WO2014111743A1 - Membrane conductrice de protons déposée par une technique de dépôt chimique en phase vapeur assisté par filament chaud - Google Patents

Membrane conductrice de protons déposée par une technique de dépôt chimique en phase vapeur assisté par filament chaud Download PDF

Info

Publication number
WO2014111743A1
WO2014111743A1 PCT/IB2013/000557 IB2013000557W WO2014111743A1 WO 2014111743 A1 WO2014111743 A1 WO 2014111743A1 IB 2013000557 W IB2013000557 W IB 2013000557W WO 2014111743 A1 WO2014111743 A1 WO 2014111743A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
layer
anyone
immersing
polymer
Prior art date
Application number
PCT/IB2013/000557
Other languages
English (en)
Inventor
Jessica Thery
Delphine Boutry
Philippe Capron
Fabio Palumbo
Riccardo D'agostino
Anna Maria Coclite
Original Assignee
Commissariat A L'energie Atomique Et Aux Energies Alternatives
Università Degli Studi Di Bari Aldo Moro
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat A L'energie Atomique Et Aux Energies Alternatives, Università Degli Studi Di Bari Aldo Moro filed Critical Commissariat A L'energie Atomique Et Aux Energies Alternatives
Priority to PCT/IB2013/000557 priority Critical patent/WO2014111743A1/fr
Priority to EP13718378.6A priority patent/EP2946430A1/fr
Publication of WO2014111743A1 publication Critical patent/WO2014111743A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1039Polymeric electrolyte materials halogenated, e.g. sulfonated polyvinylidene fluorides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1069Polymeric electrolyte materials characterised by the manufacturing processes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the invention relates to a method for manufacturing a proton conductive membrane.
  • proton conductive membranes are made by wet polymerization. They are integrated in proton exchange membranes via a hot pressing step or via spraying / jet techniques.
  • the membranes were synthesized by plasma polymerization of triflic acid and styrene or 1 -3 butadiene.
  • the membranes obtained present strong mechanical limitations for being integrated in proton exchange membranes for fuel cells. Indeed, the precursors used in this prior art documents have short and strongly cross-linked fluoro-carbonated chains, so poor mechanical properties of the obtained membranes being associated. Indeed, the membranes used for proton conductive materials must present very good mechanical properties.
  • FR2909013 proposes to manufacture proton conductive layers by plasma assisted chemical vapour deposition of water with a fluorocarbon precursor.
  • the layers which are thus deposited are functionalised by carboxylic acid functions.
  • Carboxylic acids have pKa much higher than sulfonic acids. Consequently, to obtain high proton conductivities with carboxylic functions, a high concentration of carboxylic functions is required. This is responsible for the low mechanical properties of the obtained layers.
  • FR2928227 proposes to manufacture a proton conductive membrane using a chemical deposition by plasma vaporization.
  • Two precursors are polymerized, each containing at least one polymerizable group or one ionic group.
  • the precursors are chosen among phosphonyl ester, acyl ester, sulfonyl ester, carbonyl ester and thionyl halide. Because the precursors are plasma vaporized, there is a huge risk to damage the chemical structure of the precursors during this vaporization step. Taking into account the very low stability of the persilylated compounds, these latters can hardly be considered as viable precursors for a commercial application.
  • the invention aims to palliate these drawbacks of the prior art proton conductive membranes.
  • the invention proposes a method for depositing a proton conductive membrane on the surface of a substrate comprising the following steps:
  • - A is P or S
  • - R is a Ci-C 25 , saturated or unsaturated, linear or branched, alkyl chain optionally comprising a cyclic or aromatic group, and
  • the substrate temperature is comprised between 5 and 40°C, preferably is 20°C.
  • the polymerisation initiator is a radical initiator, preferably ter-butyl peroxide, or ter-amyl peroxide.
  • the polymerisation initiator in step a) is a photo-polymerisation initiator, preferably benzophenone or 2,20-azobiz (2- methylpropane).
  • step b) preferably comprises the following steps: bl) immersing the substrate covered with layer of polymer obtained in step a) in a basic solution having a pH > 7, preferably > 10, and
  • step bl immersing the substrate covered with layer obtained in step bl) in an acid solution having a pH ⁇ 7, preferably ⁇ 5.
  • step b) can also comprise the following steps:
  • step b'O peeling off the layer obtained in step a) from the substrate, b'l) immersing the layer in a basic solution having a pH > 7, preferably > 10, and
  • step b'2 immersing the substrate covered with layer obtained in step bl) in an acid solution having a pH ⁇ 7, preferably ⁇ 5.
  • the basic solution in step bl) or b'l) comprises a polar aprotic solvent, preferably chosen among dimethyl sulfoxide, dimethylformamide, dimethylacetamide, N-methyl-2-pyrrolidone, or hexamethylphosphoramide (HMPA) and mixtures thereof.
  • a polar aprotic solvent preferably chosen among dimethyl sulfoxide, dimethylformamide, dimethylacetamide, N-methyl-2-pyrrolidone, or hexamethylphosphoramide (HMPA) and mixtures thereof.
  • the gaseous mixture in step a) further comprises at least one monomer having a formula different from formula I, preferably ethylene glycol dimethacrylate (EGDMA).
  • EGDMA ethylene glycol dimethacrylate
  • the temperature of the wire (filament) is between 260 and 360°C, preferably 280°C.
  • the surface of the substrate on which the proton conductive membrane is preferably made of ceramic, glass, silica or silicon.
  • the surface of the substrate on which the layer of polymer is deposited has a root mean square (RMS) higher than 5 nm, preferably higher than 500 nm, and preferably lower than 1 nm.
  • RMS root mean square
  • the RMS is the mean value of the average geometric difference, as compared to the average line of the roughness.
  • a particularly preferred monomer of formula I used in the process of the invention is perfluoro(4-methyl-3,6-dioxaoct-7ene) sulfonylfluoride and the polymerisation initiator preferably is a radical initiator, preferably tert-butyl peroxide (TBO).
  • TBO tert-butyl peroxide
  • the invention proposes to manufacture a proton conductive membrane by depositing sulfonyl and/or phosphonyl halide precursors via a hot wire CVD mechanism on the surface of a substrate.
  • the temperature of the substrate is preferably comprised between 5 and 40°C. More preferably, the temperature of the substrate is 20°C.
  • the method of the invention then comprises the chemical transformation of the sulfonyl/phosphonyl halides of the obtained layer into the corresponding sulfonic/phosphonic acid forms.
  • the deposition of the polymer layer is made by a hot wire (filament)
  • initiated CVD will be used.
  • the layer is deposited using at least two monomers having the following formula I:
  • - A is P or S
  • - R is a CrC 25 , saturated or unsaturated, linear or branched, alkyl chain optionally comprising a cyclic or aromatic group.
  • each monomer at least one vinyl or fluorovinyl group is present.
  • These precursor monomers are into a gaseous flow together with a polymerisation initiator.
  • the initiator can be a radical initiator, such as tert-butyl peroxide (TBPO), or ter-amyl peroxide or similar peroxide compounds.
  • TBPO tert-butyl peroxide
  • ter-amyl peroxide or similar peroxide compounds.
  • the radical initiator is chosen among those able to dissociate in radicals at temperature lower than 300 °C.
  • the radical initiator is TBPO.
  • the initiator may be a photo-initiator such as benzophenone and 2,20-azobiz (2-methylpropane).
  • the substrate on which the polymer layer is deposited will be illuminated by the suitable radiation.
  • a UV radiation will be used.
  • the sulfonyl and/or phosphonyl halides of the obtained membrane are transformed into the corresponding sulfonic/phosphonic acid forms according to the following equations:
  • the temperature of the wire is between 260 and 360°C, preferably 280°C.
  • the layer is deposited on the surface of the substrate having a roughness higher than 500 nm, preferably higher than 500 nm RMS and preferably lower than 1 nm in order to improve the adhesion of the layer on the substrate.
  • the surface of the substrate on which the layer of polymer is deposited may be patterned. It may be made of ceramic such as alumina (A1 2 0 3 ), zirconium (Zr0 2 ) and titanium oxide (Ti0 2 ), glass, silica or silicon.
  • ceramic such as alumina (A1 2 0 3 ), zirconium (Zr0 2 ) and titanium oxide (Ti0 2 ), glass, silica or silicon.
  • the gaseous flow containing the monomer precursors and the polymerisation initiator may also contain monomers different from the monomers precursors of formula I to modulate the properties of the layer of polymer which is deposited.
  • molecules with specific groups such as aromatic groups, may be added to improve the mechanical resistance of the deposited layer.
  • Monomers with long linear chain may be also added to obtain a better elasticity of the larger of polymer which is deposited.
  • a radical polymerisation cross-linker such as ethylene glycol dimethacrylate (EGDMA) may be added to the flow to modulate the coating cross-linking, more particularly for improving the coating cross-linking.
  • EGDMA ethylene glycol dimethacrylate
  • EGDMA contains two groups which can participate to the polymerisation thus creating a highly reticulated network.
  • the chemical transformation of the sulfonyl/phosphonyl halides of the polymer which is deposited is a step of hydrolysis of the layer which has been deposited.
  • the layer after having been peeled off the substrate, or more preferably, the substrate covered of the layer, is immersed in a basic solution such as a NaOH or a KOH solution.
  • a basic solution such as a NaOH or a KOH solution.
  • This solution has a pH > 7, preferably > 10.
  • a solvent is added to the basic (or salt) solution.
  • a preferred solution is made of 15% of KOH, 50 wt% of solvent and 50 wt% of water.
  • the solvent is a polar aprotic solvent such as dimethyl sulfoxide, dimethylformamide, dimethylacetamide, N-methyl-2-pyrrolidone, and HMP A.
  • this solvent enables to expand the polymer layer so that the Na + or K + species may migrate into the layer.
  • the layer of polymer, or more preferably the substrate covered of the layer is immerged in an acid solution having a pH ⁇ 7, preferably ⁇ 5 such as a solution of HN0 3 or H 2 S0 4 , for acidifying the layer which is necessary for membranes for fuel cells.
  • an acid solution having a pH ⁇ 7, preferably ⁇ 5 such as a solution of HN0 3 or H 2 S0 4 , for acidifying the layer which is necessary for membranes for fuel cells.
  • the proton conductive membranes obtained by the method of the invention may be used in particular in micro fuel cells.
  • Perfluoro(4-methyl-3,6-dioxaoct-7ene) sulfonylfluoride is liquid. It is vaporized in the vacuum chamber with an initiator, TBPO, and nitrogen.
  • the filament (wire) of the CVD apparatus is heated at 280°C and the substrate is maintained at 20°C.
  • the NiCr filament of the CVD apparatus is heated by DC power supply of 36W (current 2 A at 18V) and the substrate holder is at 20 mm from the filament.
  • the substrate holder is cooled down at 20°C.
  • the monomer flow rate is 2 seem, TBPO and nitrogen are introduced at 2 and 1 seem respectively, and the total pressure is 2 torr during 1 h to obtain a thickness of membrane of 240 nm.
  • a fluorocarbon polymer coating of about 200 nm is obtained with a deposition rate of 4 nm/min.
  • This coating is then hydrolysed by immersing the polystyrene substrate with its fluorocarbon coating in a 7.68 M KOH basic solution consisting of KOH in a mixture of DMSO (dimethyl sulfoxide) and H 2 0 and then in an 0.25 M HN0 3 acidic solution consisting of HN0 3 and H 2 0.
  • the FTIR spectrum of the layer of sulfonylfluoride is shown in figure 1. As one can see on figure 1, a clear band can be distinguished at 1460 cm "1 , that confirms the presence of S0 2 -F groups.
  • Nanoindentation measures were made and a hardness value of 0.04 +/-0.01 GPa was found (for comparison, with the same method, hardness of 0.06 +/- 0.01 GPa was measured on a Nafion membrane 50 ⁇ thick and deposited via roller blade method).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Electrochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polymerisation Methods In General (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

La présente invention concerne un procédé de fabrication d'une membrane conductrice de protons. Le procédé selon l'invention fait appel aux étapes suivantes consistant : a) à déposer sur ladite surface dudit substrat une couche de polymère par dépôt chimique en phase vapeur assisté par filament chaud en commençant par un mélange gazeux comprenant : au moins deux monomères ayant la formule suivante (I) : RFyOzA02X, où : A est P ou S ; X est F ou C1 ; 1 ≤ y ≤ 25 ; 0 ≤ z ≤ 6 ; R est une chaîne alkyle saturée ou insaturée, linéaire ou ramifiée, en C1 à C25 comprenant éventuellement un groupe cyclique ou aromatique, et un initiateur de polymérisation, et b) à hydrolyser la couche de polymère obtenue à l'étape a). On peut utiliser l'invention en particulier dans le domaine de l'accumulation et de la restitution d'énergie.
PCT/IB2013/000557 2013-01-18 2013-01-18 Membrane conductrice de protons déposée par une technique de dépôt chimique en phase vapeur assisté par filament chaud WO2014111743A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/IB2013/000557 WO2014111743A1 (fr) 2013-01-18 2013-01-18 Membrane conductrice de protons déposée par une technique de dépôt chimique en phase vapeur assisté par filament chaud
EP13718378.6A EP2946430A1 (fr) 2013-01-18 2013-01-18 Membrane conductrice de protons déposée par une technique de dépôt chimique en phase vapeur assisté par filament chaud

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/IB2013/000557 WO2014111743A1 (fr) 2013-01-18 2013-01-18 Membrane conductrice de protons déposée par une technique de dépôt chimique en phase vapeur assisté par filament chaud

Publications (1)

Publication Number Publication Date
WO2014111743A1 true WO2014111743A1 (fr) 2014-07-24

Family

ID=48182948

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2013/000557 WO2014111743A1 (fr) 2013-01-18 2013-01-18 Membrane conductrice de protons déposée par une technique de dépôt chimique en phase vapeur assisté par filament chaud

Country Status (2)

Country Link
EP (1) EP2946430A1 (fr)
WO (1) WO2014111743A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180164245A1 (en) * 2016-12-09 2018-06-14 Applied Materials, Inc. Methods for depositing polymer layer for sensor applications via hot wire chemical vapor deposition

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2894077A1 (fr) 2005-11-30 2007-06-01 Centre Nat Rech Scient Procede de fabrication de pile a combustible en couches minces
FR2909013A1 (fr) 2006-11-28 2008-05-30 Commissariat Energie Atomique Procede de revetement en film mince.
FR2928227A1 (fr) 2008-02-29 2009-09-04 Commissariat Energie Atomique Procede de fabrication d'une membrane polymerique a conduction ionique pour pile a combustible.

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2894077A1 (fr) 2005-11-30 2007-06-01 Centre Nat Rech Scient Procede de fabrication de pile a combustible en couches minces
FR2909013A1 (fr) 2006-11-28 2008-05-30 Commissariat Energie Atomique Procede de revetement en film mince.
FR2928227A1 (fr) 2008-02-29 2009-09-04 Commissariat Energie Atomique Procede de fabrication d'une membrane polymerique a conduction ionique pour pile a combustible.

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
ANNA MARIA COCLITE ET AL: "Novel hybrid fluoro-carboxylated copolymers deposited by initiated chemical vapor deposition as protonic membranes", POLYMER, vol. 54, no. 1, 7 November 2012 (2012-11-07), pages 24 - 30, XP055082924, ISSN: 0032-3861, DOI: 10.1016/j.polymer.2012.11.004 *
BRAULT ET AL., EUR. PHYS. J. APPL. PHYS., vol. 42, 2008, pages 9 - 15
LAU K K S ET AL: "Hot-wire chemical vapor deposition (HWCVD) of fluorocarbon and organosilicon thin films", THIN SOLID FILMS, ELSEVIER-SEQUOIA S.A. LAUSANNE, CH, vol. 395, no. 1-2, 3 September 2001 (2001-09-03), pages 288 - 291, XP004307717, ISSN: 0040-6090, DOI: 10.1016/S0040-6090(01)01287-1 *
PRYCE LEWIS H G ET AL: "HWCVD of polymers: Commercialization and scale-up", THIN SOLID FILMS, ELSEVIER-SEQUOIA S.A. LAUSANNE, CH, vol. 517, no. 12, 30 April 2009 (2009-04-30), pages 3551 - 3554, XP026696942, ISSN: 0040-6090, [retrieved on 20090204], DOI: 10.1016/J.TSF.2009.01.114 *
UCHIMOTO ET AL., BER. BUNSENGES. PHYS. CHEM., vol. 97, no. 4, 1993
ZHONGQING JIANG ET AL., PLASMA PROCESS. POLYM., vol. 7, 2010, pages 382 - 389

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180164245A1 (en) * 2016-12-09 2018-06-14 Applied Materials, Inc. Methods for depositing polymer layer for sensor applications via hot wire chemical vapor deposition
US10794853B2 (en) * 2016-12-09 2020-10-06 Applied Materials, Inc. Methods for depositing polymer layer for sensor applications via hot wire chemical vapor deposition

Also Published As

Publication number Publication date
EP2946430A1 (fr) 2015-11-25

Similar Documents

Publication Publication Date Title
JP5273041B2 (ja) 含フッ素ポリマー薄膜とその製造方法
CN104684634B (zh) 高分子功能性膜及其制造方法
US20080216942A1 (en) Method for Continuous Production of Functional Film
US20140377460A1 (en) Composite separation membrane
KR20050036849A (ko) 동일 반응계내 중합에 의해 제조된, 연료 전지용 고체중합체 막
US4100113A (en) Electrolytic cell membrane and method of preparation by plasma polymerization of polyamide or polytetrafluoroethylene thin films onto polymeric substrates
TW202016350A (zh) 一種高粘附性耐老化納米塗層及其製備方法
JP5175445B2 (ja) イオノマー膜
WO2005054363A1 (fr) Composition fluoropolymere liquide et procede de production d'un produit fluorochimique reticule
WO2014111743A1 (fr) Membrane conductrice de protons déposée par une technique de dépôt chimique en phase vapeur assisté par filament chaud
JP2014171952A (ja) 高分子機能性膜及びその製造方法
JP2006253002A (ja) イオン交換膜の製造方法
JPS6031862B2 (ja) 陽イオン交換膜の製造方法
Bassil et al. Plasma-polymerized phosphonic acid-based membranes for fuel cell
Ennajdaoui et al. Membranes produced by plasma enhanced chemical vapor deposition technique for low temperature fuel cell applications
Fahmy et al. Modified polyvinyl chloride membrane grafted with an ultra-thin polystyrene film: structure and electrochemical properties
US8524098B2 (en) Method for forming nano size turf on transparent polymer films used in solar cells, and method for enhancing transmittance of transparent polymer films of solar cells
WO2014208714A1 (fr) Acides sulfoniques de polyarylène et leurs précurseurs, procédé de production d'acides sulfoniques de polyarylène et de leurs précurseurs et film d'électrolyte composite et son procédé de production
JP2009231270A (ja) 燃料電池用のイオン伝導性高分子膜を製造するための方法
JP6550695B2 (ja) 複合高分子電解質膜およびその製造方法ならびにその用途
Yasuda et al. Polymerization‐pressure dependencies of properties of perfluorosulfonate cation‐exchanger thin films by plasma polymerization
JP6028317B2 (ja) 高分子電解質膜の製造方法
JP5168900B2 (ja) 高分子電解質膜及びその製造方法
JP2015165461A (ja) 複合電解質膜及びその製造方法
JPS58180503A (ja) 薄膜作成法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13718378

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2013718378

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013718378

Country of ref document: EP