WO2014112355A1 - トルクセンサ及びその製造方法 - Google Patents

トルクセンサ及びその製造方法 Download PDF

Info

Publication number
WO2014112355A1
WO2014112355A1 PCT/JP2014/000122 JP2014000122W WO2014112355A1 WO 2014112355 A1 WO2014112355 A1 WO 2014112355A1 JP 2014000122 W JP2014000122 W JP 2014000122W WO 2014112355 A1 WO2014112355 A1 WO 2014112355A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal frame
metal
metal shaft
recess
torque sensor
Prior art date
Application number
PCT/JP2014/000122
Other languages
English (en)
French (fr)
Inventor
俊太郎 吉田
隆雄 岩城
豊田 稲男
卓也 石川
岡田 明
和正 荻野
Original Assignee
株式会社デンソー
株式会社日本自動車部品総合研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー, 株式会社日本自動車部品総合研究所 filed Critical 株式会社デンソー
Priority to US14/760,776 priority Critical patent/US9568380B2/en
Priority to EP14740674.8A priority patent/EP2947441A4/en
Publication of WO2014112355A1 publication Critical patent/WO2014112355A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L3/00Measuring torque, work, mechanical power, or mechanical efficiency, in general
    • G01L3/02Rotary-transmission dynamometers
    • G01L3/04Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft
    • G01L3/10Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/16Measuring force or stress, in general using properties of piezoelectric devices
    • G01L1/162Measuring force or stress, in general using properties of piezoelectric devices using piezoelectric resonators
    • G01L1/165Measuring force or stress, in general using properties of piezoelectric devices using piezoelectric resonators with acoustic surface waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/20Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress
    • G01L1/22Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress using resistance strain gauges
    • G01L1/2287Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress using resistance strain gauges constructional details of the strain gauges
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/43Electric condenser making

Definitions

  • the present disclosure relates to a torque sensor including a SAW (surface acoustic wave) type strain detection element and a method for manufacturing the torque sensor.
  • SAW surface acoustic wave
  • Patent Document 1 proposes a torque measuring device in which a strain gauge for detecting strain of the torque sensor shaft is attached to the outer surface of the torque sensor shaft. Specifically, when the torque sensor shaft is twisted and strain occurs, the strain gauge detects this strain, outputs an electrical signal corresponding to the change in electrical resistance due to this strain, and a torque value is calculated from this electrical signal. A configuration has been proposed.
  • the strain gauge is configured by forming a metal resistor on a thin insulator and is attached to the torque sensor shaft with an adhesive. Therefore, even if it receives distortion of the torque sensor shaft, it deforms flexibly. For this reason, the strain gauge is not broken by the deformation of the torque sensor shaft.
  • the torque sensor is configured as a hard piezoelectric sensor chip. Therefore, the hard piezoelectric body is directly fixed to the torque sensor shaft with the adhesive. For this reason, when creep or deterioration of the adhesive occurs, the distortion of the torque sensor shaft is not transmitted to the hard torque sensor of the SAW method, and there is a problem that the detection accuracy of the distortion is lowered.
  • This disclosure is intended to provide a torque sensor having a structure capable of reliably transmitting the strain of a metal shaft to be measured to a SAW strain detection element. Moreover, it aims at providing the manufacturing method of the said torque sensor.
  • the torque sensor includes a pedestal portion fixed to a rod-shaped metal shaft that is a strain measurement target, the torque sensor disposed on the pedestal portion, and the metal shaft via the pedestal portion.
  • the strain detection element is fixed to the pedestal portion with a fixed portion, the fixed portion and the strain detection element are not broken by the difference in thermal expansion coefficient between the fixed portion and the strain detection element and the metal shaft. can do. Therefore, the strain of the metal shaft can be reliably transmitted to the strain detecting element via the pedestal portion and the fixed portion.
  • a method of manufacturing a torque sensor that detects strain of a metal shaft that is a strain measurement target and has a rod shape with a SAW strain detection element via a metal frame is provided.
  • a flat surface is formed on the outer surface, and as the metal frame, a plate-like one having one surface, the other surface opposite to the one surface, the one surface and the side surface in contact with the other surface is prepared, and the strain is made through glass.
  • the detection element is fixed to one surface of the metal frame, and the metal frame is arranged on the flat surface and bonded and fixed so that the other surface of the metal frame to which the strain detection element is fixed is on the flat surface side. Including that.
  • the strain detection element is fixed to the pedestal portion with the fixed portion, the fixed portion and the strain detection element are cracked due to the difference in thermal expansion coefficient between the fixed portion and the strain detection element and the metal shaft. There can be no configuration. Therefore, the strain of the metal shaft can be reliably transmitted to the strain detecting element via the pedestal portion and the fixed portion.
  • FIG. 1 is a plan view of a torque sensor according to a first embodiment of the present disclosure.
  • 2 is a cross-sectional view taken along the line II-II in FIG.
  • FIG. 3 is a plan view of the strain detection element
  • 4 is a cross-sectional view taken along the line IV-IV in FIG.
  • FIG. 5 is a diagram illustrating a manufacturing process of the torque sensor according to the first embodiment.
  • FIG. 6 is a cross-sectional view of a torque sensor according to the second embodiment of the present disclosure.
  • FIG. 7 is a diagram illustrating a manufacturing process of the torque sensor according to the second embodiment.
  • FIG. 8A is a cross-sectional view of the metal shaft in the case of measuring strain on the flat surface of the metal shaft
  • FIG. 8B is a diagram showing the metal frame by fixing the metal frame to a recess provided on the flat surface of the metal shaft. It is a sectional view of the metal shaft and the metal frame when measuring the distortion of the frame
  • FIG. 9 is a diagram showing the relationship between the torque and strain of the metal shaft
  • FIG. 10 is a plan view of a torque sensor according to a third embodiment of the present disclosure.
  • FIG. 11 is a plan view of a torque sensor according to the fourth embodiment of the present disclosure.
  • 12 is a cross-sectional view taken along line XII-XII in FIG. FIG.
  • FIG. 13 is a cross-sectional view of a torque sensor according to a fifth embodiment of the present disclosure.
  • FIG. 14 is a cross-sectional view of a torque sensor according to a sixth embodiment of the present disclosure
  • FIG. 15 is a diagram showing the relationship between torque and strain received from the metal shaft according to the bolt shape in the sixth embodiment
  • FIG. 16 is a diagram showing the distance from the surface of the metal shaft to the bottom (installation surface) in the seventh embodiment
  • FIG. 17 is a diagram illustrating the relationship between the distance from the surface of the metal shaft to the bottom (installation surface) and the amount of distortion in the seventh embodiment.
  • FIG. 18 is a plan view of a torque sensor according to an eighth embodiment of the present disclosure
  • 19 is a cross-sectional view taken along the line XIX-XIX in FIG.
  • FIG. 20 is a plan view of one surface of a metal frame according to the eighth embodiment
  • 21 is a cross-sectional view taken along the line XXI-XXI in FIG.
  • FIG. 22 is a plan view of a metal shaft according to the eighth embodiment
  • 23 is a sectional view taken along line XXIII-XXIII in FIG.
  • FIG. 24 is a diagram showing a relationship between torque and strain received from the metal shaft by the metal frame according to the eighth embodiment.
  • FIG. 25B are a plan view and a side view of a metal frame according to the ninth embodiment of the present disclosure
  • FIG. 26A and FIG. 26B are a plan view and a side view of a metal frame according to the tenth embodiment of the present disclosure
  • 27 (a) and 27 (b) are a plan view and a side view of a metal frame according to an eleventh embodiment of the present disclosure
  • 28 (a) and 28 (b) are a plan view and a side view of a metal frame according to a twelfth embodiment of the present disclosure
  • FIG. 29 is a plan view of a torque sensor according to a thirteenth embodiment of the present disclosure
  • FIG. 30 is a plan view of an end surface of one end of a metal shaft according to a fourteenth embodiment of the present disclosure
  • FIG. 31 is a sectional view taken along the line XXXI-XXXI in FIG. 32 (a) and 32 (b) are a plan view and a side view of a metal frame according to a fourteenth embodiment of the present disclosure
  • FIG. 33 is a view showing the relationship between torque and strain received from the metal shaft by the metal frame according to the fourteenth embodiment
  • FIG. 34 is a plan view of an end face of one end of a metal shaft according to a fifteenth embodiment of the present disclosure
  • 35 is a cross-sectional view taken along XXXV-XXXV in FIG.
  • the torque sensor according to the present embodiment includes a metal shaft 10, a metal frame 20, a glass 30, a strain detection element 40, and a printed board 50.
  • the metal shaft 10 is a rod-shaped so-called shaft and is a strain measurement target.
  • the metal shaft 10 has a flat surface 12 on the surface 11.
  • the flat surface 12 is a so-called counterbore.
  • S35C As a material of the metal shaft 10, for example, S35C is adopted.
  • the thermal expansion coefficient ⁇ of S35C is 11.3 ppm / K.
  • the metal frame 20 is a plate-like component having one surface 21, another surface 22 opposite to the one surface 21, one surface 21, and a side surface 23 in contact with the other surface 22.
  • the planar shape of the one surface 21 and the other surface 22 of the metal frame 20 is a quadrangular shape.
  • the thickness of the metal frame 20 is 0.5 mm, for example. 2
  • the metal frame 20 is disposed on the flat surface 12 with the other surface 22 facing the flat surface 12 side of the metal shaft 10, and the outer edge portion 24 of the other surface 22 is the metal shaft.
  • Ten flat surfaces 12 are joined and fixed by laser welding.
  • the other surface 22 of the metal frame 20 is laser-welded so as to make a round at the outer edge 24. For this reason, although the center part 25 of the other surface 22 of the metal frame 20 is in contact with the flat surface 12 of the metal shaft 10, it is not joined.
  • the metal frame 20 is made of austenitic stainless steel. Specifically, SUS304 is adopted as the metal frame 20.
  • the thermal expansion coefficient ⁇ of SUS304 is 17.3 ppm / K.
  • the glass 30 is disposed between the one surface 21 of the metal frame 20 and the strain detection element 40 and is a fixing member for fixing the strain detection element 40 to the one surface 21 of the metal frame 20.
  • a lead-based material is adopted as the material of the glass 30, for example.
  • Such a lead-based glass 30 has a thermal expansion coefficient ⁇ of 10.0 to 16.0, specifically 15.4 ppm / K.
  • the firing temperature of the lead-based glass 30 is less than 400 ° C.
  • the glass transition temperature is 220 ° C. That is, the glass 30 is made of low melting point glass.
  • the strain detection element 40 is a SAW type strain measurement sensor that is disposed on one surface 21 of the metal frame 20 and detects the strain of the metal shaft 10 via the metal frame 20.
  • the strain detection element 40 includes two first and second SAW resonators 41 and 42 as shown in FIG.
  • the strain detection element 40 includes a first oscillation circuit having a first SAW resonator 41 as a first surface acoustic wave element and a second oscillation circuit having a second SAW resonator 42 as a second surface acoustic wave element. And two oscillators are formed by the first and second oscillation circuits.
  • the strain detecting element 40 includes a piezoelectric substrate 43 made of a single crystal of a piezoelectric material, comb-shaped electrodes 44 and 45 formed on the piezoelectric substrate 43, and a reflector 46. , 47.
  • a piezoelectric substrate 43 made of a single crystal of a piezoelectric material
  • comb-shaped electrodes 44 and 45 formed on the piezoelectric substrate 43
  • a reflector 46. , 47 for example, lithium niobate (LN) is used as the piezoelectric material.
  • the thermal expansion coefficient ⁇ of the piezoelectric substrate 43 is 16.0 ppm / K.
  • a metal material such as aluminum is adopted as the material of the comb electrodes 44 and 45 and the reflectors 46 and 47.
  • the lead glass having a low glass transition temperature as described above is adopted as the low melting glass 30 that can be baked at 450 ° C. or lower. Has been.
  • the comb-tooth electrodes 44 and 45 cause the piezoelectric substrate 43 to excite surface acoustic waves.
  • the comb-tooth electrodes 44 and 45 include a plurality of comb-tooth portions 44a and 45a that are parallel to each other and extend in the X-axis direction, and bus bars 44b and 45b that connect the plurality of comb-tooth portions 44a and 45a. And have.
  • the comb teeth 44a and 45a of the comb electrodes 44 and 45 are the same number, and the comb teeth 44a and 45a are alternately arranged one by one.
  • the reflectors 46 and 47 are arranged on both sides of the comb-tooth electrodes 44 and 45 in the Y-axis direction, and reflect the surface acoustic waves propagated from the comb-tooth electrodes 44 and 45.
  • the reflectors 46 and 47 are composed of a plurality of electrodes arranged in the Y-axis direction. One electrode extends in parallel with the comb-tooth portions 44a and 45a, and the plurality of electrodes are parallel to each other.
  • the first and second SAW resonators 41 and 42 include the number of comb-shaped electrodes 44 and 45, the number of electrodes constituting the reflectors 46 and 47, the comb-shaped electrodes 44 and 45 and the reflectors 46 and 47, respectively.
  • the electrode widths h1 and h2, and the pitches p1 and p2 between the electrodes are the same. Further, since the electrode widths h1 and h2 and the pitches p1 and p2 of the electrodes are the same, the metallization ratio (ratio of the width of each electrode to the width of the free surface in the Y-axis direction) is also the same.
  • the number of pairs of comb-tooth electrodes 44 and 45 is the number of comb-tooth portions 44a and 45a included in the pair of comb-tooth electrodes 44 and 45, and the pitches p1 and p2 of each electrode are the center and center of adjacent electrodes. And the interval.
  • the first and second SAW resonators 41 and 42 have different interdigital finger widths L1 and L2 of the electrodes constituting the comb-tooth electrodes 44 and 45 and the reflectors 46 and 47, and the second SAW resonator 42 intersects.
  • the finger width L2 is longer than the cross finger width L1 of the first SAW resonator 41.
  • the two strain detection elements 40 are arranged in a square shape so that the longitudinal directions of the strain detection elements 40 intersect at a predetermined angle. According to such an arrangement, when the metal shaft 10 is distorted due to torsion or the like, a compressive strain is generated in one strain detecting element 40 and a tensile strain is generated in the other strain detecting element 40.
  • Each strain detection element 40 detects strain as a change in the difference between the oscillation frequencies of the first and second SAW resonators 41 and 42.
  • the printed circuit board 50 is a relay part for electrically connecting the strain detection element 40 to the outside. For this reason, the printed circuit board 50 includes a terminal portion 51.
  • the printed circuit board 50 is installed on one surface 21 of the metal frame 20 with, for example, an adhesive.
  • the terminal portion 51 is connected to the bus bars 44 b and 45 b of the strain detection element 40 by bonding wires 60. In FIG. 1, the bonding wire 60 for connecting the terminal portion 51 and the outside is omitted.
  • the above is the configuration of the torque sensor according to the present embodiment.
  • the torque sensor is mounted on a vehicle such as an automobile and used for vehicle control.
  • the metal shaft 10 provided with the flat surface 12 is prepared.
  • a plate-shaped metal frame 20 is prepared.
  • the strain detection element 40 shown in FIG. 3 is prepared, and the strain detection element 40 is fixed to the one surface 21 of the metal frame 20 through the glass 30.
  • a solid glass 30 is disposed on one surface 21 of the metal frame 20, and the glass 30 is heated to a temperature equal to or higher than the glass transition temperature and melted to form a paste.
  • the strain detection element 40 is placed on the glass 30 and the glass 30 is cooled to harden the glass 30 again. Thereby, the strain detection element 40 is fixed to the one surface 21 of the metal frame 20.
  • a printed circuit board 50 on which the terminal portion 51 is formed is prepared, and fixed to a predetermined position on the one surface 21 of the metal frame 20 with an adhesive. Then, the strain detection element 40 and the terminal portion 51 are connected by the bonding wire 60.
  • the metal frame 20 is arranged on the flat surface 12 of the metal shaft 10 so that the other surface 22 of the metal frame 20 to which the strain detecting element 40 is fixed is on the flat surface 12 side. Then, as shown in FIG. 5, the metal frame 20 is laser-welded to the flat surface 12 of the metal shaft 10 with a laser beam so as to go around the outer edge portion 24 of the other surface 22 of the metal frame 20. Thereby, the metal frame 20 is bonded and fixed to the flat surface 12 of the metal shaft 10.
  • the signal of the strain detection element 40 can be output to the outside by connecting the terminal portion 51 and other electric circuit components with a bonding wire (not shown).
  • a bonding wire not shown
  • the piezoelectric substrate 43 that generates surface acoustic waves (SAW) is a hard ceramic material. Further, in order to measure the torque of the metal shaft 10, it is necessary to accurately transmit the distortion of the metal shaft 10 generated by the torque to the hard piezoelectric substrate 43 of the strain detection element 40.
  • a glass 30 having a low melting point that is not easily deformed or deteriorated like an adhesive but has high rigidity and excellent durability is preferable.
  • the strain detection element 40 is not fixed directly to the flat surface 12 of the metal shaft 10 with the glass 30 but the strain detection element 40 is fixed to the metal frame 20 with the glass 30. This is because the coefficient of thermal expansion of the strain sensing element 40 and the metal shaft 10 is different as described above, and therefore when the strain sensing element 40 is directly attached to the metal shaft 10 using the glass 30, the glass paste is cooled after firing. This is because stress due to shrinkage occurs in the strain detection element 40 and the glass 30. That is, the strain detection element 40 and the glass 30 are broken or peeled off.
  • the metal frame 20 having the same thermal expansion coefficient as that of the strain detection element 40 the low melting point glass 30 having the same thermal expansion coefficient can be used. As a result, the strain detecting element 40 and the glass 30 can be prevented from cracking in the cooling process after baking the glass paste due to the difference in thermal expansion coefficient between the strain detecting element 40 and the metal shaft 10.
  • the metal shaft 10 and the metal frame 20 have a difference in thermal expansion coefficient, since the metal expands and contracts, it does not crack or tear. Therefore, the difference in thermal expansion coefficient between the metal shaft 10 and the metal frame 20 does not matter.
  • the strain detection element 40 is not directly attached to the metal shaft 10, the strain detection element 40 is bonded to the metal frame 20 with the low melting point glass 30, and the metal frame 20 is further attached.
  • the configuration is characterized by being bonded and fixed to the metal shaft 10.
  • the metal frame 20 having the same thermal expansion coefficient as that of the strain detection element 40 using the low melting point glass 30 having the same thermal expansion coefficient as that of the strain detection element 40 and the metal frame 20. It is possible to prevent the strain detecting element 40 from being peeled or cracked due to the difference in thermal expansion coefficient during the firing of the glass paste, and further the glass 30 can be prevented from cracking. That is, by providing the metal frame 20, it is possible to prevent the glass 30 and the strain detection element 40 from being broken due to the difference in thermal expansion coefficient between the glass 30 and the strain detection element 40 and the metal shaft 10.
  • the outer edge portion 24 of the other surface 22 of the metal frame 20 is laser-welded to the flat surface 12 of the metal shaft 10, the central portion 25 of the other surface 22 of the metal frame 20 and the metal shaft 10 are connected. Even if it is not joined, strain can be transmitted efficiently. Therefore, it is possible to reliably transmit the strain of the metal shaft 10 to be measured to the SAW strain detection element 40 and to suppress a decrease in strain detection accuracy.
  • the glass 30 corresponds to the “fixed portion” of the claims.
  • the metal shaft 10 has a recess 13 in which a part of the flat surface 12 is recessed in the flat surface 12.
  • the planar size of the recess 13 is the same as the one surface 21 and the other surface 22 of the metal frame 20. Further, the depth of the recess 13 is the same as the thickness of the metal frame 20.
  • the depression 13 is a part of the flat surface 12.
  • FIG. 6 is a view corresponding to the II-II section of FIG.
  • the metal frame 20 is fitted in the recess 13 of the flat surface 12 of the metal shaft 10. Furthermore, laser welding is performed so that the side surface 23 of the metal frame 20 and the wall surface 14 of the recess 13 are integrated. In the present embodiment, the other surface 22 of the metal frame 20 is in contact with the bottom surface 15 of the recess 13.
  • the outer edge portion 24 of the other surface 22 of the metal frame 20 may be somewhat melted and joined to the metal shaft 10 during laser welding, but in this embodiment, only the side surface 23 of the metal frame 20 is recessed 13. It is integrated with the wall surface 14. Further, the wall surface 14 and the bottom surface 15 of the recess 13 are part of the flat surface 12.
  • a metal shaft 10 having a flat surface 12 with a depression 13 is prepared.
  • the metal frame 20 is fitted into the recess 13.
  • the side surface 23 is laser-welded to the wall surface 14 with laser light so that the side surface 23 of the metal frame 20 and the wall surface 14 of the recess 13 are integrated.
  • the other surface 22 of the metal frame 20 and the bottom surface 15 of the recess 13 are only in contact with each other.
  • the subsequent steps are the same as those in the first embodiment.
  • the inventors only integrate the side surface 23 of the metal frame 20 with the metal shaft 10, and the distortion of the metal shaft 10 can be obtained even if the entire other surface 22 of the metal frame 20 is not joined to the metal shaft 10. It was confirmed by experiments that it can be accurately transmitted to the metal frame 20.
  • a metal shaft 10 having a flat surface 12 is prepared, and a strain gauge (not shown) is installed on the flat surface 12 to measure the strain of the metal shaft 10.
  • a strain gauge (not shown) is installed on the flat surface 12 to measure the strain of the metal shaft 10.
  • the metal frame 20 is fitted into the recess 13 formed in the flat surface 12 of the metal shaft 10, and the side surface 23 of the metal frame 20 is laser welded to the wall surface 14 of the recess 13.
  • a strain gauge (not shown) was installed on one surface of the metal frame 20, and the strain of the metal shaft 10 was measured. The measurement results of these strains are shown in FIG.
  • the torque calculated from the strain of the metal shaft 10 and the torque calculated from the strain of the metal frame 20 show substantially the same value. This reveals that the presence of the metal frame 20 does not affect the detection of distortion. That is, by providing the recess 13 in the flat surface 12 of the metal shaft 10 and integrating the wall surface 14 of the recess 13 and the side surface 23 of the metal frame 20 by laser welding, the strain of the metal shaft 10 can be transmitted more reliably. it can.
  • the planar shapes of the flat surface 12, the recess 13, the one surface 21 of the metal frame 20, and the other surface 22 of the metal shaft 10 are circular.
  • the circular plane sizes of the recess 13, the one surface 21 of the metal frame 20, and the other surface 22 are the same.
  • the planar shape of the flat surface 12 of the metal shaft 10, the one surface 21 of the metal frame 20, and the other surface 22 is circular.
  • the torque sensor includes a metal shaft 10, a bolt 70, a glass 30, a strain detection element 40, and a printed board 50.
  • the metal shaft 10 has a recess 13 in which the flat surface 12 is recessed in the flat surface 12.
  • the bottom surface 15 of the recess 13 has a circular planar shape on the flat surface 12 of the metal shaft 10.
  • the wall surface 14 of the recess 13 is threaded. That is, a female screw for fixing the bolt 70 is formed on the wall surface 14 of the recess 13.
  • the bolt 70 is a so-called hexagonal bolt composed of a regular hexagonal column head 71 and a screw part 72 whose side is threaded into a male thread.
  • the head 71 has a groove 73 that is recessed toward the screw portion 72.
  • the strain detection element 40 is fixed to the bottom 74 of the groove 73 through the glass 30, and the printed circuit board 50 is fixed to the bottom 74 of the groove 73 through an adhesive.
  • the bottom portion 74 of the groove 73 is disposed at a position higher than the surface 11 of the metal shaft 10.
  • the bolt 70 has a cap 80 for covering and protecting the strain detection element 40 and the like.
  • the cap 80 is provided with a take-out portion 81 for taking out the wiring from the printed board 50 to the outside.
  • the cap 80 is fixed to the head 71 of the bolt 70 by being disposed in the groove 73 and covered with the potting material 82.
  • the bolt 70 having such a configuration is fastened and fixed to the metal shaft 10 by screwing the screw portion 72 to the recess 13 of the metal shaft 10.
  • an embedding member 76 such as an anaerobic adhesive between the wall surface 14 of the recess 13 and the screw portion 72, a contact surface where the screw thread of the wall surface 14 contacts the screw thread of the screw portion 72 ( The slippage of the flank portion can be prevented. Further, the hysteresis of the detected value of distortion can be reduced.
  • the strain detection element 40 is made of metal like a strain gauge. It is necessary to be attached in the direction of ⁇ 45 ° with respect to the twisting direction of the shaft 10. For this reason, the head 71 of the bolt 70 is provided with a first mark 75 by a notch or the like. The first mark 75 plays a role of instructing the arrangement direction of the strain detection element 40 with respect to the metal shaft 10. Similarly, a second mark 16 such as a notch is also provided on the flat surface 12 of the metal shaft 10. The second mark 16 serves to indicate the position of the first mark 75.
  • each of the marks 16 and 75 may use a part of the shape of the bolt 70 or a part of the shape of the metal shaft 10 as the first marks 16 and 75. Accordingly, by matching the first mark 75 of the bolt 70 with the second mark 16 of the metal shaft 10, a predetermined fastening force can be obtained while ensuring the positional relationship of the strain detecting element 40 with respect to the metal shaft 10. .
  • the first mark 75 is provided corresponding to the cutout position of the male screw of the screw portion 72.
  • the first mark 75 is provided on the bolt 70 so that the first mark 75 and the position where the male screw starts to be cut are aligned.
  • the second mark 16 provided on the metal shaft 10 is provided corresponding to the cutout position of the female screw formed on the wall surface 14 of the recess 13.
  • the second mark 16 is provided on the metal shaft 10 so that the second mark 16 and the position where the female screw starts to be cut are aligned.
  • the screw shape is preferably formed by a planetary tap.
  • the strain detecting element 40 As described above, by installing the strain detecting element 40 on the bolt 70 and fastening the bolt 70 to the metal shaft 10, the stress due to the strain generated in the metal shaft 10 is caused to be transferred from the wall surface 14 of the recess 13 to the screw portion of the bolt 70. 72 and the head 71 can be reliably transmitted. Further, since the bolt 70 only needs to be fastened to the metal shaft 10 with a predetermined fastening force, the strain detection element 40 can be easily fixed to the metal shaft 10 via the bolt 70.
  • the torque sensor includes a washer 90 provided between the metal shaft 10 and the bolt 70.
  • the washer 90 is sandwiched between the head 71 of the bolt 70 and the flat surface 12 of the metal shaft 10.
  • the bolt 70 is aligned with the metal shaft 10 based on the first marks 16 and 75 with a predetermined fastening force. 70 can be fastened to the metal shaft 10. That is, the fastening force of the bolt 70 with respect to the metal shaft 10 can be managed with high accuracy. In particular, when there is a large variation in fastening force at a predetermined position with respect to the metal shaft 10 for each bolt 70, the variation in fastening force can be suppressed by using the washer 90.
  • FIG. 15 also shows the distortion of the flat surface 12 of the metal shaft 10 for reference.
  • the embedded member 76 such as the anaerobic adhesive described in the fourth embodiment
  • the screw portion 72 by applying the embedded member 76 such as the anaerobic adhesive described in the fourth embodiment to the screw portion 72 and then fastening it to the metal shaft 10, slippage of the flank portion is prevented and hysteresis is further reduced. can do.
  • the strain can be accurately measured without generating strain hysteresis.
  • the height of the bottom 74 of the groove 73 provided in the head 71 of the bolt 70 is arranged at a position higher than the surface 11 of the metal shaft 10, but this is an example.
  • the bolt 70 may be attached to the metal shaft 10 so that the surface 11 of the metal shaft 10 and the bottom 74 of the groove portion 73 have the same height.
  • the distance from the central axis of the metal shaft 10 to the surface 11 that is, the diameter of the metal shaft 10) is defined as r
  • the height from the central axis of the metal shaft 10 to the bottom 74 of the groove 73 of the bolt 70 is 0.
  • the bolt 70 may be fastened and fixed to the metal shaft 10 so as to be 5r or more and 0.9r or less.
  • a flat surface 12 is set at a position of, for example, 24.5 mm from the central axis with respect to the metal shaft 10 of ⁇ 55, and a bottom 74 (installation surface) of ⁇ 20 is formed from the flat surface 12.
  • the amount of distortion at the center of the installation surface was examined.
  • the amount of distortion increases when the radius r is in the range of 0.5 to 0.9. From this result, it can be said that it is preferably 0.5r or more and 0.9r or less as described above.
  • the bottom 74 corresponds to the “installation surface” of the claims.
  • the torque sensor includes a metal frame 100, a bolt 110, a strain detection element 40, and a glass 30.
  • the metal frame 100 has a plate shape having one surface 101, another surface 102 opposite to the one surface 101, and one surface 101 and a side surface 103 in contact with the other surface 102.
  • the side surface 103 is formed in a tapered shape so that the size of the other surface 102 decreases from the one surface 101 toward the other surface 102.
  • the planar shape of one surface 101 of the metal frame 100 is circular. That is, the metal frame 100 has a disk shape.
  • the metal frame 100 has a detent portion 104 formed on the side surface 103.
  • the rotation stopper 104 is a portion in which a part of the side surface 103 protrudes in the radial direction of the metal frame 100. In the present embodiment, two rotation prevention portions 104 are provided.
  • the anti-rotation part 104 plays a role of prohibiting rotation of the metal frame 100 around the central axis of the bolt 110. Further, the rotation preventing portion 104 serves as an alignment means for positioning the strain detection element 40 in the ⁇ 45 ° direction with respect to the twisting direction of the metal shaft 10.
  • the angle formed by straight lines parallel to one of the side surfaces 103 and the other surface when the metal frame 100 is cut in a direction perpendicular to the one surface 101 is a taper angle. It is defined as
  • the side surface 103 is formed in a tapered shape so that the taper angle is not less than 5 ° and not more than 55 °, that is, 30 ° ⁇ 25 °. Specifically, in the present embodiment, the side surface 103 is formed so that the taper angle is 45 °.
  • the lower limit of the taper angle is 5 ° is that if the taper angle is too small, the position of the metal frame 100 with respect to the radial direction of the metal shaft 10 is not determined after the metal frame 100 is attached to the recess 17.
  • the upper limit of the taper angle is set to 55 ° because if the taper angle is too large, the side surface 103 slips and strain is not easily transmitted from the metal shaft 10 to the metal frame 100, or strain hysteresis increases. is there.
  • the bolt 110 is a fastening means for fixing the metal frame 100 to the metal shaft 10 by being screwed to the recess 13 of the metal shaft 10.
  • bolt 110 is the hollow cylinder shape which has the hollow part 111, and has penetrated to the axial direction of the center axis
  • the bolt 110 has a male screw formed on the outer wall surface 112.
  • the bolt 110 is a so-called hexagon bolt.
  • the metal shaft 10 has the above-described recess 13 and a recess 17 in which a part of the bottom surface 15 of the recess 13 is recessed.
  • the concave portion 17 has a catching portion 18 in which the detent portion 104 of the metal frame 100 is disposed.
  • the recess 17 has a taper formed so that the size of the recess 17 in the surface direction of the bottom surface 15 of the recess 13 becomes smaller in the depth direction of the recess 17. It has a surface 17a.
  • the tapered surface 17 a is formed to have the same taper angle as the side surface 103 of the metal frame 100. As a result, no gap is generated between the tapered surface 17 a of the recess 17 and the side surface 103 of the metal frame 100.
  • the metal frame 100 is fitted into the recess 17 so that the side surface 103 contacts the tapered surface 17a of the recess 17 and the rotation preventing portion 104 is positioned at the catch portion 18 of the recess 17.
  • the other surface 102 of the metal frame 100 is not in contact with the bottom of the recess 17.
  • the bolt 110 is screwed to the recess 13.
  • the metal frame 100 is pushed into the metal shaft 10 side and fixed to the metal shaft 10.
  • the torque sensor has a structure that can be attached to and detached from the metal shaft 10.
  • the detent portion 104 of the metal frame 100 is caught by the catch portion 18 of the recess 17 in a state where the metal frame 100 is fitted in the recess 17.
  • the rotation preventing portion 104 of the metal frame 100 and the catching portion 18 of the concave portion 17 of the metal shaft 10 are hooked to each other, so that the rotation of the metal frame 100 is prohibited.
  • the position of the metal frame 100 with respect to the recess 17 can be fixed.
  • the strain detection element 40 is fixed to the portion corresponding to the hollow portion 111 of the bolt 110 on the one surface 101 of the metal frame 100 via the glass 30. Further, since the rotation of the metal frame 100 with respect to the metal shaft 10 is prohibited by the rotation stop portion 104, the strain detection element 40 is fixed at a predetermined position with respect to the metal shaft 10. Thereby, the strain detection element 40 can detect the strain of the metal shaft 10 appropriately.
  • the result is shown in FIG.
  • FIG. 24 since almost no hysteresis is generated in the amount of strain transmitted from the metal shaft 10 to the strain detecting element 40, accurate torque measurement can be performed. That is, even if the metal frame 100 to which the strain detection element 40 is fixed and the bolt 110 for fixing the metal frame 100 to the metal shaft 10 are separated, the strain detection element is interposed via the metal frame 100. The distortion can be reliably transmitted to 40. Therefore, accurate distortion of the metal shaft 10 can be detected.
  • the metal frame 100 and the bolt 110 correspond to the “pedestal portion” of the claims.
  • the detent portion 104 has a notch in which a part of the outer edge portion of the metal frame 100 is recessed toward the central axis side of the metal frame 100. It is configured as.
  • FIGS. 25A and 25B a plan view of the metal frame 100 is shown in the upper stage, and a side view of the metal frame 100 is shown in the lower stage. The same applies to the following FIGS. 26A to 28B.
  • the catch portion 18 of the metal shaft 10 is configured as a knock pin (not shown) provided in the recess 17.
  • the knock pin is inserted into the rotation stop portion 104 of the metal frame 100, and the rotation stop portion 104 and the knock pin are hooked together. Therefore, rotation of the metal frame 100 can be prohibited.
  • the metal frame 100 has one surface 101 formed in a square shape.
  • the four corners of the metal frame 100 become the rotation stoppers 104.
  • the concave portion 17 of the metal shaft 10 is also formed in a quadrangular shape, and the corner portion of the concave portion 17 becomes the catching portion 18.
  • the metal frame 100 has a shape in which two of the outer edge portions are cut off in a straight line. As a result, the straight portion of the one surface 101 of the metal frame 100 becomes the rotation preventing portion 104.
  • the concave portion 17 of the metal shaft 10 is formed in the same planar shape as the one surface 101 of the metal frame 100. Thereby, the rotation of the metal frame 100 can be prohibited by the linear portion of the metal frame 100 being caught by the linear portion of the recess 17.
  • the metal frame 100 includes a cylindrical portion 105, a cap 106, a takeout portion 107, and a potting material 108.
  • the cylinder part 105 is a hollow cylinder and is a part in which one end part 105 a is fixed to the one surface 101.
  • the strain detecting element 40 is disposed in the hollow portion of the cylindrical portion 105.
  • the cap 106 is an umbrella-shaped component that is disposed in the hollow portion of the cylindrical portion 105 and covers the strain detection element 40. In other words, it can be said that the cap 106 is a lid component for accommodating the strain detection element 40 in the hollow portion of the cylindrical portion 105.
  • the take-out part 107 is a part for taking out the wiring from the printed board 50 to the outside while being provided on the cap 106. That is, the take-out part 107 is formed as a connector for taking out the detection signal of the strain detection element 40 to the outside.
  • the potting material 108 is a component that is disposed in the hollow portion of the cylindrical portion 105 and covers the cap 106 to fix the cap 106 to the metal frame 100.
  • the bolt 110 has the cylindrical portion 105 of the metal frame 100 inserted in the hollow portion 111. Further, the bolt 110 is integrated with the metal frame 100 by hooking the other end portion 105 b of the cylindrical portion 105 opposite to the one end portion 105 a on the bolt 110. The other end portion 105b of the tube portion 105 is caulked to the bolt 110, for example.
  • the bolt 110 has a ring-shaped end surface 113 for pushing a portion corresponding to the tapered surface 17a of the one surface 101 of the metal frame 100 into the metal shaft 10 side. Therefore, the bolt 110 preferentially presses the portion corresponding to the tapered surface 17 a of the one surface 101 of the metal frame 100 against the metal shaft 10 by the ring-shaped end surface 113. Thereby, deformation of the metal frame 100 can be suppressed. Further, since the deformation of the metal frame 100 is suppressed, it is possible to prevent the strain detecting element 40 from being peeled off from the metal frame 100 and to reliably transmit the strain from the metal shaft 10 to the metal frame 100.
  • the metal shaft 10 has one end 10 a and a hole portion 19 in which a part of the end surface of the one end 10 a is recessed along the central axis of the metal shaft 10. Yes.
  • the hole 19 is provided on the central axis of the metal shaft 10.
  • the hole 19 has a circular planar shape in a direction perpendicular to the central axis of the metal shaft 10.
  • the metal shaft 10 is configured as a crankshaft that constitutes a part of an automobile engine. That is, one end 10a of the metal shaft 10 corresponds to the rear side of the automobile in the crankshaft. Further, the hole portion 19 corresponds to a center hole provided in the rear side end surface of the crankshaft.
  • the hole portion 19 has an inner wall surface 19 a parallel to the central axis of the metal shaft 10 in the hole portion 19, and a part of the inner wall surface 19 a is on the outer diameter side of the metal shaft 10.
  • a recessed portion 19b is provided.
  • the concave portion 19b has a pair of tapered surfaces 19c formed in a tapered shape so that the size of the concave portion 19b becomes smaller in the depth direction of the concave portion 19b.
  • Such a recess 19b is a portion into which the metal frame 100 is fitted.
  • the recess 19b is a part of the inner wall surface 19a of the hole 19.
  • the torque sensor according to this embodiment includes a metal frame 100, glass 30, a strain detection element 40, a printed circuit board 52, a first block 120, a first block 120, 2 blocks 130 and bolts 140 are provided. 30 and 31, the glass 30, the strain detection element 40, and the like are omitted.
  • the metal frame 100 has one surface 101 formed in a square shape. 32A and 32B, the metal frame 100 is formed in a tapered shape so that the size of the other surface 102 decreases from the one surface 101 toward the other surface 102. A pair of side surfaces 103 are provided. Note that the other pair of side surfaces adjacent to the pair of side surfaces 103 may be formed in a tapered shape or may not be formed in a tapered shape.
  • the metal frame 100 is arrange
  • the metal frame 100 is fitted into the recess 19 b so that at least a part of the other surface 102, that is, the pair of side surfaces 103 contacts a pair of tapered surfaces 19 c provided in the recess 19 b of the hole 19. .
  • the printed circuit board 52 is fixed to the one surface 101 of the metal frame 100 with an adhesive.
  • the printed circuit board 52 includes a wiring pattern 53 for electrically connecting the strain detection element 40 to the outside and a groove 54 in which the strain detection element 40 is disposed.
  • the strain detection element 40 is fixed to the one surface 101 of the metal frame 100 through the glass 30 disposed in the groove 54 of the printed circuit board 52.
  • the first block 120 is a semi-cylindrical part, and is disposed in the hole 19 of the metal shaft 10.
  • the first block 120 has a U-shaped cross section in a direction perpendicular to the central axis of the metal shaft 10. That is, the first block 120 has a pair of protrusions 121 that protrude from the plate portion constituting the first block 120.
  • a space 122 is formed between the pair of protrusions 121 in the first block 120.
  • the strain detection element 40 is accommodated in the space 122. Further, the wiring pattern 53 is electrically connected to an external device through the space 122.
  • the first block 120 has a first inclined surface 123 provided on the opposite side of the first block 120 from the pair of protrusions 121.
  • the first inclined surface 123 is a tapered surface, and the opening 19d side of the hole 19 of the metal shaft 10 in the first inclined surface 123 is located closer to the inner wall 19a side than the bottom 19e side of the hole 19. Tilted.
  • Such a first block 120 plays a role of pressing the metal frame 100 against the inner wall surface 19 a of the hole 19 by the pair of protrusions 121 coming into contact with the one surface 101 of the metal frame 100.
  • the pair of projecting portions 121 press down portions corresponding to the pair of tapered side surfaces 103 in the one surface 101 of the metal frame 100.
  • the second block 130 is a part that is disposed in the hole 19 of the metal shaft 10 and that pushes the first block 120 into the metal frame 100 side.
  • the second block 130 has a screw hole 131 and a second inclined surface 132.
  • the screw hole 131 is a through hole in which a part of the second block 130 penetrates along the central axis of the metal shaft 10. Bolts 140 are inserted into the screw holes 131.
  • the second inclined surface 132 is provided in a portion of the second block 130 that contacts the first block 120.
  • the second inclined surface 132 is a tapered surface, and like the first inclined surface 123, the opening 19 d side of the hole 19 in the second inclined surface 132 is closer to the inner wall 19 a than the bottom 19 e side of the hole 19. Tilt to be located at.
  • the second block 130 is disposed in the hole 19 so that the second inclined surface 132 is in contact with the first inclined surface 123 of the first block 120.
  • the second block 130 has a semi-cylindrical shape in which the portion of the second block opposite to the first block 120 is in contact with the inner wall surface 19a of the hole 19.
  • the bolt 140 is a fastening means that is inserted into the screw hole 131 of the second block 130 and is screwed to the bottom 19 e of the hole 19.
  • the bolt 140 is a hexagonal bolt having a threaded portion at the tip.
  • the first block 120, the second block 130, and the bolt 140 described above function as pushing means for pushing the metal frame 100 into the inner wall surface 19a of the hole portion 19.
  • the second block 130 moves to the bottom 19 e side of the hole 19 by tightening the bolt 140.
  • the 2nd inclined surface 132 of the 2nd block 130 slips on the 1st inclined surface 123
  • the 2nd inclined surface 132 pushes the 1st inclined surface 123 in the metal frame 100 side surface. Therefore, the second block 130 fixes the metal frame 100 to the hole 19 of the metal shaft 10 via the first block 120. Since the bolts 140 need only be tightened, the work of assembling the metal frame 100 is facilitated.
  • the strain detection element 40 can detect the strain of the metal shaft 10 via the metal frame 100.
  • the inventors examined the relationship between the torque received by the metal frame 100 from the metal shaft 10 and strain when the second block 130 was tightened with a tightening torque of 4 Nm using, for example, M4 bolts 140. The result is shown in FIG. As shown in FIG. 33, almost no hysteresis occurred in the amount of strain detected by the strain detection element 40. Therefore, accurate torque measurement of the metal shaft 10 can be performed even when the metal frame 100 is fixed to the hole 19 of the metal shaft 10 as in the present embodiment.
  • the first block 120, the second block 130, and the bolt 140 correspond to the “pushing means” in the claims.
  • the torque sensor according to the present embodiment includes a metal frame 100, a glass 30, a strain detection element 40, a printed board 52, a first block 120, a bolt 150, It is configured with.
  • the structures of the metal shaft 10, the metal frame 100, the glass 30, the strain detection element 40, and the printed board 52 are the same as those in the fourteenth embodiment. Further, in FIG. 34 and FIG. 35, the glass 30, the strain detection element 40 and the like are omitted.
  • the 1st block 120 has the screw hole 124.
  • FIG. The screw hole 124 is provided on the opposite side of the first block 120 from the pair of protrusions 121. 35, the screw hole 124 passes through the first block 120, but the screw hole 124 may not pass through the first block 120.
  • the bolt 150 is a fastening means that is disposed in the hole portion 19 between the first block 120 and the inner wall surface 19 a and is screwed into the screw hole 124 of the first block 120.
  • the longitudinal direction of the bolt 150 is oriented in a direction perpendicular to the central axis of the metal shaft 10.
  • the head of the bolt 150 is in contact with the inner wall surface 19 a of the hole 19.
  • the head of the bolt 150 is preferably a spherical surface. Thereby, the head of the bolt 150 can easily slide on the inner wall surface 19a.
  • the first block 120 and the bolt 150 described above function as pushing means for pushing the metal frame 100 into the inner wall surface 19a of the hole 19. Specifically, when the bolt 150 is fastened to the first block 120, the first block 120 moves to the bottom 19 e side of the hole 19. Accordingly, the pair of protrusions 121 of the first block 120 pushes the metal frame 100 toward the metal shaft 10 side. Since it is only necessary to tighten the bolt 150, the work of assembling the metal frame 100 becomes easy. As described above, the metal frame 100 can be fixed to the metal shaft 10.
  • the first block 120 and the bolt 150 correspond to the “pushing means” of the claims.
  • the configuration of the SAW strain detection element 40 shown in FIGS. 3 and 4 is an example, and other configurations may be used. Further, the arrangement of the printed circuit board 50 provided on the metal frame 20 and the configuration in which the bonding wire 60 is provided are examples, and means for taking out the signal of the strain detection element 40 to the outside may be set as appropriate.
  • the metal frame 20 is laser-welded to the metal shaft 10, but this is one means for joining and fixing the metal frame 20 to the metal shaft 10. Therefore, the metal frame 20 may be bonded and fixed to the metal shaft 10 by means other than laser welding.
  • the entire other surface 22 of the metal frame 20 may be bonded to the flat surface 12 of the metal shaft 10.
  • the entire side surface 23 and other surface 22 of the metal frame 20 may be joined to the wall surface 14 and the bottom surface 15 of the recess 13. Further, the entire side surface 23 of the metal frame 20 and the outer edge portion 24 of the other surface 22 may be joined to the recess 13.
  • the depth of the recess 13 in the flat surface 12 of the metal shaft 10 and the thickness of the metal frame 20 are the same, but this is an example of the shape. Therefore, the depth of the recess 13 may be deeper than the thickness of the metal frame 20, and conversely, the thickness of the metal frame 20 may be greater than the depth of the recess 13.
  • the metal frame 20 fitted in the recess 13 does not have to have the other surface 22 of the metal frame 20 in contact with the bottom surface 15 of the recess 13. That is, the other surface 22 of the metal frame 20 may be separated from the bottom surface 15 of the recess 13. In addition, at least the side surface 23 of the metal frame 20 may be integrated with the wall surface 14 of the recess 13.
  • all the planar shapes of the flat surface 12, the recess 13, and the metal frame 20 are circular, but the planar shape of the flat surface 12 is a square shape, and one surface 21 and the other surface of the metal frame 20.
  • the planar shape of 22 may be circular.
  • the planar shape of the flat surface 12 may be a square shape, and the planar shapes of the recess 13 and the one surface 21 and the other surface 22 of the metal frame 20 may be circular.
  • the planar shape of the metal frame 20 or the recess 13 may be a square shape, and the planar shape of the flat surface 12 of the metal shaft 10 may be a circle.
  • the planar shape may be not only a square or a circle but also a polygon. Thus, the planar shape can be selected as appropriate.
  • the groove portion 73 is provided in the head portion 71 of the bolt 70.
  • this is an example of the form of the bolt 70, and the groove portion 73 is not provided in the head portion 71. May be.
  • the strain detection element 40 may be fixed to the surface of the head 71 with the glass 30.
  • an anaerobic adhesive is used as the embedding member 76 embedded between the screw portion 72 of the bolt 70 and the metal shaft 10, but this is an example of the embedding member 76. is there. Therefore, other members may be used as long as the gap between the screws is filled. Further, when the screw thread of the bolt 70 and the screw thread of the metal shaft 10 are difficult to slip, the embedded member 76 may not be provided.
  • the marks 16, 75 shown in the fourth embodiment may be applied to the metal shaft 10 and the bolt 70 of the fifth to seventh embodiments. If the strain detection element 40 can be aligned even if the marks 16 and 75 are not provided, the marks 16 and 75 are not necessary. Further, the washer 90 shown in the fifth embodiment may be applied to the bolt 70 according to the sixth and seventh embodiments.
  • the torque sensor includes the metal shaft 10, but this is an example of the configuration of the torque sensor. That is, in the fourth to seventh embodiments, the torque sensor may be configured to include the bolt 70, the glass 30, the strain detection element 40, and the printed board 50.
  • the metal frame 100 is provided with the anti-rotation portion 104 to prohibit the rotation of the metal frame 100, but these are examples of the anti-rotation portion 104. Further, when the metal frame 100 does not rotate with respect to the metal shaft 10, the metal frame 100 may not be provided with the anti-rotation portion 104.
  • the bolt 110 is configured as a hexagonal bolt, but this is an example of the shape of the bolt 110. Therefore, any other shape may be used as long as the metal shaft 10 can be screwed.
  • the strain detecting element 40 is fixed to the bolt 70 or the metal frame 100 via the glass 30, but the glass 30 is an example of a fixing means.
  • the bolts 70 and the metal frame 100 are not affected by heat when fixed to the metal shaft 10 as in the first embodiment. Therefore, the strain detection element 40 may be fixed to the bolt 70 or the metal frame 100 with an adhesive.
  • the strain detection element 40 may be fixed to the metal frame 100 with an adhesive.
  • the adhesive corresponds to the “fixing portion” of the claims.
  • the bolt 70 and the metal frame 100 are fixed to the metal shaft 10 on which the flat surface 12 is provided.
  • the bolt is attached to the metal shaft 10 on which the flat surface 12 is not provided.
  • 70 and the metal frame 100 may be fixed.
  • the recess 13 may be formed in the surface 11 of the metal shaft 10, and the bolt 70 may be directly fastened to the recess 13.
  • the metal frame 100 may be fitted into the recess 17 provided in the recess 13 and the bolt 110 may be directly fastened to the recess 13.
  • the end surface 113 of the bolt 110 is formed in a ring shape so as to correspond to the tapered surface 17a of the metal frame 100, but this is an example of the shape of the end surface 113.
  • the end surface 113 may be formed so as to include a portion corresponding to the tapered surface 17 a of the metal frame 100.
  • the end face 113 of the bolt 110 shown in the thirteenth embodiment may be applied to the eighth to twelfth embodiments.
  • the one surface 101 of the metal frame 100 has a quadrangular shape, but this is an example of a planar shape, and may be a circular shape or the like as described above.
  • the recess 19 b of the hole 19 is formed according to the planar shape of the metal frame 100.
  • the first block 120 may have another shape instead of a U shape as long as the first block 120 has two protrusions 121.
  • the metal shaft 10 is not limited to a crankshaft of an automobile, and may be another shaft.
  • the second block 130 has a shape in which the opposite side of the second block 130 to the first block 120 is in contact with the inner wall surface 19 a of the hole 19, which is the shape of the second block 130. It is an example. Accordingly, the second block 130 may have another shape as long as it has the second inclined surface 132.
  • the bolt 150 has a pushing structure in which the head of the bolt 150 contacts the inner wall surface 19a of the hole 19, but a third block is provided on the opposite side of the bolt 150 from the first block 120, for example. Also good.
  • both ends of the bolt 150 are threaded portions, and are screwed to the first block 120 and the third block.
  • the bolt 150 is tightened, the first block 120 moves to the metal frame 100 side and the third block is pressed against the inner wall surface 19 a of the hole 19. Thereby, the opposite side to the 1st block 120 among the volt
  • the oscillation frequency method is used as the detection method of the strain detection element 40, but the same effect can be obtained even when the phase difference method is used.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

 トルクセンサは、歪の測定対象である棒状の金属軸(10)に固定された台座部(20、70、100、110、120、130、140、150)と、前記台座部(20、70、100、110、120、130、140、150)に配置されていると共に、前記台座部(20、70、100、110、120、130、140、150)を介して前記金属軸(10)の歪を検出するSAW方式の歪検出素子(40)と、前記台座部(20、70、100、110、120、130、140、150)と前記歪検出素子(40)との間に配置されると共に、前記歪検出素子(40)を前記台座部(20、70、100、110、120、130、140、150)に固定する固定部(30)と、を備えている。

Description

トルクセンサ及びその製造方法 関連出願の相互参照
 本開示は、2013年1月21日に出願された日本出願番号2013-8211号と、2013年7月15日に出願された日本出願番号2013-147150号と、2013年8月27日に出願された日本出願番号2013-175446号と、2013年9月27日に出願された日本出願番号2013-202048号とに基づくもので、ここにその記載内容を援用する。
 本開示は、SAW(surface acoustic wave)方式の歪検出素子を備えたトルクセンサ及びその製造方法に関するものである。
 従来より、トルクセンサ軸の外表面に当該トルクセンサ軸の歪を検出する歪ゲージが取り付けられたトルク測定装置が、例えば特許文献1で提案されている。具体的には、トルクセンサ軸がねじれて歪が生じると、歪ゲージはこの歪を検出し、この歪による電気抵抗の変化に応じた電気信号を出力し、この電気信号からトルク値が算出される構成が提案されている。
 また、歪ゲージは薄い絶縁体上に金属の抵抗体が形成されて構成されており、トルクセンサ軸に対して接着剤によって貼り付けられている。したがって、トルクセンサ軸の歪を受けても柔軟に変形する。このため、歪ゲージがトルクセンサ軸の変形によって割れることはない。
 ここで、歪を検出する手段として歪ゲージではなくSAW方式のトルクセンサを採用した場合、当該トルクセンサは硬い圧電体のセンサチップとして構成される。したがって、硬い圧電体が接着剤でトルクセンサ軸に直接固定される。このため、接着剤のクリープや劣化が発生すると、トルクセンサ軸の歪がSAW方式の硬いトルクセンサに伝わらず、歪の検出精度が低下してしまうという問題がある。
特開2011-94994号公報
 本開示は、測定対象である金属軸の歪をSAW方式の歪検出素子に確実に伝えることができる構造を備えたトルクセンサを提供することを目的とする。また、当該トルクセンサの製造方法を提供することを目的とする。
 本開示の第一の態様において、トルクセンサは、歪の測定対象である棒状の金属軸に固定された台座部と、前記台座部に配置されていると共に、前記台座部を介して前記金属軸の歪を検出するSAW方式の歪検出素子と、前記台座部と前記歪検出素子との間に配置されると共に、前記歪検出素子を前記台座部に固定する固定部と、を備えている。
 上記のトルクセンサにおいて、歪検出素子は台座部に固定部で固定されているので、固定部及び歪検出素子と金属軸との熱膨張係数の差によって固定部や歪検出素子が割れない構成とすることができる。したがって、金属軸の歪を台座部及び固定部を介して歪検出素子に確実に伝えることができる。
 本開示の第二の態様において、歪の測定対象であると共に棒状である金属軸の歪みを、金属フレームを介してSAW方式の歪検出素子で検出するトルクセンサの製造方法は、当該金属軸の外表面に平坦面を形成し、前記金属フレームとして、一面、当該一面の反対側の他面、前記一面及び前記他面に接する側面を有する板状のものを用意し、ガラスを介して前記歪検出素子を前記金属フレームの一面に固定し、前記歪検出素子が固定された前記金属フレームの他面が前記平坦面側となるように、前記金属フレームを前記平坦面に配置して接合固定することを含んでいる。
 上記のトルクセンサの製造方法において、歪検出素子は台座部に固定部で固定されているので、固定部及び歪検出素子と金属軸との熱膨張係数の差によって固定部や歪検出素子が割れない構成とすることができる。したがって、金属軸の歪を台座部及び固定部を介して歪検出素子に確実に伝えることができる。
 本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。その図面は、
図1は、本開示の第1実施形態に係るトルクセンサの平面図であり、 図2は、図1のII-II断面図であり、 図3は、歪検出素子の平面図であり、 図4は、図3のIV-IV断面図であり、 図5は、第1実施形態に係るトルクセンサの一製造工程を示した図であり、 図6は、本開示の第2実施形態に係るトルクセンサの断面図であり、 図7は、第2実施形態に係るトルクセンサの一製造工程を示した図であり、 図8(a)は金属軸の平坦面の歪を計測する場合の金属軸の断面図であり、図8(b)は金属軸の平坦面に設けた窪みに金属フレームを固定して当該金属フレームの歪を計測する場合の金属軸及び金属フレームの断面図であり、 図9は、金属軸のトルクと歪みとの関係を示した図であり、 図10は、本開示の第3実施形態に係るトルクセンサの平面図であり、 図11は、本開示の第4実施形態に係るトルクセンサの平面図であり、 図12は、図11のXII-XII断面図であり、 図13は、本開示の第5実施形態に係るトルクセンサの断面図であり、 図14は、本開示の第6実施形態に係るトルクセンサの断面図であり、 図15は、第6実施形態において、ボルト形状に応じて金属軸から受けるトルクと歪との関係を示した図であり、 図16は、第7実施形態において、金属軸の表面から底部(設置面)までの距離を示した図であり、 図17は、第7実施形態において、金属軸の表面から底部(設置面)までの距離と歪み量との関係を示した図であり、 図18は、本開示の第8実施形態に係るトルクセンサの平面図であり、 図19は、図18のXIX-XIX断面図であり、 図20は、第8実施形態に係る金属フレームの一面の平面図であり、 図21は、図20のXXI-XXI断面図であり、 図22は、第8実施形態に係る金属軸の平面図であり、 図23は、図22のXXIII-XXIII断面図であり、 図24は、第8実施形態に係る金属フレームが金属軸から受けるトルクと歪との関係を示した図であり、 図25(a)と図25(b)は、本開示の第9実施形態に係る金属フレームの平面図及び側面図であり、 図26(a)と図26(b)は、本開示の第10実施形態に係る金属フレームの平面図及び側面図であり、 図27(a)と図27(b)は、本開示の第11実施形態に係る金属フレームの平面図及び側面図であり、 図28(a)と図28(b)は、本開示の第12実施形態に係る金属フレームの平面図及び側面図であり、 図29は、本開示の第13実施形態に係るトルクセンサの平面図であり、 図30は、本開示の第14実施形態に係る金属軸の一端の端面の平面図であり、 図31は、図30のXXXI-XXXI断面図であり、 図32(a)と図32(b)は、本開示の第14実施形態に係る金属フレームの平面図及び側面図であり、 図33は、第14実施形態に係る金属フレームが金属軸から受けるトルクと歪との関係を示した図であり、 図34は、本開示の第15実施形態に係る金属軸の一端の端面の平面図であり、 図35は、図34のXXXV-XXXV断面図である。
 以下、本開示の実施形態について図に基づいて説明する。なお、以下の各実施形態相互において、互いに同一もしくは均等である部分には、図中、同一符号を付してある。
 (第1実施形態)
 以下、本開示の第1実施形態について図を参照して説明する。図1に示されるように、本実施形態に係るトルクセンサは、金属軸10と、金属フレーム20と、ガラス30と、歪検出素子40と、プリント基板50と、を備えて構成されている。
 金属軸10は、棒状のいわゆるシャフトであり、歪の測定対象である。また、金属軸10は表面11に平坦面12を有している。平坦面12はいわゆるザグリである。金属軸10の材質として、例えばS35Cが採用される。このS35Cの熱膨張係数αは11.3ppm/Kである。
 金属フレーム20は、図2に示されるように、一面21、当該一面21の反対側の他面22、一面21及び他面22に接する側面23を有する板状の部品である。図1に示されるように、本実施形態では、金属フレーム20の一面21及び他面22の平面形状は四角形状である。金属フレーム20の厚みは例えば0.5mmである。そして、図2に示されるように、金属フレーム20は、他面22が金属軸10の平坦面12側に向けられた状態で平坦面12に配置され、他面22の外縁部24が金属軸10の平坦面12にレーザ溶接により接合固定されている。
 ここで、金属フレーム20の他面22は、外縁部24において一周するようにレーザ溶接されている。このため、金属フレーム20の他面22の中央部25は金属軸10の平坦面12に接触しているが、接合されていない。
 金属フレーム20は、オーステナイト系ステンレスを材料として形成されたものである。具体的には、金属フレーム20としてSUS304が採用される。このSUS304の熱膨張係数αは17.3ppm/Kである。
 ガラス30は、金属フレーム20の一面21と歪検出素子40との間に配置されると共に、歪検出素子40を金属フレーム20の一面21に固定するための固定部材である。ガラス30の材質として、例えば鉛系が採用される。このような鉛系のガラス30の熱膨張係数αは10.0以上、16.0以下であり、具体的には15.4ppm/Kである。さらに、鉛系のガラス30の焼成温度は400℃未満であり、ガラス転移温度は220℃である。つまり、ガラス30は、低融点ガラスが材料となっている。
 歪検出素子40は、金属フレーム20の一面21に配置されていると共に、金属フレーム20を介して金属軸10の歪を検出するSAW方式の歪計測センサである。具体的には、歪検出素子40は、図3に示されるように、2つの第1、第2SAW共振子41、42を備えている。図示しないが、歪検出素子40は、第1弾性表面波素子としての第1SAW共振子41を有する第1発振回路と、第2弾性表面波素子としての第2SAW共振子42を有する第2発振回路とを備え、第1、第2発振回路によって2つの発振器が形成されている。
 また、歪検出素子40は、図4に示されるように、圧電材料の単結晶で構成された圧電基板43と、この圧電基板43の上に形成された櫛歯電極44、45及び反射器46、47と、を備えて構成されている。圧電材料としては、例えば、ニオブ酸リチウム(LN)が採用される。この圧電基板43の熱膨張係数αは16.0ppm/Kである。
 また、櫛歯電極44、45や反射器46、47の材質として、アルミニウム等の金属材料が採用される。このような材質の櫛歯電極44、45や反射器46、47を保護するため、450℃以下で焼成可能な低融点のガラス30として上述のようにガラス転移温度が低い鉛系のものが採用されている。
 図3に示されるように、櫛歯電極44、45は、圧電基板43に弾性表面波を励振させるものである。具体的には、櫛歯電極44、45は、互いに平行であってX軸方向に延びている複数の櫛歯部44a、45aと、複数の櫛歯部44a、45aを連結するバスバー44b、45bと、を有している。そして、櫛歯電極44、45の櫛歯部44a、45aは同数であり、互いの櫛歯部44a、45aが一本ずつ交互に配置されている。この一対の櫛歯電極44、45によって、櫛歯部44a、45aの延伸方向に垂直な方向すなわちY軸方向に弾性表面波が伝搬する。
 反射器46、47は、櫛歯電極44、45のY軸方向での両側に配置されており、櫛歯電極44、45から伝搬された弾性表面波を反射するものである。反射器46、47は、Y軸方向に並ぶ複数本の電極によって構成されている。一本の電極は櫛歯部44a、45aと平行に延びており、複数本の電極同士は互いに平行である。
 本実施形態では、第1、第2SAW共振子41、42は、櫛歯電極44、45の対数、反射器46、47を構成する電極の本数、櫛歯電極44、45及び反射器46、47を構成する各電極幅h1、h2、各電極のピッチp1、p2等については同じである。また、各電極幅h1、h2と各電極のピッチp1、p2とが同じであることから、メタライゼーションレシオ(Y軸方向における各電極の幅と自由表面の幅との比率)も同じである。なお、櫛歯電極44、45の対数とは一対の櫛歯電極44、45がそれぞれ有する櫛歯部44a、45aの数であり、各電極のピッチp1、p2とは隣り合う電極における中心と中心との間隔である。
 そして、第1、第2SAW共振子41、42は、櫛歯電極44、45及び反射器46、47を構成する各電極の交差指幅L1、L2が異なっており、第2SAW共振子42の交差指幅L2が第1SAW共振子41の交差指幅L1よりも長くなっている。これにより、第1SAW共振子41を有する発振回路の発振周波数と、第2SAW共振子42を有する発振回路の発振周波数とが異なり、両者の差である差周波は微小な周波数となっている。すなわち、各歪検出素子40は所望の微小な差周波に設定されている。
 また、図1に示されるように、2つの歪検出素子40は各歪検出素子40の長手方向がそれぞれ所定の角度で交差するようにハの字状に配置されている。このような配置によると、金属軸10にねじれ等により歪が生じた場合、圧縮ひずみが一方の歪検出素子40に発生し、引張ひずみが他方の歪検出素子40に発生する。各歪検出素子40は、歪を第1、第2SAW共振子41、42の発振周波数の差の変化として検出する。
 プリント基板50は、歪検出素子40を外部と電気的に接続するための中継部品である。このため、プリント基板50は端子部51を備えている。プリント基板50は例えば接着剤で金属フレーム20の一面21に設置されている。端子部51は歪検出素子40のバスバー44b、45bに対してボンディングワイヤ60で接続されている。なお、図1では、端子部51と外部とを接続するためのボンディングワイヤ60を省略している。
 以上が、本実施形態に係るトルクセンサの構成である。上記のトルクセンサは、例えば自動車等の車両に搭載されて車両の制御等に利用される。
 次に、図1に示されたトルクセンサの製造方法について説明する。まず、平坦面12が設けられた金属軸10を用意する。また、板状の金属フレーム20を用意する。
 続いて、図3に示された歪検出素子40を用意し、ガラス30を介して歪検出素子40を金属フレーム20の一面21に固定する。具体的には、金属フレーム20の一面21に固形のガラス30を配置し、ガラス30をガラス転移温度以上に加熱してペースト状になるように溶融する。この状態でガラス30に歪検出素子40を乗せ、ガラス30を冷やすことにより再びガラス30を固める。これにより、金属フレーム20の一面21に歪検出素子40を固定する。
 また、端子部51が形成されたプリント基板50を用意し、金属フレーム20の一面21の所定の位置に接着剤で固定する。そして、歪検出素子40と端子部51とをボンディングワイヤ60で接続する。
 この後、歪検出素子40が固定された金属フレーム20の他面22が平坦面12側となるように金属フレーム20を金属軸10の平坦面12に配置する。そして、図5に示されるように、金属フレーム20の他面22の外縁部24を一周するように金属フレーム20を金属軸10の平坦面12にレーザ光でレーザ溶接する。これにより、金属フレーム20を金属軸10の平坦面12に接合固定する。
 続いて、端子部51と他の電気回路部品とを図示しないボンディングワイヤ等で接続することにより、歪検出素子40の信号を外部に出力できるようにする。こうして、トルクセンサが完成する。
 ここで、弾性表面波(SAW)を発生させる圧電基板43は硬いセラミック材料である。また、金属軸10のトルクを測定するためには、トルクにより発生した金属軸10の歪を歪検出素子40の硬い圧電基板43に正確に伝える必要がある。そのためには、接着剤のように容易に変形や劣化するものではなく、剛性が高く耐久性に優れる低融点のガラス30が好ましい。
 また、歪検出素子40を金属軸10の平坦面12にガラス30で直接固定するのではなく、歪検出素子40を金属フレーム20にガラス30で固定している。これは、上述のように歪検出素子40と金属軸10の熱膨張係数は異なるため、ガラス30を用いて歪検出素子40を金属軸10に直接貼り付けると、ガラスペースト焼成後に冷却する際に歪検出素子40やガラス30に収縮による応力が発生してしまうからである。すなわち、歪検出素子40やガラス30が割れたり剥離してしまう。しかしながら、歪検出素子40と同じ熱膨張係数を持つ金属フレーム20を介することで、低融点のガラス30も同じ熱膨張係数のものが使用可能になる。その結果、歪検出素子40と金属軸10との熱膨張係数の違いにより、ガラスペースト焼成後の冷却過程で歪検出素子40やガラス30の割れを発生させないようにすることができる。
 なお、金属軸10と金属フレーム20は熱膨張係数に差があるが、金属は伸び縮みするので割れたり裂けたりすることはない。したがって、金属軸10と金属フレーム20の熱膨張係数の差は問題にならない。
 以上説明したように、本実施形態では、歪検出素子40が金属軸10に直接貼り付けられず、金属フレーム20上に歪検出素子40が低融点のガラス30で結合され、さらに金属フレーム20が金属軸10に接合固定された構成が特徴となっている。
 これによると、歪検出素子40と同じ熱膨張係数を持つ金属フレーム20に、歪検出素子40及び金属フレーム20と同じ熱膨張係数を持つ低融点のガラス30を用いて接合することができるので、ガラスペーストの焼成時に熱膨張係数の差による歪検出素子40の剥がれや割れ、さらにはガラス30の割れを防止することができる。すなわち、金属フレーム20を設けることにより、ガラス30及び歪検出素子40と金属軸10との熱膨張係数の差によってガラス30や歪検出素子40が割れないようにすることができる。
 また、金属フレーム20の他面22の外縁部24が一周するように金属軸10の平坦面12にレーザ溶接されているので、金属フレーム20の他面22の中央部25と金属軸10とが接合されていなくても、効率良く歪を伝達することができる。したがって、測定対象である金属軸10の歪をSAW方式の歪検出素子40に確実に伝えることができ、ひいては歪の検出精度の低下を抑制することができる。
 なお、本実施形態の記載と特許請求の範囲の記載との対応関係については、ガラス30が特許請求の範囲の「固定部」に対応する。
 (第2実施形態)
 本実施形態では、第1実施形態と異なる部分について説明する。図6の断面図に示されるように、金属軸10は、平坦面12に当該平坦面12の一部が凹んだ窪み13を有している。窪み13の平面サイズは金属フレーム20の一面21及び他面22と同じである。また、窪み13の深さは金属フレーム20の厚みと同じである。なお、窪み13は平坦面12の一部である。また、図6は図1のII-II断面に対応する図である。
 そして、金属フレーム20は金属軸10の平坦面12の窪み13にはめ込まれている。さらに、金属フレーム20の側面23と窪み13の壁面14とが一体化するようにレーザ溶接されている。本実施形態では、金属フレーム20の他面22は窪み13の底面15に接触している。
 なお、金属フレーム20の他面22の外縁部24はレーザ溶接の際に多少溶けて金属軸10に接合されている場合もあるが、本実施形態では、金属フレーム20の側面23のみが窪み13の壁面14に一体化されている。また、窪み13の壁面14及び底面15は平坦面12の一部である。
 次に、本実施形態に係るトルクセンサの製造方法について説明する。本実施形態では、金属軸10として、平坦面12に窪み13が形成されたものを用意する。上述のように金属フレーム20に歪検出素子40を固定した後、金属フレーム20を窪み13にはめ込む。この後、図7に示されるように、金属フレーム20の側面23と窪み13の壁面14とが一体化するように側面23を壁面14にレーザ光でレーザ溶接する。これにより、金属フレーム20の他面22と窪み13の底面15は接触しているだけとなる。この後の工程は第1実施形態と同じである。
 そして、発明者らは、金属フレーム20の側面23を金属軸10と一体化するだけで、金属フレーム20の他面22の全体が金属軸10に接合されていなくても金属軸10の歪を金属フレーム20に正確に伝えることができることを実験により確認した。
 具体的には、図8(a)に示されるように平坦面12が形成された金属軸10を用意し、当該平坦面12に図示しない歪ゲージを設置して金属軸10の歪を測定した。また、図8(b)に示されるように金属軸10の平坦面12に形成された窪み13に金属フレーム20がはめ込まれ、当該金属フレーム20の側面23が窪み13の壁面14にレーザ溶接されたものを用意し、当該金属フレーム20の一面に図示しない歪ゲージを設置して金属軸10の歪を測定した。これらの歪の測定結果を図9に示す。
 図9に示されるように、金属軸10の歪から算出されたトルクと金属フレーム20の歪から算出されたトルクとがほぼ同じ値を示している。これは、金属フレーム20を介していることが歪の検出に影響しないことを明らかにしている。すなわち、金属軸10の平坦面12に窪み13を設け、窪み13の壁面14と金属フレーム20の側面23をレーザ溶接で一体化することで、より確実に金属軸10の歪を伝達することができる。
 なお、本実施形態に係る実験結果は、第1実施形態のように金属フレーム20の他面22の外縁部24を一周するように平坦面12にレーザ溶接した形態においても同様である。
 (第3実施形態)
 本実施形態では、第2実施形態と異なる部分について説明する。図10に示されるように、金属軸10の平坦面12、窪み13、金属フレーム20の一面21及び他面22の平面形状がそれぞれ円形になっている。窪み13、金属フレーム20の一面21及び他面22の円形の平面サイズはそれぞれ同じである。このように、それぞれの平面形状を円形とすることで、金属軸10に対する平坦面12や窪み13、金属フレーム20を形成しやすくすることができる。このため、歪の検出精度を向上させることができる。
 なお、第1実施形態のように金属軸10の平坦面12に窪み13を設けない構造においても、金属軸10の平坦面12、金属フレーム20の一面21及び他面22の平面形状をそれぞれ円形にしても良い。
 (第4実施形態)
 本実施形態では、第1~第3実施形態と異なる部分について説明する。図11及び図12に示されるように、トルクセンサは、金属軸10と、ボルト70と、ガラス30と、歪検出素子40と、プリント基板50と、を備えて構成されている。
 金属軸10は、平坦面12に当該平坦面12が凹んだ窪み13を有している。窪み13の底面15は、金属軸10の平坦面12における平面形状が円形になっている。また、窪み13の壁面14はネジ切り加工されている。すなわち、窪み13の壁面14にはボルト70を固定するための雌ネジが形成されている。
 ボルト70は、正六角柱の頭部71と、側面が雄ネジにネジ切り加工されたネジ部72と、で構成されたいわゆる六角ボルトである。頭部71は、ネジ部72側に凹んだ溝部73を有している。歪検出素子40はガラス30を介して溝部73の底部74に固定され、プリント基板50は接着剤を介して溝部73の底部74に固定されている。ボルト70が金属軸10に締結固定されると、溝部73の底部74は金属軸10の表面11よりも高い位置に配置される。
 また、ボルト70は、歪検出素子40等を被覆保護するためのキャップ80を有している。キャップ80にはプリント基板50から配線を外部に取り出すための取り出し部81が設けられている。キャップ80は、溝部73に配置されると共にポッティング材82で覆われることでボルト70の頭部71に固定されている。
 このような構成のボルト70は、ネジ部72が金属軸10の窪み13にネジ止めされることで金属軸10に締結固定される。例えば、窪み13の壁面14とネジ部72との間に嫌気性の接着剤等の埋込部材76を設けることにより、壁面14のネジ山とネジ部72のネジ山とが接触する接触面(フランク部)の滑りを防止することができる。また、歪の検出値のヒステリシスを低減することができる。
 なお、ネジ部72のネジ山は細目のものを用いることが好ましい。これにより、金属軸10に設けられる窪み13の深さを小さくすることができる。もちろん、窪み13の壁面14のネジ山も細目に形成される。
 さらに、金属軸10に対してボルト70をネジ止めにより締結固定するに際し、トルクにより金属軸10に発生した歪を歪検出素子40で検出するためには、歪検出素子40は歪ゲージ同様に金属軸10のねじれ方向に対して±45°方向に取り付けられる必要がある。このため、ボルト70の頭部71には切り欠き等により第1目印75が設けられている。第1目印75は、金属軸10に対して歪検出素子40の配置方向を指示する役割を果たすものである。同様に、金属軸10の平坦面12にも切り欠き等の第2目印16が設けられている。第2目印16は、第1目印75の位置を指示する役割を果たす。
 各目印16、75は切り欠きの他に、ボルト70の形状の一部分や金属軸10の形状の一部分を第1目印16、75として利用しても良い。したがって、ボルト70の第1目印75と金属軸10の第2目印16とを合致させることで、金属軸10に対する歪検出素子40の位置関係を確保しつつ、所定の締結力を得ることができる。
 ここで、第1目印75は、ネジ部72の雄ネジの切り出し位置に対応して設けられている。例えば、第1目印75と雄ネジの切り始めの位置とが合うように、ボルト70に第1目印75が設けられている。同様に、金属軸10に設けられた第2目印16は窪み13の壁面14に形成された雌ネジの切り出し位置に対応して設けられている。例えば、第2目印16と雌ネジの切り始めの位置とが合うように、金属軸10に第2目印16が設けられている。ボルト70のネジ部72の雄ネジの切り始めの位置と第1目印75とを合わせるために、また、金属軸10の窪み13の雌ネジの切り始めの位置と第2目印16とを合わせるために、ネジ形状はプラネタリ-タップで形成されていることが好ましい。
 以上説明したように、歪検出素子40をボルト70に設置し、ボルト70を金属軸10に締結することにより、金属軸10で発生した歪による応力が窪み13の壁面14からボルト70のネジ部72及び頭部71に確実に伝わるようにすることができる。また、ボルト70を金属軸10に所定の締結力で締結するだけで良いので、ボルト70を介して歪検出素子40を容易に金属軸10に固定することができる。
 (第5実施形態)
 本実施形態では、第4実施形態と異なる部分について説明する。本実施形態では、図13に示されるように、トルクセンサは、金属軸10とボルト70との間に設けられたワッシャ90を備えている。ワッシャ90はボルト70の頭部71と金属軸10の平坦面12とに挟まれている。ワッシャ90は銅等の金属材料によって形成されたものである。なお、図13は図11のXII-XII断面に対応した断面図である。
 このように、金属軸10とボルト70との間にワッシャ90を介することにより、第1目印16、75に基づいて金属軸10に対するボルト70の位置合わせをしたときに、所定の締結力でボルト70を金属軸10に締結することができる。すなわち、金属軸10に対するボルト70の締結力を精度良く管理することができる。特に、ボルト70毎に金属軸10に対する所定位置での締結力のばらつきが大きい場合は、ワッシャ90を介することで締結力のばらつきを抑えることができる。
 (第6実施形態)
 本実施形態では、第4、第5実施形態と異なる部分について説明する。本実施形態では、図14に示されるように、ボルト70のネジ部72が当該ネジ部72の先端に向かって径が小さくなるようにテーパ形状になっている。これに伴い、金属軸10の平坦面12に設けられた窪み13の壁面14も窪み13の底部74に向かって径が小さくなるようにテーパ形状になっている。
 このように、ボルト70のネジ部72及び窪み13の壁面14がテーパ形状になっているので、各ネジ山の接触面(フランク部)が拘束される。このため、ヒステリシスを低減することができる。
 具体的に、発明者らは、ボルト形状による歪伝達特性の違いとして、図12に示された平行ネジ形状のボルト70が金属軸10から受けるトルクと歪との関係、及び、図14に示されたテーパ形状のボルト70が金属軸10から受けるトルクと歪との関係をそれぞれ調べた。その結果を図15に示す。なお、図15には参考として金属軸10の平坦面12の歪も表している。
 図15に示されるように、平行ネジ形状のボルト70では、金属軸10がねじれた際にネジのフランク部で滑りが生じ、金属軸10から歪検出素子40に伝わる歪量にヒステリシスが発生している。一方、テーパ形状のボルト70の場合はヒステリシスがほぼ発生していないので、正確なトルク測定が行うことができる。すなわち、ネジ部72をテーパ形状にすることで、フランク部が金属軸10の壁面14に拘束されるので、歪のヒステリシスを低減することができる。
 また、第4実施形態で述べた嫌気性の接着剤等の埋込部材76をネジ部72に塗布してから金属軸10に締結することで、フランク部の滑りを防止し、ヒステリシスをさらに低減することができる。以上のように、ボルト70のネジ部72をテーパ形状にすることで、歪のヒステリシスを発生させることなく歪を精度良く測定することができる。
 (第7実施形態)
 本実施形態では、第4~第6実施形態と異なる部分について説明する。第4~第6実施形態では、ボルト70の頭部71に設けられた溝部73の底部74の高さは金属軸10の表面11よりも高い位置に配置されていたが、これは一例である。例えば、金属軸10の表面11と溝部73の底部74とが同じ高さになるようにボルト70を金属軸10に取り付けても良い。一方、金属軸10の中心軸から表面11までの距離(つまり金属軸10の径)をrと定義すると、金属軸10の中心軸からボルト70の溝部73の底部74までの高さは、0.5r以上、0.9r以下となるように、ボルト70が金属軸10に締結固定されていても良い。
 具体的には、図16に示されるように、φ55の金属軸10に対し、中心軸から例えば24.5mmの位置に平坦面12を設定し、この平坦面12からφ20の底部74(設置面)を0、±5mm、±10mmに設けた場合の設置面中心の歪み量を調べた。その結果、図17に示されるように、半径rが0.5から0.9の範囲で歪み量が大きくなることがわかった。この結果から上述のように0.5r以上、0.9r以下とすることが好ましいと言える。これにより、トルクによる金属軸10の歪量が良くなるので、歪の検出精度を向上させることができる。なお、本実施形態の記載と特許請求の範囲の記載との対応関係については、底部74が特許請求の範囲の「設置面」に対応する。
 (第8実施形態)
 本実施形態では、第1~第7実施形態と異なる部分について説明する。図18に示されるように、本実施形態では、トルクセンサは、金属フレーム100と、ボルト110と、歪検出素子40と、ガラス30と、を備えて構成されている。
 図19に示されるように、金属フレーム100は、一面101と、当該一面101の反対側の他面102と、一面101及び他面102に接する側面103と、を有する板状をなしている。側面103は、一面101から他面102に向かって当該他面102のサイズが小さくなるようにテーパ状に形成されている。
 図20に示されるように、金属フレーム100の一面101の平面形状は円形になっている。つまり、金属フレーム100は円板状になっている。また、金属フレーム100は、側面103に形成された回り止め部104を有している。回り止め部104は、側面103の一部が金属フレーム100の径方向に突出した部分である。本実施形態では、回り止め部104は、2カ所設けられている。
 回り止め部104は、ボルト110の中心軸を中心とした当該金属フレーム100の回転を禁止する役割を果たす。また、回り止め部104は、歪検出素子40を金属軸10のねじれ方向に対して±45°方向に位置させるための位置合わせ手段としての役割を果たす。
 図21に示されるように、金属フレーム100を一面101に垂直な方向に断面を取ったときの側面103のうちの一方の面及び他方の面にそれぞれ平行な直線によって形成される角度をテーパ角度と定義する。そして、側面103は、テーパ角度が5°以上55°以下、すなわち30°±25°となるようにテーパ状に形成されている。具体的に、本実施形態では、テーパ角度が45°になるように側面103が形成されている。
 テーパ角度の下限値を5°としているのは、テーパ角度が小さ過ぎると金属フレーム100が凹部17に取り付けられた後に金属軸10の径方向に対する金属フレーム100の位置が決まらないためである。一方、テーパ角度の上限値を55°としているのは、テーパ角度が大き過ぎると側面103に滑りが生じて金属軸10から金属フレーム100に歪が伝わり難くなったり歪のヒステリシスが大きくなるからである。
 ボルト110は、金属軸10の窪み13にネジ止めされることで金属フレーム100を金属軸10に固定する締結手段である。図19に示されるように、ボルト110は、中空部111を有する中空円筒状であり、中心軸の軸方向に貫通している。また、ボルト110は、外壁面112に雄ネジが形成されている。ボルト110は、いわゆる六角ボルトである。
 一方、図22に示されるように、金属軸10は、上述の窪み13と、当該窪み13の底面15の一部が凹んだ凹部17と、を有している。凹部17は、金属フレーム100の回り止め部104が配置される引っ掛かり部18を有している。
 また、図23に示されるように、凹部17は、窪み13の底面15の面方向における当該凹部17のサイズが当該凹部17の深さ方向に向かって小さくなるようにテーパ状に形成されたテーパ面17aを有している。テーパ面17aは、金属フレーム100の側面103と同じテーパ角度となるように形成されている。これにより、凹部17のテーパ面17aと金属フレーム100の側面103とに隙間が発生しないようになっている。
 そして、金属フレーム100は、側面103が凹部17のテーパ面17aに接触すると共に、回り止め部104が凹部17の引っ掛かり部18に位置するように凹部17に嵌め込まれている。金属フレーム100の他面102は凹部17の底部には接触していない。さらに、ボルト110が窪み13にネジ止めされている。これにより、金属フレーム100が金属軸10側に押し込まれると共に金属軸10に固定されている。言い換えると、トルクセンサは金属軸10に対して脱着可能な構造となっている。
 ここで、金属フレーム100の回り止め部104は、当該金属フレーム100が凹部17に嵌め込まれた状態で凹部17の引っ掛かり部18に引っ掛かる。すなわち、金属フレーム100の回り止め部104と金属軸10の凹部17の引っ掛かり部18とが互いに引っ掛かるので、金属フレーム100の回転が禁止される。これにより、ボルト110の締め付け時に金属フレーム100がボルト110と共に回転してしまうことを防止することができる。また、凹部17に対する金属フレーム100の位置を固定することができる。
 歪検出素子40は、図18及び図19に示されるように、金属フレーム100の一面101のうちボルト110の中空部111に対応する部分にガラス30を介して固定されている。また、金属フレーム100は回り止め部104によって金属軸10に対して回転が禁止されているので、歪検出素子40は金属軸10に対して所定の位置に固定されている。これにより、歪検出素子40は、適切に金属軸10の歪を検出することができる。
 発明者らは、金属軸10に対するボルト110の締め付けトルクを例えば30Nmとしたとき、金属フレーム100が金属軸10から受けるトルクと歪との関係を調べた。その結果を図24に示す。図24に示されるように、金属軸10から歪検出素子40に伝わる歪量にヒステリシスはほぼ発生していないので、正確なトルク測定を行うことができる。すなわち、歪検出素子40が固定された金属フレーム100と、この金属フレーム100を金属軸10に固定するボルト110と、が分離された構成になっていても、金属フレーム100を介して歪検出素子40に確実に歪みを伝達させることができる。したがって、金属軸10の正確な歪を検出することができる。
 なお、本実施形態の記載と特許請求の範囲の記載との対応関係については、金属フレーム100及びボルト110が特許請求の範囲の「台座部」に対応する。
 (第9実施形態)
 本実施形態では、第8実施形態と異なる部分について説明する。本実施形態では、図25(a)と図25(b)に示されるように、回り止め部104は、金属フレーム100の外縁部の一部が当該金属フレーム100の中心軸側に窪んだノッチとして構成されている。なお、図25(a)と図25(b)では、上段に金属フレーム100の平面図を示し、下段に金属フレーム100の側面図を示している。以下の図26(a)~図28(b)についても同様である。
 一方、金属軸10の引っ掛かり部18は、凹部17に設けられた図示しないノックピンとして構成されている。これにより、金属フレーム100が凹部17に嵌め込まれると、金属フレーム100の回り止め部104にノックピンが差し込まれるので、回り止め部104とノックピンとが互いに引っ掛かる。したがって、金属フレーム100の回転を禁止することができる。
 (第10実施形態)
 本実施形態では、第8、第9実施形態と異なる部分について説明する。本実施形態では、図26(a)と図26(b)に示されるように、金属フレーム100は、一面101が四角形状に形成されている。この場合、金属フレーム100の4つの角部が回り止め部104となる。したがって、金属軸10の凹部17も四角形状に形成されていると共に、凹部17の角部が引っ掛かり部18となる。以上の構成により、金属フレーム100の角部が凹部17の角部に引っ掛かることで、金属フレーム100の回転を禁止することができる。
 (第11実施形態)
 本実施形態では、第8~第10実施形態と異なる部分について説明する。本実施形態では、図27(a)と図27(b)に示されるように、金属フレーム100は外縁部のうちの2カ所が直線状に切り落とされた形状になっている。これにより、金属フレーム100の一面101のうちの直線部が回り止め部104となる。
 一方、金属軸10の凹部17は金属フレーム100の一面101と同じ平面形状で形成されている。これにより、金属フレーム100の直線部が凹部17の直線部に引っ掛かることで、金属フレーム100の回転を禁止することができる。
 (第12実施形態)
 本実施形態では、第8~第10実施形態と異なる部分について説明する。本実施形態では、図28(a)と図28(b)に示されるように、金属フレーム100の他面102の一部が円柱状に突出している。この突出部分が回り止め部104となる。一方、金属軸10の凹部17は、底部に引っ掛かり部18として回り止め部104が差し込まれる図示しない穴を有している。
 したがって、金属フレーム100が凹部17に嵌め込まれると、回り止め部104である突出部分が凹部17の穴に差し込まれる。これにより、金属フレーム100の回転を禁止することができる。
 (第13実施形態)
 本実施形態では、第8~第12実施形態と異なる部分について説明する。図29に示されるように、金属フレーム100は、筒部105と、キャップ106と、取り出し部107と、ポッティング材108と、を有している。
 筒部105は中空筒状であると共に、一端部105aが一面101に固定された部品である。筒部105の中空部分に歪検出素子40が配置されている。また、キャップ106は、筒部105の中空部分に配置されると共に歪検出素子40を覆う傘状の部品である。言い換えると、キャップ106は、筒部105の中空部分に歪検出素子40を収容するための蓋部品であると言える。
 取り出し部107はキャップ106に設けられていると共に、プリント基板50から配線を外部に取り出すための部品である。すなわち、取り出し部107は、歪検出素子40の検出信号を外部に取り出すためのコネクタとして形成されている。また、ポッティング材108は、筒部105の中空部分に配置されると共にキャップ106を覆うことで当該キャップ106を金属フレーム100に固定する部品である。
 一方、ボルト110は、中空部111に金属フレーム100の筒部105が差し込まれている。また、ボルト110は、筒部105のうちの一端部105aとは反対側の他端部105bがボルト110に引っ掛けられることで金属フレーム100に一体化されている。筒部105の他端部105bは、例えばボルト110にかしめられている。
 これにより、トルクセンサが部品毎にばらばらにならずに1個にまとまった状態となるので、トルクセンサの輸送を容易にすることができる。また、トルクセンサを測定対象である金属軸10の窪み13にネジ止めして取り出し部107に配線コネクタを接続するだけで良いので、組み付け作業性を向上させることができる。
 さらに、ボルト110は、金属フレーム100の一面101のうちテーパ面17aに対応した部分を金属軸10側に押し込むリング状の端面113を有している。したがって、ボルト110は、当該リング状の端面113によって金属フレーム100の一面101のうちテーパ面17aに対応した部分を重点的に金属軸10に押さえ付ける。これにより、金属フレーム100の変形を抑制することができる。また、金属フレーム100の変形が抑制されるので、金属フレーム100からの歪検出素子40の剥離を防止することができると共に、金属軸10から金属フレーム100に確実に歪を伝達させることができる。
 以上のように、金属フレーム100に筒部105を設けることで、金属フレーム100とボルト110とを予め一体化させた構造を実現することができる。
 (第14実施形態)
 本実施形態では、上記各実施形態と異なる部分について説明する。図30及び図31に示されるように、金属軸10は、一端10aと、この一端10aの端面の一部が当該金属軸10の中心軸に沿って凹んだ穴部19と、を有している。穴部19は金属軸10の中心軸上に設けられている。また、穴部19は金属軸10の中心軸に垂直な方向の平面形状が円形になっている。
 本実施形態に係る金属軸10は、自動車のエンジンの一部を構成するクランクシャフトとして構成されている。すなわち、金属軸10の一端10aは、クランクシャフトのうち自動車のリア側に対応している。また、穴部19は、クランクシャフトのリア側端面に設けられたセンタ穴に対応している。
 そして、図30に示されるように、穴部19は当該穴部19のうち金属軸10の中心軸に平行な内壁面19aにおいて、当該内壁面19aの一部が金属軸10の外径側に凹んだ凹部19bを有している。凹部19bは、当該凹部19bのサイズが当該凹部19bの深さ方向に向かって小さくなるようにテーパ状に形成された一対のテーパ面19cを有している。このような凹部19bは、金属フレーム100が嵌め込まれる部分である。なお、凹部19bは穴部19の内壁面19aの一部である。
 図30~図32(b)に示されるように、本実施形態に係るトルクセンサは、金属フレーム100と、ガラス30と、歪検出素子40と、プリント基板52と、第1ブロック120と、第2ブロック130と、ボルト140と、を備えて構成されている。なお、図30及び図31ではガラス30や歪検出素子40等を省略している。
 図32(a)と図32(b)の上段に示されるように、金属フレーム100は、一面101が四角形状に形成されている。また、図32(a)と図32(b)の下段に示されるように、金属フレーム100は、一面101から他面102に向かって当該他面102のサイズが小さくなるようにテーパ状に形成された一対の側面103を有している。なお、これら一対の側面103に隣接する他の一対の側面はテーパ状に形成されていても良いし、テーパ状に形成されていなくても良い。
 そして、図30に示されるように、金属フレーム100は、金属軸10の穴部19の内壁面19aに接触するように穴部19に配置されている。具体的には、金属フレーム100は、他面102の少なくとも一部すなわち一対の側面103が穴部19の凹部19bに設けられた一対のテーパ面19cに接触するように凹部19bに嵌め込まれている。
 図32(a)と図32(b)の上段に示されるように、プリント基板52は、金属フレーム100の一面101に接着剤で固定されている。また、プリント基板52は歪検出素子40を外部と電気的に接続するための配線パターン53と、歪検出素子40が配置される溝54と、を有している。そして、歪検出素子40は、プリント基板52の溝54に配置されたガラス30を介して金属フレーム100の一面101に固定されている。
 図30に示されるように、第1ブロック120は半筒状の部品であり、金属軸10の穴部19に配置されている。第1ブロック120は、金属軸10の中心軸に垂直な方向の断面がコの字状になっている。すなわち、第1ブロック120は、当該第1ブロック120を構成する板部分から突出した一対の突起部121を有している。また、第1ブロック120のうち一対の突起部121の間には空間122が構成されている。歪検出素子40は、この空間122に収容されている。また、この空間122を介して配線パターン53が外部機器と電気的に接続される。
 図31に示されるように、第1ブロック120は、当該第1ブロック120のうち一対の突起部121とは反対側に設けられた第1傾斜面123を有している。第1傾斜面123はテーパ面になっており、第1傾斜面123のうち金属軸10の穴部19の開口部19d側が穴部19の底部19e側よりも内壁面19a側に位置するように傾いている。
 このような第1ブロック120は、一対の突起部121が金属フレーム100の一面101に接触することで金属フレーム100を穴部19の内壁面19aに押さえ付ける役割を果たす。なお、一対の突起部121は金属フレーム100の一面101のうちテーパ状の一対の側面103に対応する部分を押さえ付けることが好ましい。
 第2ブロック130は、金属軸10の穴部19に配置されていると共に、第1ブロック120を金属フレーム100側に押し込むための部品である。第2ブロック130は、ネジ穴131と、第2傾斜面132と、を有している。
 ネジ穴131は、第2ブロック130の一部が金属軸10の中心軸に沿って貫通した貫通孔である。このネジ穴131にボルト140が差し込まれている。
 第2傾斜面132は、第2ブロック130のうち第1ブロック120に接触する部分に設けられている。第2傾斜面132はテーパ面になっており、第1傾斜面123と同様に、第2傾斜面132のうち穴部19の開口部19d側が穴部19の底部19e側よりも内壁面19a側に位置するように傾いている。そして、第2ブロック130は、第2傾斜面132が第1ブロック120の第1傾斜面123に接触するように穴部19に配置されている。
 なお、本実施形態では、第2ブロック130は、第2ブロックのうち第1ブロック120とは反対側の部分が穴部19の内壁面19aに接するような半円柱状の形状になっている。
 ボルト140は、第2ブロック130のネジ穴131に挿入されると共に、穴部19の底部19eにネジ止めされる締結手段である。ボルト140は、先端部分にネジ部が設けられた六角ボルトである。
 上記の第1ブロック120、第2ブロック130、及びボルト140は、金属フレーム100を穴部19の内壁面19aに押し込む押し込み手段として機能する。具体的には、ボルト140が締め付けられることで第2ブロック130が穴部19の底部19e側に移動する。これにより、第2ブロック130の第2傾斜面132が第1傾斜面123を滑るので、第2傾斜面132が第1傾斜面123を金属フレーム100側に面で押し込む。したがって、第2ブロック130が第1ブロック120を介して金属フレーム100を金属軸10の穴部19に固定する。ボルト140をネジ締めするだけで良いので、金属フレーム100の組み付け性作業が容易となる。以上の構成により、歪検出素子40は、金属フレーム100を介して金属軸10の歪を検出することができる。
 発明者らは、例えばM4のボルト140を用いて4Nmの締め付けトルクで第2ブロック130を締め付けたとき、金属フレーム100が金属軸10から受けるトルクと歪との関係を調べた。その結果を図33に示す。図33に示されるように、歪検出素子40によって検出された歪量にヒステリシスはほぼ発生しなかった。したがって、本実施形態のように、金属軸10の穴部19に金属フレーム100を固定した場合でも金属軸10の正確なトルク測定を行うことができる。
 また、上記のように自動車用のクランクシャフトである金属軸10の穴部19にトルクセンサを搭載することで、クランクシャフトの表面にトルクセンサの搭載スペースを確保することが難しい状況においても歪を検出することができる。すなわち、クランクシャフトのセンタ穴のスペースを有効利用することができる。
 なお、本実施形態の記載と特許請求の範囲の記載との対応関係については、第1ブロック120、第2ブロック130、及びボルト140が特許請求の範囲の「押し込み手段」に対応する。
 (第15実施形態)
 本実施形態では、第14実施形態と異なる部分について説明する。図34及び図35に示されるように、本実施形態に係るトルクセンサは、金属フレーム100と、ガラス30と、歪検出素子40と、プリント基板52と、第1ブロック120と、ボルト150と、を備えて構成されている。
 なお、金属軸10、金属フレーム100、ガラス30、歪検出素子40、及びプリント基板52の構造は第14実施形態と同じである。また、図34及び図35ではガラス30や歪検出素子40等を省略している。
 そして、図35に示されるように、第1ブロック120はネジ穴124を有している。ネジ穴124は、第1ブロック120のうち一対の突起部121とは反対側に設けられている。なお、図35ではネジ穴124は第1ブロック120を貫通しているが、ネジ穴124は第1ブロック120を貫通していなくても良い。
 ボルト150は、穴部19において第1ブロック120と内壁面19aとの間に配置されると共に、第1ブロック120のネジ穴124にネジ止めされる締結手段である。ボルト150の長手方向は、金属軸10の中心軸に垂直な方向に向いている。そして、ボルト150の頭部は、穴部19の内壁面19aに接触している。また、ボルト150の締め付け時にボルト150の頭部が内壁面19aに引っ掛からないようにするために、ボルト150の頭部は球面になっていることが好ましい。これにより、ボルト150の頭部が内壁面19aを滑りやすくなる。
 本実施形態では、上記の第1ブロック120及びボルト150が金属フレーム100を穴部19の内壁面19aに押し込む押し込み手段として機能する。具体的には、ボルト150が第1ブロック120に締め付けられることで、第1ブロック120が穴部19の底部19e側に移動する。これに伴って第1ブロック120の一対の突起部121が金属フレーム100を金属軸10側に押し込む。ボルト150をネジ締めするだけで良いので、金属フレーム100の組み付け性作業が容易となる。以上のように、金属フレーム100を金属軸10に固定することができる。
 なお、本実施形態の記載と特許請求の範囲の記載との対応関係については、第1ブロック120及びボルト150が特許請求の範囲の「押し込み手段」に対応する。
 (他の実施形態)
 上記各実施形態で示されたトルクセンサの構成は一例であり、上記で示した構成に限定されることなく、本開示を実現できる他の構成とすることもできる。例えば、トルクセンサは車両に用いられるものであったが、これは利用形態の一例であり、もちろん車両以外にも用いられる。
 また、図3及び図4に示されたSAW方式の歪検出素子40の構成は一例であり、他の構成としても良い。さらに、金属フレーム20に設けられたプリント基板50の配置やボンディングワイヤ60を設ける構成も一例であり、歪検出素子40の信号を外部に取り出す手段は適宜設定すれば良い。
 上記各実施形態では、金属フレーム20が金属軸10にレーザ溶接されているが、これは金属フレーム20を金属軸10に接合固定するための一つの手段である。したがって、レーザ溶接以外の他の手段によって金属フレーム20が金属軸10に接合固定されていても良い。
 第1実施形態では、金属フレーム20の他面22の外縁部24が一周するように金属軸10にレーザ溶接されているが、これは接合方法の一例である。例えば、金属フレーム20の他面22の全体が金属軸10の平坦面12に接合されていても良い。第2、第3実施形態では、金属フレーム20の側面23及び他面22の全体が窪み13の壁面14及び底面15に接合されていても良い。また、金属フレーム20の側面23の全体と他面22の外縁部24が窪み13に接合されている形態でも構わない。
 第2実施形態では、金属軸10の平坦面12の窪み13の深さと金属フレーム20の厚みとが同じであったが、これは形状の一例である。したがって、窪み13の深さが金属フレーム20の厚みよりも深くても良いし、逆に、金属フレーム20の厚みが窪み13の深さよりも厚くても良い。
 また、窪み13にはめ込まれた金属フレーム20は、当該金属フレーム20の他面22が窪み13の底面15に接触している必要はない。すなわち、金属フレーム20の他面22が窪み13の底面15と離間していても良い。そして、少なくとも当該金属フレーム20の側面23が窪み13の壁面14に一体化されていれば良い。
 第3実施形態では、平坦面12、窪み13、金属フレーム20の全ての平面形状が円形であったが、平坦面12の平面形状は四角形状であって、金属フレーム20の一面21及び他面22の平面形状が円形でも良い。同様に、平坦面12の平面形状は四角形状であって、窪み13と金属フレーム20の一面21及び他面22の平面形状が円形でも良い。逆に、金属フレーム20や窪み13の平面形状が四角形状であって、金属軸10の平坦面12の平面形状が円形でも良い。もちろん、平面形状は四角形や円形だけでなく、多角形でも良い。このように、平面形状は適宜選択できる。
 第4~第7実施形態では、ボルト70の頭部71に溝部73が設けられたものについて説明したが、これはボルト70の形態の一例であり、頭部71に溝部73が設けられていなくても良い。例えば、頭部71の表面に歪検出素子40をガラス30で固定されていても良い。
 第4~第7実施形態では、ボルト70のネジ部72と金属軸10との間に埋め込む埋込部材76として嫌気性の接着剤が用いられていたが、これは埋込部材76の一例である。したがって、ネジとネジとの間の隙間を埋めるものであれば接着剤に限らず他の部材が用いられても良い。また、ボルト70のネジ山と金属軸10のネジ山とが滑りにくい場合には埋込部材76を設けなくても良い。
 第4実施形態で示された各目印16、75は、第5~第7実施形態の金属軸10及びボルト70に適用しても良い。各目印16、75が設けられていなくても歪検出素子40の位置合わせが可能な場合には各目印16、75は不要である。また、第5実施形態で示されたワッシャ90は、第6、第7実施形態に係るボルト70に適用しても良い。
 第4~第7実施形態では、トルクセンサに金属軸10が含まれていたが、これはトルクセンサの構成の一例である。すなわち、第4~第7実施形態では、トルクセンサは、ボルト70と、ガラス30と、歪検出素子40と、プリント基板50と、を備えた構成でも良い。
 第8~第13実施形態では、金属フレーム100の回転を禁止するために金属フレーム100に回り止め部104が設けられていたが、これらは回り止め部104の一例である。また、金属フレーム100が金属軸10に対して回転しない場合には金属フレーム100に回り止め部104を設けなくても良い。
 第8~第13実施形態では、ボルト110は六角ボルトとして構成されていたが、これはボルト110の形状の一例である。したがって、金属軸10に対してネジ締めすることができる形状であれば他の形状でも良い。
 第4~第13実施形態では、ボルト70や金属フレーム100にガラス30を介して歪検出素子40を固定していたが、ガラス30は固定手段の一例である。第4~第13実施形態では、ボルト70や金属フレーム100は第1実施形態のように金属軸10への固定について熱の影響を受けない。したがって、歪検出素子40はボルト70や金属フレーム100に対して接着剤によって固定されていても良い。第14、第15実施形態についても同様に、歪検出素子40は金属フレーム100に対して接着剤によって固定されていても良い。なお、本実施形態の記載と特許請求の範囲の記載との対応関係については、接着剤が特許請求の範囲の「固定部」に対応する。
 第4~第13実施形態では、平坦面12が設けられた金属軸10に対してボルト70や金属フレーム100が固定されていたが、平坦面12が設けられていない金属軸10に対してボルト70や金属フレーム100が固定されていても良い。例えば、金属軸10の表面11に窪み13が形成されており、この窪み13にボルト70が直接締結されていても良い。同様に、窪み13に設けられた凹部17に金属フレーム100が嵌め込まれると共にボルト110が窪み13に直接締結されていても良い。
 第13実施形態では、ボルト110の端面113が金属フレーム100のテーパ面17aに対応するようにリング状に形成されていたが、これは端面113の形状の一例である。例えば、端面113は、金属フレーム100のテーパ面17aに対応する部分を含むように形成されていても良い。また、第13実施形態で示されたボルト110の端面113を第8~第12実施形態に適用しても良い。
 第14、第15実施形態では、金属フレーム100の一面101は四角形状であったが、これは平面形状の一例であり、上述のように円形等の形状でも良い。この場合、穴部19の凹部19bは金属フレーム100の平面形状に応じて形成されることとなる。また、第1ブロック120は2つの突起部121を有する構成であればコの字状ではなく他の形状でも良い。さらに、金属軸10は自動車のクランクシャフトに限られず、他のシャフトでも良い。
 第14実施形態では、第2ブロック130は当該第2ブロック130のうち第1ブロック120とは反対側が穴部19の内壁面19aに接する形状になっていが、これは第2ブロック130の形状の一例である。したがって、第2ブロック130は第2傾斜面132を有する形状であれば他の形状でも良い。
 第15実施形態では、ボルト150の頭部が穴部19の内壁面19aに接触する押し込み構造となっていたが、例えばボルト150のうち第1ブロック120とは反対側に第3ブロックを設けても良い。この場合、ボルト150は両端がネジ部になっており、第1ブロック120と第3ブロックとにネジ止めされている。そして、ボルト150がネジ締めされることで、第1ブロック120が金属フレーム100側に移動すると共に第3ブロックが穴部19の内壁面19aに押さえ付けられる。これにより、ボルト150のうち第1ブロック120とは反対側を第3ブロックによって安定させることができる。
 なお、第1~第15実施形態では、歪検出素子40の検出方式として発振周波数法を用いているが、位相差法を用いる場合においても同様の効果を得ることができる。
 本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。

Claims (28)

  1.  歪の測定対象である棒状の金属軸(10)に固定された台座部(20、70、100、110、120、130、140、150)と、
     前記台座部(20、70、100、110、120、130、140、150)に配置されていると共に、前記台座部(20、70、100、110、120、130、140、150)を介して前記金属軸(10)の歪を検出するSAW方式の歪検出素子(40)と、
     前記台座部(20、70、100、110、120、130、140、150)と前記歪検出素子(40)との間に配置されると共に、前記歪検出素子(40)を前記台座部(20、70、100、110、120、130、140、150)に固定する固定部(30)と、
     を備えているトルクセンサ。
  2.  前記金属軸(10)は、一端(10a)と、前記一端(10a)の一部が当該金属軸(10)の中心軸に沿って凹んだ穴部(19)と、を有し、
     前記台座部は、
     一面(101)と当該一面(101)の反対側の他面(102)とを有すると共に、前記他面(102)の少なくとも一部が前記穴部(19)のうち前記中心軸に平行な内壁面(19a)に接触するように前記穴部(19)に配置された板状の金属フレーム(100)と、
     前記穴部(19)に配置されると共に、前記金属フレーム(100)を前記穴部(19)の内壁面(19a)に押し込む押し込み手段(120、130、140、150)と、
     を有して構成されており、
     前記歪検出素子(40)は、前記金属フレーム(100)の一面(101)に前記固定部(30)を介して固定されていると共に、前記金属フレーム(100)を介して前記金属軸(10)の歪を検出する請求項1に記載のトルクセンサ。
  3.  前記穴部(19)は、前記内壁面(19a)において、当該内壁面(19a)の一部が凹んでいると共に前記金属フレーム(100)が嵌め込まれる凹部(19b)を有し、
     前記凹部(19b)は、当該凹部(19b)のサイズが当該凹部(19b)の深さ方向に向かって小さくなるようにテーパ状に形成された一対のテーパ面(19c)を有しており、
     前記金属フレーム(100)は、前記一面(101)及び前記他面(102)に接すると共に前記一面(101)から前記他面(102)に向かって当該他面(102)のサイズが小さくなるようにテーパ状に形成された一対の側面(103)を有すると共に、当該一対の側面(103)が前記一対のテーパ面(19c)に接触するように前記凹部(19b)に嵌め込まれている請求項2に記載のトルクセンサ。
  4.  前記押し込み手段は、一対の突起部(121)が設けられていると共に、前記一対の突起部(121)が前記金属フレーム(100)の一面(101)に接触することで前記金属フレーム(100)を前記穴部(19)の内壁面(19a)に押さえ付ける第1ブロック(120)を有し、
     前記歪検出素子(40)は、前記第1ブロック(120)のうち前記一対の突起部(121)の間に設けられた空間(122)に収容されている請求項2または3に記載のトルクセンサ。
  5.  前記第1ブロック(120)は、当該第1ブロック(120)のうち前記一対の突起部(121)とは反対側に設けられた第1傾斜面(123)を有し、
     前記第1傾斜面(123)は、前記穴部(19)の開口部側が前記穴部(19)の底部側よりも前記内壁面側に位置するように傾いたテーパ状になっており、
     前記押し込み手段は、
     前記穴部(19)の開口部側が前記穴部(19)の底部側よりも前記内壁面側に位置するように傾いたテーパ状の第2傾斜面(132)と、前記金属軸(10)の中心軸に沿って貫通したネジ穴(131)と、を有すると共に、当該第2傾斜面(132)が前記第1傾斜面(123)に接触するように前記穴部(19)に配置される第2ブロック(130)と、
     前記第2ブロック(130)のネジ穴(131)に挿入されると共に、前記穴部(19)の底部(19e)にネジ止めされることに伴って前記第2ブロック(130)の第2傾斜面(132)を前記第1傾斜面(123)に滑らせることによって前記第1ブロック(120)を前記金属フレーム側に押し込むボルト(140)と、
     を有している請求項4に記載のトルクセンサ。
  6.  前記第1ブロック(120)は、当該第1ブロック(120)のうち前記一対の突起部(121)とは反対側に設けられたネジ穴(124)を有し、
     前記押し込み手段は、前記穴部(19)において前記第1ブロック(120)と前記内壁面(19a)とは対向する他の内壁面との間に配置されると共に、前記第1ブロック(120)のネジ穴(124)にネジ止めされることに伴って前記第1ブロック(120)を前記金属フレーム側に押し込むボルト(150)を有している請求項4に記載のトルクセンサ。
  7.  前記金属軸(10)は、自動車のエンジンの一部を構成するクランクシャフトであり、
     前記穴部(19)は、前記クランクシャフトのうち前記自動車のリア側に位置する前記一端(10a)に設けられている請求項2ないし6のいずれか1つに記載のトルクセンサ。
  8.  前記金属軸(10)は、外表面(11)に設けられた平坦面(12)と、当該平坦面(12)の一部が凹んでいると共に壁面(14)に雌ネジが形成された窪み(13)と、前記窪み(13)の底面(15)の一部が凹んだ凹部(17)と、を有し、
     前記凹部(17)は、前記窪み(13)の底面(15)に平行な当該凹部(17)の面積が当該凹部(17)の深さ方向に向かって小さくなるようにテーパ状に形成されたテーパ面(17a)を有しており、
     前記台座部は、
     一面(101)と、当該一面(101)の反対側の他面(102)と、前記一面(101)及び前記他面(102)に接すると共に前記一面(101)から前記他面(102)に向かって前記台座部のサイズが小さくなるようにテーパ状に形成された側面(103)と、を有する板状をなしており、前記側面(103)が前記凹部(17)のテーパ面(17a)に接触するように前記凹部(17)に嵌め込まれた金属フレーム(100)と、
     中空部(111)を有する中空円筒状であると共に、外壁面(112)に雄ネジが形成されており、前記窪み(13)にネジ止めされることで前記金属フレーム(100)を前記金属軸(10)に固定するボルト(110)と、
     を有しており、
     前記歪検出素子(40)は、前記金属フレーム(100)の一面(101)のうち前記中空部(111)に対応する部分に前記固定部(30)を介して固定されていると共に、前記金属フレーム(100)を介して前記金属軸(10)の歪を検出する請求項1に記載のトルクセンサ。
  9.  前記金属フレーム(100)は、前記凹部(17)に嵌め込まれた状態で当該凹部(17)に設けられた引っ掛かり部(18)に引っ掛かると共に、前記ボルト(110)の中心軸を中心とした当該金属フレーム(100)の回転を禁止する回り止め部(104)を有している請求項8に記載のトルクセンサ。
  10.  前記金属フレーム(100)を前記一面(101)に垂直な方向に断面を取ったときの前記側面(103)のうちの一方の面及び他方の面にそれぞれ平行な直線によって形成される角度をテーパ角度と定義すると、
     前記テーパ角度が5°以上55°以下となる請求項8または9に記載のトルクセンサ。
  11.  前記金属フレーム(100)は、中空筒状であると共に一端部(105a)が前記一面(101)に固定された筒部(105)と、前記筒部(105)の中空部分に配置されると共に前記歪検出素子(40)を覆う傘状のキャップ(106)と、前記キャップ(106)に設けられていると共に前記歪検出素子(40)の検出信号を外部に取り出すための取り出し部(107)と、前記筒部(105)の中空部分に配置されると共に前記キャップ(106)を覆うことで当該キャップ(106)を前記金属フレーム(100)に固定するポッティング材(108)と、を有し、
     前記ボルト(110)は、前記中空部(111)に前記金属フレーム(100)の筒部(105)が差し込まれていると共に、前記筒部(105)のうちの前記一端部(105a)とは反対側の他端部(105b)が前記ボルト(110)に引っ掛けられることで前記金属フレーム(100)に一体化されている請求項8ないし10のいずれか1つに記載のトルクセンサ。
  12.  前記ボルト(110)は、前記金属フレーム(100)の一面(101)のうち前記テーパ面(17a)に対応した部分を前記金属軸側に押し込むリング状の端面(113)を有している請求項8ないし11のいずれか1つに記載のトルクセンサ。
  13.  前記金属軸(10)は、当該金属軸(10)の外表面(11)に設けられた平坦面(12)と、前記平坦面(12)に当該平坦面(12)の一部が凹んでいると共に壁面(14)に雌ネジが形成された窪み(13)と、を有し、
     前記台座部は、頭部(71)と、この頭部(71)に接続されていると共に雄ネジが形成されたネジ部(72)と、を有するボルト(70)であり、
     前記歪検出素子(40)は、前記ボルト(70)の頭部(71)に前記固定部(30)を介して固定されており、
     前記ボルト(70)は、前記雌ネジと前記雄ネジとによるネジ止めにより前記窪み(13)に対して締結固定されている請求項1に記載のトルクセンサ。
  14.  前記ボルト(70)は、前記金属軸(10)に対して前記歪検出素子(40)の配置方向を指示する第1目印(75)を有し、
     前記金属軸(10)は、前記第1目印(75)の位置を指示する第2目印(16)を有しており、
     前記ボルト(70)は、前記第1目印(75)が前記金属軸(10)の第2目印(16)に合致するように前記金属軸(10)に締結固定されている請求項13に記載のトルクセンサ。
  15.  前記第1目印(75)は、前記ネジ部(72)の雄ネジの切り出し位置に対応して設けられている請求項14に記載のトルクセンサ。
  16.  前記金属軸(10)において、前記金属軸(10)の中心軸から前記外表面(11)までの距離をrとすると、
     前記金属軸(10)の中心軸から前記歪検出素子(40)が固定された設置面(74)までの高さは、0.5r以上、0.9r以下となるように、前記ボルト(70)が前記金属軸(10)に締結固定されている請求項13ないし15のいずれか1つに記載のトルクセンサ。
  17.  前記ネジ部(72)は、当該ネジ部(72)の先端に向かって径が小さくなるようにテーパ形状になっており、
     前記金属軸(10)の窪み(13)は、当該窪み(13)の底面(15)に向かって径が小さくなるようにテーパ形状になっている請求項13ないし16のいずれか1つに記載のトルクセンサ。
  18.  前記雄ネジと前記雌ネジとの間の隙間には埋込部材(76)が埋め込まれている請求項13ないし17のいずれか1つに記載のトルクセンサ。
  19.  前記ボルト(70)は、ワッシャ(90)を介して前記金属軸(10)に締結固定されている請求項13ないし18のいずれか1つに記載のトルクセンサ。
  20.  前記金属軸(10)をさらに備えており、
     前記金属軸(10)は、当該金属軸(10)の外表面(11)に設けられた平坦面(12)を有し、
     前記台座部は、一面(21)、当該一面(21)の反対側の他面(22)、前記一面(21)及び前記他面(22)に接する側面(23)を有する板状であり、前記他面(22)が前記金属軸(10)の平坦面側に向けられた状態で前記他面(22)及び前記側面(23)のうちの少なくとも一部が前記金属軸(10)の平坦面(12)に接合固定された金属フレーム(20)であり、
     前記歪検出素子(40)は、前記金属フレーム(20)の一面(21)に配置されていると共に、前記金属フレーム(20)を介して前記金属軸(10)の歪を検出し、
     前記固定部(30)は、前記金属フレーム(20)の一面(21)と前記歪検出素子(40)との間に配置されると共に、前記歪検出素子(40)を前記金属フレーム(20)の一面(21)に固定している請求項1に記載のトルクセンサ。
  21.  前記金属フレーム(20)は、前記他面(22)の外縁部(24)が前記金属軸(10)の平坦面(12)に接合固定されている請求項20に記載のトルクセンサ。
  22.  前記金属軸(10)は、前記平坦面(12)に、平面サイズが前記金属フレーム(20)の一面(21)及び他面(22)と同じであると共に前記平坦面(12)の一部が凹んだ窪み(13)を有し、
     前記金属フレーム(20)は、前記窪み(13)にはめ込まれていると共に、前記側面(23)と前記窪み(13)の壁面(14)とが一体化するようにレーザ溶接されている請求項20に記載のトルクセンサ。
  23.  前記窪み(13)の平面形状が円形であり、前記金属フレーム(20)の一面(21)及び他面(22)の平面形状が前記窪み(13)と同じ円形である請求項22に記載のトルクセンサ。
  24.  前記金属フレーム(20)は、オーステナイト系ステンレスにて形成されており、
     前記歪検出素子(40)は、ニオブ酸リチウムを材料とする圧電基板(43)を有しており、
     前記固定部(30)は、当該固定部(30)の熱膨張係数が10.0以上、16.0以下のものである請求項20ないし23のいずれか1つに記載のトルクセンサ。
  25.  前記固定部は、鉛系の材料を含むガラス(30)で形成されている請求項20ないし24のいずれか1つに記載のトルクセンサ。
  26.  歪の測定対象であると共に棒状である金属軸(10)の歪みを、金属フレーム(20)を介してSAW方式の歪検出素子(40)で検出するトルクセンサの製造方法であって、
     当該金属軸(10)の外表面(11)に平坦面(12)を形成し、
     前記金属フレーム(20)として、一面(21)、当該一面(21)の反対側の他面(22)、前記一面(21)及び前記他面(22)に接する側面(23)を有する板状のものを用意し、
     ガラス(30)を介して前記歪検出素子(40)を前記金属フレーム(20)の一面(21)に固定し、
     前記歪検出素子(40)が固定された前記金属フレーム(20)の他面(22)が前記平坦面側となるように、前記金属フレーム(20)を前記平坦面(12)に配置して接合固定すること、
     を含んでいるトルクセンサの製造方法。
  27.  前記金属フレーム(20)の接合固定では、前記金属フレーム(20)の他面(22)の外縁部(24)の全周を、前記平坦面(12)にレーザ溶接する請求項26に記載のトルクセンサの製造方法。
  28.  前記金属軸(10)の平坦面(12)の形成では、前記金属軸(10)の前記平坦面(12)は、平面サイズが前記金属フレーム(20)の一面(21)及び他面(22)と同じであり、前記平坦面(12)の一部が凹んだ窪み(13)を有し、
     前記金属フレーム(20)の接合固定では、前記金属フレーム(20)を前記窪み(13)にはめ込むと共に、前記側面(23)と前記窪み(13)の壁面(14)とが一体化するように前記側面(23)を前記壁面(14)にレーザ溶接する請求項26に記載のトルクセンサの製造方法。
     
PCT/JP2014/000122 2013-01-21 2014-01-14 トルクセンサ及びその製造方法 WO2014112355A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/760,776 US9568380B2 (en) 2013-01-21 2014-01-14 Torque sensor and manufacturing method therefor
EP14740674.8A EP2947441A4 (en) 2013-01-21 2014-01-14 TORQUE SENSOR AND METHOD FOR MANUFACTURING SAME

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2013008211 2013-01-21
JP2013-008211 2013-01-21
JP2013147150 2013-07-15
JP2013-147150 2013-07-15
JP2013175446 2013-08-27
JP2013-175446 2013-08-27
JP2013202048A JP5833612B2 (ja) 2013-01-21 2013-09-27 トルクセンサ及びその製造方法
JP2013-202048 2013-09-27

Publications (1)

Publication Number Publication Date
WO2014112355A1 true WO2014112355A1 (ja) 2014-07-24

Family

ID=51209451

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/000122 WO2014112355A1 (ja) 2013-01-21 2014-01-14 トルクセンサ及びその製造方法

Country Status (4)

Country Link
US (1) US9568380B2 (ja)
EP (1) EP2947441A4 (ja)
JP (1) JP5833612B2 (ja)
WO (1) WO2014112355A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016095260A (ja) * 2014-11-17 2016-05-26 株式会社日本自動車部品総合研究所 トルクセンサ
US12078487B2 (en) * 2020-11-06 2024-09-03 Denso Corporation Method for manufacturing multi-axial inertial force sensor

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3062000B1 (de) * 2015-02-26 2019-04-03 Flender GmbH Anordnung mit FOFW-System
KR20180028380A (ko) * 2016-09-08 2018-03-16 크루셜텍 (주) 지문센서 모듈, 이를 제조하는 지문센서 모듈 제조장치 및 제조방법
TWI627381B (zh) * 2016-10-21 2018-06-21 台灣艾華電子工業股份有限公司 彎曲感測器
US11621694B2 (en) * 2018-12-06 2023-04-04 Texas Instruments Incorporated Lamb wave resonator-based torque sensor
FR3114647B1 (fr) * 2020-09-25 2023-04-28 Vitesco Technologies Capteur de couple pour véhicule automobile

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005505775A (ja) * 2001-10-16 2005-02-24 トランセンス テクノロジーズ ピーエルシー 三次弾性定数による温度安定sawセンサー
JP2009109495A (ja) * 2007-10-29 2009-05-21 Schott Ag ひずみセンサ用パッケージ
JP2011094994A (ja) 2009-10-27 2011-05-12 Tohnichi Mfg Co Ltd トルク測定装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3717029A (en) * 1968-10-23 1973-02-20 Himmelstein & Co S Torquemeter
US3826321A (en) * 1973-05-25 1974-07-30 Trans Sonics Inc Load weighing system for cranes with rotatable booms
JPH05104966A (ja) 1991-10-11 1993-04-27 Mazda Motor Corp 車両のトルクセンサ取付け構造
JP2002357493A (ja) 2001-06-01 2002-12-13 Aisin Seiki Co Ltd トルクセンサおよびその接続構造およびエンジン駆動式空調機
IL159651A0 (en) * 2003-12-30 2004-06-01 Nexense Ltd Method and apparatus for measuring torque
GB2426336A (en) 2005-05-20 2006-11-22 Transense Technologies Plc SAW based torque and temperature sensor
US7621056B2 (en) * 2007-09-04 2009-11-24 Yugen-Kaisya Tapiro Ruler
US8734437B2 (en) * 2008-07-23 2014-05-27 Boston Scientific Scimed, Inc. Catheter having electrically conductive pathways

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005505775A (ja) * 2001-10-16 2005-02-24 トランセンス テクノロジーズ ピーエルシー 三次弾性定数による温度安定sawセンサー
JP2009109495A (ja) * 2007-10-29 2009-05-21 Schott Ag ひずみセンサ用パッケージ
JP2011094994A (ja) 2009-10-27 2011-05-12 Tohnichi Mfg Co Ltd トルク測定装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2947441A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016095260A (ja) * 2014-11-17 2016-05-26 株式会社日本自動車部品総合研究所 トルクセンサ
US12078487B2 (en) * 2020-11-06 2024-09-03 Denso Corporation Method for manufacturing multi-axial inertial force sensor

Also Published As

Publication number Publication date
US20150369678A1 (en) 2015-12-24
JP2015064325A (ja) 2015-04-09
EP2947441A1 (en) 2015-11-25
US9568380B2 (en) 2017-02-14
EP2947441A4 (en) 2016-11-02
JP5833612B2 (ja) 2015-12-16

Similar Documents

Publication Publication Date Title
JP5833612B2 (ja) トルクセンサ及びその製造方法
EP0430445B1 (en) Piezoelectric pressure sensor
JP2012530913A (ja) 圧力センサ測定要素およびそれを有する圧力センサ
JP5544297B2 (ja) 力又は圧力を測定するための部品及びそのような部品を含むセンサ
JP4644282B2 (ja) 組み込まれた燃焼室圧力センサを備えたシース形グロープラグ
US8875565B2 (en) Device incorporating a pressure sensor for measuring pressures within an internal combustion engine
JP6798874B2 (ja) 圧力検出装置
EP0549346B1 (en) Piezoelectric fluid pressure sensor
WO2006038553A1 (ja) 歪検出装置
JP6360428B2 (ja) トルクセンサ
KR20010105321A (ko) 토크 측정장치 및 측정방법
US9885622B2 (en) Saw sensor arrangements
JP2015219131A (ja) 圧力検出装置
JP2008185414A (ja) ノックセンサ
US7836753B2 (en) Knock sensor
US10801908B2 (en) Diaphragm suppressing pressure sensor
JP2007198169A (ja) 燃焼圧センサ及びセンサ付き内燃機関
JP2008122129A (ja) 圧力センサ
WO2014167823A1 (ja) トルクセンサ
EP0047660A1 (en) Accelerometers
JP2017166827A (ja) 歪センサ
JP6817058B2 (ja) 圧力検出装置の製造方法および圧力検出装置
JP2006125982A (ja) 圧力検出装置
KR20170140380A (ko) 자동차의 실린더 헤드에 작용하는 압력을 측정하는 센서
JP2015169597A (ja) 圧力センサ及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14740674

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14760776

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2014740674

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE