離間して配置しているが、離間して配置しなくとも、4つの無線通信経路同士の干渉を避けることができる。
 具体的には、アンテナ646a-746a間、アンテナ646b-746b間、アンテナ646c-746c間、アンテナ646d-746d間で、無線周波数を分離すればよい(周波数値を大きく離せばよい)。このとき、各無線通信経路では、被検体Pに送信されるRFパルスの中心周波数の整数分の一となる周波数を避けることが望ましい。
 なお、データ送信コネクタ710の電気双極子自体(アンテナ)と、データ収集コネクタ640の電気双極子自体(アンテナ)とを直接接触させない限り、データ送信コネクタ710の筐体744と、データ収集コネクタ640の筐体642とを接触させても構わない。送信側のアンテナと、受信側のアンテナとの間に誘導電界が生じる間隔を確保できればよいからである。
 また、胸部RFコイル装置700の他コイル連結コネクタ720は、上記データ収集コネクタ640と同じ外形であるので、骨盤部RFコイル装置800や下肢RFコイル装置900の各データ送信コネクタ810、910を接続(嵌合)可能である。
 図6は、胸部RFコイル装置700と、MRI装置の制御側との間の無線通信の一例を示すブロック図である。
 図7は、骨盤部RFコイル装置800と、胸部RFコイル装置700との間の無線通信の一例を示すブロック図である。
 図8は、下肢RFコイル装置900と、骨盤部RFコイル装置800との間の無線通信の一例を示すブロック図である。
 以下、図6~図8を参照しながら、データ収集コネクタ640、胸部RFコイル装置700、骨盤部RFコイル装置800、下肢RFコイル装置900、及び、MRI装置の制御側の各構成要素を説明する。その後、図6~図8を参照しながら、無線電力送信の動作、及び、4種類の無線通信の動作について説明する。
 図6に示すように、胸部RFコイル装置700のカバー部材702内には、図4で述べた構成要素に加え、コイル素子730a~730fにそれぞれ対応する複数のプリアンプPMP及びA/D変換器ADCと、P/S変換器(Parallel/Serial Converter)PSCと、充電池740とが配置される。
 なお、煩雑となるので、コイル素子730c~730fを図6では省略している。また、煩雑となるので、コイル素子730a~730fと同数のプリアンプPMP及びA/D変換器ADCについても、コイル素子730a、730bに対応する2つのみを示す(図7及び図8も同様)。
 各プリアンプPMPは、各コイル素子730a~730fで検出されたMR信号をそれぞれ受けて増幅し、増幅後のMR信号をA/D変換器ADCにそれぞれ入力する。
 各A/D変換器ADCは、プリアンプPMPから入力されるアナログのMR信号を後述のタイミングでそれぞれデジタル化して、デジタル化されたMR信号をP/S変換器PSCにそれぞれ入力する。
 ここで、複数のコイル素子730a~730fで検出され、それぞれA/D変換されたMR信号は複数である。このため、コイル素子730a~730fの内の複数がMR信号の検出に用いられる場合、P/S変換器PSCは、入力される複数のMR信号をパラレル信号から無線送信用の1のシリアル信号に変換する。
 胸部RFコイル装置700のデータ送信コネクタ710は、前述のアンテナ746a~746dに加え、信号合成部754と、データ送信部756と、参照信号受信部758と、電力受給部760と、ID(Identification Information)送信部762と、ゲート信号受信部764とをさらに有する。電力受給部760は、コイル772を有する。
 図6において、ゲート信号受信部764-制御部728間の配線、コイル772-充電池740間の配線、参照信号受信部758-各A/D変換器ADC間の配線、及び、P/S変換器PSC-信号合成部754間の配線は、ケーブルCA(図4参照)内に収納される。煩雑となるので、図6ではケーブルCAを図示していない。
 信号合成部754は、他コイル連結コネクタ720から送信される(シリアル信号としての)MR信号を取得する。他コイル連結コネクタ720から送信されるMR信号は、他コイル連結コネクタ720に直接接続される1つのRFコイル装置で検出されたMR信号のみの場合と、複数のRFコイル装置でそれぞれ検出されたMR信号の場合とがある。
 信号合成部754は、P/S変換器PSCから入力される胸部RFコイル装置700で検出されたMR信号と、上記の別のRFコイル装置で検出されたMR信号とを合成して、1のシリアル信号に変換する。例えば、胸部RFコイル装置700のP/S変換器PSCから入力されるシリアル信号のMR信号の長さと、他コイル連結コネクタ720から送信されるシリアル信号のMR信号の長さとがほぼ等しい場合、合成により、例えば信号長が2倍になる。
 但し、他コイル連結コネクタ720に他のRFコイル装置が接続されない場合、信号合成部754は、P/S変換器PSCから入力されるMR信号をそのままデータ送信部756に入力する。ここでは一例として、他コイル連結コネクタ720には、骨盤部RFコイル装置800のデータ送信コネクタ810が接続される。
 電力受給部760の機能については、電力の無線送信動作として後述する。データ送信部756、参照信号受信部758、ID送信部762、ゲート信号受信部764の各機能については、上記4種類の無線通信の動作として後述する。
 図6において、データ収集コネクタ640は、前述のアンテナ646a~646dに加えて、データ受信部656と、参照信号送信部658と、電力供給部660と、ID(Identification Information)受信部662と、ゲート信号送信部664とをさらに有する。また、電力供給部660は、コイルL1を有する。
 電力供給部660の機能については、電力の無線送信動作として後述する。データ受信部656、参照信号送信部658、ID受信部662、ゲート信号送信部664の各機能については、上記4種類の無線通信の動作として後述する。
 図6において、MRI装置20の制御系は、図1に示した構成要素に加えて、周波数アップコンバージョン部402と、パルス波形生成部404と、固定周波数生成部406と、可変周波数生成部408とをさらに有する。また、RF受信器48は、周波数ダウンコンバージョン部410と、信号処理部412とを有する。
 固定周波数生成部406は、一定周波数の基準クロック信号を生成するものである。
 固定周波数生成部406は、基準クロック信号を生成するために、例えば安定度の高い水晶発振器などを有する。
 固定周波数生成部406は、参照信号送信部658及び可変周波数生成部408に基準クロック信号を入力する。
 また、固定周波数生成部406は、画像再構成部56やパルス波形生成部404などのMRI装置20内でクロック同期が行われる箇所にも基準クロック信号を入力する。
 可変周波数生成部408は、PLL(Phase-Locked Loop:位相同期回路)、DDS(Direct Digital Synthesizer:デジタル直接合成発振器)、ミキサなどを有する。
 可変周波数生成部408は、上記の基準クロック信号に基づいて動作する。
 可変周波数生成部408は、RFパルスの中心周波数としてシステム制御部52から入力される設定値に一致する可変周波数のローカル信号(クロック信号)を生成する。
 そのために、システム制御部52は、プレスキャンの前にRFパルスの中心周波数の初期値を可変周波数生成部408に入力する。また、システム制御部52は、プレスキャン後にはRFパルスの中心周波数の補正値を可変周波数生成部408に入力する。
 可変周波数生成部408は、周波数ダウンコンバージョン部410及び周波数アップコンバージョン部402に対して、上記の可変周波数のローカル信号を入力する。
 システム制御部52は、入力装置62を介して操作者が入力した撮像条件に基づいて、パルスシーケンスにおける繰り返し時間、RFパルスの種別、RFパルスの中心周波数、及び、RFパルスの帯域幅などの撮像条件を決定する。システム制御部52は、このように決定した撮像条件をパルス波形生成部404に入力する。
 パルス波形生成部404は、システム制御部52から入力される撮像条件に応じて、固定周波数生成部406から入力される基準クロック信号を用いてベースバンドのパルス波形信号を生成する。パルス波形生成部404は、ベースバンドのパルス波形信号を周波数アップコンバージョン部402に入力する。
 周波数アップコンバージョン部402は、ベースバンドのパルス波形信号に対して、可変周波数生成部408から入力されるローカル信号を乗算し、さらにフィルタリングによって所望の信号帯域のみを通過させることで、周波数変換(アップコンバージョン)を実行する。
 周波数アップコンバージョン部402は、このようして周波数が上げられたベースバンドのパルス波形信号をRF送信器46に入力する。RF送信器46は、入力されたパルス波形信号に基づいて、RFパルスを生成する。
 次に、図7に示すように、胸部RFコイル装置700の他コイル連結コネクタ720は、アンテナ776a~776dと、データ中継部786と、参照信号転送部788と、電力転送部790と、ID受信部792と、ゲート信号転送部794とを有する。電力転送部790は、コイル791を有する。
 電力転送部790の機能については、電力の無線送信動作として後述する。アンテナ776a~776d、データ中継部786、参照信号転送部788、ID受信部792、ゲート信号転送部794の各機能については、上記4種類の無線通信の動作として後述する。
 図7において、骨盤部RFコイル装置800は、データ送信コネクタ810と、カバー部材802と、他コイル連結コネクタ820とを有する。
 データ送信コネクタ810は、胸部RFコイル装置700のデータ送信コネクタ710と同様の構成である。即ち、データ送信コネクタ810は、アンテナ846a~846dと、信号合成部854と、データ送信部856と、参照信号受信部858と、電力受給部860と、ID送信部862と、ゲート信号受信部864とを有する。これら各構成要素の符号は、データ送信コネクタ710との区別のため、最上位の数字のみを7から8に変更している。
 骨盤部RFコイル装置800のカバー部材802内には、制御部828と、複数のコイル素子(830a、830b等)と、複数のコイル素子にそれぞれ対応する複数のプリアンプPMP及びA/D変換器ADCと、P/S変換器PSCと、充電池840とが配置される。
 なお、煩雑となるので、コイル素子は図7では2つのみ図示しているが、実際にはさらに多く配置される。プリアンプPMP及びA/D変換器ADCについても、コイル素子830a、830bに対応する2つのみを示す(図8における下肢RFコイル装置900についても同様)。
 他コイル連結コネクタ820には、ここでは一例として、下肢RFコイル装置900のデータ送信コネクタ910が接続される。
 次に、図8に示すように、骨盤部RFコイル装置800の他コイル連結コネクタ820は、胸部RFコイル装置700の他コイル連結コネクタ720と同様の構成である。即ち、他コイル連結コネクタ820は、アンテナ876a~876dと、データ中継部886と、参照信号転送部888と、電力転送部890と、ID受信部892と、ゲート信号転送部894とを有する。電力転送部890は、コイル891を有する。これら各構成要素の符号は、他コイル連結コネクタ720との区別のため、最上位の数字のみを7から8に変更している。
 図8において、下肢RFコイル装置900は、データ送信コネクタ910と、カバー部材902と、他コイル連結コネクタ920とを有する。
 データ送信コネクタ910は、上記データ送信コネクタ710、810と同様の構成である。即ち、データ送信コネクタ910は、アンテナ946a~946dと、信号合成部954と、データ送信部956と、参照信号受信部958と、電力受給部960と、ID送信部962と、ゲート信号受信部964とを有する。これら各構成要素の符号は、データ送信コネクタ710、810との区別のため、最上位の数字のみを9に変更している。
 下肢RFコイル装置900のカバー部材902内には、制御部928と、複数のコイル素子(930a、930b等)と、複数のコイル素子にそれぞれ対応する複数のプリアンプPMP及びA/D変換器ADCと、P/S変換器PSCと、充電池940とが配置される。
 他コイル連結コネクタ920の構成は、上記他コイル連結コネクタ720、820と同じである。ここでは一例として、他コイル連結コネクタ920には、さらなるRFコイル装置が接続されない。
 (本実施形態の動作説明)
 次に、図6~図8を参照しつつ、電力の無線送信動作について説明する。
 図6において、電力供給部660のコイルL1が電力受給部760のコイル772と電磁的に結合される程度に近接した範囲内にある場合、即ち、データ送信コネクタ710がデータ収集コネクタ640に嵌合された場合を考える。
 この場合、電力供給部660がコイルL1に1次側電流を流すことで生じる誘導磁界により、コイル772には起電力が発生する。この起電力によりコイル772に流れる2次側電流は、不図示のケーブルCAを介してカバー部材702内に流入し、2次側電流の一部により充電池740が充電される(交流を直流に変換する整流器が各電力受給部760、860、960内に設けられていてもよい)。2次側電流の残りは、制御部728を経由して、図7における他コイル連結コネクタ720のコイル791を流れる。
 ここで、図6の上部に示すように、骨盤部RFコイル装置800のデータ送信コネクタ810が胸部RFコイル装置700の他コイル連結コネクタ720に固定されているとする。この場合、図7において、電力転送部790のコイル791が電力受給部860のコイル872と電磁的に結合される程度に近接した範囲内にある。
 従って、上記同様に、コイル791を流れる1次側電流で生じる誘導磁界により、コイル872には起電力が発生する。この起電力によりコイル872に流れる2次側電流は、カバー部材802内に流入し、その2次側電流の一部により充電池840が充電される。一方、この2次側電流の残りは、制御部828を経由し、図8における他コイル連結コネクタ820のコイル891を流れる。
 同様に、図7の上部に示すように、下肢RFコイル装置900のデータ送信コネクタ910が骨盤部RFコイル装置800の他コイル連結コネクタ820に固定されているとする。この場合、図8において、電力転送部890のコイル891が電力受給部960のコイル972と電磁的に結合される程度に近接した範囲内にある。
 従って、上記同様に、コイル891を流れる1次側電流で生じる誘導磁界により、コイル972には起電力が発生する。この起電力によりコイル972に流れる2次側電流は、カバー部材902内に流入し、充電池940を充電する。ここで、下肢RFコイル装置900の他コイル連結コネクタ920には別のRFコイル装置が接続されていないので、コイル972に流れる2次側電流は、ほぼ全て充電池940の充電に充てられる。
 図8において、制御部928は、不図示の配線を介して、下肢RFコイル装置900の各部に対して、上記のように充電池940に充電された電力を供給する。骨盤部RFコイル装置800、胸部RFコイル装置700についても同様である。
 また、コイルL1、772、791、872、891、972に順次流れる電流の周波数については、後述の4種類の無線通信経路の通信周波数から分離することが望ましい。これは、アンテナ646a~646d、746a~746d、776a~776d、846a~846d、876a~876d、946a~946d間の4種類の無線通信経路の信号と、上記1次側電流及び2次側電流との干渉を避けるためである。
 なお、胸部RFコイル装置700、骨盤部RFコイル装置800、下肢RFコイル装置900の電力確保の方法としては、上記の無線による電力送信に代えて、未使用期間中に充電池740、840、940を充電してもよい。或いは、未使用期間中に充電される別の充電池と、上記のように無線で充電される充電池とを併用してもよい。
 次に、上記4種類の無線通信の動作について説明する。
 第1に、図6のアンテナ646c-746c間、図7のアンテナ776c-846c間、図8のアンテナ876c-946c間では、胸部RFコイル装置700、骨盤部RFコイル装置800、下肢RFコイル装置900の各識別情報がデータ収集コネクタ640側に無線送信される。
 上記識別情報の無線通信は、例えばICタグ(Integrated Circuit Tag)などに代表されるRFID(Radio Frequency Identification)と同様の手段でよい。また、識別情報は、各ID送信部762、862、962に予め記憶されている。但し、識別情報は、制御部728、828、928から各ID送信部762、862、962に有線で入力されてもよい。
 具体的な動作としては、図6においてデータ送信コネクタ710をデータ収集コネクタ640に差し込むことで、ID送信部762のアンテナ746cがID受信部662のアンテナ646cの通信範囲に入ると、ID送信部762は、ID受信部662から無線送信される電力で起動する。即ち、ID送信部762は、胸部RFコイル装置700の識別情報をデジタル信号としてアンテナ746cからアンテナ646cに自動的に無線送信する。
 ID受信部662は、アンテナ646cで受信した胸部RFコイル装置700の識別情報をシステム制御部52に入力する。これにより、システム制御部52は、胸部RFコイル装置700がデータ収集コネクタ640に直接接続されていることを認識すると共に、胸部RFコイル装置700-データ収集コネクタ640間の通信許可をMRI装置20の制御側の各部に入力する。
 電力供給部660は、上記の通信許可を受けて、前述した電力の無線送信を開始し、通信許可が停止するまで電力送信を継続する。これにより、前述のように胸部RFコイル装置700、骨盤部RFコイル装置800、下肢RFコイル装置900の各充電池740、840、940が充電される。この電力により、骨盤部RFコイル装置800及び下肢RFコイル装置900も動作を開始するので、識別情報を送信可能となる。
 より詳細には、システム制御部52は、上記通信許可の出力後、胸部RFコイル装置700に別のRFコイル装置が接続されているか否かの情報要求をID受信部662からID送信部762に無線送信させる。
 同時に、図8において、末端側の下肢RFコイル装置900の制御部928は、例えば他コイル連結コネクタ920からの入力信号がないことを条件として、他コイル連結コネクタ920に別のRFコイル装置が接続されていないと判定する。
 このため、制御部928は、下肢RFコイル装置900の他コイル連結コネクタ920にはRFコイル装置が接続されていないことを示す情報、及び、下肢RFコイル装置900の識別情報をID送信部962から無線送信させる。即ち、アンテナ876c-946c間の無線通信により、上記の情報が骨盤部RFコイル装置800のID受信部892に送信される。
 ID受信部892は、受信した情報を制御部828に入力する。これにより、制御部828は、図7のアンテナ776c-846c間の無線通信経路において、以下の3項目の情報をID送信部862から胸部RFコイル装置700のID受信部792に無線送信させる。
 上記3項目の情報は、(1)骨盤部RFコイル装置800の他コイル連結コネクタ820には下肢RFコイル装置900のみが接続されていることを示す情報と、(2)下肢RFコイル装置900の識別情報と、(3)骨盤部RFコイル装置800の識別情報と、である。
 ID受信部792は、上記3項目の情報を制御部728に送信する。制御部728は、上記3項目の情報に基づいて、データ収集コネクタ640側から順に、胸部RFコイル装置700、骨盤部RFコイル装置800、下肢RFコイル装置900が直列接続されていることを判定し、この判定結果を接続情報として生成する。この接続情報には、胸部RFコイル装置700、骨盤部RFコイル装置800、下肢RFコイル装置900の各識別情報も含まれる。
 制御部728は、図6のアンテナ646c-746c間の無線通信経路において、上記情報要求に対する返信として、上記接続情報をID送信部762からID受信部662に送信させる。接続情報の送信形態としては、例えば、胸部RFコイル装置700、骨盤部RFコイル装置800、下肢RFコイル装置900の各識別情報を順番にシリアル信号で送信することで、上記接続情報を示すものとしてもよい。
 ID受信部662は、受信した接続情報をシステム制御部52に入力する。これにより、システム制御部52は、データ収集コネクタ640側から順に、胸部RFコイル装置700、骨盤部RFコイル装置800、下肢RFコイル装置900が直列接続されていることを認識する。
 第2に、図6のアンテナ646d-746d間、図7のアンテナ776d-846d間、図8のアンテナ876d-946d間では、例えば誘導電界を介した無線通信により、デジタルのゲート信号が撮像中に継続的に送信される。
 より詳細には、胸部RFコイル装置700、骨盤部RFコイル装置800、下肢RFコイル装置900の各コイル素子のオンオフを切り替えるスイッチとして、例えばPINダイオード(p-intrinsic-n Diode)を含むアクティブトラップ回路などが用いられる。ゲート信号は、上記スイッチの制御信号である。
 RFパルスが被検体Pに送信される期間では、ゲート信号送信部664、アンテナ646d、746d、ゲート信号受信部764等を介して胸部RFコイル装置700、骨盤部RFコイル装置800、下肢RFコイル装置900に入力されるゲート信号は、通常、オンレベルにされる。ゲート信号がオンレベルの期間では、上記スイッチはオフ状態となり、各コイル素子(930a等)は、ループが途切れた状態となり、MR信号を検出できない。
 なお、煩雑となるので、上記のように「各コイル素子(930a等)」と記載した場合、胸部RFコイル装置700、骨盤部RFコイル装置800、下肢RFコイル装置900における、MR信号の検出用に選択された全てのコイル素子を指すものとする。
 RFパルスが被検体Pに送信される期間を除く期間では、オフレベルのゲート信号が無線送信される。ゲート信号がオフレベルの期間では、上記スイッチはオン状態となり、各コイル素子(930a等)は、MR信号を検出できる。
 このようなコイル素子(930a等)のオンオフの切り替えにより、被検体PへのRFパルスの送信を行う送信用RFコイル28と、被検体PからMR信号を受信する各コイル素子(930a等)との間のカップリングが防止される。
 ゲート信号の送信は、データ収集コネクタ640から末端側の下肢RFコイル装置900まで、リアルタイムで実行される。ここでの「リアルタイム」とは、パルスシーケンスにおける各RFパルスや各傾斜磁場パルスの印加開始タイミングや印加期間と対比して、MR信号の検出動作に支障を生じない程度の遅延時間で、という意味である。
 具体的には、まず、図6のアンテナ646d-746d間において、データ収集コネクタ640のゲート信号送信部664から胸部RFコイル装置700のゲート信号受信部764にゲート信号が送信される。
 次に、ゲート信号受信部764で受信されたゲート信号は、制御部728に入力されると共に、制御部728を経由して骨盤部RFコイル装置800に送信される。即ち、図7のアンテナ776d-846d間において、ゲート信号転送部794からゲート信号受信部864にゲート信号が無線送信される。
 同様に、ゲート信号受信部864で受信されたゲート信号は、制御部828に入力されると共に、制御部828を経由して下肢RFコイル装置900に送信される。即ち、図8のアンテナ876d-946d間において、ゲート信号転送部894からゲート信号受信部964にゲート信号が無線送信され、ゲート信号が制御部928に入力される。
 第3に、図6のアンテナ646b-746b間、図7のアンテナ776b-846b間、図8のアンテナ876b-946b間では、例えば誘導電界を介した無線通信により、デジタルの参照信号が撮像中に継続的に送信される。
 参照信号は、MR信号の送信側である胸部RFコイル装置700、骨盤部RFコイル装置800、下肢RFコイル装置900と、固定周波数生成部406をベースとしたシステムの基準周波数とを同期させるための信号である。
 参照信号送信部658は、固定周波数生成部406から入力される基準クロック信号に対して変調、周波数変換、増幅、フィルタリング等の処理を施すことで、参照信号を生成する。
 また、胸部RFコイル装置700、骨盤部RFコイル装置800、下肢RFコイル装置900の各A/D変換器ADCにおけるサンプリングのタイミングを決めるトリガ信号(A/D変換開始信号)が、システム制御部52から参照信号送信部658に入力される。
 上記サンプリングは、例えば、アナログ信号の強さを一定時間ごとに採取し、デジタル記録が可能な形にすることである。ここでは一例として、参照信号送信部658は、トリガ信号を参照信号に重畳することで、参照信号及びトリガ信号の双方を参照信号受信部758に無線送信する。
 参照信号及びトリガ信号の送信も、ゲート信号と同様に、データ収集コネクタ640から末端側の下肢RFコイル装置900まで、リアルタイムで実行される。
 具体的には、まず、図6のアンテナ646b-746b間において、データ収集コネクタ640の参照信号送信部658から胸部RFコイル装置700の参照信号受信部758に対して、参照信号及びトリガ信号が無線送信される。
 次に、参照信号受信部758で受信された参照信号及びトリガ信号は、胸部RFコイル装置700の各A/D変換器ADC及び制御部728に入力されると共に、制御部728を経由して骨盤部RFコイル装置800に送信される。即ち、図7のアンテナ776b-846b間において、参照信号転送部788から参照信号受信部858に参照信号及びトリガ信号が無線送信される。
 参照信号受信部858で受信された参照信号及びトリガ信号は、同様に、骨盤部RFコイル装置800の各A/D変換器ADC及び制御部828に入力されると共に、制御部828を経由して下肢RFコイル装置900に送信される。即ち、図8のアンテナ876b-946b間において、参照信号及びトリガ信号が参照信号転送部888から参照信号受信部958に無線送信され、下肢RFコイル装置900の各A/D変換器ADC及び制御部928に入力される。
 第4に、図6のアンテナ646a-746a間、図7のアンテナ776a-846a間、図8のアンテナ876a-946a間では、誘導電界を介した無線通信により、デジタルのMR信号が送信される。
 胸部RFコイル装置700、骨盤部RFコイル装置800、下肢RFコイル装置900の各コイル素子(930a等)でそれぞれ検出されたMR信号は、シリアル信号として時分割で無線送信される。本実施形態の例では、各RFコイル装置間において、MR信号の送信用のアンテナは、1組だけだからである。
 MR信号の無線送信の流れについては、末端側の下肢RFコイル装置900から説明した方が分かり易いため、以下、下肢RFコイル装置900側から順に説明する。
 下肢RFコイル装置900の各A/D変換器ADCは、トリガ信号が送信されたタイミングに同期して、参照信号(サンプリングクロック信号)に基づいて、MR信号のサンプリング及び量子化を開始する。各A/D変換器ADCは、デジタルのMR信号をP/S変換器PSCに入力する。
 P/S変換器PSCは、複数のMR信号をパラレル信号からシリアル信号に変換する。本実施形態では一例として、シリアル信号は、後段で各コイル素子毎のMR信号に分離できるように、当該RFコイル装置の識別情報、及び、コイル素子の識別番号を含めて構成される。
 従って、シリアル信号は、例えば送信時刻の早い順から、先頭に下肢RFコイル装置900の識別情報、次に930aなどのコイル素子の識別番号、次に当該コイル素子で検出されたMR信号、次に別のコイル素子の識別番号、次に当該別のコイル素子で検出されたMR信号・・・のように構成される(後述の図9参照)。
 P/S変換器PSCは、生成したシリアル信号を信号合成部954に入力する。
 以上の各A/D変換器ADC、P/S変換器PSCの処理は、胸部RFコイル装置700、骨盤部RFコイル装置800についても同様である。
 ここで、図8において、下肢RFコイル装置900の他コイル連結コネクタ920には別のRFコイル装置が接続されていないので、信号合成部954には、P/S変換器PSCから1のシリアル信号としてのMR信号のみが入力される。従って、信号合成部954は、入力されたシリアル信号をそのままデータ送信部956に入力する。
 データ送信部956は、入力されたシリアルのMR信号に対し、誤り訂正符号化、インタリーブ、変調、周波数変換、増幅、フィルタリングなどの処理を施すことで、(シリアル信号かつデジタル信号である)無線送信用のMR信号を生成する。そして、図8のアンテナ876a-946a間において、データ送信部956から骨盤部RFコイル装置800のデータ中継部886に対して、上記MR信号が送信される。
 骨盤部RFコイル装置800内において、データ中継部886は、図7の信号合成部854に対して、上記のように受信したMR信号を入力する。ここで、信号合成部854には、骨盤部RFコイル装置800内の各コイル素子(830a、830b等)で検出されてデジタル化されたMR信号も、シリアル信号として入力されている。
 信号合成部854は、データ中継部886から入力される1のシリアル信号(下肢RFコイル装置900で検出されたMR信号)と、P/S変換器PSCから入力される1のシリアル信号(骨盤部RFコイル装置800で検出されたMR信号)とを、1のシリアル信号に合成する。
 ここでのシリアル信号も、後段で各コイル素子毎のMR信号に分離できるように、それぞれのRFコイル装置の識別情報、及び、各コイル素子の識別番号を含めて構成される(後述の図9参照)。
 信号合成部854は、生成したシリアル信号をデータ送信部856に入力する。そして、前述同様にして、図7のアンテナ776a-846a間において、データ送信部856から胸部RFコイル装置700のデータ中継部786に対して、上記シリアル信号が送信される。
 胸部RFコイル装置700内において、データ中継部786は、図6の信号合成部754に対して、上記のように受信したシリアル信号を入力する。ここで、信号合成部754には、胸部RFコイル装置700内の各コイル素子(730a、730b等)で検出されてデジタル化されたMR信号も、シリアル信号として入力されている。
 信号合成部754は、データ中継部786から入力される1のシリアル信号(下肢RFコイル装置900、骨盤部RFコイル装置800でそれぞれ検出されたMR信号)と、P/S変換器PSCから入力される1のシリアル信号(胸部RFコイル装置700で検出されたMR信号)とを、後段で分離できるように1のシリアル信号に合成する。
 信号合成部754は、生成したシリアル信号をデータ送信部756に入力する。そして、前述同様にして、図6のアンテナ646a-746a間において、データ送信部756からデータ収集コネクタ640のデータ受信部656に対して、上記シリアル信号が送信される。
 以上が4種類の無線通信に関する説明である。
 図9は、上記のシリアル信号の構成の一例を示す説明図である。シリアル信号は、各RFコイル装置毎のMR信号に分離できるように、且つ、各コイル素子毎のMR信号に分離できるように構成される。
 図9の例では、先頭から、胸部RFコイル装置700で検出されたMR信号、骨盤部RFコイル装置800で検出されたMR信号、下肢RFコイル装置900で検出されたMR信号の順にシリアル信号が構成される。即ち、各信号合成部754、854は、原理的には例えば、P/S変換器PSCから入力されるシリアル信号の末尾に、他コイル連結コネクタ720、820から入力されるシリアル信号の先頭を連結させることで、新たな1のシリアル信号を生成する。
 胸部RFコイル装置700で検出されたMR信号は、例えば、胸部RFコイル装置700の識別情報が先頭に付与された後、コイル素子毎のMR信号が順に続く。各々のコイル素子のMR信号は、先頭にコイル素子の識別番号(730a等)が付与され、その後に当該識別番号のコイル素子で検出されたMR信号のデジタルデータで構成される。骨盤部RFコイル装置800、下肢RFコイル装置900でそれぞれ検出されたMR信号についても同様である。
 図10は、本実施形態におけるMRI装置20による撮像動作の流れの一例を示すフローチャートである。以下、前述した各図を適宜参照しながら、図10に示すステップ番号に従って、MRI装置20の動作を説明する。
 [ステップS1]天板34(図1参照)がガントリ21外にある状態で、天板34上の被検体Pに胸部RFコイル装置700、骨盤部RFコイル装置800、下肢RFコイル装置900が装着される。また、例えば最も近いデータ収集コネクタ640に対して、胸部RFコイル装置700のデータ送信コネクタ710が離脱自在に固定される(図2~図5参照)。
 また、他コイル連結コネクタ720にデータ送信コネクタ810が同様に固定され(図6参照)、他コイル連結コネクタ820にデータ送信コネクタ910が同様に固定される(図7参照)。
 上記近接固定により、データ送信コネクタ710とデータ収集コネクタ640とが互いに通信可能範囲内に入ると、胸部RFコイル装置700の識別情報が上述した通信によってシステム制御部52に入力され、通信許可が出力される。
 これにより、図6~図8で説明したように、胸部RFコイル装置700、骨盤部RFコイル装置800、及び、末端の下肢RFコイル装置900まで電力の無線送信が開始され、3つのRFコイル装置の接続情報がシステム制御部52に入力される。
 また、参照信号送信部658は、システム制御部52による通信許可に従って、各参照信号受信部758、858、958に対して、図6~図8で説明したように参照信号の入力を開始する(参照信号は継続的に無線送信される)。なお、参照信号には、トリガ信号も重畳される。
 その後、天板駆動装置50(図1参照)は、システム制御部52の制御に従って、ガントリ21内に天板34を移動させる。この後、ステップS2に進む。
 [ステップS2]システム制御部52は、入力装置62を介してMRI装置20に対して入力された撮像条件や、ステップS1で取得したRFコイル装置の接続情報に基づいて、本スキャンの撮像条件の一部を設定する。この後、ステップS3に進む。
 [ステップS3]システム制御部52は、MRI装置20の各部を制御することで、プレスキャンを実行させる。プレスキャンでは、例えば、RFパルスの中心周波数の補正値などの撮像条件が算出される。この後、ステップS4に進む。
 [ステップS4]システム制御部52は、プレスキャンの実行結果に基づいて、本スキャンの残りの撮像条件を設定する。撮像条件には、どのコイル素子(930a等)を本スキャンにおいてMR信号の検出に用いるかの情報も含まれる。
 従って、システム制御部52は、MR信号の検出に用いるコイル素子の情報を、いずれかの無線通信経路で胸部RFコイル装置700、骨盤部RFコイル装置800、下肢RFコイル装置900の各制御部728、828、928に入力する。
 例えば、ゲート信号送信部664から、図6のアンテナ646d-746d間、図7のアンテナ776d-846d間、図8のアンテナ876d-946d間の経路でMR信号の検出に用いるコイル素子の情報が各制御部728、828、928に入力される。この後、ステップS5に進む。
 [ステップS5]システム制御部52は、MRI装置20の各部を制御することで、本スキャンを実行させる。具体的には、静磁場電源40により励磁された静磁場磁石22によって撮像空間に静磁場が形成される。また、シムコイル電源42からシムコイル24に電流が供給されて、上記静磁場が均一化される。
 なお、本スキャンの実行中において、図6~図8で説明した動作により、胸部RFコイル装置700、骨盤部RFコイル装置800、下肢RFコイル装置900には、ゲート信号送信部664からのゲート信号が継続的に無線送信されている。
 この後、入力装置62からシステム制御部52に撮像開始指示が入力されると、以下の<1>~<4>の処理が順次繰り返されることにより、被検体PからのMR信号が収集される。
 <1>システム制御部52は、パルスシーケンスに従って傾斜磁場電源44、RF送信器46及びRF受信器48を駆動させることで、被検体Pの撮像部位が含まれる撮像領域に傾斜磁場を形成させると共に、送信用RFコイル28から被検体PにRFパルスを送信する。
 RFパルスが被検体Pに送信される期間のみ、ゲート信号は例えばオンレベルにされ、胸部RFコイル装置700、骨盤部RFコイル装置800、下肢RFコイル装置900の各コイル素子(930a等)はオフ状態となり、カップリングが防止される。
 <2>RFパルスの送信後、ゲート信号は例えばオフレベルに切り替えられ、各コイル素子(930a等)は、被検体P内の核磁気共鳴により生じたMR信号を検出する。検出されたアナログのMR信号は、各コイル素子(930a等)から各プリアンプPMPに入力される。各プリアンプPMPは、入力されたMR信号を増幅して、各A/D変換器ADCに入力する。
 ここで、ステップS4でMR信号の検出用に選択されなかったコイル素子に対応するプリアンプPMP及びA/D変換器ADCは動作しない。従って、ステップS4でMR信号の検出に選択されたコイル素子のMR信号のみが後段に送信される。
 <3>選択された各コイル素子(930等)に対応する各A/D変換器ADCは、トリガ信号が無線送信されたタイミングに同期して、参照信号に基づいてMR信号のサンプリング及び量子化を開始する。各A/D変換器ADCは、デジタルのMR信号をP/S変換器PSCにそれぞれ入力する。各P/S変換器PSCは、入力された複数のMR信号をパラレル信号からシリアル信号に変換し、各信号合成部754、854、954に入力する。
 この後、図6~図8で説明したように、胸部RFコイル装置700、骨盤部RFコイル装置800、下肢RFコイル装置900でそれぞれ検出されたMR信号が最終的には1つのシリアル信号に合成されて(図9参照)、データ受信部656まで送信される。
 <4>データ受信部656は、アンテナ646aで受信したMR信号に対して、増幅、周波数変換、復調、逆インタリーブ、誤り訂正復号等の処理を施す。これにより、データ受信部656は、無線送信用のMR信号から元のデジタルのMR信号を抽出する。
 即ち、データ受信部656は、受信した1のシリアル信号から、胸部RFコイル装置700、骨盤部RFコイル装置800、下肢RFコイル装置900の各コイル素子毎のMR信号を抽出する。データ受信部656は、抽出した各MR信号をRF受信器48の周波数ダウンコンバージョン部410に入力する。
 周波数ダウンコンバージョン部410は、可変周波数生成部408から入力されるローカル信号を、データ受信部656から入力されるMR信号に乗算し、さらにフィルタリングによって所望の信号帯域のみを通過させる。これにより、周波数ダウンコンバージョン部410は、MR信号を周波数変換(ダウンコンバージョン)し、周波数が低くされたMR信号を信号処理部412に入力する。
 信号処理部412は、所定の信号処理を施すことでMR信号の生データを生成し、MR信号の生データを画像再構成部56に入力する。画像再構成部56は、MR信号の生データを例えばマトリクスデータに変換し、これをk空間データとして保存する。
 以上の<1>~<4>の処理が繰り返されることで、MR信号の収集が終了後、ステップS6に進む。
 [ステップS6]画像再構成部56(図1参照)は、フーリエ変換等を含む画像再構成処理をk空間データに施すことで画像データを再構成し、得られた画像データを画像データベース58に保存する。この後、ステップS7に進む。
 [ステップS7]画像処理部60は、画像データベース58から画像データを取り込み、これに所定の画像処理を施すことで表示用画像データを生成し、この表示用画像データを記憶装置66に保存する。システム制御部52は、表示用画像データを表示装置64に転送し、表示用画像データが示す画像を表示装置64に表示させる。
 撮像の終了後、データ送信コネクタ710がデータ収集コネクタ640から取り外される。これにより、胸部RFコイル装置700と、データ収集コネクタ640とが通信可能範囲外となると、両者間の通信及び胸部RFコイル装置700側への電力供給は終了する。
 なお、図10では一例として、ステップS1において参照信号の入力が開始されるが、これは一例にすぎない。例えば、ステップS3のプレスキャンの直前(即ち、ステップS2での撮像条件の設定後)に、参照信号の入力が開始されてもよい。
 以上が本実施形態のMRI装置20の動作説明である。
 (本実施形態の効果)
 このように本実施形態では、無線通信時において送信側及び受信側が互いに近接固定され、誘導電界を介した無線通信が行われる。このため、従来のデジタル無線通信よりも無線の出力を低く抑えることができるから、種々の国の法規制に対応し易い。
 送信側と受信側とが近接していることに加えて、無線の出力を低くできる。このため、送信電波が周りで反射して自身の送信データが劣化する、という問題も生じない。
 従って、胸部RFコイル装置700、骨盤部RFコイル装置800、下肢RFコイル装置900からMRI装置20の本体側(RF受信器48側)にデジタルのMR信号を良好に無線送信できる。
 また、複数のコイル素子(930等)でそれぞれ検出された複数のMR信号は、シリアル信号に変換されて、無線送信される。従って、MR信号の送信用のアンテナ(無線通信経路)を1組で済ませることができる上、MR信号同士の間では、干渉を防止するための周波数分離を行う必要はない。
 また、データ収集コネクタ640を複数の箇所に設け、いずれか1つのデータ収集コネクタ640に対して(胸部RFコイル装置700の)データ送信コネクタ710を固定すればよい構成である。さらに、各データ収集コネクタ640は、各ケーブル34bにより、若干の位置変更が可能である。
 従って、被検体Pのどの位置に装着されるRFコイル装置であっても、即ち、天板34上のどの位置にRFコイル装置が存在しても、RFコイル装置とデータ収集コネクタ640とを近接固定し、MR信号を良好に無線送信できる。
 また、胸部RFコイル装置700、骨盤部RFコイル装置800、下肢RFコイル装置900への電力供給やゲート信号及び参照信号の送信についても無線で行うので、MRI装置の構成を簡単化できる。この結果、MRI装置の製造コストを低減しうる。
 さらに、胸部RFコイル装置700、骨盤部RFコイル装置800、下肢RFコイル装置900は、同一構成のデータ送信コネクタ710、810、910及び他コイル連結コネクタ720、820、920を有する。従って、これら3つのRFコイル装置を直列接続できるので、MRI装置20の制御側の1のデータ収集コネクタ640に対して、3つのRFコイル装置でそれぞれ検出されたMR信号を無線送信できる。即ち、RFコイル装置の接続方法の自由度が向上する。
 以上説明した実施形態によれば、MRIにおいて、デジタル化されたMR信号をRFコイル装置からMRI装置に対して良好に無線送信することができる。
 また、複数のRFコイル装置を直列接続できるので、RFコイル装置の接続方法の自由度が向上する。
 (本実施形態の補足事項)
 [1]本実施形態では、胸部RFコイル装置700、骨盤部RFコイル装置800、下肢RFコイル装置900の3つが互いに直列に接続される例を述べた。本発明の実施形態は、かかる態様に限定されるものではない。
 2つ又は4つ以上のRFコイル装置を直列接続し、上記実施形態と同様の原理で、それらの1つのRFコイル装置のみからMRI装置20の制御側の1のデータ収集コネクタ640に対してMR信号を無線送信してもよい。
 また、本発明の実施形態は、胸部RFコイル装置700、骨盤部RFコイル装置800、下肢RFコイル装置900に限らず、頭部RFコイル装置、肩用RFコイル装置などの他の撮像部位用のRFコイル装置の場合も同様の原理で適用可能である。
 [2]データ収集コネクタ640の数や配置箇所は、図2及び図3の態様に限定されるものではない。データ収集コネクタ640は、例えば天板34上やガントリ21上に露出して配置してもよいし、寝台32に対して配置してもよい。
 例えば、ガントリ21の内壁上、又は、ガントリ21の入口にデータ収集コネクタ640を固定し、胸部RFコイル装置700、骨盤部RFコイル装置800、下肢RFコイル装置900の各ケーブルCAを長くしてもよい。
 或いは、図11に示す天板の模式的斜視図のように、天板34に収納口34aを形成せずに、データ収集コネクタ640を天板34の上面に固定してもよい。このように、各データ収集コネクタ640の位置は、ケーブル34bの長さの範囲で変更可能である必要はない。
 或いは、図12に示す天板34の模式的斜視図のように、ケーブル34bを省いて、天板34の収納口34aの底面にデータ収集コネクタ640を固定してもよい。
 或いは、図3において、収納口34aを設けずに、天板34の上面を平坦に構成してもよい。この場合、例えば、天板34の上面からケーブル34bが露出し、そのケーブル34bの先端にデータ収集コネクタ640が同様に接続される。そして、上記同様に、ケーブル34bに接続された天板34内の配線を介して、MR信号がデータ収集コネクタ640側からRF受信器48(画像再構成部56側)に送信される。この場合も、データ収集コネクタ640は、天板34上で、所定範囲(前述したケーブル34bの長さの範囲)での位置変更が可能である。
 このように収納口34aを設けない場合、天板34上面における、データ収集コネクタ640の可動範囲のどの箇所に対しても、データ収集コネクタ640を離脱自在に固定できるようにしてもよい。具体的には例えば、VELCRO(登録商標)などの面ファスナーのオス側及びメス側の内、一方をデータ収集コネクタ640の底面に固定し、他方を(上記可動範囲の大きさで)天板34の上面に固定すればよい。このようにすれば、通信時の被検体の動きによって、誘導電界を介した無線通信接続部がRFコイル装置と共に動いて、通信エラーが生じることが防止される。なお、固定方法は、面ファスナーに限定されるものではない。
 [3]後段で各コイル素子で検出された各MR信号に分離できるように、各RFコイル装置の識別情報及び各コイル素子の識別番号が含まれるシリアル信号としてMR信号が時分割で無線送信される例を述べた(図9参照)。本発明の実施形態は、かかる態様に限定されるものではない。
 例えば、別途の無線通信経路を用意して、現在送信されているのは、どのRFコイル装置のどのコイル素子のMR信号であるかを示す情報を、MR信号の送信と同期して無線送信してもよい。
 或いは、MR信号の送信用及び受信用のアンテナ数をコイル素子と同数に増やす等の手段により、パラレル信号のままMR信号を無線送信してもよい。
 [4]RF受信器48は、ガントリ21外ではなく、ガントリ21内に配置されてもよい。この場合、例えばRF受信器48に相当する電子回路基盤がガントリ21内に配置される。そして、胸部RFコイル装置700、骨盤部RFコイル装置800、下肢RFコイル装置900や受信RFコイル29から入力されるMR信号は、デジタル信号としてガントリ21外に出力され、画像再構成部56に入力される。ガントリ21外への出力に際しては、例えば光通信ケーブルを用いて光デジタル信号として送信すれば、外部ノイズの影響が軽減されるので望ましい。
 [5]請求項の用語と実施形態との対応関係を説明する。なお、以下に示す対応関係は、参考のために示した一解釈であり、本発明を限定するものではない。
 データ収集コネクタ640は、請求項記載の無線通信部の一例である。
 図6~図8の配線例では、胸部RFコイル装置700は請求項記載の第1のRFコイル装置の一例であり、骨盤部RFコイル装置800は請求項記載の第2のRFコイル装置の一例である。
 図6~図8の配線例では、胸部RFコイル装置700の他コイル連結コネクタ720は請求項記載の他コイル接続部の一例であり、骨盤部RFコイル装置800のデータ送信コネクタ810は請求項記載の信号送信部の一例である。
 他コイル連結コネクタ720、820、920は、請求項記載の第1通信部の一例である。
 データ送信コネクタ710、810、910は、請求項記載の第2通信部の一例である。
 [6]本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。
20:MRI装置
21:ガントリ,22:静磁場磁石,24:シムコイル,26:傾斜磁場コイル,
32:寝台,34:天板,700:胸部RFコイル装置,
800:骨盤部RFコイル装置,900:下肢RFコイル装置

Claims (7)

  1.  被検体から発せられる核磁気共鳴信号を検出し、誘導電界を介して、前記核磁気共鳴信号をデジタル化された状態で無線送信する第1のRFコイル装置と、
     前記第1のRFコイル装置から無線送信された前記核磁気共鳴信号を、誘導電界を介して受信する無線通信部と、
     前記無線通信部により受信された前記核磁気共鳴信号に基づいて、前記被検体の画像データを再構成する画像再構成部と
     を備え、
     前記第1のRFコイル装置は、誘導電界を介して第2のRFコイル装置に無線接続されると共に前記第2のRFコイル装置から無線送信されるデジタル化された核磁気共鳴信号を受信する他コイル接続部を有し、前記第1のRFコイル装置により検出された前記核磁気共鳴信号に加え、前記他コイル接続部により受信された前記核磁気共鳴信号も、誘導電界を介して前記無線通信部に無線送信する
     ことを特徴とする磁気共鳴イメージング装置。
  2.  請求項1記載の磁気共鳴イメージング装置において、
     前記第2のRFコイル装置は、磁気共鳴イメージング装置の一部であって、
     前記被検体から発せられる前記核磁気共鳴信号を検出するコイル素子と、
     前記コイル素子により検出された前記核磁気共鳴信号をデジタル化するA/D変換器と、
     誘導電界を介して前記他コイル接続部に無線接続されると共に、前記A/D変換器によりデジタル化された前記核磁気共鳴信号を、誘導電界を介して前記他コイル接続部に無線送信する信号送信部と
     を有することを特徴とする磁気共鳴イメージング装置。
  3.  請求項2記載の磁気共鳴イメージング装置において、
     被検体が載置される天板と、
     一端側が前記無線通信部に接続されると共に他端側が前記天板に接続され、前記天板内の配線を介して前記無線通信部を前記画像再構成部側に電気的に接続するケーブルと
     をさらに備えることを特徴とする磁気共鳴イメージング装置。
  4.  請求項3記載の磁気共鳴イメージング装置において、
     前記天板には、前記無線通信部及び前記ケーブルが収納される収納口が形成されていることを特徴とする磁気共鳴イメージング装置。
  5.  請求項2記載の磁気共鳴イメージング装置において、
     被検体が載置される天板をさらに備え、
     前記無線通信部は、前記天板に対して固定的に設置される
     ことを特徴とする磁気共鳴イメージング装置。
  6.  被検体から発せられる核磁気共鳴信号を検出するRFコイル装置から、前記核磁気共鳴信号を取得する磁気共鳴イメージング装置であって、
     前記被検体が載置される天板と、
     前記RFコイル装置により検出された前記核磁気共鳴信号を取得し、誘導電界を介して、デジタル化された前記核磁気共鳴信号を無線送信する第1無線通信部と、
     前記天板内の配線に有線で接続されると共に前記天板上で位置変更が可能に配置され、前記第1無線通信部から無線送信された前記核磁気共鳴信号を、前記誘導電界を介して受信する第2無線通信部と、
     前記第2無線通信部により受信されて前記天板内の配線を経由して送信される前記核磁気共鳴信号に基づいて、前記被検体の画像データを再構成する画像再構成部と
     を備えことを特徴とする磁気共鳴イメージング装置。
  7.  核磁気共鳴信号を磁気共鳴イメージング装置に送信するRFコイル装置であって、
     被検体から発せられる前記核磁気共鳴信号を検出するコイル素子と、
     誘導電界を介して別のRFコイル装置に無線接続されると共に、前記別のRFコイル装置から無線送信されるデジタル化された前記核磁気共鳴信号を受信する第1通信部と、
     前記第1通信部により受信された前記核磁気共鳴信号と、前記コイル素子により検出された前記核磁気共鳴信号とを、デジタル化された状態で誘導電界を介して前記磁気共鳴イメージング装置に無線送信する第2通信部と
     を備えることを特徴とするRFコイル装置。
PCT/JP2014/050560 2013-01-16 2014-01-15 磁気共鳴イメージング装置、及び、rfコイル装置 WO2014112520A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201480004871.9A CN104918547B (zh) 2013-01-16 2014-01-15 磁共振成像装置及rf线圈装置
US14/246,299 US9817091B2 (en) 2013-01-16 2014-04-07 Magnetic resonance imaging apparatus and RF coil device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-005414 2013-01-16
JP2013005414A JP6021652B2 (ja) 2013-01-16 2013-01-16 磁気共鳴イメージング装置、及び、rfコイル装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/246,299 Continuation US9817091B2 (en) 2013-01-16 2014-04-07 Magnetic resonance imaging apparatus and RF coil device

Publications (1)

Publication Number Publication Date
WO2014112520A1 true WO2014112520A1 (ja) 2014-07-24

Family

ID=51209609

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/050560 WO2014112520A1 (ja) 2013-01-16 2014-01-15 磁気共鳴イメージング装置、及び、rfコイル装置

Country Status (4)

Country Link
US (1) US9817091B2 (ja)
JP (1) JP6021652B2 (ja)
CN (1) CN104918547B (ja)
WO (1) WO2014112520A1 (ja)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012211147B4 (de) * 2012-06-28 2017-08-31 Siemens Healthcare Gmbh Automatische Verstimmung nicht angeschlossener Sende-Empfangsspulen für MRI
JP6021652B2 (ja) * 2013-01-16 2016-11-09 東芝メディカルシステムズ株式会社 磁気共鳴イメージング装置、及び、rfコイル装置
JP6391911B2 (ja) 2013-01-23 2018-09-19 キヤノンメディカルシステムズ株式会社 磁気共鳴イメージング装置、及び、rfコイル装置
CN105190341B (zh) * 2013-05-02 2019-05-28 皇家飞利浦有限公司 用于系列局部rf线圈的包括数字转换器的可拆卸接收器块
JP6453068B2 (ja) * 2014-12-11 2019-01-16 キヤノンメディカルシステムズ株式会社 磁気共鳴イメージング装置
JP6687375B2 (ja) * 2015-11-30 2020-04-22 キヤノンメディカルシステムズ株式会社 Rfコイル及び磁気共鳴イメージング装置
US10690735B2 (en) * 2016-04-26 2020-06-23 Aivitae LLC Wireless detection coil system
EP3270177A1 (de) 2017-06-02 2018-01-17 Siemens Healthcare GmbH Verfahren zum betreiben einer lokalspule und lokalspule sowie magnetresonanztomograph
CN107255789B (zh) * 2017-06-02 2020-09-11 上海联影医疗科技有限公司 一种磁共振系统及其线圈端部件、主机端部件
CN111417863B (zh) * 2017-11-27 2024-04-16 皇家飞利浦有限公司 无线磁共振线圈装置、无线磁共振信号接收系统及方法
EP3611527B1 (de) * 2018-08-16 2021-07-14 Siemens Healthcare GmbH Lokalspule und system zur drahtlosen energieübertragung
DE102020210089B4 (de) * 2020-08-10 2022-03-24 Siemens Healthcare Gmbh Lokalspulenvorrichtung mit voller Signaldynamik des MRT-Signals bei verringertem Leistunqsumsatz für einen Magnetre-sonanztomographen, System mit einem Magnetresonanztomographenund einer Lokalspulenvorrichtung, Verfahren zum Betreiben ei-ner Lokalspulenvorrichtung sowie Computerprogramm und elekt-ronisch lesbarer Datenträger

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008518652A (ja) * 2004-11-04 2008-06-05 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 個別のデジタイザを備えるrf受信コイル部及びその同期化のための手段
JP2008311960A (ja) * 2007-06-14 2008-12-25 Sony Corp 通信システム並びに通信装置
JP2011092553A (ja) * 2009-10-30 2011-05-12 Toshiba Corp 磁気共鳴映像装置
JP2011248767A (ja) * 2010-05-28 2011-12-08 Sony Corp 情報処理装置、情報処理システム及びプログラム

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3168675B2 (ja) * 1992-03-19 2001-05-21 株式会社日立製作所 核磁気共鳴検査装置
JP3611378B2 (ja) * 1995-10-04 2005-01-19 株式会社東芝 Mri装置
US7548787B2 (en) * 2005-08-03 2009-06-16 Kamilo Feher Medical diagnostic and communication system
DE10148462C1 (de) * 2001-10-01 2003-06-18 Siemens Ag Übertragungsverfahren für ein analoges Magnetresonanzsignal und hiermit korrespondierende Einrichtungen
US6961604B1 (en) * 2001-10-09 2005-11-01 Koninklijke Philips Electroncis N.V. Wireless controller and application interface for an MRI system
CA2397431A1 (en) * 2002-08-09 2004-02-09 Andrew Lohbihler Method and apparatus for a wireless position sensing interface device employing spread spectrum technology of one or more radio transmitting devices
US20050107681A1 (en) * 2003-07-23 2005-05-19 Griffiths David M. Wireless patient monitoring device for magnetic resonance imaging
JP5069693B2 (ja) * 2005-12-23 2012-11-07 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Mrシステムにおいて信号のワイヤレス通信をする方法及び構成
JP5274864B2 (ja) * 2007-04-06 2013-08-28 株式会社東芝 磁気共鳴イメージング装置、rfコイルシステムおよび磁気共鳴イメージング方法
WO2009043034A1 (en) * 2007-09-27 2009-04-02 University Of Florida Research Foundation, Inc. Method and apparatus for providing a wireless multiple-frequency mr coil
JP5624283B2 (ja) 2008-06-30 2014-11-12 株式会社東芝 磁気共鳴診断装置および磁気共鳴診断メインユニット
GB0820685D0 (en) * 2008-11-12 2008-12-17 Siemens Ag Motion compensation
US8854042B2 (en) * 2010-08-05 2014-10-07 Life Services, LLC Method and coils for human whole-body imaging at 7 T
DE102010044187B4 (de) * 2010-11-19 2013-10-31 Siemens Aktiengesellschaft Lokalspule für eine Magnetresonanzeinrichtung und Magnetresonanzeinrichtung
DE102010064096B4 (de) 2010-12-23 2014-11-27 Siemens Aktiengesellschaft Magnetresonanzspulenvorrichtung
US9983281B2 (en) * 2012-07-23 2018-05-29 Toshiba Medical Systems Corporation Magnetic resonance imaging apparatus, bed device and RF coil device
JP6211807B2 (ja) * 2012-07-23 2017-10-11 東芝メディカルシステムズ株式会社 磁気共鳴イメージング装置
JP6073606B2 (ja) * 2012-09-03 2017-02-01 東芝メディカルシステムズ株式会社 磁気共鳴イメージング装置、及び、デジタル無線通信装置
US9927504B2 (en) * 2012-09-12 2018-03-27 Toshiba Medical Systems Corporation Magnetic resonance imaging apparatus
JP6073612B2 (ja) * 2012-09-12 2017-02-01 東芝メディカルシステムズ株式会社 磁気共鳴イメージング装置
JP6021652B2 (ja) * 2013-01-16 2016-11-09 東芝メディカルシステムズ株式会社 磁気共鳴イメージング装置、及び、rfコイル装置
DE102013204705A1 (de) * 2013-03-18 2014-09-18 Siemens Aktiengesellschaft Verfahren zur Bereitstellung von Magnetresonanztomographie-Daten bei einem Magnetresonanztomographie-System, sowie Magnetresonanztomographie-System
JP6104712B2 (ja) * 2013-05-28 2017-03-29 東芝メディカルシステムズ株式会社 磁気共鳴イメージング装置
DE102014209806A1 (de) * 2014-05-22 2015-11-26 Siemens Aktiengesellschaft Verfahren und Vorrichtung zu einer drahtlosen Übertragung von Herzschallsignalen
US9713453B2 (en) * 2014-07-16 2017-07-25 Neocoil, Llc Method and apparatus for high reliability wireless communications
JP6466111B2 (ja) * 2014-09-09 2019-02-06 キヤノンメディカルシステムズ株式会社 磁気共鳴イメージング装置及びrfコイル
JP6584767B2 (ja) * 2014-11-27 2019-10-02 キヤノンメディカルシステムズ株式会社 磁気共鳴イメージング装置
US9977099B2 (en) * 2014-12-30 2018-05-22 General Electric Company Systems and methods for integrated pick-up loops in body coil conductors
DE102015201023B4 (de) * 2015-01-22 2016-09-15 Siemens Healthcare Gmbh MR-Feldsonden mit Zusatzwindungen zur Verbesserung der Homogenität und zur Eingrenzung des Mess-Volumens

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008518652A (ja) * 2004-11-04 2008-06-05 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 個別のデジタイザを備えるrf受信コイル部及びその同期化のための手段
JP2008311960A (ja) * 2007-06-14 2008-12-25 Sony Corp 通信システム並びに通信装置
JP2011092553A (ja) * 2009-10-30 2011-05-12 Toshiba Corp 磁気共鳴映像装置
JP2011248767A (ja) * 2010-05-28 2011-12-08 Sony Corp 情報処理装置、情報処理システム及びプログラム

Also Published As

Publication number Publication date
JP6021652B2 (ja) 2016-11-09
CN104918547A (zh) 2015-09-16
CN104918547B (zh) 2018-03-27
US20140218034A1 (en) 2014-08-07
US9817091B2 (en) 2017-11-14
JP2014136003A (ja) 2014-07-28

Similar Documents

Publication Publication Date Title
JP6021652B2 (ja) 磁気共鳴イメージング装置、及び、rfコイル装置
JP6073612B2 (ja) 磁気共鳴イメージング装置
US10663542B2 (en) Magnetic resonance imaging apparatus with digital processor inside patient bed
US10001534B2 (en) Magnetic resonance imaging apparatus and radio communication device
US10175313B2 (en) Magnetic resonance imaging apparatus and RF coil device
US7330030B2 (en) Magnetic resonance imaging apparatus
JP6211807B2 (ja) 磁気共鳴イメージング装置
EP3126863B1 (en) Wireless clock synchronization system for magnetic resonance imaging systems and method of operation
US10281537B2 (en) Magnetic resonance imaging apparatus
JP6453068B2 (ja) 磁気共鳴イメージング装置
JP2015020075A (ja) 磁気共鳴トモグラフィシステムおよび該磁気共鳴トモグラフィシステムを用いたmriイメージング方法
US20080231278A1 (en) Radio-frequency coil and magnetic resonance imaging apparatus
US9983281B2 (en) Magnetic resonance imaging apparatus, bed device and RF coil device
JP4564292B2 (ja) 高周波コイル及び磁気共鳴イメージング装置
WO2014017419A1 (ja) 磁気共鳴イメージング装置、寝台装置、及び、rfコイル装置
JP6184067B2 (ja) 磁気共鳴イメージング装置
JP6157964B2 (ja) 磁気共鳴イメージング装置、寝台装置、及び、rfコイル装置
CN117008026A (zh) 线圈接口装置、线圈装置和磁共振成像设备
US10816619B2 (en) Couchtop attachment-detachment type RF coil and magnetic resonance imaging apparatus
JP2018008105A (ja) 磁気共鳴イメージング装置
JP6469773B2 (ja) Rfコイル装置及び磁気共鳴イメージング装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14740343

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14740343

Country of ref document: EP

Kind code of ref document: A1