WO2014111664A1 - Procede d'obtention d'un substrat muni d'un revêtement - Google Patents

Procede d'obtention d'un substrat muni d'un revêtement Download PDF

Info

Publication number
WO2014111664A1
WO2014111664A1 PCT/FR2014/050090 FR2014050090W WO2014111664A1 WO 2014111664 A1 WO2014111664 A1 WO 2014111664A1 FR 2014050090 W FR2014050090 W FR 2014050090W WO 2014111664 A1 WO2014111664 A1 WO 2014111664A1
Authority
WO
WIPO (PCT)
Prior art keywords
coating
substrate
heat treatment
heating means
measurement
Prior art date
Application number
PCT/FR2014/050090
Other languages
English (en)
Inventor
Brice DUBOST
Emmanuel Mimoun
Matthieu Bilaine
Original Assignee
Saint-Gobain Glass France
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saint-Gobain Glass France filed Critical Saint-Gobain Glass France
Priority to EP14705823.4A priority Critical patent/EP2946027A1/fr
Priority to BR112015015827A priority patent/BR112015015827A2/pt
Priority to KR1020157021894A priority patent/KR20150108383A/ko
Priority to EA201591347A priority patent/EA201591347A1/ru
Priority to MX2015009065A priority patent/MX2015009065A/es
Priority to CN201480005046.0A priority patent/CN104903489A/zh
Priority to CA2896742A priority patent/CA2896742A1/fr
Priority to JP2015553149A priority patent/JP6640561B2/ja
Priority to US14/761,749 priority patent/US20160010212A1/en
Publication of WO2014111664A1 publication Critical patent/WO2014111664A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/56After-treatment
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/001General methods for coating; Devices therefor
    • C03C17/002General methods for coating; Devices therefor for flat glass, e.g. float glass
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/56Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
    • C23C14/562Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks for coating elongated substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5806Thermal treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5806Thermal treatment
    • C23C14/5813Thermal treatment using lasers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/48Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation
    • C23C16/483Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation using coherent light, UV to IR, e.g. lasers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/52Controlling or regulating the coating process
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/54Apparatus specially adapted for continuous coating
    • C23C16/545Apparatus specially adapted for continuous coating for coating elongated substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1884Manufacture of transparent electrodes, e.g. TCO, ITO
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/30Aspects of methods for coating glass not covered above
    • C03C2218/32After-treatment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the invention relates to the heat treatment of substrates with coatings.
  • the object of the invention is to improve this type of process, by making it more flexible and even better adapted to an industrial context.
  • the subject of the invention is a process for obtaining a substrate provided on at least one of its faces with a coating, in which said coating is deposited on said substrate and then said coating is thermally treated.
  • using at least one heating means in relation to which the substrate is moving the process being such that before the heat treatment, at least one of at least one property of said coating is made on the moving substrate and the conditions of the heat treatment are adapted according to the measurement previously obtained.
  • the coating is thermally treated with at least two heating means controllable independently of each other and with respect to which the substrate passes, each heating means treating a different zone of said coating, the method being furthermore as before the heat treatment, at least one measurement of at least one property of said coating is carried out on the moving substrate and for each of said zones, and the conditions of the heat treatment of each zone according to the measurement previously obtained for the zone in question.
  • the subject of the invention is also a device for the thermal treatment of a coating deposited on a substrate, comprising at least one heating means in relation to which the substrate can pass, at least one means for measuring at least one property of said substrate. coating, disposed upstream of the or each heating means, and means for adapting the conditions of the heat treatment according to the measurement previously obtained.
  • the device comprises at least two independently controllable heating means with respect to which the substrate can move, each heating means being able to treat a different zone of said coating, local measuring means of at least one property of said coating in each of said zones, arranged upstream of the heating means, and means for adapting the conditions of the heat treatment of each zone according to the measurement previously obtained for the zone in question.
  • the measurement and heat treatment steps, performed on the moving substrate, are advantageously performed online, that is to say on the same industrial line, within the device according to the invention.
  • the ability to control the heat treatment according to the characteristics of the layer makes the process more flexible and / or increase the homogeneity of the coating after treatment.
  • the use of several heating means each treating a portion of the coating and the possibility of controlling them individually depending on the local characteristics of the portion of the coating. coating to be treated have a large number of advantages.
  • the use of several heating means instead of one makes it easier to design, manufacture, adjust and maintaining the heating means and associated devices (eg focusing devices when the heating means are lasers or microwave sources, as will be discussed in more detail later).
  • the use of several means independent of each other also makes it possible to adapt the treatment to substrates of different sizes, or to zones to be treated of different sizes, for example in the latter case when only a portion of the original substrate must be used and will be cut later.
  • the choice of independent means and the possibility of controlling them to adapt the heat treatment conditions according to the local characteristics of the layer make it possible to adapt to coatings whose homogeneity is not perfect, which is frequently the case. especially in the case of large substrates, such as substrates of 6 * 3m 2 used in the glass industry. It is indeed difficult to obtain a perfectly homogeneous coating on such a large surface.
  • the cathodes may wear out in a heterogeneous manner.
  • the heterogeneity of the deposit in particular when it results in an absorption heterogeneity, can be amplified by the heat treatment, in particular by laser.
  • the or each heating means is advantageously selected from lasers, plasma torches, microwave sources, burners, inductors.
  • Lasers generally consist of modules comprising one or more laser sources as well as optical shaping and redirection. Lasers are preferably in the form of a line, called "laser line” in the rest of the text.
  • Laser sources are typically laser diodes or fiber or disk lasers.
  • the laser diodes make it possible to economically achieve high power densities relative to the power supply power for a small space requirement.
  • the size of the fiber lasers is even smaller, and the linear power obtained can be even higher, but at a higher cost.
  • the radiation from the laser sources may be continuous or pulsed, preferably continuous.
  • the repetition frequency is advantageously at least 10 kHz, especially 15 kHz and even 20 kHz so as to be compatible with the high movement speeds used.
  • the wavelength of the radiation of the or each laser line is preferably in a range from 800 to 1100 nm, in particular from 800 to 1000 nm.
  • Power laser diodes emitting at a wavelength selected from 808 nm, 880 nm, 915 nm, 940 nm or 980 nm have proved particularly suitable.
  • the shaping and redirecting optics preferably comprise lenses and mirrors, and are used as means for positioning, homogenization and focusing of the radiation.
  • the purpose of the positioning means is, where appropriate, to arrange the radiation emitted by the laser sources along a line. They preferably include mirrors.
  • the aim of the homogenization means is to superpose the spatial profiles of the laser sources in order to obtain a homogeneous linear power along the line.
  • the homogenization means preferably comprise lenses enabling the incident beams to be separated into secondary beams and the recombination of said secondary beams into a homogeneous line.
  • the means for focusing the radiation make it possible to focus the radiation on the coating to be treated, in the form of a line of desired length and width.
  • the focusing means preferably comprise a converging lens.
  • the or each line has a length and a width.
  • the term "length" of the line the largest dimension of the line, measured on the surface of the coating, and "width" the dimension in a direction transverse to the direction of the largest dimension.
  • the width w of the line corresponds to the distance (in this transverse direction) between the axis of the beam (where the intensity of the radiation is maximum) and the point where the Radiation intensity is equal to 1 / e 2 times the maximum intensity. If the longitudinal axis of the laser line is named x, we can define a distribution of widths along this axis, named w (x).
  • the average width of the or each laser line is preferably at least 35 microns, especially in a range from 40 to 100 microns or 40 to 70 microns. Throughout this text we mean by "average" the arithmetic mean. Throughout the length of the line, the width distribution is narrow to avoid heterogeneity of treatment. Thus, the difference between the largest width and the smallest width is preferably at most 10% of the average width value. This figure is preferably at most 5% and even 3%.
  • the length of the or each laser line is preferably at least 10 cm or 20 cm, especially in a range from 30 to 100 cm, especially 30 to 75 cm, or even 30 to 60 cm.
  • the formatting and redirection optics in particular the positioning means, can be adjusted manually or by means of actuators making it possible to adjust their positioning remotely.
  • actuators typically motors or piezoelectric shims
  • These actuators can be manually controlled and / or adjusted automatically.
  • the actuators will preferably be connected to detectors as well as to a feedback loop.
  • At least a portion of the laser modules, or all of them, is preferably arranged in a sealed box, advantageously cooled, in particular ventilated, in order to ensure their thermal stability.
  • Laser modules are preferably mounted on a rigid structure, called "bridge", based on metal elements, typically aluminum.
  • the structure preferably does not include a marble slab.
  • the bridge is preferably positioned parallel to the conveying means so that the focal plane of the or each laser line remains parallel to the surface of the substrate to be treated.
  • the bridge comprises at least four feet, the height of which can be individually adjusted to ensure parallel positioning under all circumstances. The adjustment can be provided by motors located at each foot, either manually or automatically, in relation to a distance sensor.
  • the height of the bridge can be adapted (manually or automatically) to take into account the thickness of the substrate to be treated, and thus ensure that the plane of the substrate coincides with the focal plane of the or each laser line.
  • the linear power divided by the square root of the duty ratio of the laser sources is preferably at least 300 W / cm, advantageously 350 or 400 W / cm, in particular 450 W / cm, or even 500 W / cm and even 550 W / cm. cm.
  • the linear power divided by the square root of the duty cycle is even advantageously at least 600 W / cm, in particular 800 W / cm, or even 1000 W / cm.
  • the duty ratio is 1, so that this number corresponds to the linear power.
  • the linear power is measured where the or each laser line is focused on the coating. It can be measured by placing a power detector along the line, for example a power-meter calorimetric, such as in particular the power meter Beam Finder Cohérent Inc.
  • the power is advantageously distributed homogeneously over the entire length of the or each line. Preferably, the difference between the highest power and the lowest power is less than 10% of the average power.
  • the energy density provided to the coating divided by the square root of the duty cycle is preferably at least 20 J / cm 2 , or even 30 J / cm 2 . Again, the duty ratio is 1 when the laser radiation is continuous.
  • At least a portion of the (main) laser radiation transmitted through the substrate and / or reflected by the coating is redirected towards said substrate to form at least secondary laser radiation, which preferably impacts the substrate at the same location as the main laser radiation, with advantageously the same depth of focus and the same profile.
  • the formation of the or each secondary laser radiation advantageously implements an optical assembly comprising only optical elements chosen from mirrors, prisms and lenses, in particular an optical assembly consisting of two mirrors and a lens, or a prism and a lens.
  • each heating means is a laser
  • the absorption of the coating at the wavelength of the laser is preferably CLU. less than 5%, especially 10%, and is advantageously at most 90%, especially 80% or 70%, even 60% or 50%, and even 40% or even 30%.
  • the heating means can also be burners.
  • the burners may be external combustion, in the sense that the mixture between the fuel and the oxidant is made at the nose of the burner or in the extension thereof. In this case, the substrate is subjected to the action of a flame.
  • the burners may also be internal combustion, in the sense that the fuel and the oxidant are mixed inside the burner: the substrate is then subjected to the action of hot gases. All intermediate cases are of course possible, in the sense that only part of the combustion can take place inside the burner, and the other part outside.
  • the substrate may be subjected to the action of a flame and / or hot gases.
  • Oxygen burner burners i.e. using pure oxygen, generally do not contain a premix chamber.
  • the gas used for the flaming may be a mixture of an oxidizing gas, in particular chosen from air, oxygen or their mixtures, and a combustible gas, in particular chosen from natural gas, propane, butane, even acetylene or hydrogen, or mixtures thereof.
  • Oxygen is preferred as an oxidizing gas, particularly in combination with natural gas (methane) or propane, on the one hand because it allows to reach higher temperatures and therefore shorten the treatment and avoid the substrate heating, and secondly because it avoids the creation of NO x nitrogen oxides.
  • the coated substrate is generally positioned within the visible flame, especially at the hottest zone of the flame, a portion of the visible flame then extending around the treated area.
  • the heating means may also be plasma torches.
  • a plasma is an ionized gas generally obtained by subjecting a so-called "plasmagen” gas to an excitation such as a strong continuous or alternating electric field (for example an electric arc). Under the action of this excitation, electrons are torn from the atoms of the gas and the charges thus created migrate towards the electrodes of opposite charge. These charges then excite other atoms of the gas by collision, creating by avalanche effect a homogeneous or microfilament discharge or an arc.
  • an excitation such as a strong continuous or alternating electric field (for example an electric arc).
  • Plasmas can be "hot” (the gas is then fully ionized and the plasma temperature is of the order of 10 6o C), or “thermal” (the gas is almost completely ionized and the plasma temperature is order of 10 4o C, for example electric arcs).
  • Plasmas contain many active species, that is, capable of interacting with matter, including ions, electrons or free radicals.
  • a plasma torch a gas is blown through an electric arc, and the thermal plasma formed is blown to the substrate to be treated.
  • the plasma torch is commonly used to deposit thin films on various substrates by adding precursors in the form of powders to the plasma.
  • the blown gas is preferably nitrogen, air or argon, advantageously comprising a hydrogen content by volume of between 5 and 50%, especially between 15 and 30%.
  • the heating means may also be microwave sources.
  • Microwaves are electromagnetic waves whose wavelength is between 1 mm and 1 m, suitable for the heat treatment of dielectric coatings.
  • Microwave sources (magnetrons) are preferably associated with radiating waveguides or cavities (singlemode or multimode).
  • the substrate can scroll under radiating waveguides arranged in a tunnel.
  • Wave traps consisting of water-cooled absorbent filters are preferably arranged upstream and downstream of the sources in order to avoid any outward wave leakage.
  • the Heat treatment can be achieved by induction.
  • the heating means are then inductors.
  • Induction heating of metal parts is a well-known method for achieving fast and controlled high temperatures in solid conductive parts (reinforcing steels, silicon zone melting, etc.).
  • the main applications relate to the fields of food processing (heating of tanks, cooking of flat products on metal strips, cooking-extrusion) and of the manufacture of metals (fusion, reheating before forming, heat treatment in the mass, surface heat treatment, treatment of coatings, welding, brazing).
  • solenoid An alternating current flowing through a coil (called solenoid or coil) generates inside it a magnetic field oscillating at the same frequency. If an electrically conductive part is placed inside the coil (or solenoid), currents induced by the magnetic field develop there and heat the part by Joule effect.
  • the currents appear on the surface of the part to be heated.
  • a characteristic depth called skin thickness can be defined, giving as a first approach the thickness of the current layer.
  • the skin thickness of the currents depends on the nature of the heated metal and decreases as the frequency of the current increases.
  • a high frequency polarization in order to concentrate the influence of the inductor on the surface portion of the material.
  • the frequency is preferably between 500 kHz and 5 MHz, especially between 1 MHz and 3 MHz.
  • An inductor specially adapted for treating flat surfaces is preferably employed.
  • the temperature experienced by the coating during the heat treatment is preferably at least 300 ° C, in particular 350 ° C, or even 400 ° C.
  • the temperature of the substrate at the opposite side to the coated face does not exceed 100 ° C, especially 50 ° C and even 30 ° C during the heat treatment.
  • heating means in particular laser lines
  • the number of heating means is preferably at least 3, even 4, or even 5, or even 6, or 7, or even 8, and even 9, or even 10 or 11, depending the width of the substrates to be treated.
  • the number of heating means is preferably between 3 and 11 (including terminals), in particular between 5 and 10 (including terminals).
  • the heating means are arranged so that the entire surface of the stack can be processed.
  • the heating means have a linear geometry; it may be for example burners or linear inductors or laser lines.
  • each means is preferably arranged perpendicular to the direction of travel of the substrate, or arranged obliquely.
  • the heating means are generally parallel to each other.
  • the different means can process the substrate simultaneously or in a time-shifted manner.
  • the heating means in particular the laser lines
  • the heating means can be arranged in a V-shape, staggered or in spikes.
  • the heating means may be arranged in rows perpendicular to the running direction of the substrate. The number of rows is for example at least 2 or even 3.
  • the number of rows is not greater than 3 to limit the footprint of the heat treatment area.
  • the heating means it is preferable to arrange the heating means so that there is overlap, that is to say that certain areas (low dimension, typically less than 10 cm or even 1 cm) are treated at least twice.
  • the distance between two heating means treating adjacent zones is preferably such that the recovery zones have time to return to a temperature close to ambient to avoid damage to the coating.
  • the distance between two heating means treating adjacent areas is preferably at least three times the distance traveled by a point of the layer under the laser line.
  • the heating means can be arranged on one and the same line (in other words the number of rows is 1).
  • the heating means are laser lines, it is preferable to choose a profile making it possible to obtain a continuous and homogeneous line at the level of the coating.
  • At least one property of the coating measured before the heat treatment is chosen from optical, electrical or dimensional properties.
  • the optical properties are advantageously chosen from absorption, reflection, transmission, the colour.
  • the measurement of these properties can for example be achieved by means of at least one CCD camera or photodiode coupled to at least one light source, coherent or not, and possibly to filters, prisms or networks.
  • the measurement of these properties can be carried out using a spectrophotometer.
  • the electrical properties are advantageously chosen from resistivity, conductivity and square resistance.
  • the measurement of these properties can for example be carried out by means of at least one non-contact inductive or capacitive sensor, for example square resistance measuring means marketed by Nagy Messsysteme GmbH.
  • the dimensional properties are advantageously chosen from the position and the thickness.
  • the measurements of these properties are carried out on the moving substrate, preferably without contact with the substrate and / or the coating.
  • the substrate travels continuously and on the same line, first with regard to measuring means, which perform the local measurement of the property (where appropriate in different areas of the coating), and then with respect to the means ( s) heating.
  • the measuring means are advantageously distributed in one or more lines (preferably a line), depending on their size.
  • the or each line is typically arranged perpendicular to the direction of travel of the substrate, or possibly obliquely.
  • one or more measurements can be made, for example two, three or four measurements.
  • the adaptation of the conditions of the heat treatment is preferably carried out automatically.
  • the measured values can be for example processed by an algorithm calculating the correction value to be applied.
  • An appropriate delay is applied between the measurement and the correction, calculated as a function of the running speed and the distance separating the measuring means from the corresponding heating means.
  • the algorithm can be implemented by an electronic circuit, a computer program or an expert system.
  • Adaptation can also be done manually. It may be useful to be able to adapt the treatment conditions both automatically and manually. An operator can for example manually stop a heating means to adapt the treatment to a smaller substrate but maintain an automatic adaptation for still active heat sources.
  • the adaptation of the conditions of the heat treatment can be carried out in different ways.
  • the conditions of the heat treatment are adapted by modifying the power delivered by the heating means.
  • the conditions of the heat treatment of each zone are adapted by modifying the power delivered by the heating means processing said zone.
  • the power (intensity) of one or more of the laser sources can be varied, depending on the measurement obtained for the property measured upstream.
  • the power of a burner can be increased by increasing the gas flow.
  • Other adaptations of the heat treatment conditions are possible.
  • the adaptation may consist of a displacement of the focusing means, allowing a displacement of the focal plane.
  • the adaptation may also include a modification of at least one dimension of the laser line to change its intensity at the coating, or a modification of the wavelength of the laser (in the case of tunable lasers).
  • the adaptation of the heat treatment may also comprise a modification of the speed of travel of the substrate or a modification of the duty cycle in the case of pulsed laser sources.
  • the adaptation of the conditions of the heat treatment may comprise stopping one of the heating means, or even all the heating means. For example, if the measuring means detect the absence of coating in a given area (due in particular to a difference in size of the substrate), the heating means (for example the laser line) opposite the area where the coating is absent can be stopped.
  • the laser source or sources concerned can be stopped (automatically, or even manually ) to prevent damage.
  • an optical property (in particular the absorption) of the coating is measured locally using optical sensors and the power of the laser lines is adapted according to the measurement (absorption) obtained.
  • This embodiment is particularly suitable for the case of absorbent layers treated with laser lines, the treatment according to the invention making it possible to compensate for heterogeneities in the composition, thickness, or stoichiometry of the layer by acting on the power of the laser sources.
  • the absorption is locally higher in a given area, the power of the laser source processing this area is decreased, and vice versa.
  • the use of a single laser line, or of several lines treating the entire width of the substrate in the same way could amplify the heterogeneities of the coating.
  • the substrate may be set in motion by any mechanical conveying means, for example using strips, rollers, translational trays.
  • the conveyor system controls and controls the speed of travel.
  • the conveying means preferably comprises a rigid frame and a plurality of rollers.
  • the pitch of the rollers is advantageously in a range from 50 to 300 mm.
  • the rollers preferably comprise metal rings, typically made of steel, covered with plastic bandages.
  • the rollers are preferably mounted on low-clearance bearings, typically three rolls per step. In order to ensure perfect flatness of the conveying plane, the positioning of each of the rollers is advantageously adjustable.
  • the rollers are preferably driven by means of pinions or chains, preferably tangential chains, driven by at least one motor.
  • the displacement can be achieved using a film feed system in the form of a succession of rolls.
  • the flatness can be ensured by an adequate choice of the distance between the rollers, taking into account the thickness of the substrate (and therefore its flexibility) and the impact that heat treatment can have on the creation. of a possible arrow.
  • the speed of displacement of the substrate is advantageously at least 4 m / min, especially 5 m / min and even 6 m / min or 7 m / min, or 8 m / min and even 9 m / min or 10 m / min. min.
  • the movement speed of the substrate is at least 12 m / min or 15 m / min, especially 20 m / min and even 25 or 30 m / min.
  • the speed of displacement of the substrate varies during the treatment by at most 10% in relative, in particular 2% and even 1% compared to its nominal value.
  • the substrate will generally be arranged horizontally or substantially horizontally, but it can also be arranged vertically, or in any possible inclination.
  • the heating means are generally arranged so as to treat the upper face of the substrate.
  • the heating means can also process the underside of the substrate. In this case, it is necessary that the conveying system of the substrate passes the heat to the area to be treated. This is the case for example when using conveying rollers: the rollers being disjoint, it is possible to arrange the heating means in an area between two successive rollers.
  • heating means located on either side of the substrate, whether the latter is in a horizontal, vertical or any inclination position.
  • These heating means may be identical or different, in particular in the case of lasers, their wavelengths may be different, in particular adapted to each of the coatings to be treated.
  • a first coating for example low-emissive located on a first face of the substrate may be treated by a first laser radiation emitting for example in the visible or near infrared while a second coating (for example a photocatalytic coating) located on the second face of said substrate can be treated with a second laser radiation, emitting for example in the infrared.
  • the heat treatment device may be integrated in a layer deposition line, for example a magnetic field assisted sputtering deposition line (magnetron process), or a chemical vapor deposition line (CVD). , in particular plasma assisted (PECVD), under vacuum or at atmospheric pressure (APPECVD).
  • the line generally includes substrate handling devices, a deposition facility, optical control devices, stacking devices.
  • the substrates scroll, for example on conveyor rollers, successively in front of each device or each installation.
  • the heat treatment device according to the invention is preferably located just after the coating deposition installation, for example at the outlet of the deposition installation.
  • the coated substrate can thus be treated in line after the deposition of the coating, at the exit of the deposition installation and before the optical control devices, or after the devices. optical control and before the stacking devices of the substrates.
  • the heat treatment device can also, in some cases, be integrated in the deposit facility.
  • laser sources may be introduced into one of the chambers of a sputtering deposition installation, in particular in a chamber where the atmosphere is rarefied, in particular under a pressure of between 10 ⁇ 6 mbar and 10 ⁇ 2 mbar.
  • the heat treatment device may also be disposed outside the deposition installation, but so as to treat a substrate located inside said installation.
  • a transparent window at the wavelength of the radiation used, through which the laser radiation would treat the layer. It is thus possible to treat a layer (for example a layer of silver) before the subsequent deposit of another layer in the same installation.
  • these "on-line" methods are preferable to a recovery process in which it would be necessary to stack the glass substrates between the deposition step. and heat treatment.
  • Processes recovery can however be of interest in cases where the implementation of the heat treatment according to the invention is made in a different location from where the deposit is made, for example in a place where is performed the transformation of glass .
  • the heat treatment device can therefore be integrated with other lines than the layer deposition line. It can for example be integrated into a production line of multiple glazing (double or triple glazing in particular), a line for manufacturing laminated glass, or a production line of curved glazing and / or tempered. Laminated or curved or tempered glass can be used as building or automotive glazing.
  • the heat treatment according to the invention is preferably carried out before the production of multiple or laminated glazing.
  • the heat treatment can, however, be implemented after completion of double glazing or laminated glazing.
  • the heat treatment device is preferably arranged in a closed enclosure for securing people by avoiding contact with the laser radiation and to avoid any pollution, especially of the substrate, optics or of the treatment area.
  • the deposition of the coating on the substrate can be carried out by any type of process, in particular processes generating predominantly amorphous or nano-crystallized layers, such as the cathode sputtering method, notably assisted by a magnetic field (magnetron process), the method plasma enhanced chemical vapor deposition (PECVD), the vacuum evaporation method, or the sol-gel method.
  • a magnetic field magnetic field
  • PECVD plasma enhanced chemical vapor deposition
  • sol-gel method sol-gel method.
  • the coating is preferably deposited by cathodic sputtering, in particular assisted by a magnetic field (magnetron process).
  • the thermal treatment of the coating is preferably under air and / or at atmospheric pressure.
  • the substrate is preferably glass, glass ceramic or polymeric organic material. It is preferably transparent, colorless (it is then a clear or extra-clear glass) or colored, for example blue, gray, green or bronze.
  • the glass is preferably of the silico-soda-lime type, but it may also be of borosilicate or alumino-borosilicate type glass.
  • Preferred polymeric organic materials are polycarbonate, polymethyl methacrylate, polyethylene terephthalate (PET), polyethylene naphthalate (PEN), or fluorinated polymers such as ethylene tetrafluoroethylene (ETFE).
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • ETFE fluorinated polymers
  • the substrate advantageously has at least one dimension greater than or equal to 1 m, or even 2 m and even 3 m.
  • the thickness of the substrate generally varies between 0.5 mm and 19 mm, preferably between 0.7 and 9 mm, especially between 2 and 8 mm, or even between 4 and 6 mm.
  • the substrate may be flat or curved, or even flexible.
  • the glass substrate is preferably of the float type, that is to say likely to have been obtained by a process of pouring the molten glass on a bath of molten tin ("float" bath).
  • the coating to be treated can be deposited on the "tin” side as well as on the "atmosphere” side of the substrate.
  • the term "atmosphere” and “tin” faces means the faces of the substrate having respectively been in contact with the atmosphere prevailing in the float bath and in contact with the molten tin.
  • the tin side contains a small surface amount of tin diffusing into the glass structure.
  • the glass substrate can also be obtained by rolling between two rollers, a technique which makes it possible in particular to print patterns on the surface of the glass.
  • the heat treatment is preferably intended to improve the crystallization of the coating, in particular by increasing the size of the crystals and / or amount of crystalline phase.
  • the heat treatment may also be for oxidizing a layer of a sub-stoichiometric metal or metal oxide to oxygen, possibly by promoting the growth of a particular crystalline phase.
  • the heat treatment step does not involve melting, even partial, coating.
  • the heat treatment makes it possible to bring sufficient energy to promote crystallization of the coating by a physical ⁇ chemical mechanism of crystal growth around nuclei already present in the coating, remaining in the solid phase.
  • This treatment does not use a mechanism of crystallization by cooling from a molten material, on the one hand because it would require extremely high temperatures, and secondly because it would be likely to change the thicknesses or indices of refraction of the coating, and therefore its properties, for example by modifying its optical appearance.
  • the coating treated the coating preferably comprises at least one thin layer of a metal, oxide, nitride, carbide, oxynitride or any of their mixtures. It preferably comprises a thin layer chosen from metal layers (especially based on or consisting of silver or molybdenum), titanium oxide layers and transparent electroconductive layers.
  • the electroconductive transparent layers are typically based on mixed oxides of tin and indium (called “ITO”), based on mixed oxides of indium and zinc (called “IZO”), based on oxide of zinc doped with gallium or aluminum, based on niobium-doped titanium oxide, based on cadmium stannate or zinc, based on tin oxide doped with fluorine and / or antimony.
  • ITO mixed oxides of tin and indium
  • IZO mixed oxides of indium and zinc
  • oxide of zinc doped with gallium or aluminum based on niobium-doped titanium oxide, based on cadmium stannate or zinc, based on tin oxide doped with fluorine and / or antimony.
  • These different layers have the distinction of being transparent and nevertheless conductive or semi-conductive layers, and are used in many systems where these two properties are necessary: liquid crystal displays (LCD), solar or photovoltaic sensors, electrochromic devices or electroluminescent
  • LED In particular LED, OLED
  • Their thickness is typically between 50 and 1000 nm, including terminals.
  • Thin metal layers for example based on metallic silver, but also based on molybdenum or metallic niobium, have properties of electrical conduction and reflection of infrared radiation, hence their use in solar control glazing, especially anti-solar (aimed at reducing the amount of incoming solar energy) or low-emissivity (aimed at reducing the amount of energy dissipated to the outside of a building or a vehicle).
  • Their physical thickness is typically between 4 and 20 nm (inclusive).
  • the low emissive stacks may frequently include several silver layers, typically 2 or 3. The or each silver layer is generally surrounded by dielectric layers protecting it from corrosion and making it possible to adjust the reflection aspect of the coating.
  • Molybdenum is frequently used as an electrode material for photovoltaic cells based on CuIn x Gai_ x Se2, where x varies from 0 to 1.
  • the treatment according to the invention makes it possible to reduce its resistivity.
  • Other metals may be treated according to the invention, for example titanium, in particular for the purpose of oxidizing it and obtaining a photocatalytic titanium oxide layer.
  • the coating to be treated is a low-emissive stack, it preferably comprises, from the substrate, a first coating comprising at least a first dielectric layer, at least one silver layer, optionally an over-blocking layer and a second coating comprising at least a second dielectric layer.
  • the physical thickness of the or each silver layer is between 6 and 20 nm.
  • the overblocking layer is intended to protect the silver layer during the deposition of a subsequent layer (for example if the latter is deposited under an oxidizing or nitriding atmosphere) and during a possible thermal treatment of the quenching or bending type.
  • the silver layer can also be deposited on and in contact with a sub-blocker layer.
  • the stack may therefore comprise an overbetter layer and / or a sub-blocker layer flanking the or each layer of silver.
  • the blocker layers are generally based on a metal selected from nickel, chromium, titanium, niobium, or an alloy of these different metals. Mention may in particular be made of nickel-titanium alloys (especially those comprising about 50% by weight of each metal) or nickel-chromium alloys (especially those comprising 80% by weight of nickel and 20% by weight of chromium).
  • the over-blocking layer may also consist of several superimposed layers, for example, away from the substrate, titanium and then a nickel alloy (especially a nickel-chromium alloy) or vice versa.
  • the various metals or alloys mentioned can also be partially oxidized, in particular having an oxygen sub-stoichiometry (for example TiO x or NiCrO x ).
  • These layers of blocker are very thin, normally less than 1 nm thick, so as not to affect the light transmission of the stack, and are likely to be partially oxidized during the heat treatment according to the invention.
  • the blocking layers are sacrificial layers capable of capturing the oxygen coming from the atmosphere or the substrate, thus avoiding oxidation of the silver layer.
  • the first and / or second dielectric layer is typically oxide (especially tin oxide), or preferably nitride, in particular silicon nitride (in particular for the second dielectric layer, furthest from the substrate).
  • the silicon nitride may be doped, for example with aluminum or boron, in order to facilitate its deposition by sputtering techniques.
  • the doping rate (corresponding to the atomic percentage with respect to the amount of silicon) does not generally exceed 2%.
  • the first coating may comprise a dielectric layer, or several dielectric layers, typically 2 to 4.
  • the second coating may comprise a dielectric layer, or several dielectric layers, typically 2 to 3. These dielectric layers are preferably made of a material chosen from silicon nitride, titanium, tin or zinc oxides, or any of their solid mixtures or solutions, for example tin and zinc oxide, or titanium zinc oxide.
  • the physical thickness of the dielectric layer, or the overall physical thickness of the set of dielectric layers is preferably between 15 and 60 nm, especially between 20 and 50 nm.
  • the first coating preferably comprises, immediately under the silver layer or under the optional layer of sub-blocker, a wetting layer whose function is to increase the wetting and attachment of the silver layer. Zinc oxide, in particular doped with aluminum, has proved particularly advantageous in this respect.
  • the first coating may also contain, directly below the wetting layer, a smoothing layer, which is a partially or totally amorphous mixed oxide (therefore of very low roughness), the function of which is to promote the growth of the wetting layer according to a preferential crystallographic orientation, which promotes the crystallization of silver by epitaxial phenomena.
  • the smoothing layer is preferably composed of a mixed oxide of at least two metals selected from Sn, Zn, In, Ga, Sb.
  • a preferred oxide is antimony doped tin and indium oxide.
  • the wetting layer or the optional smoothing layer is preferably deposited directly on the first dielectric layer.
  • the first dielectric layer is preferably deposited directly on the substrate.
  • the first dielectric layer may alternatively be deposited on another oxide or nitride layer, for example made of titanium oxide.
  • the second dielectric layer can be deposited directly on the layer silver, or preferably on an over-blocker, or on other oxide or nitride layers for adapting the optical properties of the stack.
  • a layer of zinc oxide, in particular doped with aluminum, or a layer of tin oxide may be placed between an over-blocker and the second dielectric layer, which is preferably nitride oxide. silicon.
  • Zinc oxide, in particular doped with aluminum makes it possible to improve the adhesion between silver and the upper layers.
  • the stack treated according to the invention preferably comprises at least one ZnO / Ag / ZnO sequence.
  • Zinc oxide can be doped with aluminum.
  • a sub-blocker layer may be disposed between the silver layer and the underlying layer. Alternatively or cumulatively, an overbetter layer may be disposed between the silver layer and the overlying layer.
  • the second coating can be surmounted by an overcoat, sometimes called “overcoat” in the art.
  • Last layer of the stack so in contact with the ambient air, it is intended to protect the stack against any mechanical aggression (scratches ...) or chemical.
  • This overlay is generally very fine so as not to disturb the reflection aspect of the stack (its thickness is typically between 1 and 5 nm). It is preferably based on titanium oxide or mixed tin and zinc oxide, in particular doped with antimony, deposited in sub-stoichiometric form.
  • the stack may include one or more layers of silver, including two or three layers of silver.
  • the general architecture presented above can be repeated.
  • the second coating relating to a given silver layer (thus located above this silver layer) generally coincides with the first coating on the next silver layer.
  • Thin films based on titanium oxide have the particularity of being self-cleaning, facilitating the degradation of organic compounds under the action of ultraviolet radiation and the elimination of mineral soils (dust) under the action of a runoff of water.
  • Their physical thickness is preferably between 2 and 50 nm, especially between 5 and 20 nm, including terminals.
  • the various layers mentioned have the common feature of seeing some of their improved properties when they are in an at least partially crystallized state. It is generally sought to increase as much as possible the crystallization rate of these layers (the mass or volume proportion of crystallized material) and the size of the crystalline grains (or the size of coherent diffraction domains measured by X-ray diffraction methods), even in some cases to favor a particular crystallographic form.
  • silver layers having a high crystallization rate and therefore a low residual amorphous silver content have a lower emissivity and resistivity than predominantly amorphous silver layers.
  • the electrical conductivity and the low emissivity properties of these layers are thus improved.
  • the above-mentioned transparent conductive layers in particular those based on doped zinc oxide, fluorine-doped tin oxide or tin-doped indium oxide, have a higher electrical conductivity. that their crystallization rate is high.
  • the coating when the coating is conductive, its square resistance is decreased by at least 10%, or even 15% or even 20% by the heat treatment. This is a relative decrease, compared to the value of the square resistance before treatment.
  • coatings may be treated according to the invention. These include, but are not limited to, coatings based on (or consist of) CdTe or chalcopyrites, for example of the CuIn x Gai_ x Se2 type, where x varies from 0 to 1. It is also possible to mention coatings of type enamel (for example deposited by screen printing), paint or lacquer (typically comprising an organic resin and pigments).
  • the coated substrates obtained according to the invention can be used in single, multiple or laminated glazings, mirrors, glass wall coverings.
  • the coating is a low emissive stack, and in the case of a multiple glazing comprising at least two glass sheets separated by a gas strip, it is preferable that the stack is disposed on the face in contact with said blade of gas. gas, in particular in front 2 of the outside (that is to say on the face of the substrate in contact with the outside of the building which is opposite to the side facing outwards) or face 3 (That is, on the face of the second substrate from the outside of the building facing outwards).
  • the coating is a photocatalytic layer, it is preferably disposed in face 1, so in contact with the outside of the building.
  • coated substrates obtained according to the invention can also be used in photovoltaic cells or glazings or solar panels, the coating treated according to the invention being, for example, a ZnO: Al or Ga-based electrode in chalcopyrite-based stacks. (In particular of the type CIGS - CuIn x Gai_ x Se2, x varying from 0 to 1) or based on amorphous and / or polycrystalline silicon, or based on CdTe.
  • coated substrates obtained according to the invention can still be used in display screens of the LCD (Liquid Crystal Display), OLED (Organic Light Emitting Diodes) or FED (Field Emission Display) type, the coating treated according to the invention being an electroconductive layer made of ITO. They can also be used in electrochromic glazings, the thin layer treated according to the invention being for example a transparent electroconductive layer as taught in the application FR-A-2833107.
  • LCD Liquid Crystal Display
  • OLED Organic Light Emitting Diodes
  • FED Field Emission Display
  • FIGS 1 and 2 illustrate schematically and in top view two embodiments of the invention.
  • the substrate 1 provided with its coating (not shown) is moving in the direction shown by the arrow in a heat treatment device.
  • This device comprises means for locally measuring properties 3a to 3g disposed along a line perpendicular to the running direction of the substrate 1, heating means having a linear geometry 2a to 2g, typically laser lines, here seven in number.
  • the heating means 2a to 2g are staggered in two rows perpendicular to the direction of movement of the substrate 1.
  • the heating means 2a to 2g are arranged on a row, so as to form a single line.
  • the device also comprises means for adapting the heat treatment, for example means for adapting the power of the laser lines 2a to 2g.
  • the measuring means 3a to 3g are, for example, optical sensors for measuring the local absorption of the coating.
  • the different points of the substrate first scroll in front of the local measurement means 3a to 3g, allowing measurement by zone, here seven measurements.
  • zone here seven measurements.
  • the heat treatment is adapted according to the measurement made in the zone. If, for example, the sensor 3c has shown a decrease in absorption in a given area, the power of the laser 2c is increased when the area in question comes opposite this laser.
  • floated silico-soda-lime glass substrates sold under the name SGG Planilux by the applicant, having a size of 6 * 3.2 m 2 and a thickness of 4 mm have been treated. and coated by the cathode sputtering method of a stack.
  • This stack was of the low emissive type comprising a thin layer of silver, the purpose of heat treatment being to reduce the emissivity of the stack by better crystallization of the layer.
  • the average absorption of the coating was 8% at the wavelength of the lasers employed. This absorption was not identical over the entire width of the substrates, in particular because of differences in wear at the cathodes. Thus, in the case of substrates treated for this exemplary embodiment, the absorption was 9% at one edge and 7.5% at 1/3 of the width from the opposite edge.
  • the heat treatment device was of the type shown in FIG. 1, except that 11 laser lines 30 cm long each were used.
  • the distance between the two rows of laser lines (measured in the direction of travel of the substrate) was 1 mm. These laser lines overlapped very slightly so that some points of the coating were treated successively by two adjacent lines. However, given the distance between rows of laser lines, the recovery zones had time to cool to room temperature before undergoing treatment with the second row of lasers.
  • the width of the laser lines was 40 ⁇ m and their linear power of 450 W / cm.
  • the laser sources were InGaAs laser diodes used in continuous radiation at a wavelength of 980 nm. Under these conditions, for a running speed of 10 m / min, the temperature rise in the coating was 450 ° C.
  • Eleven sensors for measuring the local absorption of the coating were arranged along a line upstream of the laser lines about 50 cm from the latter.
  • the sensors included lamps and photodiodes. As in the case of Figure 1, each of the sensors made it possible to determine the absorption in an area subsequently treated with a laser line.
  • the adaptation of the treatment here consisted in correcting the power of the lasers according to the absorption measured upstream.
  • the correction was proportional, the power of the lasers, via the current sent to the laser diodes, being decreased in proportion to the increase of absorption and vice versa.
  • a delay was implemented between the measurement and the correction, the duration of this delay corresponding to the time necessary to travel the distance between the sensors and the laser lines.
  • the correction was linear, in the sense that a 1% decrease in absorption was offset by a 1% increase in laser power.
  • the linear power of the corresponding laser line was increased to about 500 W / cm.
  • the linear power was decreased to 400 W / cm.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Health & Medical Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Toxicology (AREA)
  • Surface Treatment Of Glass (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)
  • Physical Vapour Deposition (AREA)
  • Chemical Vapour Deposition (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

L'invention a pour objet un procédé d'obtention d'un substrat (1) muni sur au moins une de ses faces d'un revêtement, dans lequel on dépose ledit revêtement sur ledit substrat (1) puis l'on traite thermiquement ledit revêtement à l'aide d'au moins un moyen de chauffage (2a) en regard duquel le substrat (1) défile, le procédé étant tel qu'avant le traitement thermique on réalise sur le substrat (1) en défilement au moins une mesure d'au moins une propriété dudit revêtement et l'on adapte les conditions du traitement thermique en fonction de la mesure préalablement obtenue.

Description

PROCEDE D ' OBTENTION D ' UN SUBSTRAT MUNI D ' UN REVETEMENT
L' invention se rapporte au traitement thermique de substrats munis de revêtements.
Il est connu de la demande WO 2008/096089 un procédé de traitement thermique rapide de revêtements à l'aide de divers moyens de chauffage, comme des brûleurs, des torches plasma, ou encore des lasers.
L'invention a pour but d'améliorer ce type de procédé, en le rendant plus flexible, encore mieux adapté à un contexte industriel.
A cet effet, l'invention a pour objet un procédé d'obtention d'un substrat muni sur au moins une de ses faces d'un revêtement, dans lequel on dépose ledit revêtement sur ledit substrat puis l'on traite thermiquement ledit revêtement à l'aide d'au moins un moyen de chauffage en regard duquel le substrat défile, le procédé étant tel qu'avant le traitement thermique on réalise sur le substrat en défilement au moins une mesure d'au moins une propriété dudit revêtement et l'on adapte les conditions du traitement thermique en fonction de la mesure préalablement obtenue.
De préférence, on traite thermiquement le revêtement à l'aide d'au moins deux moyens de chauffage contrôlables indépendamment les uns des autres et en regard desquels le substrat défile, chaque moyen de chauffage traitant une zone différente dudit revêtement, le procédé étant en outre tel qu'avant le traitement thermique on réalise sur le substrat en défilement et pour chacune desdites zones au moins une mesure d' au moins une propriété dudit revêtement et l'on adapte les conditions du traitement thermique de chaque zone en fonction de la mesure préalablement obtenue pour la zone en question.
L'invention a également pour objet un dispositif pour le traitement thermique d'un revêtement déposé sur un substrat, comprenant au moins un moyen de chauffage en regard duquel le substrat peut défiler, au moins un moyen de mesure d'au moins une propriété dudit revêtement, disposé en amont du ou de chaque moyen de chauffage, et des moyens d'adaptation des conditions du traitement thermique en fonction de la mesure préalablement obtenue.
De préférence, le dispositif comprend au moins deux moyens de chauffage contrôlables indépendamment les uns des autres en regard desquels le substrat peut défiler, chaque moyen de chauffage étant susceptible de traiter une zone différente dudit revêtement, des moyens de mesure locale d' au moins une propriété dudit revêtement dans chacune desdites zones, disposés en amont des moyens de chauffage, et des moyens d'adaptation des conditions du traitement thermique de chaque zone en fonction de la mesure préalablement obtenue pour la zone en question.
Les étapes de mesure et de traitement thermique, réalisées sur le substrat en défilement, sont avantageusement effectuées en ligne, c'est-à-dire sur la même ligne industrielle, au sein du dispositif selon 1 ' invention .
La possibilité de piloter le traitement thermique en fonction des caractéristiques de la couche permet de rendre le procédé plus souple et/ou d'augmenter l'homogénéité du revêtement après traitement. En outre, l'utilisation de plusieurs moyens de chauffage traitant chacune une portion du revêtement et la possibilité de les piloter de manière individuelle en fonction des caractéristiques locales de la portion de revêtement à traiter présentent un grand nombre d' avantages .
Notamment pour des substrats de grande taille, tels que par exemple des panneaux de verre de 6*3,3 m2, l'utilisation de plusieurs moyens de chauffage au lieu d'un seul permet de faciliter la conception, la fabrication, le réglage et la maintenance des moyens de chauffage et des dispositifs associés (par exemple des dispositifs de focalisation lorsque les moyens de chauffage sont des lasers ou des sources microondes, comme on le verra plus en détail dans la suite du texte) . L'utilisation de plusieurs moyens indépendants les uns des autres permet également d'adapter le traitement à des substrats de tailles différentes, ou à des zones à traiter de tailles différentes, par exemple dans ce dernier cas lorsque seule une partie du substrat d'origine doit être utilisée et sera ultérieurement découpée.
Le choix de moyens indépendants et la possibilité de les piloter pour adapter les conditions du traitement thermique en fonction des caractéristiques locales de la couche permettent de s'adapter à des revêtements dont l'homogénéité n'est pas parfaite, ce qui est fréquemment le cas notamment dans le cas des substrats de grande taille, tels que des substrats de 6*3m2 employés dans l'industrie verrière. Il est en effet difficile d'obtenir un revêtement parfaitement homogène sur une surface aussi grande. Par exemple dans le cas de dépôt de revêtement par le procédé de pulvérisation cathodique magnétron, les cathodes peuvent s'user de manière hétérogène. L'hétérogénéité du dépôt, en particulier lorsqu'elle se traduit par une hétérogénéité d'absorption, peut être amplifiée par le traitement thermique, notamment par laser. Le ou chaque moyen de chauffage est avantageusement choisi parmi les lasers, les torches plasma, les sources microondes, les brûleurs, les inducteurs.
Les lasers sont généralement constitués de modules comprenant une ou plusieurs sources laser ainsi que des optiques de mise en forme et de redirection. Les lasers se présentent de préférence sous forme d'une ligne, appelée « ligne laser » dans la suite du texte.
Les sources laser sont typiquement des diodes laser ou des lasers à fibre ou à disque. Les diodes laser permettent d' atteindre de manière économique de fortes densités de puissance par rapport à la puissance électrique d'alimentation pour un faible encombrement. L'encombrement des lasers à fibres est encore plus réduit, et la puissance linéique obtenue peut être encore plus élevée, pour un coût toutefois plus important.
Le rayonnement issu des sources laser peut être continu ou puisé, de préférence continu. Lorsque le rayonnement est puisé, la fréquence de répétition est avantageusement d'au moins 10 kHz, notamment 15 kHz et même 20 kHz de manière à être compatible avec les grandes vitesses de déplacement utilisées.
La longueur d' onde du rayonnement de la ou chaque ligne laser est de préférence comprise dans un domaine allant de 800 à 1100 nm, notamment de 800 à 1000 nm. Des diodes laser de puissance émettant à une longueur d'onde choisie parmi 808 nm, 880 nm, 915 nm, 940 nm ou 980 nm se sont révélées particulièrement bien appropriées.
Les optiques de mise en forme et de redirection comprennent de préférence des lentilles et des miroirs, et sont utilisées comme moyens de positionnement, d'homogénéisation et de focalisation du rayonnement. Les moyens de positionnement ont pour but le cas échéant de disposer selon une ligne les rayonnements émis par les sources laser. Ils comprennent de préférence des miroirs. Les moyens d'homogénéisation ont pour but de superposer les profils spatiaux des sources laser afin d'obtenir une puissance linéique homogène tout au long de la ligne. Les moyens d'homogénéisation comprennent de préférence des lentilles permettant la séparation des faisceaux incidents en faisceaux secondaires et la recombinaison desdits faisceaux secondaires en une ligne homogène. Les moyens de focalisation du rayonnement permettent de focaliser le rayonnement sur le revêtement à traiter, sous la forme d'une ligne de longueur et de largeur voulues. Les moyens de focalisation comprennent de préférence une lentille convergente.
La ou chaque ligne possède une longueur et une largeur. On entend par « longueur » de la ligne la plus grande dimension de la ligne, mesurée sur la surface du revêtement, et par « largeur » la dimension selon une direction transversale à la direction de la plus grande dimension. Comme il est d'usage dans le domaine des lasers, la largeur w de la ligne correspond à la distance (selon cette direction transversale) entre l'axe du faisceau (où l'intensité du rayonnement est maximale) et le point où l'intensité du rayonnement est égale à 1/e2 fois l'intensité maximale. Si l'axe longitudinal de la ligne laser est nommé x, on peut définir une distribution de largeurs selon cet axe, nommée w(x) .
La largeur moyenne de la ou chaque ligne laser est de préférence d'au moins 35 micromètres, notamment comprise dans un domaine allant de 40 à 100 micromètres ou de 40 à 70 micromètres. Dans l'ensemble du présent texte on entend par « moyenne » la moyenne arithmétique. Sur toute la longueur de la ligne, la distribution de largeurs est étroite afin d'éviter toute hétérogénéité de traitement. Ainsi, la différence entre la largeur la plus grande et la largeur la plus petite vaut de préférence au plus 10% de la valeur de la largeur moyenne. Ce chiffre est de préférence d'au plus 5% et même 3%.
La longueur de la ou chaque ligne laser est de préférence d'au moins 10 cm ou 20 cm, notamment comprise dans un domaine allant de 30 à 100 cm, notamment de 30 à 75 cm, voire de 30 à 60 cm. On peut par exemple utiliser, pour un substrat de 3,3 m de large, 11 lignes de 30 cm de longueur .
Les optiques de mise en forme et de redirection, notamment les moyens de positionnement, peuvent être ajustées manuellement ou à l'aide d' actuateurs permettant de régler leur positionnement à distance. Ces actuateurs (typiquement des moteurs ou des cales piézoélectriques) peuvent être commandés manuellement et/ou être réglés automatiquement. Dans ce dernier cas, les actuateurs seront de préférence connectés à des détecteurs ainsi qu'à une boucle de rétroaction.
Au moins une partie des modules laser, voire leur totalité est de préférence disposée en boîte étanche, avantageusement refroidie, notamment ventilée, afin d'assurer leur stabilité thermique.
Les modules laser sont de préférence montés sur une structure rigide, appelée « pont », à base d'éléments métalliques, typiquement en aluminium. La structure ne comprend de préférence pas de plaque de marbre. Le pont est de préférence positionné de manière parallèle aux moyens de convoyage de sorte que le plan focal de la ou chaque ligne laser reste parallèle à la surface du substrat à traiter. De préférence, le pont comprend au moins quatre pieds, dont la hauteur peut être individuellement ajustée pour assurer un positionnement parallèle en toutes circonstances. L'ajustement peut être assuré par des moteurs situés au niveau de chaque pied, soit manuellement, soit automatiquement, en relation avec un capteur de distance. La hauteur du pont peut être adaptée (manuellement ou automatiquement) pour prendre en compte l'épaisseur du substrat à traiter, et s'assurer ainsi que le plan du substrat coïncide avec le plan focal de la ou chaque ligne laser .
La puissance linéique divisée par la racine carrée du rapport cyclique des sources laser est de préférence d'au moins 300 W/cm, avantageusement 350 ou 400 W/cm, notamment 450 W/cm, voire 500 W/cm et même 550 W/cm. La puissance linéique divisée par la racine carrée du rapport cyclique est même avantageusement d'au moins 600 W/cm, notamment 800 W/cm, voire 1000 W/cm. Lorsque le rayonnement laser est continu, le rapport cyclique vaut 1, si bien que ce chiffre correspond à la puissance linéique. La puissance linéique est mesurée à l'endroit où la ou chaque ligne laser est focalisée sur le revêtement. Elle peut être mesurée en disposant un détecteur de puissance le long de la ligne, par exemple un puissance-mètre calorimétrique, tel que notamment le puissance-mètre Beam Finder de la société Cohérent Inc. La puissance est avantageusement répartie de manière homogène sur toute la longueur de la ou chaque ligne. De préférence, la différence entre la puissance la plus élevée et la puissance la plus faible vaut moins de 10% de la puissance moyenne.
La densité d'énergie fournie au revêtement divisée par la racine carrée du rapport cyclique est de préférence d'au moins 20 J/cm2, voire 30 J/cm2. Ici encore, le rapport cyclique vaut 1 lorsque le rayonnement laser est continu.
Afin de renforcer l'efficacité du traitement, il est préférable qu'au moins une partie du rayonnement laser (principal) transmise au travers du substrat et/ou réfléchie par le revêtement soit redirigée en direction dudit substrat pour former au moins un rayonnement laser secondaire, qui de préférence impacte le substrat au même endroit que le rayonnement laser principal, avec avantageusement la même profondeur de foyer et le même profil. La formation du ou de chaque rayonnement laser secondaire met avantageusement en œuvre un montage optique ne comprenant que des éléments optiques choisis parmi les miroirs, les prismes et les lentilles, notamment un montage optique constitué de deux miroirs et d'une lentille, ou d'un prisme et d'une lentille. En récupérant au moins une partie du rayonnement principal perdu et en le redirigeant vers le substrat, le traitement thermique s'en trouve considérablement amélioré. Le choix d'utiliser la partie du rayonnement principal transmise au travers du substrat (mode « transmission ») ou la partie du rayonnement principal réfléchie par le revêtement (mode « réflexion ») , ou éventuellement d'utiliser les deux, dépend de la nature du revêtement et de la longueur d' onde du rayonnement laser.
Lorsque chaque moyen de chauffage est un laser, l'absorption du revêtement à la longueur d'onde du laser est de préférence d' CLU. moins 5"6 notamment 10%. Elle est avantageusement d'au plus 90%, notamment 80% ou 70 ~6 , voire 60% ou 50%, et même 40% ou encore 30%.
Les moyens de chauffage peuvent également être des brûleurs. Les brûleurs peuvent être à combustion externe, au sens où le mélange entre le combustible et le comburant est réalisé au nez du brûleur ou dans le prolongement de ce dernier. Dans ce cas, le substrat est soumis à l'action d'une flamme. Les brûleurs peuvent également être à combustion interne, au sens où le combustible et le comburant sont mélangés à l'intérieur du brûleur : le substrat est alors soumis à l'action de gaz chauds. Tous les cas intermédiaires sont bien entendu possibles, au sens où une partie seulement de la combustion peut intervenir à l'intérieur du brûleur, et l'autre partie à l'extérieur. Certains brûleurs, en particulier les brûleurs aérauliques, c'est-à-dire utilisant l'air comme comburant, possèdent des chambres de pré-mélange dans lesquelles a lieu tout ou partie de la combustion. Dans ce cas, le substrat peut être soumis à l'action d'une flamme et/ou de gaz chauds. Les brûleurs à oxycombustion, c'est-à-dire utilisant de l'oxygène pur, ne contiennent généralement pas de chambre de pré-mélange. Le gaz utilisé pour le flammage peut être un mélange d'un gaz oxydant, notamment choisi parmi l'air, l'oxygène ou leurs mélanges, et d'un gaz combustible, notamment choisi parmi le gaz naturel, le propane, le butane, voire l'acétylène ou l'hydrogène, ou leurs mélanges. L'oxygène est préféré comme gaz oxydant, en particulier en combinaison avec le gaz naturel (méthane) ou le propane, d'une part car il permet d'atteindre des températures plus élevées et par conséquent de raccourcir le traitement et d'éviter la chauffe du substrat, et d'autre part car il permet d'éviter la création d'oxydes d'azote NOx. Pour atteindre les températures souhaitées au niveau de la couche mince, le substrat revêtu est généralement positionné au sein de la flamme visible, notamment au niveau de la zone la plus chaude de la flamme, une partie de la flamme visible s' étendant alors autour de la zone traitée.
Les moyens de chauffage peuvent aussi être des torches plasma. Un plasma est un gaz ionisé généralement obtenu en soumettant un gaz dit « plasmagène » à une excitation telle qu'un fort champ électrique continu ou alternatif (par exemple un arc électrique) . Sous l'action de cette excitation, des électrons sont arrachés aux atomes du gaz et les charges ainsi créées migrent vers les électrodes de charge opposée. Ces charges excitent ensuite d'autres atomes du gaz par collision, créant par effet d'avalanche une décharge homogène ou microfilamentaire ou encore un arc. Les plasmas peuvent être « chauds » (le gaz est alors entièrement ionisé et la température du plasma est de l'ordre de 106oC) , ou « thermiques » (le gaz est presque entièrement ionisé et la température du plasma est de l'ordre de 104oC, cas par exemple des arcs électriques) . Les plasmas contiennent beaucoup d'espèces actives, c'est- à-dire susceptibles d' interagir avec la matière, dont les ions, les électrons ou les radicaux libres. Dans le cas d'une torche plasma, un gaz est insufflé à travers un arc électrique, et le plasma thermique formé est soufflé vers le substrat à traiter. La torche plasma est couramment employée pour déposer des couches minces sur des substrats divers en ajoutant dans le plasma des précurseurs sous forme de poudres. Le gaz insufflé est de préférence de l'azote, de l'air ou de l'argon, comprenant avantageusement une teneur volumique en hydrogène comprise entre 5 et 50%, notamment entre 15 et 30%. Les moyens de chauffage peuvent également être des sources micro-ondes. Les micro-ondes sont des ondes électromagnétiques dont la longueur d'onde est comprise entre 1 mm et 1 m, adaptées au traitement thermique des revêtements diélectriques. Les sources micro-ondes (magnétrons) sont de préférence associées à des guides d'onde rayonnants ou des cavités (monomode ou multimodes) . A titre d'exemple, le substrat peut défiler sous des guides d'onde rayonnants disposés dans un tunnel. Des pièges d'onde constitués de filtres absorbants refroidis par eau sont de préférence disposés en amont et en aval des sources afin d'éviter toute fuite d'ondes vers l'extérieur.
Lorsque le revêtement comprend une couche électroconductrice (cas de l'argent par exemple), le traitement thermique peut être réalisé par induction. Les moyens de chauffage sont alors des inducteurs.
Le chauffage par induction de pièces métalliques est un procédé bien connu pour atteindre de façon rapide et contrôlée des températures élevées au sein de pièces massives conductrices (renforcement des aciers, fusion de zone du silicium...) . Les principales applications concernent les domaines de 1 ' agroalimentaire (chauffage de cuves, cuisson de produits plats sur bandes métalliques, cuisson- extrusion) et de la fabrication des métaux (fusion, réchauffage avant formage, traitement thermique dans la masse, traitement thermique superficiel, traitement des revêtements, soudage, brasage) .
Un courant alternatif parcourant un bobinage (appelé solénoïde ou spire) génère à l'intérieur de celui-ci un champ magnétique oscillant à la même fréquence. Si une pièce conductrice de l'électricité est placée à l'intérieur de la bobine (ou solénoïde) , des courants induits par le champ magnétique s'y développent et chauffent la pièce par effet Joule.
Les courants apparaissent à la surface de la pièce à chauffer. Une profondeur caractéristique appelée épaisseur de peau peut être définie, donnant en première approche l'épaisseur de la couche de courant. L'épaisseur de peau des courants dépend de la nature du métal chauffé et décroît quand la fréquence du courant augmente.
Dans le cas du chauffage d'un substrat isolant recouvert d'une couche conductrice, il est préférable d'utiliser une polarisation à fréquence élevée afin de concentrer l'influence de l'inducteur sur la partie superficielle du matériau. La fréquence est de préférence comprise entre 500 kHz et 5 MHz, notamment entre 1 MHz et 3 MHz. Un inducteur spécialement adapté au traitement de surfaces planes est de préférence employé. La température subie par le revêtement lors du traitement thermique est de préférence d'au moins 300°C, notamment 350°C, voire 400°C.
De préférence, la température du substrat au niveau de la face opposée à la face revêtue ne dépasse pas 100°C, notamment 50 °C et même 30 °C pendant le traitement thermique .
Selon l'invention, plusieurs moyens de chauffage (notamment des lignes laser) sont de préférence utilisés. Le nombre de moyens de chauffage (notamment les lignes laser) est de préférence d'au moins 3, voire 4, ou même 5, ou encore 6, ou 7, voire 8, et même 9, ou encore 10 ou 11, en fonction de la largeur des substrats à traiter. Le nombre de moyens de chauffage est de préférence compris entre 3 et 11 (bornes comprises) , notamment entre 5 et 10 (bornes comprises) .
Il est préférable que les moyens de chauffage soient disposés de sorte que toute la surface de l'empilement puisse être traitée. Plusieurs dispositions sont envisageables selon la taille et la forme des moyens de chauffage. Selon un mode de réalisation préféré, les moyens de chauffage présentent une géométrie linéaire ; il peut s'agir par exemple de brûleurs ou d'inducteurs linéaires ou encore de lignes laser.
Lorsque les moyens de chauffage présentent une telle géométrie linéaire, notamment sont des lignes laser, chaque moyen est de préférence disposé perpendiculairement à la direction de défilement du substrat, ou disposé de manière oblique. Les moyens de chauffage sont généralement parallèles entre eux. Les différents moyens peuvent traiter le substrat simultanément, ou de manière décalée dans le temps. A titres d'exemples, les moyens de chauffage (notamment les lignes laser) peuvent être disposés en forme de V, en quinconce ou encore en épis. Les moyens de chauffage peuvent être disposés en rangs perpendiculaires à la direction de défilement du substrat. Le nombre de rangs est par exemple d'au moins 2, voire 3. Avantageusement, le nombre de rangs n'est pas supérieur à 3 pour limiter l'emprise au sol de la zone de traitement thermique.
Pour s'assurer que le substrat soit concerné par le traitement dans sa totalité, il est préférable de disposer les moyens de chauffage de manière à ce qu' il y ait un recouvrement, c'est-à-dire que certaines zones (de faible dimension, typiquement inférieure à 10 cm, voire 1 cm) soient traitées au moins deux fois.
Dans la direction de défilement du substrat, la distance entre deux moyens de chauffage traitant des zones adjacentes est de préférence telle que les zones de recouvrement aient le temps de retourner à une température proche de l'ambiante pour éviter un endommagement du revêtement. Typiquement, dans le cas où les moyens de chauffage sont des lignes laser, la distance entre deux moyens de chauffage traitant des zones adjacentes est avantageusement d'au moins trois fois la distance parcourue par un point de la couche sous la ligne laser.
Alternativement, les moyens de chauffage peuvent être disposés sur une seule et même ligne (autrement dit le nombre de rangs est de 1) . Dans ce cas, et lorsque les moyens de chauffage sont des lignes laser, il est préférable de choisir un profil permettant d'obtenir une ligne continue et homogène au niveau du revêtement.
De préférence, au moins une propriété du revêtement mesurée avant le traitement thermique est choisie parmi les propriétés optiques, électriques, ou dimensionnelles .
Les propriétés optiques sont avantageusement choisies parmi l'absorption, la réflexion, la transmission, la couleur. La mesure de ces propriétés peut par exemple être réalisée au moyen d'au moins une caméra CCD ou photodiode couplée à au moins une source de lumière, cohérente ou non, et éventuellement à des filtres, prismes ou réseaux. La mesure de ces propriétés peut être réalisée à l'aide d'un spectrophotomètre .
Les propriétés électriques sont avantageusement choisies parmi la résistivité, la conductivité, la résistance carrée. La mesure de ces propriétés peut par exemple être réalisée au moyen d'au moins un capteur inductif ou capacitif sans contact, par exemple des moyens de mesure de la résistance carrée commercialisés par la société Nagy Messsysteme GmbH.
Les propriétés dimensionnelles sont avantageusement choisies parmi la position et l'épaisseur.
Les mesures de ces propriétés sont réalisées sur le substrat en défilement, de préférence sans contact avec le substrat et/ou le revêtement. Ainsi, le substrat défile en continu et sur une même ligne, d'abord en regard de moyens de mesure, lesquels réalisent la mesure locale de la propriété (le cas échéant dans différentes zones du revêtement), puis en regard du ou des moyen (s) de chauffage .
Les moyens de mesure sont avantageusement répartis en une ou plusieurs lignes (de préférence une ligne) , en fonction de leur encombrement. La ou chaque ligne est typiquement disposée perpendiculairement à la direction de défilement du substrat, ou éventuellement en oblique.
Pour chaque zone, on peut réaliser une ou plusieurs mesures, par exemple deux, trois ou encore quatre mesures.
L'adaptation des conditions du traitement thermique (le cas échéant de chaque zone) est de préférence réalisée de manière automatique. Les valeurs mesurées peuvent être par exemple traitées par un algorithme calculant la valeur de correction à appliquer. Un délai approprié est appliqué entre la mesure et la correction, calculé en fonction de la vitesse de défilement et de la distance séparant le moyen de mesure du moyen de chauffage correspondant. A titres d'exemples, l'algorithme peut être mis en œuvre par un circuit électronique, un programme d'ordinateur ou encore un système expert.
L'adaptation peut aussi être réalisée manuellement. II peut être utile de pouvoir adapter les conditions du traitement à la fois de manière automatique et de manière manuelle. Un opérateur peut par exemple arrêter manuellement un moyen de chauffage pour adapter le traitement à un substrat moins large mais conserver une adaptation automatique pour les sources de chaleur encore actives .
L'adaptation des conditions du traitement thermique peut être réalisée de différentes manières.
Avantageusement, on adapte les conditions du traitement thermique en modifiant la puissance délivrée par le moyen de chauffage. De préférence, on adapte les conditions du traitement thermique de chaque zone en modifiant la puissance délivrée par le moyen de chauffage traitant ladite zone. Par exemple, la puissance (l'intensité) de la ou d'une des sources laser peut être modifiée, en fonction de la mesure obtenue pour la propriété mesurée en amont. Dans le cas des brûleurs, la puissance d'un brûleur peut être augmentée en augmentant le débit de gaz. D' autres adaptations des conditions du traitement thermique sont possibles. Par exemple, dans le cas de moyens de chauffage associés à des moyens de focalisation (lignes laser, sources microondes...) l'adaptation peut consister en un déplacement des moyens de focalisation, permettant un déplacement du plan focal. L'adaptation peut également comprendre une modification d'au moins une dimension de la ligne laser pour modifier son intensité au niveau du revêtement, ou une modification de la longueur d'onde du laser (dans le cas de lasers accordables) . L'adaptation du traitement thermique peut également comprendre une modification de la vitesse de défilement du substrat ou un modification du rapport cyclique dans le cas de sources laser puisées. L'adaptation des conditions du traitement thermique peut comprendre l'arrêt d'un des moyens de chauffage, voire de tous les moyens de chauffage. Par exemple, si les moyens de mesure détectent l'absence de revêtement dans une zone donnée (du fait notamment d'une différence de taille de substrat) , le moyen de chauffage (par exemple la ligne laser) en regard de la zone où le revêtement est absent peut être arrêté. En cas d'incident lors du dépôt du revêtement (par exemple dans le cas d'un retournement de cathode conduisant à déposer au moins localement un revêtement de réflectivité très élevée) , la ou les sources laser concernées peuvent être arrêtées (automatiquement, voire manuellement) pour éviter leur endommagement .
Toutes les combinaisons possibles entre les propriétés mesurées (ou les moyens de mesure) et les moyens de chauffage sont bien entendu possibles, même si pour des raisons de concision elles ne sont pas toutes exposées en détail dans la présente description.
Selon un mode de réalisation particulièrement préféré, on mesure localement une propriété optique (notamment l'absorption) du revêtement à l'aide de capteurs optiques et l'on adapte la puissance des lignes laser en fonction de la mesure (d'absorption) obtenue. Ce mode de réalisation est particulièrement adapté au cas des couches absorbantes traitées par des lignes laser, le traitement selon l'invention permettant de compenser des hétérogénéités de composition, d'épaisseur, ou de stœchiométrie de la couche en agissant sur la puissance des sources laser. Lorsque l'absorption est localement plus élevée dans une zone donnée, la puissance de la source laser traitant cette zone est diminuée, et vice versa. A contrario, l'utilisation d'une seule ligne laser, ou de plusieurs lignes traitant de la même manière toute la largeur du substrat, pourrait amplifier les hétérogénéités du revêtement. Il est bien entendu que dans ce mode de réalisation l'absorption n'est pas nécessairement mesurée directement par les capteurs, mais peut par exemple être calculée à l'aide d'une mesure de transmission et de réflexion . Le substrat peut être mis en mouvement à l'aide de tous moyens mécaniques de convoyage, par exemple à l'aide de bandes, de rouleaux, de plateaux en translation. Le système de convoyage permet de contrôler et réguler la vitesse du déplacement. Le moyen de convoyage comprend de préférence un châssis rigide et une pluralité de rouleaux. Le pas des rouleaux est avantageusement compris dans un domaine allant de 50 à 300 mm. Les rouleaux comprennent de préférence des bagues métalliques, typiquement en acier, recouvertes de bandages en matière plastique. Les rouleaux sont de préférence montés sur des paliers à jeu réduit, typiquement à raison de trois rouleaux par palier. Afin d'assurer une parfaite planéité du plan de convoyage, le positionnement de chacun des rouleaux est avantageusement réglable. Les rouleaux sont de préférence mus à l'aide de pignons ou de chaînes, de préférence de chaînes tangentielles , entraînés par au moins un moteur.
Si le substrat est en matière organique polymérique souple, le déplacement peut être réalisé à l'aide d'un système d'avance de films sous forme d'une succession de rouleaux. Dans ce cas, la planéité peut être assurée par un choix adéquat de la distance entre les rouleaux, en tenant compte de l'épaisseur du substrat (et donc de sa flexibilité) et de l'impact que peut avoir le traitement thermique sur la création d'une éventuelle flèche.
La vitesse de déplacement du substrat est avantageusement d'au moins 4 m/min, notamment 5 m/min et même 6 m/min ou 7 m/min, ou encore 8 m/min et même 9 m/min ou 10 m/min. Selon certains modes de réalisation, la vitesse de déplacement du substrat est d'au moins 12 m/min ou 15 m/min, notamment 20 m/min et même 25 ou 30 m/min. Afin d'assurer un traitement qui soit le plus homogène possible, la vitesse de déplacement du substrat varie lors du traitement d'au plus 10% en relatif, notamment 2% et même 1% par rapport à sa valeur nominale.
Toutes les positions relatives du substrat et des moyens de chauffage sont bien entendu possibles, du moment que la surface du substrat peut être convenablement irradiée. Le substrat sera le plus généralement disposé de manière horizontale ou sensiblement horizontale, mais il peut aussi être disposé verticalement, ou selon toute inclinaison possible. Lorsque le substrat est disposé horizontalement, les moyens de chauffage sont généralement disposés de manière à traiter la face supérieure du substrat. Les moyens de chauffage peuvent également traiter la face inférieure du substrat. Dans ce cas, il faut que le système de convoyage du substrat laisse passer la chaleur vers la zone à traiter. C'est le cas par exemple lorsque l'on utilise des rouleaux de convoyage : les rouleaux étant disjoints, il est possible de disposer les moyens de chauffage dans une zone située entre deux rouleaux successifs .
Lorsque les deux faces du substrat sont à traiter, il est possible d'employer plusieurs moyens de chauffage situés de part et d'autre du substrat, que ce dernier soit en position horizontale, verticale, ou selon toute inclinaison. Ces moyens de chauffage peuvent être identiques ou différents, en particulier dans le cas de lasers, leurs longueurs d'onde peuvent être différentes, notamment adaptées à chacun des revêtements à traiter. A titre d'exemple, un premier revêtement (par exemple bas- émissif) situé sur une première face du substrat peut être traité par un premier rayonnement laser émettant par exemple dans le visible ou le proche infrarouge tandis qu'un second revêtement (par exemple un revêtement photocatalytique) situé sur la deuxième face dudit substrat peut être traité par un second rayonnement laser, émettant par exemple dans l'infrarouge. Le dispositif de traitement thermique selon l'invention peut être intégré dans une ligne de dépôt de couches, par exemple une ligne de dépôt par pulvérisation cathodique assistée par champ magnétique (procédé magnétron) , ou une ligne de dépôt chimique en phase vapeur (CVD) , notamment assistée par plasma (PECVD) , sous vide ou sous pression atmosphérique (APPECVD) . La ligne comprend en général des dispositifs de manutention des substrats, une installation de dépôt, des dispositifs de contrôle optique, des dispositifs d'empilage. Les substrats défilent, par exemple sur des rouleaux convoyeurs, successivement devant chaque dispositif ou chaque installation.
Le dispositif de traitement thermique selon l'invention est de préférence situé juste après l'installation de dépôt du revêtement, par exemple à la sortie de l'installation de dépôt. Le substrat revêtu peut ainsi être traité en ligne après le dépôt du revêtement, à la sortie de l'installation de dépôt et avant les dispositifs de contrôle optique, ou après les dispositifs de contrôle optique et avant les dispositifs d'empilage des substrats .
Le dispositif de traitement thermique peut aussi, dans certains cas, être intégré à l'installation de dépôt. Par exemple, des sources laser peuvent être introduites dans une des chambres d'une installation de dépôt par pulvérisation cathodique, notamment dans une chambre où l'atmosphère est raréfiée, notamment sous une pression comprise entre 10~6 mbar et 10~2 mbar. Le dispositif de traitement thermique peut aussi être disposé en dehors de l'installation de dépôt, mais de manière à traiter un substrat situé à l'intérieur de ladite installation. On peut par exemple, dans le cas de l'utilisation de laser, prévoir à cet effet un hublot transparent à la longueur d'onde du rayonnement utilisé, au travers duquel le rayonnement laser viendrait traiter la couche. Il est ainsi possible de traiter une couche (par exemple une couche d'argent) avant le dépôt subséquent d'une autre couche dans la même installation. Que le dispositif de traitement thermique soit en dehors de ou intégré à l'installation de dépôt, ces procédés « en ligne » sont préférables à un procédé en reprise dans lequel il serait nécessaire d'empiler les substrats de verre entre l'étape de dépôt et le traitement thermique.
Les procédés en reprise peuvent toutefois avoir un intérêt dans les cas où la mise en œuvre du traitement thermique selon l'invention est faite dans un lieu différent de celui où est réalisé le dépôt, par exemple dans un lieu où est réalisée la transformation du verre. Le dispositif de traitement thermique peut donc être intégré à d'autres lignes que la ligne de dépôt de couches. Il peut par exemple être intégré à une ligne de fabrication de vitrages multiples (doubles ou triples vitrages notamment) , à une ligne de fabrication de vitrages feuilletés, ou encore à une ligne de fabrication de vitrages bombés et/ou trempés. Les vitrages feuilletés ou bombés ou trempés peuvent être utilisés aussi bien en tant que vitrages bâtiment ou automobile. Dans ces différents cas, le traitement thermique selon l'invention est de préférence réalisé avant la réalisation du vitrage multiple ou feuilleté. Le traitement thermique peut toutefois être mis en œuvre après réalisation du double vitrage ou du vitrage feuilleté.
Lorsque les moyens de chauffage sont des sources laser, le dispositif de traitement thermique est de préférence disposé dans une enceinte close permettant de sécuriser les personnes en évitant tout contact avec le rayonnement laser et d'éviter toute pollution, notamment du substrat, des optiques ou de la zone de traitement.
Le dépôt du revêtement sur le substrat peut être réalisé par tout type de procédé, en particulier des procédés générant des couches majoritairement amorphes ou nano-cristallisées , tels que le procédé de pulvérisation cathodique, notamment assisté par champ magnétique (procédé magnétron) , le procédé de dépôt chimique en phase vapeur assisté par plasma (PECVD) , le procédé d' évaporation sous vide, ou le procédé sol-gel.
Le revêtement est de préférence déposé par pulvérisation cathodique, notamment assistée par champ magnétique (procédé magnétron) .
Pour plus de simplicité, le traitement thermique du revêtement se fait de préférence sous air et/ou à pression atmosphérique. Il est toutefois possible de procéder au traitement thermique de l'empilement au sein même de l'enceinte de dépôt sous vide, par exemple avant un dépôt subséquent . Le substrat est de préférence en verre, en vitrocéramique ou en matière organique polymérique. Il est de préférence transparent, incolore (il s'agit alors d'un verre clair ou extra-clair) ou coloré, par exemple en bleu, gris, vert ou bronze. Le verre est de préférence de type silico-sodo-calcique, mais il peut également être en verre de type borosilicate ou alumino-borosilicate . Les matières organiques polymériques préférées sont le polycarbonate, le polyméthacrylate de méthyle, le polyéthylène téréphtalate (PET) , le polyéthylène naphtalate (PEN) , ou encore les polymères fluorés tels que l'éthylène tétrafluoroéthylène (ETFE) . Le substrat possède avantageusement au moins une dimension supérieure ou égale à 1 m, voire 2 m et même 3 m. L'épaisseur du substrat varie généralement entre 0,5 mm et 19 mm, de préférence entre 0,7 et 9 mm, notamment entre 2 et 8 mm, voire entre 4 et 6 mm. Le substrat peut être plan ou bombé, voire flexible.
Le substrat de verre est de préférence du type flotté, c'est-à-dire susceptible d'avoir été obtenu par un procédé consistant à déverser le verre fondu sur un bain d' étain en fusion (bain « float ») . Dans ce cas, le revêtement à traiter peut aussi bien être déposé sur la face « étain » que sur la face « atmosphère » du substrat. On entend par faces « atmosphère » et « étain », les faces du substrat ayant été respectivement en contact avec l'atmosphère régnant dans le bain float et en contact avec l' étain fondu. La face étain contient une faible quantité superficielle d' étain ayant diffusé dans la structure du verre. Le substrat de verre peut également être obtenu par laminage entre deux rouleaux, technique permettant en particulier d'imprimer des motifs à la surface du verre.
Le traitement thermique est de préférence destiné à améliorer la cristallisation du revêtement, notamment par une augmentation de la taille des cristaux et/ou de la quantité de phase cristalline. Le traitement thermique peut également être destiné à oxyder une couche d'un métal ou d'un oxyde métallique sous-stœchiométrique en oxygène, éventuellement en favorisant la croissance d'une phase cristalline particulière.
De préférence, l'étape de traitement thermique ne met pas en œuvre de fusion, même partielle, du revêtement. Dans les cas où le traitement est destiné à améliorer la cristallisation du revêtement, le traitement thermique permet d'apporter une énergie suffisante pour favoriser la cristallisation du revêtement par un mécanisme physico¬ chimique de croissance cristalline autour de germes déjà présents dans le revêtement, en restant en phase solide. Ce traitement ne met pas en œuvre de mécanisme de cristallisation par refroidissement à partir d'un matériau fondu, d'une part car cela nécessiterait des températures extrêmement élevées, et d'autre part car cela serait susceptible de modifier les épaisseurs ou les indices de réfraction du revêtement, et donc ses propriétés, en modifiant par exemple son aspect optique.
Le revêtement traité le revêtement comprend de préférence au moins une couche mince d'un métal, d'un oxyde, d'un nitrure, d'un carbure, d'un oxynitrure ou de l'un quelconque de leurs mélanges. Il comprend de préférence une couche mince choisie parmi les couches métalliques (notamment à base ou constituées d'argent ou de molybdène), les couches d'oxyde de titane et les couches transparentes électroconductrices .
Les couches transparentes électroconductrices sont typiquement à base d'oxydes mixtes d' étain et d' indium (appelées « ITO ») , à base d'oxydes mixtes d' indium et de zinc (appelées « IZO ») , à base d'oxyde de zinc dopé au gallium ou à l'aluminium, à base d'oxyde de titane dopé au niobium, à base de stannate de cadmium ou de zinc, à base d'oxyde d' étain dopé au fluor et/ou à l'antimoine. Ces différentes couches ont la particularité d'être des couches transparentes et néanmoins conductrices ou semi- conductrices, et sont employées dans de nombreux systèmes où ces deux propriétés sont nécessaires : écrans à cristaux liquides (LCD) , capteurs solaires ou photovoltaïques , dispositifs électrochromes ou électroluminescents
(notamment LED, OLED)... Leur épaisseur, généralement pilotée par la résistance carrée désirée, est typiquement comprise entre 50 et 1000 nm, bornes comprises.
Les couches minces métalliques, par exemple à base d'argent métallique, mais aussi à base de molybdène ou de niobium métalliques, ont des propriétés de conduction électrique et de réflexion des rayonnements infrarouges, d'où leur utilisation dans des vitrages à contrôle solaire, notamment anti-solaires (visant à diminuer la quantité d'énergie solaire entrante) ou à faible émissivité (visant à diminuer la quantité d'énergie dissipée vers l'extérieur d'un bâtiment ou d'un véhicule) . Leur épaisseur physique est typiquement comprise entre 4 et 20 nm (bornes comprises) . Les empilements bas émissifs peuvent fréquemment comprendre plusieurs couches d'argent, typiquement 2 ou 3. La ou chaque couche d'argent est généralement entourée de couches diélectriques la protégeant de la corrosion et permettant d'ajuster l'aspect en réflexion du revêtement. Le molybdène est fréquemment employé comme matériau d'électrodes pour les cellules photovoltaïques à base de CuInxGai_xSe2, où x varie de 0 à 1. Le traitement selon l'invention permet de réduire sa résistivité. D'autres métaux peuvent être traités selon l'invention, comme par exemple le titane, dans le but notamment de l'oxyder et d'obtenir une couche d'oxyde de titane photocatalytique. Lorsque le revêtement à traiter est un empilement bas-émissif, il comprend de préférence, à partir du substrat, un premier revêtement comprenant au moins une première couche diélectrique, au moins une couche d'argent, éventuellement une couche de sur-bloqueur et un deuxième revêtement comprenant au moins une deuxième couche diélectrique .
De préférence, l'épaisseur physique de la ou de chaque couche d'argent est comprise entre 6 et 20 nm. La couche de sur-bloqueur est destinée à protéger la couche d'argent pendant le dépôt d'une couche ultérieure (par exemple si cette dernière est déposée sous atmosphère oxydante ou nitrurante) et pendant un éventuel traitement thermique du type trempe ou bombage . La couche d' argent peut également être déposée sur et en contact avec une couche de sous-bloqueur . L'empilement peut donc comprendre une couche de sur- bloqueur et/ou une couche de sous-bloqueur encadrant la ou chaque couche d'argent.
Les couches de bloqueur (sous-bloqueur et/ou sur- bloqueur) sont généralement à base d'un métal choisi parmi le nickel, le chrome, le titane, le niobium, ou d'un alliage de ces différents métaux. On peut notamment citer les alliages nickel-titane (notamment ceux comprenant environ 50% en poids de chaque métal) ou les alliages nickel-chrome (notamment ceux comprenant 80% en poids de nickel et 20% en poids de chrome) . La couche de sur- bloqueur peut encore être constituée de plusieurs couches superposées, par exemple, en s' éloignant du substrat, de titane puis d'un alliage de nickel (notamment un alliage nickel-chrome) ou l'inverse. Les différents métaux ou alliages cités peuvent également être partiellement oxydés, notamment présenter une sous-stœchiométrie en oxygène (par exemple TiOx ou NiCrOx) . Ces couches de bloqueur ( sous-bloqueur et/ou sur- bloqueur) sont très fines, normalement d'une épaisseur inférieure à 1 nm, pour ne pas affecter la transmission lumineuse de l'empilement, et sont susceptibles d'être partiellement oxydées pendant le traitement thermique selon l'invention. D'une manière générale les couches de bloqueur sont des couches sacrificielles, susceptibles de capter l'oxygène provenant de l'atmosphère ou du substrat, évitant ainsi l'oxydation de la couche d'argent. La première et/ou la deuxième couche diélectrique est typiquement en oxyde (notamment en oxyde d'étain), ou de préférence en nitrure, notamment en nitrure de silicium (en particulier pour la deuxième couche diélectrique, la plus éloignée du substrat) . D'une manière générale, le nitrure de silicium peut être dopé, par exemple avec de l'aluminium ou du bore, afin de faciliter son dépôt par les techniques de pulvérisation cathodique. Le taux de dopage (correspondant au pourcentage atomique par rapport à la quantité de silicium) ne dépasse généralement pas 2%. Ces couches diélectriques ont pour fonction de protéger la couche d'argent des agressions chimiques ou mécaniques et influent également sur les propriétés optiques, notamment en réflexion, de l'empilement, grâce à des phénomènes interférentiels .
Le premier revêtement peut comprendre une couche diélectrique, ou plusieurs couches diélectriques, typiquement 2 à 4. Le deuxième revêtement peut comprendre une couche diélectrique, ou plusieurs couches diélectriques, typiquement 2 à 3. Ces couches diélectriques sont de préférence en un matériau choisi parmi le nitrure de silicium, les oxydes de titane, d'étain ou de zinc, ou l'un quelconque de leurs mélanges ou solutions solides, par exemple un oxyde d'étain et de zinc, ou un oxyde de titane et de zinc. Que ce soit dans le premier revêtement ou dans le deuxième revêtement, l'épaisseur physique de la couche diélectrique, ou l'épaisseur physique globale de l'ensemble des couches diélectriques, est de préférence comprise entre 15 et 60 nm, notamment entre 20 et 50 nm. Le premier revêtement comprend de préférence, immédiatement sous la couche d'argent ou sous l'éventuelle couche de sous-bloqueur, une couche de mouillage dont la fonction est d'augmenter le mouillage et l'accrochage de la couche d'argent. L'oxyde de zinc, notamment dopé à l'aluminium, s'est révélé particulièrement avantageux à cet égard .
Le premier revêtement peut également contenir, directement sous la couche de mouillage, une couche de lissage, qui est un oxyde mixte partiellement voire totalement amorphe (donc de très faible rugosité) , dont la fonction est de favoriser la croissance de la couche de mouillage selon une orientation cristallographique préférentielle, laquelle favorise la cristallisation de l'argent par des phénomènes d'épitaxie. La couche de lissage est de préférence composée d'un oxyde mixte d'au moins deux métaux choisis parmi Sn, Zn, In, Ga, Sb . Un oxyde préféré est l'oxyde d'étain et d' indium dopé à 1 ' antimoine .
Dans le premier revêtement, la couche de mouillage ou l'éventuelle couche de lissage est de préférence déposée directement sur la première couche diélectrique. La première couche diélectrique est de préférence déposée directement sur le substrat. Pour adapter au mieux les propriétés optiques de l'empilement (notamment l'aspect en réflexion) , la première couche diélectrique peut alternativement être déposée sur une autre couche en oxyde ou en nitrure, par exemple en oxyde de titane.
Au sein du deuxième revêtement, la deuxième couche diélectrique peut être déposée directement sur la couche d'argent, ou de préférence sur un sur-bloqueur, ou encore sur d'autres couches en oxyde ou en nitrure, destinées à adapter les propriétés optiques de l'empilement. Par exemple, une couche d'oxyde de zinc, notamment dopé à l'aluminium, ou encore une couche d'oxyde d'étain, peut être disposée entre un sur-bloqueur et la deuxième couche diélectrique, qui est de préférence en nitrure de silicium. L'oxyde de zinc, notamment dopé à l'aluminium, permet d'améliorer l'adhésion entre l'argent et les couches supérieures.
Ainsi, l'empilement traité selon l'invention comprend de préférence au moins une succession ZnO / Ag / ZnO. L'oxyde de zinc peut être dopé à l'aluminium. Une couche de sous-bloqueur peut être disposée entre la couche d'argent et la couche sous-j acente . Alternativement ou cumulativement , une couche de sur-bloqueur peut être disposée entre la couche d'argent et la couche sus-jacente.
Enfin, le deuxième revêtement peut être surmonté d'une surcouche, parfois appelée « overcoat » dans la technique. Dernière couche de l'empilement, donc en contact avec l'air ambiant, elle est destinée à protéger l'empilement contre toutes agressions mécaniques (rayures...) ou chimiques. Cette surcouche est généralement très fine pour ne pas perturber l'aspect en réflexion de l'empilement (son épaisseur est typiquement comprise entre 1 et 5 nm) . Elle est de préférence à base d'oxyde de titane ou d'oxyde mixte d'étain et de zinc, notamment dopé à l'antimoine, déposé sous forme sous-stœchiométrique .
L'empilement peut comprendre une ou plusieurs couches d'argent, notamment deux ou trois couches d'argent. Lorsque plusieurs couches d'argent sont présentes, l'architecture générale présentée ci-avant peut être répétée. Dans ce cas, le deuxième revêtement relatif à une couche d'argent donnée (donc situé au-dessus de cette couche d'argent) coïncide généralement avec le premier revêtement relatif à la couche d'argent suivante.
Les couches minces à base d' oxyde de titane ont la particularité d'être autonettoyantes, en facilitant la dégradation des composés organiques sous l'action de rayonnements ultraviolets et l'élimination des salissures minérales (poussières) sous l'action d'un ruissellement d'eau. Leur épaisseur physique est de préférence comprise entre 2 et 50 nm, notamment entre 5 et 20 nm, bornes comprises.
Les différentes couches citées présentent la particularité commune de voir certaines de leurs propriétés améliorées lorsqu'elles sont dans un état au moins partiellement cristallisé. On cherche généralement à augmenter au maximum le taux de cristallisation de ces couches (la proportion massique ou volumique de matière cristallisée) et la taille des grains cristallins (ou la taille de domaines cohérents de diffraction mesurés par des méthodes de diffraction des rayons X) , voire dans certains cas à favoriser une forme cristallographique particulière.
Dans le cas de l'oxyde de titane, il est connu que l'oxyde de titane cristallisé sous la forme anatase est bien plus efficace en terme de dégradation des composés organiques que l'oxyde de titane amorphe ou cristallisé sous la forme rutile ou brookite.
Il est également connu que les couches d'argent présentant un taux de cristallisation élevé et par conséquent une faible teneur résiduelle en argent amorphe présentent une émissivité et une résistivité plus basses que des couches d'argent majoritairement amorphes. La conductivité électrique et les propriétés de faible émissivité de ces couches sont ainsi améliorées. De même, les couches transparentes conductrices précitées, notamment celles à base d'oxyde de zinc dopé, d' oxyde d' étain dopé au fluor ou d' oxyde d' indium dopé à l'étain présentent une conductivité électrique d'autant plus forte que leur taux de cristallisation est élevé.
De préférence, lorsque le revêtement est conducteur, sa résistance carrée est diminuée d'au moins 10%, voire 15% ou même 20% par le traitement thermique. Il s'agit ici d'une diminution relative, par rapport à la valeur de la résistance carrée avant traitement.
D' autres revêtements peuvent être traités selon l'invention. On peut notamment citer, de manière non limitative, les revêtements à base de (ou constitués de) CdTe ou de chalcopyrites , par exemple du type CuInxGai_xSe2, où x varie de 0 à 1. On peut également citer les revêtements de type émail (par exemple déposé par sérigraphie) , peinture ou laque (typiquement comprenant une résine organique et des pigments) .
Les substrats revêtus obtenus selon l'invention peuvent être utilisés dans des vitrages simples, multiples ou feuilletés, des miroirs, des revêtements muraux en verre. Si le revêtement est un empilement bas émissif, et dans le cas d'un vitrage multiple comportant au moins deux feuilles de verre séparées par une lame de gaz, il est préférable que l'empilement soit disposé sur la face en contact avec ladite lame de gaz, notamment en face 2 par rapport à l'extérieur (c'est-à-dire sur la face du substrat en contact avec l'extérieur du bâtiment qui est en opposée à la face tournée vers l'extérieur) ou en face 3 (c'est-à- dire sur la face du deuxième substrat en partant de l'extérieur du bâtiment tournée vers l'extérieur) . Si le revêtement est une couche photocatalytique, il est de préférence disposé en face 1, donc en contact avec l'extérieur du bâtiment. Les substrats revêtus obtenus selon l'invention peuvent aussi être utilisés dans des cellules ou vitrages photovoltaïques ou des panneaux solaires, le revêtement traité selon l'invention étant par exemple une électrode à base de ZnO : Al ou Ga dans des empilements à base de chalcopyrites (notamment du type CIGS - CuInxGai_xSe2, x variant de 0 à 1) ou à base de silicium amorphe et/ou polycristallin, ou encore à base de CdTe .
Les substrats revêtus obtenus selon l'invention peuvent encore être utilisés dans des écrans de visualisation du type LCD (Liquid Crystal Display) , OLED (Organic Light Emitting Diodes) ou FED (Field Emission Display), le revêtement traité selon l'invention étant par exemple une couche électroconductrice en ITO. Ils peuvent encore être utilisés dans des vitrages électrochromes, la couche mince traitée selon l'invention étant par exemple une couche électroconductrice transparente tel qu'enseignée dans la demande FR-A-2 833 107.
L'invention est illustrée à l'aide des figures et des exemples de réalisation non limitatifs qui suivent.
Les Figures 1 et 2 illustrent schématiquement et en vue de haut deux modes de réalisation de l'invention.
Le substrat 1 muni de son revêtement (non- représenté) est en défilement dans le sens matérialisé par la flèche dans un dispositif de traitement thermique. Ce dispositif comprend des moyens de mesure locale de propriétés 3a à 3g disposés selon une ligne perpendiculaire à la direction de défilement du substrat 1, des moyens de chauffage présentant une géométrie linéaire 2a à 2g, typiquement des lignes laser, ici au nombre de sept. Dans le cas de la Figure 1, les moyens de chauffage 2a à 2g sont disposés en quinconce selon deux rangs perpendiculaires à la direction de déplacement du substrat 1. Dans le cas de la Figure 2, les moyens de chauffage 2a à 2g sont disposés sur un rang, de manière à former une seule ligne.
Le dispositif comprend également des moyens d'adaptation du traitement thermique, par exemple des moyens permettant d'adapter la puissance des lignes laser 2a à 2g. Les moyens de mesure 3a à 3g sont par exemple des capteurs optiques permettant de mesurer l'absorption locale du revêtement.
Les différents points du substrat défilent d'abord en regard des moyens de mesure locale 3a à 3g, permettant une mesure par zone, ici sept mesures. Lorsque chacune de ces zones se retrouve en regard du moyen de chauffage 2a à 2g correspondant, le traitement thermique est adapté en fonction de la mesure effectuée dans la zone. Si, par exemple, le capteur 3c a permis de constater une baisse d'absorption dans une zone donnée, la puissance du laser 2c est augmentée quand la zone en question vient en regard de ce laser.
Dans un exemple selon l'invention, on a traité des substrats de verre silico-sodo-calcique flotté vendu sous la dénomination SGG Planilux par la demanderesse, d'une dimension de 6*3,2 m2 et de 4 mm d'épaisseur, et revêtus par le procédé de pulvérisation cathodique d'un empilement. Cet empilement était du type bas émissif comprenant une couche mince d'argent, le but de traitement thermique étant de réduire l'émissivité de l'empilement grâce à une meilleure cristallisation de la couche. L'absorption moyenne du revêtement (avant traitement thermique) était de 8% à la longueur d'onde des lasers employés. Cette absorption n'était pas identique sur toute la largeur des substrats, du fait en particulier de différences d'usure au niveau des cathodes. Ainsi, dans le cas des substrats traités pour cet exemple de réalisation, l'absorption était-elle de 9% sur un bord et de 7,5% au tiers de la largeur en partant du bord opposé.
Le dispositif de traitement thermique était du type de celui de la Figure 1, à ceci près que l'on a utilisé 11 lignes laser de 30 cm de long chacune. La distance entre les deux rangs de lignes laser (mesurée dans la direction de défilement du substrat) était de 1 mm. Ces lignes laser se chevauchaient très légèrement de sorte que certains points du revêtement ont été traités successivement par deux lignes adjacentes. Compte tenu toutefois de la distance entre les rangs de lignes laser, les zones de recouvrement avaient le temps de refroidir à l'ambiante avant de subir le traitement par les lasers du deuxième rang . La largeur des lignes laser était de 40 ym et leur puissance linéique de 450 W/cm. Les sources laser étaient des diodes laser InGaAs utilisées en rayonnement continu, à une longueur d'onde de 980 nm. Dans ces conditions, pour une vitesse de défilement de 10 m/minute, l'élévation de température au niveau du revêtement était de 450 °C.
Onze capteurs permettant de mesurer l'absorption locale du revêtement ont été disposés selon une ligne en amont des lignes laser à environ 50 cm de ces dernières. Les capteurs, commercialisés par la société Optoplex, comprenaient des lampes et des photodiodes. Comme dans le cas de la Figure 1, chacun des capteurs permettait de déterminer l'absorption dans une zone traitée ensuite par une ligne laser.
L'adaptation du traitement a ici consisté à corriger la puissance des lasers en fonction de l'absorption mesurée en amont. La correction était proportionnelle, la puissance des lasers, via le courant envoyé aux diodes laser, étant diminuée proportionnellement à l'augmentation d'absorption et inversement. Un délai était implémenté entre la mesure et la correction, la durée de ce délai correspondant au temps nécessaire au parcours de la distance entre les capteurs et les lignes laser.
La correction était linéaire, au sens où une baisse de 1% de l'absorption était compensée par une augmentation de 1% de la puissance du laser. Ainsi, lorsque l'absorption mesurée localement par un des capteurs n'était que de 7%, la puissance linéique de la ligne laser correspondante était augmentée à environ 500 W/cm. Inversement, au niveau du bord où l'absorption était de 9%, la puissance linéique a été diminuée à 400 W/cm.

Claims

REVENDICATIONS
1. Procédé d'obtention d'un substrat (1) muni sur au moins une de ses faces d'un revêtement, dans lequel on dépose ledit revêtement sur ledit substrat (1) puis l'on traite thermiquement ledit revêtement à l'aide d'au moins un moyen de chauffage (2a) en regard duquel le substrat (1) défile, le procédé étant tel qu'avant le traitement thermique on réalise sur le substrat (1) en défilement au moins une mesure d' au moins une propriété dudit revêtement et l'on adapte les conditions du traitement thermique en fonction de la mesure préalablement obtenue.
2. Procédé selon la revendication précédente, dans lequel on traite thermiquement le revêtement à l'aide d'au moins deux moyens de chauffage (2a, 2b) contrôlables indépendamment les uns des autres et en regard desquels le substrat (1) défile, chaque moyen de chauffage (2a, 2b) traitant une zone différente dudit revêtement, le procédé étant en outre tel qu'avant le traitement thermique on réalise sur le substrat (1) en défilement et pour chacune desdites zones au moins une mesure d' au moins une propriété dudit revêtement et l'on adapte les conditions du traitement thermique de chaque zone en fonction de la mesure préalablement obtenue pour la zone en question.
3. Procédé selon l'une des revendications précédentes, tel que le ou chaque moyen de chauffage (2a, 2b) est choisi parmi les lasers, les torches plasma, les sources microondes, les brûleurs, les inducteurs.
4. Procédé selon la revendication précédente, tel que les lasers (2a, 2b) se présentent sous forme d'une ligne .
5. Procédé selon l'une des revendications précédentes, tel qu'au moins une propriété du revêtement mesurée avant le traitement thermique est choisie parmi les propriétés optiques, électriques ou dimensionnelles .
6. Procédé selon la revendication précédente, tel que les propriétés optiques sont choisies parmi l'absorption, la réflexion, la transmission, la couleur.
7. Procédé selon la revendication 5, tel que les propriétés électriques sont choisies parmi la résistivité, la conductivité, la résistance carrée.
8. Procédé selon l'une des revendications précédentes, tel que l'adaptation des conditions du traitement thermique est réalisée de manière automatique.
9. Procédé selon l'une des revendications précédentes, tel que l'on adapte les conditions du traitement thermique en modifiant la puissance délivrée par le ou chaque moyen de chauffage (2a) .
10. Procédé selon l'une des revendications précédentes, tel que le substrat (1) est en verre, en vitrocéramique ou en matière organique polymérique.
11. Procédé selon l'une des revendications précédentes, tel que le revêtement comprend au moins une couche mince d'un métal, d'un oxyde, d'un nitrure, d'un carbure, d'un oxynitrure ou de l'un quelconque de leurs mélanges .
12. Procédé selon la revendication précédente, tel que le revêtement comprend au moins une couche à base d' argent .
13. Procédé selon l'une des revendications précédentes, tel que l'étape de traitement thermique ne met pas en œuvre de fusion, même partielle, du revêtement.
14. Dispositif pour le traitement thermique d'un revêtement déposé sur un substrat (1), comprenant au moins un moyen de chauffage (2a) en regard duquel le substrat (1) peut défiler, au moins un moyen de mesure (3a) d'au moins une propriété dudit revêtement, disposé en amont du ou de chaque moyen de chauffage (2a), et des moyens d'adaptation des conditions du traitement thermique en fonction de la mesure préalablement obtenue.
15. Dispositif selon la revendication précédente, comprenant au moins deux moyens de chauffage (2a, 2b) contrôlables indépendamment les uns des autres en regard desquels le substrat (1) peut défiler, chaque moyen de chauffage (2a, 2b) étant susceptible de traiter une zone différente dudit revêtement, des moyens de mesure locale (3a, 3b) d'au moins une propriété dudit revêtement dans chacune desdites zones, disposés en amont des moyens de chauffage (2a, 2b), et des moyens d'adaptation des conditions du traitement thermique de chaque zone en fonction de la mesure préalablement obtenue pour la zone en question .
PCT/FR2014/050090 2013-01-18 2014-01-17 Procede d'obtention d'un substrat muni d'un revêtement WO2014111664A1 (fr)

Priority Applications (9)

Application Number Priority Date Filing Date Title
EP14705823.4A EP2946027A1 (fr) 2013-01-18 2014-01-17 Procede d'obtention d'un substrat muni d'un revêtement
BR112015015827A BR112015015827A2 (pt) 2013-01-18 2014-01-17 processo de obtenção de um substrato munido de um revestimento
KR1020157021894A KR20150108383A (ko) 2013-01-18 2014-01-17 코팅이 구비된 기판을 얻는 방법
EA201591347A EA201591347A1 (ru) 2013-01-18 2014-01-17 Способ получения подложки, снабженной покрытием
MX2015009065A MX2015009065A (es) 2013-01-18 2014-01-17 Proceso para obtener un sustrato equipado con un revestimiento.
CN201480005046.0A CN104903489A (zh) 2013-01-18 2014-01-17 用于获得提供有涂层的基材的方法
CA2896742A CA2896742A1 (fr) 2013-01-18 2014-01-17 Procede d'obtention d'un substrat muni d'un revetement
JP2015553149A JP6640561B2 (ja) 2013-01-18 2014-01-17 コーティングを備えた基材を得る方法
US14/761,749 US20160010212A1 (en) 2013-01-18 2014-01-17 Process for obtaining a substrate equipped with a coating

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1350453 2013-01-18
FR1350453A FR3001160B1 (fr) 2013-01-18 2013-01-18 Procede d'obtention d'un substrat muni d'un revetement

Publications (1)

Publication Number Publication Date
WO2014111664A1 true WO2014111664A1 (fr) 2014-07-24

Family

ID=48289293

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2014/050090 WO2014111664A1 (fr) 2013-01-18 2014-01-17 Procede d'obtention d'un substrat muni d'un revêtement

Country Status (11)

Country Link
US (1) US20160010212A1 (fr)
EP (1) EP2946027A1 (fr)
JP (2) JP6640561B2 (fr)
KR (1) KR20150108383A (fr)
CN (1) CN104903489A (fr)
BR (1) BR112015015827A2 (fr)
CA (1) CA2896742A1 (fr)
EA (1) EA201591347A1 (fr)
FR (1) FR3001160B1 (fr)
MX (1) MX2015009065A (fr)
WO (1) WO2014111664A1 (fr)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017032947A1 (fr) * 2015-08-25 2017-03-02 Saint-Gobain Glass France Appareil laser comprenant plusieurs modules laser generant chacun une ligne, les lignes se recouvrant avec un decalage dans le sens de la largeur
FR3070387A1 (fr) * 2017-08-30 2019-03-01 Saint-Gobain Glass France Dispositif de traitement thermique ameliore
US10822270B2 (en) 2018-08-01 2020-11-03 Guardian Glass, LLC Coated article including ultra-fast laser treated silver-inclusive layer in low-emissivity thin film coating, and/or method of making the same
JP2021080160A (ja) * 2014-10-29 2021-05-27 キングス メタル ファイバー テクノロジーズ カンパニー, リミテッドKing’S Metal Fiber Technologies Co., Ltd. コンピュータ

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3048244B1 (fr) * 2016-02-26 2018-03-16 Saint-Gobain Glass France Procede de gravure selective d'une couche ou d'un empilement de couches sur substrat verrier
DE102016223242A1 (de) * 2016-11-24 2018-05-24 Robert Bosch Gmbh Verfahren, Vorrichtung und Steuereinheit zum metallischen Beschichten einer Oberfläche eines Bauteils aus einem Dielektrikum
KR102006060B1 (ko) * 2017-02-14 2019-09-25 주식회사 코윈디에스티 로이유리 열처리 방법 및 시스템
KR102061424B1 (ko) * 2018-07-27 2019-12-31 주식회사 코윈디에스티 로이 유리 어닐링 장치
JP7162297B2 (ja) * 2018-08-08 2022-10-28 キレスト株式会社 カーボン基材上に金属酸化物が固定化された複合体の製造方法
GB201902032D0 (en) * 2019-02-14 2019-04-03 Pilkington Group Ltd Apparatus and process for determining the distance between a glass substrate and a coater
US10996165B1 (en) * 2020-03-19 2021-05-04 The Boeing Company Apparatus and method for measuring UV coating effectiveness
US20230194435A1 (en) * 2020-05-26 2023-06-22 Saint-Gobain Glass France Method for estimating a quality function of a mono- or multi-layered coated transparent substrate
CN113321516A (zh) * 2021-07-22 2021-08-31 清大赛思迪新材料科技(北京)有限公司 一种陶瓷涂料的微波烧结法
CN114702252B (zh) * 2022-04-29 2024-06-25 上海耀皮玻璃集团股份有限公司 一种含有晶态银层的低辐射镀膜夹层玻璃及其制备方法和用途

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008096089A2 (fr) * 2007-01-05 2008-08-14 Saint-Gobain Glass France Procede de depot de couche mince et produit obtenu
DE102007009924A1 (de) * 2007-02-27 2008-08-28 Carl Zeiss Laser Optics Gmbh Durchlaufbeschichtungsanlage, Verfahren zur Herstellung kristalliner Dünnschichten und Solarzellen sowie Solarzelle
US20100024865A1 (en) * 2007-02-27 2010-02-04 Carl Zeiss Laser Optics Gmbh Continuous coating installation, methods for producing crystalline solar cells, and solar cell

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61176012A (ja) * 1985-01-31 1986-08-07 日立コンデンサ株式会社 透明電極の製造方法
JPS63454A (ja) * 1986-06-20 1988-01-05 Konica Corp 透明導電性フイルムの製造方法
JPH0643176Y2 (ja) * 1989-09-04 1994-11-09 トヨタ自動車株式会社 インライン式成膜装置
JPH03184216A (ja) * 1989-12-12 1991-08-12 Fujitsu Ltd 透明導電膜の形成方法
JPH0414705A (ja) * 1990-05-07 1992-01-20 Toyobo Co Ltd 透明導電膜およびその製造方法
JPH0417212A (ja) * 1990-05-10 1992-01-22 Toyobo Co Ltd 透明導電膜とその製法
FR2683086B1 (fr) * 1991-10-29 1997-01-03 Alsthom Cge Alcatel Procede de fabrication d'un conducteur souple supraconducteur a haute temperature critique.
JP3712435B2 (ja) * 1995-02-16 2005-11-02 株式会社シンクロン 真空蒸着装置
US7741131B2 (en) * 2007-05-25 2010-06-22 Electro Scientific Industries, Inc. Laser processing of light reflective multilayer target structure
JP5046890B2 (ja) * 2007-11-29 2012-10-10 株式会社コベルコ科研 Ag系スパッタリングターゲット
FR2929938B1 (fr) * 2008-04-11 2010-05-07 Saint Gobain Procede de depot de couche mince.
US8980008B2 (en) * 2008-04-15 2015-03-17 Hanergy Hi-Tech Power (Hk) Limited Apparatus and methods for manufacturing thin-film solar cells
FR2946335B1 (fr) * 2009-06-05 2011-09-02 Saint Gobain Procede de depot de couche mince et produit obtenu.
JP2012011402A (ja) * 2010-06-30 2012-01-19 Sharp Corp ワークの加工方法、ワークの加工用光照射装置およびそれに用いるプログラム
JP5122670B2 (ja) * 2010-11-05 2013-01-16 日東電工株式会社 透明導電性フィルムの製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008096089A2 (fr) * 2007-01-05 2008-08-14 Saint-Gobain Glass France Procede de depot de couche mince et produit obtenu
DE102007009924A1 (de) * 2007-02-27 2008-08-28 Carl Zeiss Laser Optics Gmbh Durchlaufbeschichtungsanlage, Verfahren zur Herstellung kristalliner Dünnschichten und Solarzellen sowie Solarzelle
US20100024865A1 (en) * 2007-02-27 2010-02-04 Carl Zeiss Laser Optics Gmbh Continuous coating installation, methods for producing crystalline solar cells, and solar cell

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021080160A (ja) * 2014-10-29 2021-05-27 キングス メタル ファイバー テクノロジーズ カンパニー, リミテッドKing’S Metal Fiber Technologies Co., Ltd. コンピュータ
WO2017032947A1 (fr) * 2015-08-25 2017-03-02 Saint-Gobain Glass France Appareil laser comprenant plusieurs modules laser generant chacun une ligne, les lignes se recouvrant avec un decalage dans le sens de la largeur
FR3040319A1 (fr) * 2015-08-25 2017-03-03 Saint Gobain Appareil laser modulaire
FR3070387A1 (fr) * 2017-08-30 2019-03-01 Saint-Gobain Glass France Dispositif de traitement thermique ameliore
WO2019043334A1 (fr) * 2017-08-30 2019-03-07 Saint-Gobain Glass France Dispositif de traitement thermique amélioré
US10822270B2 (en) 2018-08-01 2020-11-03 Guardian Glass, LLC Coated article including ultra-fast laser treated silver-inclusive layer in low-emissivity thin film coating, and/or method of making the same
US11236014B2 (en) 2018-08-01 2022-02-01 Guardian Glass, LLC Coated article including ultra-fast laser treated silver-inclusive layer in low-emissivity thin film coating, and/or method of making the same

Also Published As

Publication number Publication date
CN104903489A (zh) 2015-09-09
JP2016510297A (ja) 2016-04-07
FR3001160B1 (fr) 2016-05-27
KR20150108383A (ko) 2015-09-25
BR112015015827A2 (pt) 2017-07-11
CA2896742A1 (fr) 2014-07-24
US20160010212A1 (en) 2016-01-14
JP2019089698A (ja) 2019-06-13
EA201591347A1 (ru) 2015-12-30
JP6640561B2 (ja) 2020-02-05
MX2015009065A (es) 2015-09-23
FR3001160A1 (fr) 2014-07-25
EP2946027A1 (fr) 2015-11-25

Similar Documents

Publication Publication Date Title
WO2014111664A1 (fr) Procede d'obtention d'un substrat muni d'un revêtement
FR2972447B1 (fr) Procede d'obtention d'un substrat muni d'un revetement
EP2839054B1 (fr) Procede d'obtention d'un substrat revetu
EP2961712B1 (fr) Procede de traitement thermique d'un revêtement
EP3036352B1 (fr) Procede d'obtention d'un substrat muni d'un revetement comprenant une couche mince metallique discontinue
EP3057914A1 (fr) Procede d'obtention d'un substrat revetu par un empilement comprenant une couche d'oxyde transparent conducteur
EP2438024B1 (fr) Procede de depot de couche mince
EP3003631B1 (fr) Procede d'obtention d'un substrat muni d'un revetement
EP2598454A1 (fr) Procede d'obtention d'un materiau comprenant un substrat muni d'un revetement
EP2792650A1 (fr) Procédé de dépôt de couche mince et produit obtenu
CA2952751A1 (fr) Vitrage anticondensation
EP2406196A1 (fr) Procédé de dépôt de couche mince

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14705823

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2014705823

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2896742

Country of ref document: CA

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112015015827

Country of ref document: BR

WWE Wipo information: entry into national phase

Ref document number: MX/A/2015/009065

Country of ref document: MX

ENP Entry into the national phase

Ref document number: 2015553149

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 15173371

Country of ref document: CO

ENP Entry into the national phase

Ref document number: 20157021894

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 201591347

Country of ref document: EA

ENP Entry into the national phase

Ref document number: 112015015827

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20150630