WO2014112278A1 - 表示装置、表示駆動装置、駆動方法、および電子機器 - Google Patents

表示装置、表示駆動装置、駆動方法、および電子機器 Download PDF

Info

Publication number
WO2014112278A1
WO2014112278A1 PCT/JP2013/083963 JP2013083963W WO2014112278A1 WO 2014112278 A1 WO2014112278 A1 WO 2014112278A1 JP 2013083963 W JP2013083963 W JP 2013083963W WO 2014112278 A1 WO2014112278 A1 WO 2014112278A1
Authority
WO
WIPO (PCT)
Prior art keywords
transistor
voltage
terminal
source
signal
Prior art date
Application number
PCT/JP2013/083963
Other languages
English (en)
French (fr)
Inventor
直史 豊村
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Priority to CN201380065611.8A priority Critical patent/CN104919516B/zh
Priority to US14/651,031 priority patent/US9633596B2/en
Priority to KR1020157014332A priority patent/KR102045210B1/ko
Publication of WO2014112278A1 publication Critical patent/WO2014112278A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3225Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix
    • G09G3/3233Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix with pixel circuitry controlling the current through the light-emitting element
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3266Details of drivers for scan electrodes
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C19/00Digital stores in which the information is moved stepwise, e.g. shift registers
    • G11C19/28Digital stores in which the information is moved stepwise, e.g. shift registers using semiconductor elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/08Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
    • G09G2300/0809Several active elements per pixel in active matrix panels
    • G09G2300/0819Several active elements per pixel in active matrix panels used for counteracting undesired variations, e.g. feedback or autozeroing
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/08Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
    • G09G2300/0809Several active elements per pixel in active matrix panels
    • G09G2300/0842Several active elements per pixel in active matrix panels forming a memory circuit, e.g. a dynamic memory with one capacitor
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/08Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
    • G09G2300/0809Several active elements per pixel in active matrix panels
    • G09G2300/0842Several active elements per pixel in active matrix panels forming a memory circuit, e.g. a dynamic memory with one capacitor
    • G09G2300/0861Several active elements per pixel in active matrix panels forming a memory circuit, e.g. a dynamic memory with one capacitor with additional control of the display period without amending the charge stored in a pixel memory, e.g. by means of additional select electrodes
    • G09G2300/0866Several active elements per pixel in active matrix panels forming a memory circuit, e.g. a dynamic memory with one capacitor with additional control of the display period without amending the charge stored in a pixel memory, e.g. by means of additional select electrodes by means of changes in the pixel supply voltage
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0264Details of driving circuits
    • G09G2310/0286Details of a shift registers arranged for use in a driving circuit
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0264Details of driving circuits
    • G09G2310/0291Details of output amplifiers or buffers arranged for use in a driving circuit
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2330/00Aspects of power supply; Aspects of display protection and defect management
    • G09G2330/02Details of power systems and of start or stop of display operation
    • G09G2330/028Generation of voltages supplied to electrode drivers in a matrix display other than LCD
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3674Details of drivers for scan electrodes

Definitions

  • the present disclosure relates to a display device having a current-driven display element, a display driving device and a driving method used in such a display device, and an electronic apparatus including such a display device.
  • a display device that uses a current-driven optical element whose emission luminance changes according to a flowing current value, for example, an organic EL (Electro-Luminescence) element, as a light emitting element.
  • Display devices have been developed and commercialized. Unlike a liquid crystal element or the like, a light emitting element is a self light emitting element and does not require a light source (backlight). Therefore, the organic EL display device has features such as higher image visibility, lower power consumption, and faster element response speed than a liquid crystal display device that requires a light source.
  • Patent Document 1 discloses a display panel that includes a shift register and a drive scanner having an inverter connected to each output terminal of the shift register.
  • the drive signal when driving a pixel, the drive signal is often required to have a large amplitude. Therefore, it is desired that the drive circuit generates such a large amplitude drive signal.
  • the display driving device includes a first transistor and a first capacitor element.
  • the first transistor has a gate, a drain, and a source.
  • the first capacitor element has a first terminal and a second terminal connected to the drain or source of the first transistor.
  • a driving method applies a pulse signal to a drain or a source of a first transistor, and a terminal to which a pulse signal of the drain and the source of the first transistor is applied A first capacitor having a second terminal connected to a terminal different from the above, applying another pulse signal to the first terminal and driving the unit pixel based on the voltage of the second terminal It is.
  • An electronic apparatus includes the display device, and includes, for example, a mobile terminal device such as a television device, a digital camera, a personal computer, a video camera, or a mobile phone.
  • a mobile terminal device such as a television device, a digital camera, a personal computer, a video camera, or a mobile phone.
  • the second terminal of the first capacitor is connected to the drain or the source of the first transistor, and the second terminal The unit pixel is driven based on the terminal voltage. At that time, a pulse signal is applied to a terminal different from the terminal to which the first capacitor of the first transistor is connected, and another terminal is connected to the first terminal of the first capacitor. A pulse signal is applied.
  • the first transistor and the first capacitor connected to the drain or the source of the first transistor are provided.
  • a drive signal having a large amplitude can be generated.
  • FIG. 11 is a block diagram illustrating a configuration example of a display device according to an embodiment of the present disclosure.
  • FIG. 2 is a circuit diagram illustrating a configuration example of a subpixel illustrated in FIG. 1.
  • FIG. 2 is a block diagram illustrating a configuration example of a power supply line driving unit illustrated in FIG. 1.
  • FIG. 4 is a circuit diagram illustrating a configuration example of a charge pump circuit and a drive circuit illustrated in FIG. 3. It is explanatory drawing showing arrangement
  • FIG. 2 is a timing waveform diagram illustrating an operation example of a drive unit illustrated in FIG. 1.
  • FIG. 2 is a timing waveform diagram illustrating an operation example of a subpixel illustrated in FIG. 1.
  • FIG. 5 is a timing waveform diagram illustrating an operation example of the charge pump circuit and the drive circuit illustrated in FIG. 4. It is a circuit diagram showing the example of 1 structure of the charge pump circuit which concerns on a modification. It is a block diagram showing the example of 1 structure of the power supply line drive part which concerns on another modification.
  • FIG. 11 is a circuit diagram illustrating a configuration example of a charge pump circuit illustrated in FIG. 10. It is a perspective view showing the external appearance structure of the television apparatus with which the display apparatus which concerns on embodiment was applied. It is a circuit diagram showing the example of 1 structure of the sub pixel which concerns on another modification.
  • the display unit 10 has a plurality of pixels Pix arranged in a matrix. Each pixel Pix has red, green, and blue sub-pixels 11.
  • the display unit 10 includes a plurality of scanning lines WSL and a plurality of power supply lines PL extending in the row direction, and a plurality of data lines DTL extending in the column direction. One ends of these scanning lines WSL, power supply lines PL, and data lines DTL are connected to the drive unit 20.
  • Each of the sub-pixels 11 described above is disposed at the intersection of the scanning line WSL and the data line DTL.
  • FIG. 2 shows an example of the circuit configuration of the sub-pixel 11.
  • the subpixel 11 includes a write transistor WSTr, a drive transistor DRTr, an organic EL element OLED, and capacitive elements Cs and Csub. That is, in this example, the sub-pixel 11 has a so-called “2Tr2C” configuration including two transistors (the write transistor WSTr and the drive transistor DRTr) and the two capacitance elements Cs and Csub. .
  • the write transistor WSTr and the drive transistor DRTr are composed of, for example, an N-channel MOS (Metal Oxide Semiconductor) type TFT (Thin Film Transistor).
  • the write transistor WSTr has a gate connected to the scanning line WSL, a source connected to the data line DTL, and a drain connected to the gate of the drive transistor DRTr and one end of the capacitive element Cs.
  • the drive transistor DRTr has a gate connected to the drain of the write transistor WSTr and one end of the capacitive element Cs, a drain connected to the power supply line PL, and a source connected to the other end of the capacitive element Cs and the anode of the organic EL element OLED. Has been.
  • the drive unit 20 drives the display unit 10 based on the video signal Sdisp and the synchronization signal Ssync supplied from the outside.
  • the driving unit 20 includes a video signal processing unit 21, a timing generation unit 22, a scanning line driving unit 23, a power line driving unit 26, and a data line driving unit 27. Yes.
  • the video signal processing unit 21 performs predetermined signal processing on the video signal Sdisp supplied from the outside to generate a video signal Sdisp2.
  • Examples of the predetermined signal processing include gamma correction and overdrive correction.
  • the timing generation unit 22 supplies control signals to the scanning line driving unit 23, the power supply line driving unit 26, and the data line driving unit 27 based on the synchronization signal Ssync supplied from the outside, and these are mutually connected. It is a circuit that controls to operate in synchronization.
  • the scanning line driving unit 23 sequentially selects the sub-pixels 11 for each row by sequentially applying the scanning signal WS to the plurality of scanning lines WSL in accordance with the control signal supplied from the timing generation unit 22. .
  • the power supply line driving unit 26 sequentially applies the power supply signal DS to the plurality of power supply lines PL in accordance with the control signal supplied from the timing generation unit 22, thereby performing the light emission operation and the extinction operation of the subpixels 11 for each row. Control is performed.
  • the power signal DS transitions between the voltage Vccp and the voltage Vini.
  • the voltage Vini is a voltage for initializing the sub-pixel 11
  • the voltage Vccp is a voltage for causing the organic EL element OLED to emit light by flowing a current Ids through the driving transistor DRTr.
  • FIG. 3 shows a configuration example of the power supply line driving unit 26.
  • the power supply line drive unit 26 includes a shift register 31, a plurality of charge pump circuits 32, a voltage generation unit 33, and a plurality of drive circuits 34.
  • the shift register 31 includes a plurality of scanning signals Ss (..., Ss (n ⁇ 1),... For selecting a pixel line to be driven based on a control signal (not shown) supplied from the timing generator 22.
  • Each scanning signal Ss is supplied to four church pump circuits 32. Specifically, for example, the scanning signal Ss (n + 1) is supplied to the four charge pump circuits 32 (k ⁇ 1), 32 (k), 32 (k + 1), and 32 (k + 2). .
  • Each scanning signal Ss is a signal that transitions between a high level voltage VH and a low level voltage VL.
  • the high level voltage VH is a voltage lower than the voltage Vccp
  • the low level voltage VL is the same level as the voltage Vini.
  • Each charge pump circuit 32 generates a signal St having an amplitude larger than the amplitude of these scanning signals Ss based on the four scanning signals Ss. Specifically, for example, the charge pump circuit 32 (k) generates the signal St (k) based on the four scanning signals Ss (n ⁇ 1), Ss (n), Ss (n + 1), and Ss (n + 2). Generate.
  • Each charge pump circuit 32 has input terminals SR1 to SR4 to which four scanning signals Ss are input, and an output terminal Out that outputs a signal St.
  • the scanning signal Ss (n ⁇ 1) is input to the input terminal SR1 of the charge pump circuit 32 (k), the scanning signal Ss (n) is input to the input terminal SR2, and the scanning signal Ss is input to the input terminal SR3.
  • N + 1) is input, and the scanning signal Ss (n + 2) is input to the input terminal SR4.
  • Each charge pump circuit 32 is provided corresponding to each pixel line in the display unit 10. Specifically, for example, the kth charge pump circuit 32 (k) is provided corresponding to the kth pixel line.
  • Each drive circuit 34 generates a power signal DS based on the voltage Vccp supplied from the voltage generator 33 and the signal St supplied from the charge pump circuit 32.
  • Each drive circuit 34 has an input terminal InH to which a voltage Vccp is input, an input terminal In to which a signal St is input, and an output terminal Out that outputs a power supply signal DS.
  • Each drive circuit 34 is provided corresponding to each pixel line in the display unit 10.
  • the k-th drive circuit 34 (k) is based on the voltage Vccp supplied from the voltage generation unit 33 and the signal St (k) supplied from the charge pump circuit 32 (k).
  • a k-th power signal DS (k) is generated.
  • the drive circuit 34 (k) applies the power signal DS (k) to the power line PL (k) related to the kth pixel line.
  • a DC voltage VG1 is supplied to the gate of the transistor Tr1, the drain is connected to the input terminal SR2, and the source is connected to one end of the capacitive element C1 and the gate of the transistor Tr2.
  • This voltage VG1 is higher than the low level voltage VL and lower than the high level voltage VH (VH> VG1> VL).
  • the gate of the transistor Tr2 is connected to the source of the transistor Tr1 and one end of the capacitor C1, the drain is connected to the input terminal SR1, and the source is connected to one end of the capacitor C2 and to the output terminal Out.
  • the transistor Tr3 has a gate connected to the other end of the capacitive element C1 and the input terminal SR3, a drain connected to the input terminal SR4, and a source connected to the other end of the capacitive element C2. Note that the drain and the source of these transistors Tr1 to Tr3 may be interchanged.
  • One end of the capacitive element C1 is connected to the source of the transistor Tr1 and the gate of the transistor Tr2, and the other end is connected to the gate of the transistor Tr3 and to the input terminal SR3.
  • One end of the capacitive element C2 is connected to the source of the transistor Tr2 and to the output terminal Out, and the other end is connected to the source of the transistor Tr3.
  • the gate of the transistor Tr4 is connected to the source of the transistor Tr5 and connected to the input terminal In, the drain is connected to the input terminal InH, the source is connected to the gate and drain of the transistor Tr5 and output. Connected to terminal Out.
  • the gate of the transistor Tr5 is connected to the drain of the transistor Tr5 and the source of the transistor Tr4 and to the output terminal Out, and the source is connected to the gate of the transistor Tr4 and to the input terminal In.
  • the charge pump circuit 32 and the drive circuit 34 generate a power supply signal DS having an amplitude (Vccp-Vini) larger than the amplitude (VH-VL) of the scanning signal Ss, as will be described later. .
  • FIG. 5 shows the arrangement of each block in the display device 1.
  • the scanning line drive unit 23 is arranged in the left frame region of the substrate 30 where the display unit 10 is formed, and the power line drive unit 26 is arranged in the right frame region. That is, the power supply line driving unit 26 is formed on the substrate 30 in the same manner as the display unit 10 and the scanning line driving unit 23.
  • the data line driving unit 27 includes a pixel voltage Vsig that indicates the emission luminance of each sub-pixel 11 according to the video signal Sdisp2 supplied from the video signal processing unit 21 and the control signal supplied from the timing generation unit 22.
  • a signal Sig including a voltage Vofs for performing Vth correction described later is generated and applied to each data line DTL.
  • the transistor Tr2 corresponds to a specific example of “first transistor” in the present disclosure.
  • the transistor Tr1 corresponds to a specific example of “second transistor” in the present disclosure.
  • the transistor Tr3 corresponds to a specific example of “third transistor” in the present disclosure.
  • the capacitive element C2 corresponds to a specific example of “first capacitive element” in the present disclosure.
  • the capacitive element C1 corresponds to a specific example of “second capacitive element” in the present disclosure.
  • the transistor Tr4 corresponds to a specific example of “switch” in the present disclosure.
  • the transistor Tr5 corresponds to a specific example of “nonlinear element” in the present disclosure.
  • the sub-pixel 11 corresponds to a specific example of “unit pixel” in the present disclosure.
  • the video signal processing unit 21 performs predetermined signal processing on the video signal Sdisp supplied from the outside to generate a video signal Sdisp2.
  • the timing generation unit 22 supplies control signals to the scanning line driving unit 23, the power supply line driving unit 26, and the data line driving unit 27 based on the synchronization signal Ssync supplied from the outside, and these are synchronized with each other. And control to work.
  • the scanning line driving unit 23 sequentially selects the sub-pixels 11 for each row by sequentially applying the scanning signal WS to the plurality of scanning lines WSL in accordance with the control signal supplied from the timing generation unit 22.
  • the power supply line driving unit 26 sequentially applies the power supply signal DS to the plurality of power supply lines PL in accordance with the control signal supplied from the timing generation unit 22, thereby performing the light emission operation and the extinction operation of the subpixels 11 for each row. Take control.
  • the data line driving unit 27 performs pixel voltage Vsig and Vth correction for instructing the light emission luminance of each sub-pixel 11 in accordance with the video signal Sdisp2 supplied from the video signal processing unit 21 and the control signal supplied from the timing generation unit 22.
  • a signal Sig including a voltage Vofs for performing is generated and applied to each data line DTL.
  • the display unit 10 performs display based on the scanning signal WS, the power supply signal DS, and the signal Sig supplied from the driving unit 20.
  • FIG. 6A and 6B are timing charts of the operation of the drive unit 20.
  • FIG. 6A shows the waveform of the scanning signal WS
  • FIG. 6B shows the waveform of the power supply signal DS
  • FIG. 6C shows the waveform of the signal Sig. Indicates.
  • a scanning signal WS (k) is a scanning signal WS for driving the sub-pixel 11 in the k-th line
  • the scanning signals WS (k + 1), WS (k + 2), WS (K + 3) are scanning signals WS for driving the sub-pixels 11 of the (k + 1) th line, the (k + 2) th line, and the (k + 3) th line, respectively.
  • the data line driving unit 27 applies the pixel voltage Vsig to the data line DTL during a predetermined period including the pulse PP2 (for example, the period from timing t4 to t7), and applies the voltage Vofs during other periods (FIG. 6 ( C)).
  • the drive unit 20 drives the k-th sub-pixel 11 in one horizontal period (for example, timings t1 to t7), and (k + 1) line in the next horizontal period (for example, timings t7 to t8).
  • the sub-pixel 11 of the eye is driven.
  • the driving unit 20 drives all the sub-pixels 11 of the display unit 10 in one frame period.
  • FIG. 7 shows a timing chart of the operation of the sub-pixel 11 in the period from the timing t0 to t7,
  • A shows the waveform of the scanning signal WS
  • B shows the waveform of the power supply signal DS
  • C shows the waveform of the signal Sig
  • D shows the waveform of the gate voltage Vg of the drive transistor DRTr
  • E shows the waveform of the source voltage Vs of the drive transistor DRTr.
  • 7B to 7E show the waveforms using the same voltage axis.
  • the drive unit 20 initializes the sub-pixel 11 within one horizontal period (1H) (initialization period P1), and performs Vth correction for suppressing the influence of the element variation of the drive transistor DRTr on the image quality (Vth In the correction period P2), the pixel voltage Vsig is written to the sub-pixel 11 and ⁇ correction is performed (writing / ⁇ correction period P3). After that, the organic EL element OLED of the sub-pixel 11 emits light with a luminance corresponding to the written pixel voltage Vsig (light emission period P4). The details will be described below.
  • the power supply line driving unit 26 changes the power supply signal DS from the voltage Vccp to the voltage Vini at the timing t0 prior to the initialization period P1 (FIG. 7B).
  • the drive transistor DRTr is turned on, and the source voltage Vs of the drive transistor DRTr is set to the voltage Vini (FIG. 7E).
  • the drive unit 20 performs Vth correction during the period from timing t2 to t3 (Vth correction period P2).
  • the power supply line drive unit 26 changes the power supply signal DS from the voltage Vini to the voltage Vccp at the timing t2 (FIG. 7B).
  • the drive transistor DRTr operates in the saturation region, and a current Ids flows from the drain to the source. With this current Ids, the source voltage Vs rises (FIG. 7E).
  • the organic EL element OLED maintains a reverse bias state, and no current flows through the organic EL element OLED.
  • the gate-source voltage Vgs decreases, and thus the current Ids decreases.
  • the current Ids converges toward “0” (zero).
  • the scanning line driving unit 23 changes the voltage of the scanning signal WS from the high level to the low level at timing t3 (FIG. 7A). As a result, the write transistor WSTr is turned off. Then, the data line driving unit 27 sets the signal Sig to the pixel voltage Vsig at timing t4 (FIG. 7C).
  • the driving unit 20 writes the pixel voltage Vsig to the sub-pixel 11 and performs ⁇ correction during the period from timing t5 to t6 (writing / ⁇ correction period P3).
  • the scanning line driving unit 23 changes the voltage of the scanning signal WS from low level to high level at timing t5 (FIG. 7A). Accordingly, the write transistor WSTr is turned on, and the gate voltage Vg of the drive transistor DRTr rises from the voltage Vofs to the pixel voltage Vsig (FIG. 7D).
  • the gate-source voltage Vgs of the drive transistor DRTr becomes larger than the threshold voltage Vth (Vgs> Vth), and the current Ids flows from the drain to the source, so that the source voltage Vs of the drive transistor DRTr rises (FIG. 7 ( E)).
  • Vgs> Vth the threshold voltage
  • the current Ids flows from the drain to the source, so that the source voltage Vs of the drive transistor DRTr rises
  • the influence of element variations of the drive transistor DRTr is suppressed ( ⁇ (mobility) correction)
  • the gate-source voltage Vgs of the drive transistor DRTr is set to a voltage Vemi corresponding to the pixel voltage Vsig. Is done.
  • the drive unit 20 causes the sub-pixel 11 to emit light in a period after the timing t6 (light emission period P4).
  • the scanning line driving unit 23 changes the voltage of the scanning signal WS from a high level to a low level (FIG. 7A).
  • the write transistor WSTr is turned off, and the gate of the drive transistor DRTr becomes floating, so that the voltage between the terminals of the capacitive element Cs, that is, the gate-source voltage Vgs of the drive transistor DRTr is maintained thereafter.
  • the source voltage Vs of the drive transistor DRTr increases (FIG.
  • the gate voltage Vg of the drive transistor DRTr also increases (FIG. 7D).
  • the source voltage Vs of the drive transistor DRTr becomes larger than the threshold voltage Vel of the organic EL element OLED and the voltage Vcath (Vel + Vcath) by such bootstrap operation, the voltage between the anode and the cathode of the organic EL element OLED is increased. A current flows and the organic EL element OLED emits light. That is, the source voltage Vs increases according to the element variation of the organic EL element OLED, and the organic EL element OLED emits light.
  • the light emission period P4 shifts to the initialization period P1.
  • the drive unit 20 is driven to repeat this series of operations.
  • the source voltage Vs is increased in accordance with the element variation of the organic EL element OLED in the light emission period P ⁇ b> 4, so that deterioration in image quality due to the element variation of the organic EL element OLED can be suppressed. it can.
  • the charge pump circuit 32 generates a signal St based on the four scanning signals Ss supplied from the shift register 31. Then, the drive circuit 34 generates the power signal DS based on the voltage Vccp supplied from the voltage generator 33 and the signal St supplied from the charge pump circuit 32.
  • V1 VG1-Vth1 (1)
  • Vth1 is a threshold voltage of the transistor Tr1. That is, the voltage V1 is lower than the gate voltage (voltage VG1) of the transistor Tr1 by the threshold voltage Vth1 of the transistor Tr1. That is, the gate-source voltage Vgs of the transistor Tr1 is equal to the threshold voltage Vth1 of the transistor Tr1.
  • Vth2 is the threshold voltage of the transistor Tr2. That is, the voltage V2 is lower than the gate voltage (voltage V1) of the transistor Tr2 by the threshold voltage Vth2 of the transistor Tr2. That is, the gate-source voltage Vgs of the transistor Tr2 is equal to the threshold voltage Vth2 of the transistor Tr2.
  • the voltage of the signal SSR3 changes from the low level voltage VL to the high level voltage VH (FIG. 8C).
  • this voltage change is transmitted to the source of the transistor Tr1 through the capacitor C1, and the source voltage (node voltage VN1) of the transistor Tr1 changes to the voltage V3 (FIG. 8E).
  • This voltage V3 is expressed by the following equation.
  • Gain1 is a gain representing a ratio between a voltage change at one end of the capacitive element C1 and a voltage change at the other end of the capacitive element C1, and includes a capacitance value of the capacitive element C1 and parasitic capacitances of the transistors Tr1 and Tr2. It is determined by. In this manner, when the source voltage of the transistor Tr1 increases, the gate-source voltage Vgs of the transistor Tr1 becomes lower than the threshold voltage Vth1 of the transistor Tr1, and the transistor Tr1 is turned off.
  • the power supply signal DS rises as the voltage of the signal St increases (FIG. 8 (H)). Specifically, in the drive circuit 34, the transistor Tr4 is turned on, the transistor Tr5 is turned off, and the power supply signal DS rises toward the voltage Vccp. In this example, since the on-resistance of the transistor Tr4 is not sufficiently low, the voltage of the power supply signal DS is slightly lower than the voltage Vccp.
  • the transistor Tr3 in response to the change of the signal SSR3, in the charge pump circuit 32, the transistor Tr3 is turned on, and the source voltage (node voltage VN2) of the transistor Tr3 changes to the voltage VL (FIG. 8F).
  • the voltage of the signal SSR4 changes from the low level voltage VL to the high level voltage VH (FIG. 8D). Accordingly, the transistor Tr3 is transiently turned on, and the source voltage (node voltage VN2) of the transistor Tr3 is changed to the voltage V5 (FIG. 8F).
  • This voltage V5 is expressed by the following equation.
  • V5 VH-Vth3 (5)
  • Vth3 is a threshold voltage of the transistor Tr3. That is, the voltage V5 is lower than the gate voltage (voltage VH) of the transistor Tr3 by the threshold voltage Vth3 of the transistor Tr3. That is, the gate-source voltage Vgs of the transistor Tr3 is equal to the threshold voltage Vth3 of the transistor Tr3.
  • this voltage change is transmitted to the source of the transistor Tr2 through the capacitive element C2, and the source voltage (signal St) of the transistor Tr2 changes to a voltage V6 higher than the voltage VH.
  • V6 V4 + (V5-VL) x
  • Gain2 VG1-Vth1-Vth2 + (VH-VL) x Gain1 + (VH ⁇ VL ⁇ Vth3) ⁇ Gain2 (6)
  • Gain2 is a gain representing a ratio between a voltage change at one end of the capacitive element C2 and a voltage change at the other end of the capacitive element C2. It depends on the capacity.
  • the gains Gain1 and Gain2 are set so that the voltage V6 is higher than the voltage VH. In this manner, when the source voltage of the transistor Tr2 increases, the gate-source voltage Vgs of the transistor Tr2 becomes lower than the threshold voltage Vth2 of the transistor Tr2, and the transistor Tr2 is turned off.
  • the voltage of the signal SSR1 changes from the high level voltage VH to the low level voltage VL (FIG. 8A). Accordingly, the transistor Tr2 is turned on, and the source voltage (signal St) of the transistor Tr2 is changed to the voltage VL (FIG. 8G).
  • the power supply signal DS falls in accordance with the change in the voltage of the signal St (FIG. 8H). Specifically, in the drive circuit 34, the transistor Tr4 is turned off, the transistor Tr5 is turned on transiently, and the power supply signal DS changes to the voltage Vini.
  • Vth5 is a threshold voltage of the transistor Tr5. That is, the voltage Vini is higher than the source voltage (voltage VL) of the transistor Tr5 by the threshold voltage Vth5 of the transistor Tr5. That is, the gate-source voltage Vgs of the transistor Tr5 is equal to the threshold voltage Vth5 of the transistor Tr5.
  • the voltage of the signal SSR2 changes from the high level voltage VH to the low level voltage VL (FIG. 8B). Accordingly, the transistor Tr1 is turned on, and the source voltage (node voltage VN1) of the transistor Tr1 is changed to the voltage VL (FIG. 8E).
  • the voltage of the signal SSR3 changes from the high level voltage VH to the low level voltage VL (FIG. 8C). Thereby, this voltage change is transmitted to the source (node voltage VN1) of the transistor Tr1 through the capacitor C1, so that the node voltage VN1 changes transiently from the voltage VL (FIG. 8E). However, since the transistor Tr1 is in the ON state, the node voltage VN1 converges again to the voltage VL.
  • the transistor Tr3 is turned off, and the source of the transistor Tr3 becomes high impedance.
  • the source voltage (node voltage VN2) of the transistor Tr3 is maintained (FIG. 8F).
  • the voltage of the signal SSR4 changes from the high level voltage VH to the low level voltage VL (FIG. 8D).
  • the source voltage (node voltage VN2) of the transistor Tr3 is maintained (FIG. 8F), and the source voltage (signal St) of the transistor Tr2 is also maintained (FIG. 8). 8 (G)).
  • the charge pump circuit 32 and the drive circuit 34 continue to generate the power signal DS by repeating the above operation.
  • the display device 1 since the display device 1 is provided with the charge pump circuit 32, the voltage of the signal St can be boosted to the voltage V6 higher than the high level voltage VH, and the drive circuit 34 has a large amplitude.
  • a signal St can be supplied.
  • the drive circuit 34 when the drive circuit 34 outputs the voltage Vccp as the power supply signal DS, the on-resistance of the transistor Tr4 can be sufficiently lowered even when the voltage Vccp is high. That is, the drive circuit 34 can generate the power signal DS having a large amplitude.
  • the charge pump 32 and the drive circuit 34 can generate the power signal DS having a large amplitude based on the scan signal Ss having a small amplitude in this way, for example, the power voltage of the shift register 31 or the like is lowered. Therefore, the power consumption of the display device 1 can be reduced.
  • the second pulse signal makes the first polarity transition after the first pulse signal makes the first polarity transition
  • the third pulse signal has the first polarity transition after the second pulse signal has made the first polarity transition

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Control Of El Displays (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

 画素を駆動する際、大きい振幅の駆動信号を生成することを目的とし、ゲートと、ドレインと、ソースとを有する第1のトランジスタ(Tr2)と、第1の端子と、第1のトランジスタのドレインまたはソースに接続された第2の端子とを有する第1の容量素子(C2)と、第2の端子の電圧に基づいて駆動される単位画素とを備えた、表示装置、表示駆動装置、駆動方法、あるいは電子機器、である。

Description

表示装置、表示駆動装置、駆動方法、および電子機器
 本開示は、電流駆動型の表示素子を有する表示装置、そのような表示装置に用いられる表示駆動装置および駆動方法、ならびにそのような表示装置を備えた電子機器に関する。
 近年、画像表示を行う表示装置の分野では、発光素子として、流れる電流値に応じて発光輝度が変化する電流駆動型の光学素子、例えば有機EL(Electro Luminescence)素子を用いた表示装置(有機EL表示装置)が開発され、商品化が進められている。発光素子は、液晶素子などと異なり自発光素子であり、光源(バックライト)が必要ない。そのため、有機EL表示装置は、光源を必要とする液晶表示装置と比べて画像の視認性が高く、消費電力が低く、かつ素子の応答速度が速いなどの特徴を有する。
 表示装置では、マトリックス状に配置された画素に対して駆動回路が制御を行う。例えば、特許文献1には、シフトレジスタと、そのシフトレジスタの各出力端子に接続されたインバータとを有するドライブスキャナとを備えた表示パネルが開示されている。
特開2008―58853号公報
 ところで、画素を駆動する際、その駆動信号は、しばしば大きい振幅であることが要求される。よって、駆動回路は、そのような大きい振幅の駆動信号を生成することが望まれる。
 したがって、大きい振幅の駆動信号を生成することができる表示装置、表示駆動装置、駆動方法、および電子機器を提供することが望ましい。
 本開示の一実施形態における表示装置は、第1のトランジスタと、第1の容量素子と、単位画素とを備えている。第1のトランジスタは、ゲートと、ドレインと、ソースとを有するものである。第1の容量素子は、第1の端子と、第1のトランジスタのドレインまたはソースに接続された第2の端子とを有するものである。単位画素は、第2の端子の電圧に基づいて駆動されるものである。
 本開示の一実施形態における表示駆動装置は、第1のトランジスタと、第1の容量素子とを備えている。第1のトランジスタは、ゲートと、ドレインと、ソースとを有するものである。第1の容量素子は、第1の端子と、第1のトランジスタのドレインまたはソースに接続された第2の端子とを有するものである。
 本開示の一実施形態における駆動方法は、第1のトランジスタのドレインまたはソースにパルス信号を印加し、第1の端子と、第1のトランジスタのドレインおよびソースのうちのパルス信号が印加された端子とは異なる端子に接続された第2の端子とを有する第1の容量素子の、第1の端子に他のパルス信号を印加し、第2の端子の電圧に基づいて単位画素を駆動するものである。
 本開示の一実施形態における電子機器は、上記表示装置を備えたものであり、例えば、テレビジョン装置、デジタルカメラ、パーソナルコンピュータ、ビデオカメラあるいは携帯電話等の携帯端末装置などが該当する。
 本開示の一実施形態における表示装置、表示駆動装置、駆動方法、および電子機器では、第1のトランジスタのドレインまたはソースに、第1の容量素子の第2の端子が接続され、その第2の端子の電圧に基づいて単位画素が駆動される。その際、第1のトランジスタのドレインおよびソースのうちの第1の容量素子が接続された端子とは異なる端子にパルス信号が印加されるとともに、第1の容量素子の第1の端子に他のパルス信号が印加される。
 本開示の一実施形態における表示装置、表示駆動装置、駆動方法、および電子機器によれば、第1のトランジスタと、第1のトランジスタのドレインまたはソースに接続された第1の容量素子とを設けるようにしたので、大きい振幅の駆動信号を生成することができる。
本開示の実施の形態に係る表示装置の一構成例を表すブロック図である。 図1に示したサブ画素の一構成例を表す回路図である。 図1に示した電源線駆動部の一構成例を表すブロック図である。 図3に示したチャージポンプ回路および駆動回路の一構成例を表す回路図である。 表示装置における電源線駆動部の配置を表す説明図である。 図1に示した駆動部の一動作例を表すタイミング波形図である。 図1に示したサブ画素の一動作例を表すタイミング波形図である。 図4に示したチャージポンプ回路および駆動回路の一動作例を表すタイミング波形図である。 変形例に係るチャージポンプ回路の一構成例を表す回路図である。 他の変形例に係る電源線駆動部の一構成例を表すブロック図である。 図10に示したチャージポンプ回路の一構成例を表す回路図である。 実施の形態に係る表示装置が適用されたテレビジョン装置の外観構成を表す斜視図である。 他の変形例に係るサブ画素の一構成例を表す回路図である。
 以下、本開示の実施の形態について、図面を参照して詳細に説明する。なお、説明は以下の順序で行う。
1.実施の形態
2.適用例
<1.実施の形態>
[構成例]
 図1は、実施の形態に係る表示装置の一構成例を表すものである。表示装置1は、有機EL素子を用いた、アクティブマトリックス方式の表示装置である。なお、本開示の実施の形態に係る駆動装置、駆動方法は、本実施の形態により具現化されるので、併せて説明する。この表示装置1は、表示部10および駆動部20を備えている。
 表示部10は、複数の画素Pixがマトリックス状に配置されたものである。各画素Pixは、赤色、緑色、青色のサブ画素11を有している。表示部10は、行方向に延伸する複数の走査線WSLおよび複数の電源線PLと、列方向に延伸する複数のデータ線DTLとを有している。これらの走査線WSL、電源線PL、およびデータ線DTLの一端は、駆動部20に接続されている。上記した各サブ画素11は、走査線WSLとデータ線DTLとの交差部に配置されている。
 図2は、サブ画素11の回路構成の一例を表すものである。サブ画素11は、書込トランジスタWSTrと、駆動トランジスタDRTrと、有機EL素子OLEDと、容量素子Cs,Csubとを備えている。すなわち、この例では、サブ画素11は、2つのトランジスタ(書込トランジスタWSTr、駆動トランジスタDRTr)および2つの容量素子Cs,Csubを用いて構成される、いわゆる「2Tr2C」の構成を有するものである。
 書込トランジスタWSTrおよび駆動トランジスタDRTrは、例えば、NチャネルMOS(Metal Oxide Semiconductor)型のTFT(Thin Film Transistor;薄膜トランジスタ)により構成されるものである。書込トランジスタWSTrは、ゲートが走査線WSLに接続され、ソースがデータ線DTLに接続され、ドレインが駆動トランジスタDRTrのゲートおよび容量素子Csの一端に接続されている。駆動トランジスタDRTrは、ゲートが書込トランジスタWSTrのドレインおよび容量素子Csの一端に接続され、ドレインが電源線PLに接続され、ソースが容量素子Csの他端および有機EL素子OLEDのアノード等に接続されている。
 容量素子Csは、一端が駆動トランジスタDRTrのゲート等に接続され、他端は駆動トランジスタDRTrのソース等に接続されている。容量素子Csubは、一端が有機EL素子OLEDのアノードに接続され、他端が有機EL素子OLEDのカソードに接続されている。すなわち、この例では、容量素子Csubは、有機EL素子OLEDと並列に接続されている。有機EL素子OLEDは、各サブ画素11に対応する色(赤色、緑色、青色)の光を射出する発光素子であり、アノードが駆動トランジスタDRTrのソース等に接続され、カソードには、駆動部20によりカソード電圧Vcathが供給されている。
 駆動部20は、外部から供給される映像信号Sdispおよび同期信号Ssyncに基づいて、表示部10を駆動するものである。この駆動部20は、図1に示したように、映像信号処理部21と、タイミング生成部22と、走査線駆動部23と、電源線駆動部26と、データ線駆動部27とを備えている。
 映像信号処理部21は、外部から供給される映像信号Sdispに対して所定の信号処理を行い、映像信号Sdisp2を生成するものである。この所定の信号処理としては、例えば、ガンマ補正や、オーバードライブ補正などが挙げられる。
 タイミング生成部22は、外部から供給される同期信号Ssyncに基づいて、走査線駆動部23、電源線駆動部26、およびデータ線駆動部27に対してそれぞれ制御信号を供給し、これらがお互いに同期して動作するように制御する回路である。
 走査線駆動部23は、タイミング生成部22から供給された制御信号に従って、複数の走査線WSLに対して走査信号WSを順次印加することにより、行ごとにサブ画素11を順次選択するものである。
 電源線駆動部26は、タイミング生成部22から供給された制御信号に従って、複数の電源線PLに対して電源信号DSを順次印加することにより、行ごとにサブ画素11の発光動作および消光動作の制御を行うものである。電源信号DSは、電圧Vccpと電圧Viniとの間で遷移するものである。後述するように、電圧Viniは、サブ画素11を初期化するための電圧であり、電圧Vccpは、駆動トランジスタDRTrに電流Idsを流して有機EL素子OLEDを発光させるための電圧である。
 図3は、電源線駆動部26の一構成例を表すものである。電源線駆動部26は、シフトレジスタ31と、複数のチャージポンプ回路32と、電圧生成部33と、複数の駆動回路34とを有している。
 シフトレジスタ31は、タイミング生成部22から供給される制御信号(図示せず)に基づいて、駆動対象となる画素ラインを選択するための複数の走査信号Ss(…,Ss(n-1),Ss(n),Ss(n+1),Ss(n+2),Ss(n+3),…)を生成するものである。各走査信号Ssは、4つのチャーチポンプ回路32に供給される。具体的には、例えば、走査信号Ss(n+1)は、4つのチャージポンプ回路32(k-1),32(k),32(k+1),32(k+2)に供給されるようになっている。各走査信号Ssは、高レベル電圧VHと低レベル電圧VLとの間で遷移する信号である。高レベル電圧VHは、電圧Vccpよりも低い電圧であり、低レベル電圧VLは、電圧Viniと同程度の電圧である。
 各チャージポンプ回路32は、4つの走査信号Ssに基づいて、これらの走査信号Ssの振幅よりも大きい振幅の信号Stを生成するものである。具体的には、例えば、チャージポンプ回路32(k)は、4つの走査信号Ss(n-1),Ss(n),Ss(n+1),Ss(n+2)に基づいて信号St(k)を生成する。各チャージポンプ回路32は、4つの走査信号Ssが入力される入力端子SR1~SR4と、信号Stを出力する出力端子Outを有する。例えば、チャージポンプ回路32(k)の入力端子SR1には走査信号Ss(n-1)が入力され、入力端子SR2には走査信号Ss(n)が入力され、入力端子SR3には走査信号Ss(n+1)が入力され、入力端子SR4には走査信号Ss(n+2)が入力される。各チャージポンプ回路32は、表示部10における各画素ラインに対応して設けられている。具体的には、例えば、k番目のチャージポンプ回路32(k)は、kライン目の画素ラインに対応して設けられている。
 電圧生成部33は、電圧Vccpを生成し、この電圧Vccpを各駆動回路34に供給するものである。
 各駆動回路34は、電圧生成部33から供給された電圧Vccp、チャージポンプ回路32から供給された信号Stに基づいて、電源信号DSを生成するものである。各駆動回路34は、電圧Vccpが入力される入力端子InHと、信号Stが入力される入力端子Inと、電源信号DSを出力する出力端子Outを有する。各駆動回路34は、表示部10における各画素ラインに対応して設けられている。具体的には、例えば、k番目の駆動回路34(k)は、電圧生成部33から供給された電圧Vccp、およびチャージポンプ回路32(k)から供給された信号St(k)に基づいて、k番目の電源信号DS(k)を生成する。そして、駆動回路34(k)は、その電源信号DS(k)を、kライン目の画素ラインに係る電源線PL(k)に印加するようになっている。
 図4は、チャージポンプ回路32および駆動回路34の一構成例を表すものである。チャージポンプ回路32は、トランジスタTr1~Tr3と、容量素子C1,C2とを有している。駆動回路34は、トランジスタTr4,Tr5を有している。トランジスタTr1~Tr5は、例えば、NチャネルMOS型のTFTにより構成されるものである。
 チャージポンプ回路32において、トランジスタTr1のゲートには、直流の電圧VG1が供給され、ドレインは入力端子SR2と接続され、ソースは容量素子C1の一端およびトランジスタTr2のゲートに接続されている。この電圧VG1は、低レベル電圧VLよりも高く、かつ高レベル電圧VHよりも低いものである(VH>VG1>VL)。トランジスタTr2のゲートは、トランジスタTr1のソースおよび容量素子C1の一端に接続され、ドレインは入力端子SR1に接続され、ソースは容量素子C2の一端に接続されるとともに出力端子Outに接続されている。トランジスタTr3のゲートは、容量素子C1の他端に接続されるとともに入力端子SR3に接続され、ドレインは入力端子SR4に接続され、ソースは容量素子C2の他端に接続されている。なお、これらのトランジスタTr1~Tr3は、ドレインとソースとが入れ替わっていてもよい。容量素子C1の一端は、トランジスタTr1のソースおよびトランジスタTr2のゲートに接続され、他端はトランジスタTr3のゲートに接続されるとともに入力端子SR3に接続されている。容量素子C2の一端は、トランジスタTr2のソースに接続されるとともに出力端子Outに接続され、他端はトランジスタTr3のソースに接続されている。
 駆動回路34において、トランジスタTr4のゲートは、トランジスタTr5のソースに接続されるとともに入力端子Inに接続され、ドレインは入力端子InHに接続され、ソースはトランジスタTr5のゲートおよびドレインに接続されるとともに出力端子Outに接続されている。トランジスタTr5のゲートは、トランジスタTr5のドレインおよびトランジスタTr4のソースに接続されるとともに出力端子Outに接続され、ソースはトランジスタTr4のゲートに接続されるとともに入力端子Inに接続されている。
 この構成により、チャージポンプ回路32および駆動回路34は、後述するように、走査信号Ssの振幅(VH-VL)よりも大きい振幅(Vccp-Vini)の電源信号DSを生成するようになっている。
 図5は、表示装置1における各ブロックの配置を表すものである。この例では、基板30のうちの、表示部10が形成された領域の左側の額縁領域に走査線駆動部23が配置され、右側の額縁領域に電源線駆動部26が配置されている。すなわち、電源線駆動部26は、表示部10や走査線駆動部23と同様に、基板30上に形成されている。
 図1において、データ線駆動部27は、映像信号処理部21から供給された映像信号Sdisp2およびタイミング生成部22から供給された制御信号に従って、各サブ画素11の発光輝度を指示する画素電圧Vsig、および後述するVth補正を行うための電圧Vofsを含む信号Sigを生成し、各データ線DTLに印加するものである。
 この構成により、駆動部20は、後述するように、サブ画素11に対して、駆動トランジスタDRTrの素子ばらつきが画質に与える影響を抑えるための補正(Vth補正)を行う。その後に、サブ画素11に対して画素電圧Vsigの書込みを行うとともに、上述したVth補正とは異なるμ(移動度)補正を行う。そして、その後に、サブ画素11の有機EL素子OLEDが、書き込まれた画素電圧Vsigに応じた輝度で発光するようになっている。
 ここで、トランジスタTr2は、本開示における「第1のトランジスタ」の一具体例に対応する。トランジスタTr1は、本開示における「第2のトランジスタ」の一具体例に対応する。トランジスタTr3は、本開示における「第3のトランジスタ」の一具体例に対応する。容量素子C2は、本開示における「第1の容量素子」の一具体例に対応する。容量素子C1は、本開示における「第2の容量素子」の一具体例に対応する。トランジスタTr4は、本開示における「スイッチ」の一具体例に対応する。トランジスタTr5は、本開示における「非線形素子」の一具体例に対応する。サブ画素11は、本開示における「単位画素」の一具体例に対応する。
[動作および作用]
 続いて、本実施の形態の表示装置1の動作および作用について説明する。
(全体動作概要)
 まず、図1を参照して、表示装置1の全体動作概要を説明する。映像信号処理部21は、外部から供給される映像信号Sdispに対して所定の信号処理を行い、映像信号Sdisp2を生成する。タイミング生成部22は、外部から供給される同期信号Ssyncに基づいて、走査線駆動部23、電源線駆動部26およびデータ線駆動部27に対してそれぞれ制御信号を供給し、これらがお互いに同期して動作するように制御する。走査線駆動部23は、タイミング生成部22から供給された制御信号に従って、複数の走査線WSLに対して走査信号WSを順次印加することにより、行ごとにサブ画素11を順次選択する。電源線駆動部26は、タイミング生成部22から供給された制御信号に従って、複数の電源線PLに対して電源信号DSを順次印加することにより、行ごとにサブ画素11の発光動作および消光動作の制御を行う。データ線駆動部27は、映像信号処理部21から供給された映像信号Sdisp2およびタイミング生成部22から供給された制御信号に従って、各サブ画素11の発光輝度を指示する画素電圧Vsig、およびVth補正を行うための電圧Vofsを含む信号Sigを生成し、各データ線DTLに印加する。表示部10は、駆動部20から供給された走査信号WS、電源信号DS、および信号Sigに基づいて表示を行う。
(詳細動作)
 図6は、駆動部20の動作のタイミング図を表すものであり、(A)は走査信号WSの波形を示し、(B)は電源信号DSの波形を示し、(C)は信号Sigの波形を示す。図6(A)において、走査信号WS(k)は、kライン目のサブ画素11を駆動する走査信号WSであり、同様に、走査信号WS(k+1),WS(k+2),WS(K+3)は、それぞれ、(k+1)ライン目、(k+2)ライン目、(k+3)ライン目のサブ画素11を駆動する走査信号WSである。電源信号DS(図6(B))についても同様である。
 駆動部20の走査線駆動部23は、走査線WSLに対して、2つのパルスPP1,PP2を有する走査信号WSを順次印加する(図6(A))。その際、走査線駆動部23は、1水平期間(1H)において、1つの走査線WSLに対して、2つのパルスPP1,PP2を印加する。電源線駆動部26は、電源線PLに対して、パルスPP1の開始タイミング(例えばタイミングt1)を含む所定期間(例えばタイミングt0~t2の期間)だけ電圧Viniになり、その他の期間は電圧Vccpになる電源信号DSを印加する(図6(B))。データ線駆動部27は、データ線DTLに対して、パルスPP2を含む所定期間(例えばタイミングt4~t7の期間)に画素電圧Vsigを印加し、その他の期間に電圧Vofsを印加する(図6(C))。
 このようにして、駆動部20は、1水平期間(例えばタイミングt1~t7)において、kライン目のサブ画素11を駆動し、次の水平期間(例えばタイミングt7~t8)において、(k+1)ライン目のサブ画素11を駆動する。そして、駆動部20は、1フレーム期間において、表示部10の全てのサブ画素11を駆動する。
 図7は、タイミングt0~t7の期間におけるサブ画素11の動作のタイミング図を表すものであり、(A)は走査信号WSの波形を示し、(B)は電源信号DSの波形を示し、(C)は信号Sigの波形を示し、(D)は駆動トランジスタDRTrのゲート電圧Vgの波形を示し、(E)は駆動トランジスタDRTrのソース電圧Vsの波形を示す。図7(B)~(E)では、同じ電圧軸を用いて各波形を示している。
 駆動部20は、1水平期間(1H)内において、サブ画素11の初期化を行い(初期化期間P1)、駆動トランジスタDRTrの素子ばらつきが画質に与える影響を抑えるためのVth補正を行い(Vth補正期間P2)、サブ画素11に対して画素電圧Vsigの書込みを行うとともに、μ補正を行う(書込・μ補正期間P3)。そして、その後に、サブ画素11の有機EL素子OLEDが、書き込まれた画素電圧Vsigに応じた輝度で発光する(発光期間P4)。以下に、その詳細を説明する。
 まず、電源線駆動部26は、初期化期間P1に先立つタイミングt0において、電源信号DSを電圧Vccpから電圧Viniに変化させる(図7(B))。これにより、駆動トランジスタDRTrがオン状態になり、駆動トランジスタDRTrのソース電圧Vsが、電圧Viniに設定される(図7(E))。
 次に、駆動部20は、タイミングt1~t2の期間(初期化期間P1)において、サブ画素11を初期化する。具体的には、タイミングt1において、データ線駆動部27が、信号Sigを電圧Vofsに設定し(図7(C))、走査線駆動部23が、走査信号WSの電圧を低レベルから高レベルに変化させる(図7(A))。これにより、書込トランジスタWSTrがオン状態になり、駆動トランジスタDRTrのゲート電圧Vgが電圧Vofsに設定される(図7(D))。このようにして、サブ画素11は、駆動トランジスタDRTrのゲート・ソース間電圧Vgs(=Vofs-Vini)が、駆動トランジスタDRTrの閾値電圧Vthよりも大きい電圧に設定されることにより、初期化される。
 次に、駆動部20は、タイミングt2~t3の期間(Vth補正期間P2)において、Vth補正を行う。具体的には、電源線駆動部26が、タイミングt2において、電源信号DSを電圧Viniから電圧Vccpに変化させる(図7(B))。これにより、駆動トランジスタDRTrは飽和領域で動作するようになり、ドレインからソースに電流Idsが流れる。この電流Idsにより、ソース電圧Vsが上昇する(図7(E))。その際、ソース電圧Vsは有機EL素子OLEDのカソードの電圧Vcathよりも低いため、有機EL素子OLEDは逆バイアス状態を維持し、有機EL素子OLEDには電流は流れない。このようにソース電圧Vsが上昇することにより、ゲート・ソース間電圧Vgsが低下するため、電流Idsは低下する。この負帰還動作により、電流Idsは“0”(ゼロ)に向かって収束していく。言い換えれば、駆動トランジスタDRTrのゲート・ソース間電圧Vgsは、駆動トランジスタDRTrの閾値電圧Vthと等しくなる(Vgs=Vth)ように収束していく。
 次に、走査線駆動部23は、タイミングt3において、走査信号WSの電圧を高レベルから低レベルに変化させる(図7(A))。これにより、書込トランジスタWSTrはオフ状態になる。そして、データ線駆動部27は、タイミングt4において、信号Sigを画素電圧Vsigに設定する(図7(C))。
 次に、駆動部20は、タイミングt5~t6の期間(書込・μ補正期間P3)において、サブ画素11に対して画素電圧Vsigの書込みを行うとともにμ補正を行う。具体的には、走査線駆動部23が、タイミングt5において、走査信号WSの電圧を低レベルから高レベルに変化させる(図7(A))。これにより、書込トランジスタWSTrはオン状態になり、駆動トランジスタDRTrのゲート電圧Vgが、電圧Vofsから画素電圧Vsigに上昇する(図7(D))。このとき、駆動トランジスタDRTrのゲート・ソース間電圧Vgsが閾値電圧Vthより大きくなり(Vgs>Vth)、ドレインからソースへ電流Idsが流れるため、駆動トランジスタDRTrのソース電圧Vsが上昇する(図7(E))。このような負帰還動作により、駆動トランジスタDRTrの素子ばらつきの影響が抑えられ(μ(移動度)補正)、駆動トランジスタDRTrのゲート・ソース間電圧Vgsは、画素電圧Vsigに応じた電圧Vemiに設定される。
 次に、駆動部20は、タイミングt6以降の期間(発光期間P4)において、サブ画素11を発光させる。具体的には、タイミングt6において、走査線駆動部23は、走査信号WSの電圧を高レベルから低レベルに変化させる(図7(A))。これにより、書込トランジスタWSTrがオフ状態になり、駆動トランジスタDRTrのゲートがフローティングとなるため、これ以後、容量素子Csの端子間電圧、すなわち、駆動トランジスタDRTrのゲート・ソース間電圧Vgsは維持される。そして、駆動トランジスタDRTrに電流Idsが流れるにつれ、駆動トランジスタDRTrのソース電圧Vsが上昇し(図7(E))、これに伴って駆動トランジスタDRTrのゲート電圧Vgも上昇する(図7(D))。そして、このようなブートストラップ動作により、駆動トランジスタDRTrのソース電圧Vsが、有機EL素子OLEDの閾値電圧Velと電圧Vcathの和(Vel+Vcath)よりも大きくなると、有機EL素子OLEDのアノード・カソード間に電流が流れ、有機EL素子OLEDが発光する。すなわち、有機EL素子OLEDの素子ばらつきに応じてソース電圧Vsが上昇し、有機EL素子OLEDが発光する。
 その後、表示装置1では、所定の期間(1フレーム期間)が経過したのち、発光期間P4から初期化期間P1に移行する。駆動部20は、この一連の動作を繰り返すように駆動する。
 このように、表示装置1では、Vth補正およびμ補正の両方を行うようにしたので、駆動トランジスタDRTrの素子ばらつきに起因する画質の低下を抑えることができる。また、表示装置1では、発光期間P4において、有機EL素子OLEDの素子ばらつきに応じてソース電圧Vsが上昇するようにしたので、有機EL素子OLEDの素子ばらつきに起因する画質の低下を抑えることができる。
(チャージポンプ回路32および駆動回路34の動作)
 次に、チャージポンプ回路32および駆動回路34の詳細動作について説明する。チャージポンプ回路32は、シフトレジスタ31から供給された4つの走査信号Ssに基づいて、信号Stを生成する。そして、駆動回路34は、電圧生成部33から供給された電圧Vccp、およびチャージポンプ回路32から供給された信号Stに基づいて、電源信号DSを生成する。
 図8は、チャージポンプ回路32および駆動回路34の動作のタイミング図を表すものであり、(A)~(D)は、チャージポンプ回路32の入力端子SR1~SR4に印加される信号SSR1~SSR4の波形をそれぞれ示し、(E)はトランジスタTr1のソースにおけるノード電圧VN1の波形を示し、(F)はトランジスタTr3のソースにおけるノード電圧VN2の波形を示し、(G)は信号Stの波形を示し、(H)は電源信号DSの波形を示す。
 シフトレジスタ31は、チャージポンプ回路32に対して、互いに位相がずれた信号SSR1~SSR4を供給する。チャージポンプ回路32は、信号SSR1~SSR4に基づいて、信号SSR1~SSR4の振幅よりも大きい振幅の信号Stを生成する。駆動回路34は、信号Stおよび電圧Vccpに基づいて、電源信号DSを生成する。以下に、その詳細を説明する。
 まず、タイミングt11において、信号SSR1の電圧が低レベル電圧VLから高レベル電圧VHに変化する(図8(A))。このとき、トランジスタTr2のゲート電圧(ノード電圧VN1)およびソース電圧(信号St)はともに電圧VLである(図8(E),(G))。つまり、トランジスタTr2のゲート・ソース間電圧Vgsは0Vであり、トランジスタTr2はオフ状態になっている。
 次に、タイミングt12において、信号SSR2の電圧が低レベル電圧VLから高レベル電圧VHに変化する(図8(B))。これにより、トランジスタTr1が過渡的にオン状態になり、トランジスタTr1のソース電圧(ノード電圧VN1)が電圧V1に変化する(図8(E))。この電圧V1は次式で表される。
V1 = VG1-Vth1 ・・・(1)
ここで、Vth1は、トランジスタTr1の閾値電圧である。すなわち、電圧V1は、トランジスタTr1のゲート電圧(電圧VG1)よりも、トランジスタTr1の閾値電圧Vth1だけ低い電圧である。つまり、トランジスタTr1のゲート・ソース間電圧Vgsは、トランジスタTr1の閾値電圧Vth1と等しくなる。
 さらに、このノード電圧VN1の変化に応じて、トランジスタTr2が過渡的にオン状態になり、トランジスタTr2のソース電圧(信号St)が電圧V2に変化する(図8(G))。この電圧V2は次式で表される。
V2 = V1-Vth2
 = VG1-Vth1-Vth2 ・・・(2)
ここで、Vth2は、トランジスタTr2の閾値電圧である。すなわち、電圧V2は、トランジスタTr2のゲート電圧(電圧V1)よりも、トランジスタTr2の閾値電圧Vth2だけ低い電圧である。つまり、トランジスタTr2のゲート・ソース間電圧Vgsは、トランジスタTr2の閾値電圧Vth2と等しくなる。
 このように、信号Stの電圧レベルが低いため、駆動回路34では、トランジスタTr4,Tr5はオフ状態を維持する。よって、電源信号DSの電圧は維持される(図8(H))。
 次に、タイミングt13において、信号SSR3の電圧が低レベル電圧VLから高レベル電圧VHに変化する(図8(C))。これにより、この電圧変化が容量素子C1を介してトランジスタTr1のソースに伝わり、トランジスタTr1のソース電圧(ノード電圧VN1)が電圧V3に変化する(図8(E))。この電圧V3は次式で表される。
 V3 = V1+(VH-VL)×Gain1
    = VG1-Vth1+(VH-VL)×Gain1 ・・・(3)
ここで、Gain1は、容量素子C1の一端における電圧変化と、容量素子C1の他端における電圧変化との比を表すゲインであり、容量素子C1の容量値や、トランジスタTr1,Tr2の寄生容量などにより定まるものである。このようにして、トランジスタTr1のソース電圧が高くなることにより、トランジスタTr1のゲート・ソース間電圧Vgsは、トランジスタTr1の閾値電圧Vth1よりも低くなり、トランジスタTr1はオフ状態になる。
 さらに、このノード電圧VN1の変化に応じて、トランジスタTr2が過渡的にオン状態になり、トランジスタTr2のソース電圧(信号St)が電圧V4に変化する(図8(G))。この電圧V4は次式で表される。
V4 = V3-Vth2
 = VG1-Vth1-Vth2+(VH-VL)×Gain1 ・・・(4)
すなわち、電圧V4は、トランジスタTr2のゲート電圧(電圧V3)よりも、トランジスタTr2の閾値電圧Vth2だけ低い電圧である。つまり、トランジスタTr2のゲート・ソース間電圧Vgsは、トランジスタTr2の閾値電圧Vth2と等しくなる。
 このように、信号Stの電圧が高くなることにより、電源信号DSが立ち上がる(図8(H))。具体的には、駆動回路34において、トランジスタTr4がオン状態になるとともに、トランジスタTr5がオフ状態になり、電源信号DSが電圧Vccpに向かって立ち上がる。この例では、トランジスタTr4のオン抵抗が十分に低くなっていないため、電源信号DSの電圧は、電圧Vccpよりもやや低いレベルになる。
 また、信号SSR3の変化に応じて、チャージポンプ回路32では、トランジスタTr3がオン状態になり、トランジスタTr3のソース電圧(ノード電圧VN2)が電圧VLに変化する(図8(F))。
 次に、タイミングt14において、信号SSR4の電圧が低レベル電圧VLから高レベル電圧VHに変化する(図8(D))。これにより、トランジスタTr3が過渡的にオン状態になり、トランジスタTr3のソース電圧(ノード電圧VN2)が電圧V5に変化する(図8(F))。この電圧V5は次式で表される。
V5 = VH-Vth3 ・・・(5)
ここで、Vth3は、トランジスタTr3の閾値電圧である。すなわち、電圧V5は、トランジスタTr3のゲート電圧(電圧VH)よりも、トランジスタTr3の閾値電圧Vth3だけ低い電圧である。つまり、トランジスタTr3のゲート・ソース間電圧Vgsは、トランジスタTr3の閾値電圧Vth3と等しくなる。
 さらに、このノード電圧VN2の変化に応じて、この電圧変化が容量素子C2を介してトランジスタTr2のソースに伝わり、トランジスタTr2のソース電圧(信号St)が、電圧VHよりも高い電圧V6に変化する(図8(G))。この電圧V6は次式で表される。
 V6 = V4+(V5-VL)×Gain2
    = VG1-Vth1-Vth2+(VH-VL)×Gain1
             +(VH-VL-Vth3)×Gain2 ・・・(6)
ここで、Gain2は、容量素子C2の一端における電圧変化と、容量素子C2の他端における電圧変化との比を表すゲインであり、容量素子C2の容量値や、トランジスタTr2,Tr4,Tr5の寄生容量などにより定まるものである。この例では、ゲインGain1,Gain2は、電圧V6が電圧VHよりも高い電圧になるように設定されている。このようにして、トランジスタTr2のソース電圧が高くなることにより、トランジスタTr2のゲート・ソース間電圧Vgsは、トランジスタTr2の閾値電圧Vth2よりも低くなり、トランジスタTr2はオフ状態になる。
 このようにして、信号Stが電圧VHよりも高い電圧V6になることにより、駆動回路34のトランジスタTr4のオン抵抗が十分に低くなり、電源信号DSが電圧Vccpになる(図8(H))。
 次に、タイミングt15において、信号SSR1の電圧が高レベル電圧VHから低レベル電圧VLに変化する(図8(A))。これにより、トランジスタTr2がオン状態になり、トランジスタTr2のソース電圧(信号St)が電圧VLに変化する(図8(G))。
 さらに、この信号Stの電圧の変化に応じて、電源信号DSが立ち下がる(図8(H))。具体的には、駆動回路34において、トランジスタTr4がオフ状態になるとともに、トランジスタTr5が過渡的にオン状態になり、電源信号DSが電圧Viniに変化する。ここで電圧Viniは次式で表される。
 Vini = VL+Vth5 ・・・(7)
ここで、Vth5は、トランジスタTr5の閾値電圧である。すなわち、電圧Viniは、トランジスタTr5のソース電圧(電圧VL)よりも、トランジスタTr5の閾値電圧Vth5だけ高い電圧である。つまり、トランジスタTr5のゲート・ソース間電圧Vgsは、トランジスタTr5の閾値電圧Vth5と等しくなる。
 次に、タイミングt16において、信号SSR2の電圧が高レベル電圧VHから低レベル電圧VLに変化する(図8(B))。これにより、トランジスタTr1がオン状態になり、トランジスタTr1のソース電圧(ノード電圧VN1)が電圧VLに変化する(図8(E))。
 次に、タイミングt17において、信号SSR3の電圧が高レベル電圧VHから低レベル電圧VLに変化する(図8(C))。これにより、この電圧変化が容量素子C1を介してトランジスタTr1のソース(ノード電圧VN1)に伝わることにより、ノード電圧VN1が電圧VLから過渡的に変化する(図8(E))。しかしながら、トランジスタTr1はオン状態であるため、このノード電圧VN1は、再び電圧VLに収束する。
 また、信号SSR3の電圧が低レベル電圧VLに変化することにより、トランジスタTr3がオフ状態になり、トランジスタTr3のソースはハイインピーダンスになる。これにより、トランジスタTr3のソース電圧(ノード電圧VN2)が維持される(図8(F))。
 次に、タイミングt18において、信号SSR4の電圧が高レベル電圧VHから低レベル電圧VLに変化する(図8(D))。このとき、トランジスタTr3はオフ状態を維持するため、トランジスタTr3のソース電圧(ノード電圧VN2)が維持され(図8(F))、トランジスタTr2のソース電圧(信号St)もまた維持される(図8(G))。
 チャージポンプ回路32および駆動回路34は、以上の動作を繰り返すことにより、電源信号DSを引き続き生成する。
 このように、表示装置1では、チャージポンプ回路32を設けるようにしたので、信号Stの電圧を高レベル電圧VHよりも高い電圧V6にまで昇圧することができ、駆動回路34に、大きい振幅の信号Stを供給することができる。これにより、駆動回路34が電圧Vccpを電源信号DSとして出力する際、電圧Vccpが高い場合でもトランジスタTr4のオン抵抗を十分に低くすることができる。すなわち、駆動回路34は、大きい振幅の電源信号DSを生成することができる。
 また、このように、チャージポンプ32および駆動回路34が、振幅の小さい走査信号Ssに基づいて、振幅の大きい電源信号DSを生成することができるため、例えば、シフトレジスタ31などの電源電圧を下げることができ、表示装置1の消費電力を低減することができる。
 また、チャージポンプ回路32では、2つの容量素子C1,C2を設けるようにしたので、より大きい振幅の信号Stを生成することができる。すなわち、チャージポンプ回路32では、タイミングt13において、容量素子C1を用いて信号Stの電圧を昇圧し、タイミング14において、容量素子C2を用いて信号Stの電圧を再度昇圧するようにしたので、1回昇圧する場合に比べて、信号Stの電圧をより高いレベルにまで昇圧することができ、大きい振幅の信号Stを生成することができる。
 また、チャージポンプ回路32では、トランジスタTr3を設け、タイミングt17においてトランジスタTr3をオフ状態にしたので、タイミングt18における信号SSR4の立ち下がりに起因して信号Stが変化しないようにすることができる。これにより、電源信号DSの波形の乱れを低減することができるため、表示装置1の画質が低下するおそれを低減することができる。
[効果]
以上のように本実施の形態では、チャージポンプ回路を設けるようにしたので、大きい振幅の電源信号DSを生成することができる。
 本実施の形態では、チャージポンプ回路において2つの容量素子を設けるようにしたので、大きい振幅の信号Stを生成することができる。
 本実施の形態では、チャージポンプ回路においてトランジスタTr3を設けるようにしたので、電源信号の波形の乱れを低減することができ、表示装置の画質が低下するおそれを低減することができる。
[変形例1]
 上記実施の形態では、チャージポンプ回路32にトランジスタTr3を設けたが、これに限定されるものではなく、これに代えて、例えば、図9に示したように、トランジスタTr3を省いてもよい。このチャージポンプ回路32Bでは、容量素子C1の他端は、入力端子SR3に接続されている。また、容量素子C2の他端は、入力端子SR4に接続されている。この場合には、入力端子SR4に入力された信号SSR4の遷移に応じて、信号Stに過渡的変化し、電源信号DSもまた過渡的に変化するおそれがあるが、そのような変化が許容される場合には、この構成を適用することができる。
[変形例2]
 上記実施の形態では、チャージポンプ回路32は、4つの走査信号Ssに基づいて信号Stを生成したが、これに限定されるものではなく、これに代えて、3つ以下もしくは5つ以上の走査信号Ssに基づいて信号Stを生成してもよい。以下に、一例として、2つの走査信号Ssに基づいて信号Stを生成する場合について詳細に説明する
 図10は、本変形例に係る電源線駆動部26Cの一構成例を表すものである。電源線駆動部26Cは、シフトレジスタ31Cと、複数のチャージポンプ回路32Cとを有している。シフトレジスタ31Cは、上記実施の形態におけるシフトレジスタ31と同様の機能を有するものである。各チャージポンプ32Cは、2つの走査信号Ssに基づいて、これらの走査信号Ssの振幅よりも大きい振幅の信号Stを生成するものである。具体的には、例えば、チャージポンプ回路32C(k)は、2つの走査信号Ss(n),Ss(n+1)に基づいて信号St(k)を生成する。同様に、チャージポンプ回路32C(k+1)は、2つの走査信号Ss(n+1),Ss(n+2)に基づいて信号St(k+1)を生成する。各チャージポンプ回路32Cは、2つの走査信号Ssが入力される入力端子SR1,SR2と、信号Stを出力する出力端子Outを有する。例えば、チャージポンプ回路32C(k)の入力端子SR1には走査信号Ss(n)が入力され、入力端子SR2には走査信号Ss(n+1)が入力される。
 図11は、チャージポンプ回路32Cの一構成例を表すものである。チャージポンプ回路32Cは、トランジスタTr7,Tr8と、容量素子C4とを有している。トランジスタTr7,Tr8は、例えば、NチャネルMOS型のTFTにより構成されるものである。トランジスタTr7のゲートには、直流の電圧VG1が供給され、ドレインは入力端子SR1と接続され、ソースは容量素子C4の一端に接続されるとともに出力端子Outに接続されている。トランジスタTr8のゲートは、入力端子SR1に接続され、ドレインは入力端子SR2に接続され、ソースは容量素子C4の他端に接続されている。容量素子C4の一端は、トランジスタTr7のソースに接続されるとともに出力端子Outに接続され、他端はトランジスタTr8のソースに接続されている。
 本変形例に係るチャージポンプ回路32Cでも、上記実施の形態に係るチャージポンプ回路32と同様に、大きい振幅の信号Stを供給することができる。
[変形例3]
 上記実施の形態では、チャージポンプ回路32を用いて電源線駆動部26を構成したが、これに限定されるものではなく、これに代えて、もしくはこれに加え、チャージポンプ回路32を用いて走査線駆動部23を構成してもよい。
[変形例4]
 上記実施の形態では、本技術を、有機EL素子を用いた表示装置に適用したが、これに限定されるものではなく、これに代えて、例えば、液晶表示素子を用いた表示装置に適用してもよい。具体的には、例えば、画素電圧を書き込む画素を選択する回路(上記実施の形態における走査駆動部23に相当)に適用することができる。
<2.適用例>
 次に、上記実施の形態および変形例で説明した表示装置の適用例について説明する。
 図12は、上記実施の形態等の表示装置が適用されるテレビジョン装置の外観を表すものである。このテレビジョン装置は、例えば、フロントパネル511およびフィルターガラス512を含む映像表示画面部510を有しており、この映像表示画面部510は、上記実施の形態等に係る表示装置により構成されている。
 上記実施の形態等の表示装置は、このようなテレビジョン装置の他、デジタルカメラ、ノート型パーソナルコンピュータ、携帯電話等の携帯端末装置、携帯型ゲーム機、あるいはビデオカメラなどのあらゆる分野の電子機器に適用することが可能である。言い換えると、上記実施の形態等の表示装置は、映像を表示するあらゆる分野の電子機器に適用することが可能である。
 以上、実施の形態および変形例、ならびに電子機器への適用例を挙げて本技術を説明したが、本技術はこれらの実施の形態等には限定されず、種々の変形が可能である。
 例えば、上記の各実施の形態では、サブ画素11において容量素子Csubを設けたが、これに限定されるものではなく、これに代えて、例えば、図13に示したように、サブ画素11Cにおいて容量素子Csubを設けなくてもよい。すなわち、この例では、サブ画素11Cは、2つのトランジスタ(書込トランジスタWSTr、駆動トランジスタDRTr)および1つの容量素子Csを用いて構成される、いわゆる「2Tr1C」の構成を有するものである。
 なお、本技術は以下のような構成とすることができる。
(1)ゲートと、ドレインと、ソースとを有する第1のトランジスタと、
 第1の端子と、前記第1のトランジスタのドレインまたはソースに接続された第2の端子とを有する第1の容量素子と、
 前記第2の端子の電圧に基づいて駆動される単位画素と
 を備えた表示装置。
(2)ドレインおよびソースを有する第2のトランジスタと、
 第3の端子と、前記第2のトランジスタのドレインまたはソース、および前記第1のトランジスタのゲートに接続された第4の端子とを有する第2の容量素子と
 をさらに備えた
 前記(1)に記載の表示装置。
(3)ドレインと、ソースと、前記第3の端子に接続されたゲートとを有する第3のトランジスタをさらに備えた
 前記(2)に記載の表示装置。
(4)前記第1のトランジスタのドレインおよびソースのうちの、前記第2の端子に接続された端子とは異なる端子には第1のパルス信号が印加され、
 前記第2のトランジスタのドレインおよびソースのうちの、前記第4の端子に接続された端子とは異なる端子には第2のパルス信号が印加され、
 前記第3の端子には第3のパルス信号が印加され、
 前記第3のトランジスタのドレインおよびソースのうちの、前記第1の端子に接続された端子とは異なる端子には第4のパルス信号が印加される
 前記(3)に記載の表示装置。
(5)前記第2のパルス信号は、前記第1のパルス信号が第1の極性の遷移をした後に前記第1の極性の遷移をし、
 前記第3のパルス信号は、前記第2のパルス信号が前記第1の極性の遷移をした後に前記第1の極性の遷移をし、
 前記第4のパルス信号は、前記第3のパルス信号が前記第1の極性の遷移をした後に前記第1の極性の遷移をする
 前記(4)に記載の表示装置。
(6)前記第1のパルス信号、前記第2のパルス信号、前記第3のパルス信号、および前記第4のパルス信号を生成するシフトレジスタをさらに備えた
 前記(4)に記載の表示装置。
(7)前記第2の端子の電圧に基づいて、直流信号が印加される第5の端子と前記単位画素に接続された第6の端子との間をオンオフ制御するスイッチと、
 前記第2の端子と前記第6の端子との間に挿設された非線形素子と
 をさらに備えた
 前記(1)から(6)のいずれかに記載の表示装置。
(8)前記非線形性素子は、前記第2の端子に接続されたソースと、前記第6の端子に接続されたドレインおよびゲートとを有する第4のトランジスタである
 前記(7)に記載の表示装置。
(9)前記単位画素は、表示素子と、前記表示素子に駆動電流を供給する駆動トランジスタとを有し、
 前記スイッチは、前記駆動トランジスタに前記駆動電流を供給する
 前記(1)から(8)のいずれかに記載の表示装置。
(10)ゲートと、ドレインと、ソースとを有する第1のトランジスタと、
 第1の端子と、前記第1のトランジスタのドレインまたはソースに接続された第2の端子とを有する第1の容量素子と
 を備えた表示駆動装置。
(11)第1のトランジスタのドレインまたはソースにパルス信号を印加し、
 第1の端子と、前記第1のトランジスタのドレインおよびソースのうちの前記パルス信号が印加された端子とは異なる端子に接続された第2の端子とを有する第1の容量素子の、前記第1の端子に他のパルス信号を印加し、
 前記第2の端子の電圧に基づいて単位画素を駆動する
 駆動方法。
(12)表示装置と
 前記表示装置に対して動作制御を行う制御部と
 を備え、
 前記表示装置は、
 ゲートと、ドレインと、ソースとを有する第1のトランジスタと、
 第1の端子と、前記第1のトランジスタのドレインまたはソースに接続された第2の端子を有する第1の容量素子と、
 前記第2の端子の電圧に基づいて駆動される単位画素と
 を含む
 電子機器。
 本出願は、日本国特許庁において2013年1月15日に出願された日本特許出願番号2013-4542号を基礎として優先権を主張するものであり、この出願のすべての内容を参照によって本出願に援用する。
 当業者であれば、設計上の要件や他の要因に応じて、種々の修正、コンビネーション、サブコンビネーション、および変更を想到し得るが、それらは添付の請求の範囲やその均等物の範囲に含まれるものであることが理解される。

Claims (12)

  1.  ゲートと、ドレインと、ソースとを有する第1のトランジスタと、
     第1の端子と、前記第1のトランジスタのドレインまたはソースに接続された第2の端子とを有する第1の容量素子と、
     前記第2の端子の電圧に基づいて駆動される単位画素と
     を備えた表示装置。
  2.  ドレインおよびソースを有する第2のトランジスタと、
     第3の端子と、前記第2のトランジスタのドレインまたはソース、および前記第1のトランジスタのゲートに接続された第4の端子とを有する第2の容量素子と
     をさらに備えた
     請求項1に記載の表示装置。
  3.  ドレインと、ソースと、前記第3の端子に接続されたゲートとを有する第3のトランジスタをさらに備えた
     請求項2に記載の表示装置。
  4.  前記第1のトランジスタのドレインおよびソースのうちの、前記第2の端子に接続された端子とは異なる端子には第1のパルス信号が印加され、
     前記第2のトランジスタのドレインおよびソースのうちの、前記第4の端子に接続された端子とは異なる端子には第2のパルス信号が印加され、
     前記第3の端子には第3のパルス信号が印加され、
     前記第3のトランジスタのドレインおよびソースのうちの、前記第1の端子に接続された端子とは異なる端子には第4のパルス信号が印加される
     請求項3に記載の表示装置。
  5.  前記第2のパルス信号は、前記第1のパルス信号が第1の極性の遷移をした後に前記第1の極性の遷移をし、
     前記第3のパルス信号は、前記第2のパルス信号が前記第1の極性の遷移をした後に前記第1の極性の遷移をし、
     前記第4のパルス信号は、前記第3のパルス信号が前記第1の極性の遷移をした後に前記第1の極性の遷移をする
     請求項4に記載の表示装置。
  6.  前記第1のパルス信号、前記第2のパルス信号、前記第3のパルス信号、および前記第4のパルス信号を生成するシフトレジスタをさらに備えた
     請求項4に記載の表示装置。
  7.  前記第2の端子の電圧に基づいて、直流信号が印加される第5の端子と前記単位画素に接続された第6の端子との間をオンオフ制御するスイッチと、
     前記第2の端子と前記第6の端子との間に挿設された非線形素子と
     をさらに備えた
     請求項1に記載の表示装置。
  8.  前記非線形性素子は、前記第2の端子に接続されたソースと、前記第6の端子に接続されたドレインおよびゲートとを有する第4のトランジスタである
     請求項7に記載の表示装置。
  9.  前記単位画素は、表示素子と、前記表示素子に駆動電流を供給する駆動トランジスタとを有し、
     前記スイッチは、前記駆動トランジスタに前記駆動電流を供給する
     請求項1に記載の表示装置。
  10.  ゲートと、ドレインと、ソースとを有する第1のトランジスタと、
     第1の端子と、前記第1のトランジスタのドレインまたはソースに接続された第2の端子とを有する第1の容量素子と
     を備えた表示駆動装置。
  11.  第1のトランジスタのドレインまたはソースにパルス信号を印加し、
     第1の端子と、前記第1のトランジスタのドレインおよびソースのうちの前記パルス信号が印加された端子とは異なる端子に接続された第2の端子とを有する第1の容量素子の、前記第1の端子に他のパルス信号を印加し、
     前記第2の端子の電圧に基づいて単位画素を駆動する
     駆動方法。
  12.  表示装置と
     前記表示装置に対して動作制御を行う制御部と
     を備え、
     前記表示装置は、
     ゲートと、ドレインと、ソースとを有する第1のトランジスタと、
     第1の端子と、前記第1のトランジスタのドレインまたはソースに接続された第2の端子を有する第1の容量素子と、
     前記第2の端子の電圧に基づいて駆動される単位画素と
     を含む
     電子機器。
PCT/JP2013/083963 2013-01-15 2013-12-18 表示装置、表示駆動装置、駆動方法、および電子機器 WO2014112278A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201380065611.8A CN104919516B (zh) 2013-01-15 2013-12-18 显示装置、显示驱动装置、驱动方法以及电子设备
US14/651,031 US9633596B2 (en) 2013-01-15 2013-12-18 Display unit, display driving unit, driving method, and electronic apparatus
KR1020157014332A KR102045210B1 (ko) 2013-01-15 2013-12-18 표시 장치, 표시 구동 장치, 구동 방법, 및 전자 기기

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-004542 2013-01-15
JP2013004542A JP2014137398A (ja) 2013-01-15 2013-01-15 表示装置、表示駆動装置、駆動方法、および電子機器

Publications (1)

Publication Number Publication Date
WO2014112278A1 true WO2014112278A1 (ja) 2014-07-24

Family

ID=51209380

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/083963 WO2014112278A1 (ja) 2013-01-15 2013-12-18 表示装置、表示駆動装置、駆動方法、および電子機器

Country Status (6)

Country Link
US (1) US9633596B2 (ja)
JP (1) JP2014137398A (ja)
KR (1) KR102045210B1 (ja)
CN (1) CN104919516B (ja)
TW (1) TWI567715B (ja)
WO (1) WO2014112278A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110379393A (zh) * 2018-08-10 2019-10-25 友达光电股份有限公司 显示装置与栅极驱动器

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI674671B (zh) * 2013-05-28 2019-10-11 日商新力股份有限公司 顯示裝置及電子機器
JP6663289B2 (ja) * 2016-04-26 2020-03-11 株式会社Joled アクティブマトリクス表示装置
KR102542980B1 (ko) * 2017-11-21 2023-06-15 삼성디스플레이 주식회사 유기전계발광 표시장치 및 그의 구동방법

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009258275A (ja) * 2008-04-15 2009-11-05 Sony Corp 表示装置および出力バッファ回路
JP2010135050A (ja) * 2008-10-31 2010-06-17 Mitsubishi Electric Corp シフトレジスタ回路
JP2011139309A (ja) * 2009-12-28 2011-07-14 Sony Corp レベルシフト回路、信号駆動回路、表示装置および電子機器
JP2012257211A (ja) * 2011-05-13 2012-12-27 Semiconductor Energy Lab Co Ltd 半導体装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5903248A (en) * 1997-04-11 1999-05-11 Spatialight, Inc. Active matrix display having pixel driving circuits with integrated charge pumps
JP4641710B2 (ja) * 2003-06-18 2011-03-02 株式会社半導体エネルギー研究所 表示装置
JP4860143B2 (ja) * 2003-12-19 2012-01-25 株式会社半導体エネルギー研究所 表示装置
JP2005242323A (ja) * 2004-01-26 2005-09-08 Semiconductor Energy Lab Co Ltd 表示装置及びその駆動方法
US7268332B2 (en) * 2004-01-26 2007-09-11 Semiconductor Energy Laboratory Co., Ltd. Display device and driving method of the same
CN101460989B (zh) * 2006-08-30 2011-04-27 夏普株式会社 显示装置
JP2008058853A (ja) 2006-09-04 2008-03-13 Sony Corp 表示装置及びその製造方法
JP5180510B2 (ja) * 2007-04-16 2013-04-10 長野計器株式会社 Led表示装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009258275A (ja) * 2008-04-15 2009-11-05 Sony Corp 表示装置および出力バッファ回路
JP2010135050A (ja) * 2008-10-31 2010-06-17 Mitsubishi Electric Corp シフトレジスタ回路
JP2011139309A (ja) * 2009-12-28 2011-07-14 Sony Corp レベルシフト回路、信号駆動回路、表示装置および電子機器
JP2012257211A (ja) * 2011-05-13 2012-12-27 Semiconductor Energy Lab Co Ltd 半導体装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110379393A (zh) * 2018-08-10 2019-10-25 友达光电股份有限公司 显示装置与栅极驱动器

Also Published As

Publication number Publication date
TWI567715B (zh) 2017-01-21
KR102045210B1 (ko) 2019-11-15
CN104919516A (zh) 2015-09-16
TW201428719A (zh) 2014-07-16
US9633596B2 (en) 2017-04-25
KR20150107715A (ko) 2015-09-23
JP2014137398A (ja) 2014-07-28
CN104919516B (zh) 2017-03-08
US20150332626A1 (en) 2015-11-19

Similar Documents

Publication Publication Date Title
US11380246B2 (en) Electroluminescent display device having pixel driving
JP5939076B2 (ja) 表示装置、駆動回路、駆動方法、および電子機器
JP2007316454A (ja) 画像表示装置
WO2016072140A1 (ja) 表示装置、表示装置の駆動方法、及び、電子機器
CN113053281A (zh) 像素驱动电路以及包括像素驱动电路的电致发光显示装置
WO2013073466A1 (ja) 表示装置およびその駆動方法
JP5726325B2 (ja) 表示装置およびその駆動方法
JP2015232721A (ja) 有機発光ダイオード表示装置及びその駆動方法
JP2015049385A (ja) 駆動回路、表示装置、及び駆動方法
JP2018105917A (ja) 表示パネルおよび表示装置
KR101880330B1 (ko) 구동 회로, 구동 방법, 표시 장치 및 전자 기기
JP6281134B2 (ja) 表示装置、駆動装置、駆動方法、および電子機器
KR102045210B1 (ko) 표시 장치, 표시 구동 장치, 구동 방법, 및 전자 기기
JP2009128404A (ja) 表示装置、表示装置の駆動方法および電子機器
JP2011150270A (ja) 駆動回路および表示装置
JP2015060020A (ja) 表示装置及び電子機器
JP2007108379A (ja) 画素回路、表示装置および表示装置の駆動方法
KR20190136396A (ko) 표시 장치
JP2012243971A (ja) ブートストラップ回路、インバータ回路、走査回路、表示装置、及び、電子機器
JP4687044B2 (ja) 表示装置および表示装置の駆動方法
JP2018097236A (ja) 表示装置および駆動方法
US20140218270A1 (en) Display device, driving method of display device, and electronic apparatus
JP2006078920A (ja) 表示装置および表示装置の駆動方法
JP2010263274A (ja) レベルシフト回路、表示装置および電子機器
JP2010276734A (ja) 表示装置、表示装置の駆動方法および電子機器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13871365

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20157014332

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14651031

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13871365

Country of ref document: EP

Kind code of ref document: A1