WO2017032947A1 - Appareil laser comprenant plusieurs modules laser generant chacun une ligne, les lignes se recouvrant avec un decalage dans le sens de la largeur - Google Patents

Appareil laser comprenant plusieurs modules laser generant chacun une ligne, les lignes se recouvrant avec un decalage dans le sens de la largeur Download PDF

Info

Publication number
WO2017032947A1
WO2017032947A1 PCT/FR2016/052104 FR2016052104W WO2017032947A1 WO 2017032947 A1 WO2017032947 A1 WO 2017032947A1 FR 2016052104 W FR2016052104 W FR 2016052104W WO 2017032947 A1 WO2017032947 A1 WO 2017032947A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
lines
elementary
line
laser lines
Prior art date
Application number
PCT/FR2016/052104
Other languages
English (en)
Inventor
Brice DUBOST
Emmanuel Mimoun
Lorenzo CANOVA
Nicolas DESBOEUFS
Original Assignee
Saint-Gobain Glass France
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to CA2995655A priority Critical patent/CA2995655A1/fr
Application filed by Saint-Gobain Glass France filed Critical Saint-Gobain Glass France
Priority to CN201680062429.0A priority patent/CN108136542A/zh
Priority to KR1020187008014A priority patent/KR20180043323A/ko
Priority to AU2016311313A priority patent/AU2016311313A1/en
Priority to JP2018510353A priority patent/JP2018529523A/ja
Priority to MX2018002260A priority patent/MX2018002260A/es
Priority to BR112018003218-2A priority patent/BR112018003218A2/pt
Priority to EP16763921.0A priority patent/EP3341154A1/fr
Priority to US15/754,869 priority patent/US20180264593A1/en
Priority to RU2018110269A priority patent/RU2018110269A/ru
Publication of WO2017032947A1 publication Critical patent/WO2017032947A1/fr
Priority to ZA2018/01194A priority patent/ZA201801194B/en
Priority to CONC2018/0001868A priority patent/CO2018001868A2/es

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/073Shaping the laser spot
    • B23K26/0738Shaping the laser spot into a linear shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/0604Shaping the laser beam, e.g. by masks or multi-focusing by a combination of beams
    • B23K26/0608Shaping the laser beam, e.g. by masks or multi-focusing by a combination of beams in the same heat affected zone [HAZ]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • B23K26/0648Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms comprising lenses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/067Dividing the beam into multiple beams, e.g. multifocusing
    • B23K26/0676Dividing the beam into multiple beams, e.g. multifocusing into dependently operating sub-beams, e.g. an array of spots with fixed spatial relationship or for performing simultaneously identical operations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/073Shaping the laser spot
    • B23K26/0732Shaping the laser spot into a rectangular shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/083Devices involving movement of the workpiece in at least one axial direction
    • B23K26/0838Devices involving movement of the workpiece in at least one axial direction by using an endless conveyor belt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/352Working by laser beam, e.g. welding, cutting or boring for surface treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/352Working by laser beam, e.g. welding, cutting or boring for surface treatment
    • B23K26/359Working by laser beam, e.g. welding, cutting or boring for surface treatment by providing a line or line pattern, e.g. a dotted break initiation line
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • G02B27/0905Dividing and/or superposing multiple light beams
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4012Beam combining, e.g. by the use of fibres, gratings, polarisers, prisms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/18Sheet panels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/30Organic material
    • B23K2103/42Plastics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/50Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26
    • B23K2103/52Ceramics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/50Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26
    • B23K2103/54Glass

Definitions

  • the present invention relates to a laser apparatus for annealing coatings deposited on substrates of large width formed of a plurality of juxtaposable laser modules without particular limitation.
  • Laser annealing is used to heat thin coatings at high temperatures, on the order of several hundred degrees, while preserving the underlying substrate.
  • the scroll speeds are of course preferably the highest possible, preferably at least several meters per minute.
  • a first solution for combining the elementary laser lines consists in arranging them on distinct lines, for example staggered or in "bird's eye", without there being any overlap zone between the elementary laser lines, so as to treat the entire width of the substrate.
  • each of the points on the width of the substrate passes at least once under an elementary laser line.
  • Another solution is to exactly align the elementary laser lines with each other and partially overlap them in the length direction while choosing the linear power profiles of the elementary laser lines as they add up to form a homogeneous line. (ie a line width and a constant linear power profile along the entire length of the line). It is generally proposed for the elementary laser lines linear power profiles in the form of a "hat-slap" (in English top-hat) with a very extensive central plateau where the power is strong and constant and, on both sides. other of this plateau, slopes descending steeply, as for example in US 6717105. The choice of this type of profile minimizes the overlap zone between two adjacent elementary laser lines but requires a very precise positioning of the elementary laser lines .
  • WO 2015/059388 proposes to reduce the extent of the high-power central plateau of the elementary laser lines.
  • the slope of the two sides of the power profile of the elementary laser lines is lower. This makes it possible to reduce the impact of a positioning error of the elementary laser lines on the density profile of the laser line obtained by combining the elementary laser lines.
  • the intensity gradient on the sides of the power profiles varies from one elementary laser line to another. These differences in power profiles between the elementary laser lines make the laser lines Elementals are not perfectly complementary to each other.
  • This generates overcurrents and / or power sub-intensities at the overlap areas between the elementary laser lines and causes an inhomogeneity of treatment of the parts of the substrate passing under these overlapping areas relative to the rest of the substrate. For some coatings, this inhomogeneity of treatment is sufficient to cause visible defects on the final product.
  • the present invention proposes a new way of combining the elementary laser lines which makes it possible to guarantee a better homogeneity of treatment in the overlapping zones of the elementary laser lines. More specifically, the present invention relates to a laser apparatus comprising:
  • said laser modules are positioned so that the generated elementary laser lines are substantially parallel to each other and combine into a single laser line, each elementary line having a lengthwise overlap with an adjacent elementary laser line;
  • the conveying means allow the substrate to travel perpendicularly to the single laser line
  • FIG. 1 represents an example of elementary laser line (A) and its corresponding power profile (B).
  • FIG. 2 represents examples of overlap zones between two elementary laser lines without offset (A) and with offset (B).
  • FIG. 3 represents examples of profile of the merit factor at the overlap zone of two elementary laser lines without offset (A) and with offset (B).
  • the widening of the single laser line at the level of the recovery zones makes it possible, however, to improve the homogeneity of the treatment despite the increase in the duration of the treatment. It seems that the distribution over a longer period of over-currents, caused by the overlap of power profiles of two adjacent elementary laser lines that would not be perfectly complementary, is less detrimental to the homogeneity of the treatment. More particularly, the increase of the width of the single laser line at the level of the overlapping zones makes it possible to reduce, at the level of the recovery zones, the variation of a merit factor F, defined in the present application as being the ratio of the linear power on the square root of the width of the line. The Applicant has indeed demonstrated that the homogeneity of the heat treatment by the single laser line can be correlated with the homogeneity of the merit factor F.
  • the merit factor F at a point of a laser line is determined by the following formula:
  • w and P are respectively the width of the laser line at this given point and the local linear power (cumulated over the entire width) of the laser line at this given point.
  • a point of the laser line in the sense of the present invention is meant “at a given position” along the laser line.
  • a point of the laser line is likened to a position on the longitudinal axis x of the laser line (that is to say in the work plane and perpendicular to the direction of the scroll).
  • the "local linear power" P at a given point of a laser line designates the power delivered by the module over the entire width of the laser line at this given point.
  • the dimension, measured at this point given in the transverse direction y of the laser line (that is to say, and parallel to the direction of the scrolling), is referred to as "width at a given point" w of a laser line.
  • the laser apparatus preferably comprises at least 3 modules, in particular at least 5 modules, or even at least 10 modules, each laser module generating an elementary laser line focused at the working plane which corresponds to the plane of the coating to be annealed, c 'is, generally say on the upper or lower surface of the substrate.
  • the laser modules are assembled and mounted on the laser apparatus so that the laser beams forming the laser lines intersect the work plane with a non-zero angle relative to the normal to the work plane, typically greater than 2 ° and less than 20 °, preferably less than 10 °.
  • each elementary laser line has a length L and a width W.
  • the term "length" L of a laser line is the dimension, measured in the longitudinal direction x, of a zone having a power of at least 1 / e 2 times the maximum power of the laser line.
  • the "average width" W of a laser line also called simply “width" of a laser line as opposed to the width at a point w of the laser line, is defined by the arithmetic mean of the widths at each of the points of the laser line. the laser line.
  • the distribution of widths w (x) is narrow the whole length of a line.
  • the variation of the width distribution w (x) along the laser line does not vary by more than 10%, preferably not more than 5%, more preferably not more than 3%, with respect to the average width of the laser line.
  • the elementary laser lines generally have a length and a width substantially identical to each other.
  • the elementary laser lines typically have a length of 10 to 100 cm, preferably 20 to 75 cm, more preferably 30 to 60 cm, and a width of 10 to 100 ⁇ , preferably 40 to 75 ⁇ .
  • the elementary laser lines typically have a linear power profile having a central plate p and two lateral flanks / as schematically illustrated in FIG.
  • the term "linear power profile" of a laser line is the distribution over the entire length of the laser line of the local linear power P as a function of the position on the line. laser.
  • the longitudinal axis being named x, the linear power profile is thus defined by P (x).
  • the central plate has a substantially constant power, and each lateral flank corresponds to a power gradient.
  • the central plateau generally represents at least 50%, preferably 70 to 98%, more preferably 80 to 96%, of the length of the elementary laser line.
  • the width of an elementary laser line is substantially constant along the central plate.
  • the lateral flanks generally represent each independently less than 25%, preferably from 1 to 15%, more preferably from 2 to 10%, of the length of the elementary laser line.
  • the lateral flanks preferably have substantially the same length.
  • the elementary laser lines are abutted to one another in the direction of their lengths so as to form a single continuous laser line.
  • the single laser line typically has a length greater than 1.2 m, preferably greater than 2 m, more preferably greater than 3 m.
  • continuous laser line is meant that there is a path from one end to the other along the single laser line on which the power is never less than 90%> of the maximum power of the line of single laser.
  • two adjacent elementary laser lines have a covering zone.
  • overlap area is meant an area in which two adjacent elementary lines are superimposed.
  • covering is the dimension of the overlap area measured in projection on the longitudinal axis x. The offset is defined with respect to a reference position in which the elementary laser lines are exactly aligned.
  • two adjacent elementary laser lines LAI and LA2 are considered to be exactly aligned when, at the level of the overlap zone between the two adjacent elementary laser lines, the centroids of the intensity distributions C1 and C2 of the two elementary laser lines projected on the transverse axis y have an identical coordinate.
  • the "shift" D between two adjacent elementary laser lines is defined as the distance between the projections, on the transverse axis y, of the barycentres of the powers of the ends of the two adjacent elementary laser lines participating in the overlap zone between these two lines.
  • a barycentre of intensity distributions is defined by the point having as coordinates the average of the coordinates, weighted by the value of the intensity distributions, of all the points of the zone considered.
  • each of the elementary lines LAI and LA2 an envelope line El, respectively E2, defined by the contour of the zone having a power at least equal to 1 / e 2 times the maximum power of the laser line.
  • the envelope lines then have two points of intersection I and F.
  • the overlap R can be defined by the distance between the projections of the points I and F on the longitudinal axis x.
  • the offset D can be defined by the difference between the half-sum of the average widths of the adjacent elementary laser lines and the distance between the projections of the points I and F on the transverse axis y-
  • the overlap between two adjacent elementary laser lines is generally at least equal to the shortest of the lateral flanks of said two adjacent elementary laser lines at the overlap zone.
  • the overlap is generally less than 25%, preferably 1 to 15%, more preferably 2 to 10%, of the length of each of the elementary laser lines.
  • the lateral flanks of the elementary laser lines have a length substantially equal to each other and the overlap is substantially equal to the length of the lateral flanks.
  • At least two adjacent elementary laser lines have a non-zero offset, preferably greater than 10%, more preferably greater than 25%, of the width of each of said adjacent elementary laser lines.
  • Said at least two adjacent elementary laser lines also have an overlap such that, in the absence of offset, the linear power profile of the single laser line has a local maximum at the overlap area.
  • said at least two adjacent elementary laser lines have linear power profiles whose side flanks are not exactly complementary.
  • Said local maximum of the power profile The linear velocity of the single laser line preferably has a value greater than 20%, more preferably greater than 10%, relative to the average linear power of each of the adjacent elementary laser lines out of the overlap areas.
  • the offset and the overlap of said at least two adjacent elementary laser lines are preferably such that the merit factor F of the single laser line at the overlap area has a variation of less than 20%, preferably less than 15%, more preferably less than 10%, even more preferably less than 5% with respect to the average merit factor of each of said at least two adjacent elementary laser lines out of the overlapping areas.
  • the average linear power and the average merit factor outside the overlap areas may be considered as the average linear power and the average merit factor on the central plateau of the linear power profile.
  • the conveying means are intended to receive a substrate and to allow the substrate to travel perpendicularly to the single laser line.
  • the important thing is to allow relative movement of the substrate relative to the single laser line, the device can be designed so that the substrate is fixed and the laser modules scroll above or below the substrate or vice versa .
  • the laser modules are fixed and the substrate to be treated scrolls below or above the modules.
  • the substrate may be set in motion by any mechanical conveying means, for example using strips, rollers, translational trays.
  • the conveyor system controls and controls the speed of travel.
  • the conveying means preferably comprises a rigid frame and a plurality of rollers.
  • the pitch of the rollers is advantageously in a range from 50 to 300 mm.
  • the rollers preferably comprise metal rings, typically made of steel, covered with plastic bandages. Rolls; Coils are preferably mounted on bearings with reduced clearance, typically at the rate of three rolls per step. In order to ensure perfect flatness of the conveying plane, the positioning of each of the rollers is advantageously adjustable.
  • the rollers are preferably driven by means of pinions or chains, preferably tangential chains, driven by at least one motor. If the substrate is of flexible polymeric organic material, the displacement can be achieved using a film feed system in the form of a succession of rollers.
  • the present invention also relates to a method for adjusting a laser apparatus comprising:
  • said laser modules are positioned so that the generated elementary laser lines are substantially parallel to each other and combine in the length direction into a single laser line;
  • the conveying means allow the substrate to travel perpendicularly to the single laser line
  • said method comprising:
  • the overlap-shift torque necessary so that the merit factor F of the single laser line at the overlap zone has a variation of less than 20%, preferably less than 15%, more preferably less than 10% relative to the average merit factor of each of said two adjacent elementary laser lines out of overlap zone;
  • the linear power profiles of each of the elementary laser lines are measured separately from each other at the work plane. They can be measured by placing a power detector along the laser line, for example a calorimetric power meter, such as, in particular, the Cohérent Inc. power meter Beam Finder, or a laser beam analysis system. using a camera, such as the FM 100 system from Metro lux GmbH.
  • a laser beam analysis system has the advantage of allowing a simultaneous measurement of the widths of the laser lines. From the measured profiles, it is possible to determine by simulation, for a given overlap and offset between two elementary laser lines, the profile of the merit factor F at the level of the overlap zone.
  • the laser apparatus comprises n laser modules generating n elementary laser lines, where n is strictly greater than 2, it is also possible to further determine which combination of elementary laser lines with which recovery-lag couples are likely to minimize the variation of the merit factor.
  • the profile of the single line also depends on the order in which the elementary laser lines are combined. For example, for three elementary lines A, B and C, the different combinations of juxtaposition of the elementary laser lines ABC, ACB, BAC, BCA, CAB and CBA do not necessarily give, even after optimization of the recovery-shift pairs, merit factor identical.
  • the adjustment method according to the invention preferably comprises:
  • the laser apparatus of the present invention is suitable for the heat treatment of coatings deposited on the surface of a substrate.
  • Another object of the present invention relates to the use of the laser apparatus as described above for the heat treatment of a coating deposited on a substrate.
  • the present invention also relates to a method of heat treatment of a coating deposited on a substrate using the laser apparatus as defined above comprising:
  • the method of heat treatment of a coating deposited on a substrate comprises:
  • the substrate may be an organic or inorganic substrate.
  • the substrate is preferably glass, glass ceramic or polymeric organic material. It is preferably transparent, colorless (it is then a clear or extra-clear glass) or colored, for example blue, gray, green or bronze.
  • the glass is preferably of the silico-soda-lime type, but it may also be of borosilicate or alumino-borosilicate type glass.
  • the subjects Preferred polymeric organic compounds are polycarbonate, polymethyl methacrylate, polyethylene terephthalate (PET), polyethylene naphthalate (PEN), or fluorinated polymers such as ethylene tetrafluoroethylene (ETFE).
  • the substrate advantageously has at least one dimension greater than or equal to 1 m, or even 2 m and even 3 m.
  • the thickness of the substrate generally varies between 0.5 and 19 mm, preferably between 0.7 and 9 mm, especially between 2 and 8 mm, or even between 4 and 6 mm.
  • the substrate may be flat or curved, or even flexible.
  • the coating preferably comprises a layer of which at least one property is improved when the crystallization rate of said layer increases.
  • the layer is preferably based on a metal, oxide, nitride, or mixture of oxides chosen from silver, titanium, molybdenum, niobium, titanium oxide, mixed oxides of indium and of zinc or tin, zinc oxide doped with aluminum or gallium, nitrides of titanium, aluminum or zirconium, titanium oxide doped with niobium, cadmium stannate and / or tin, tin oxide doped with fluorine and / or antimony.
  • the present invention is particularly suitable for coatings comprising a layer based on silver or titanium, these being more sensitive to the inhomogeneities of the heat treatment.
  • the term "based on” with reference to the composition of a layer means that said layer comprises more than 80%, preferably more than 90%, more preferably more than 95%, by weight of the material concerned.
  • the layer may consist essentially of said material, that is to say comprising more than 99% by weight of said material.
  • the substrate is positioned on the conveying means so that the coating is at the level of the work plane.
  • the substrate is positioned so that the elementary laser lines are focused at the coating to be treated.
  • the speed of travel of the substrate relative to the laser line depends of course on the nature of the coating to be treated, its thickness but also the power of the laser lines. As an indication, the speed of travel is advantageously at least 4 m / min, especially 5 m / min and even 6 m / min or 7 m / min, or 8 m / min and even 9 m / min or 10 m / min.
  • the movement speed of the substrate is at least 12 m / min or 15 m / min, especially 20 m / min and even 25 or 30 m / min.
  • the speed of displacement of the substrate varies during the treatment by at most 10% in relative, in particular 2% and even 1% compared to its nominal value.
  • a laser device is equipped with two laser modules each generating an elementary laser line of length 40 cm and width 65 ⁇ and whose linear power profiles have a central plate and two lateral flanks, with a linear power of 250 W / cm at plateau level.
  • the two elementary laser lines are combined with a 20 mm overlap and a zero offset.
  • the unique laser line as well
  • the profile of the merit factor F - of the single laser line at the overlap area of the two elementary laser lines is shown in FIG. 3A.
  • the merit factor was normalized to the average out-of-coverage merit factor. We can notice that the merit factor has a maximum greater than 20% higher than the average merit factor outside the recovery zone.
  • the two elementary laser lines are combined with a recovery identical to the treatment of S 1 (20 mm) and an offset of 60 ⁇ .
  • the single laser line thus has a larger width (100 ⁇ ) at the level of the recovery zone compared to non-overlapping areas.
  • the sample SI has a mark visible to the naked eye at the region of the substrate corresponding to the passage under the overlap zone of the elementary laser lines. On the contrary, the sample S2 appears homogeneous.
  • the offset of the two elementary laser lines thus makes it possible to satisfactorily reduce the defects caused by an inhomogeneity of treatment at the level of the overlap of two elementary laser lines.

Abstract

La présente invention concerne un appareil laser pour le recuit de revêtements déposés sur des substrats de grande largeur formé d'une pluralité de modules laser juxtaposables sans limitation particulière, dans lequel les modules laser génèrent des lignes laser élémentaires LA1, LA2) qui se combinent entre elles dans le sens de la longueur pour former une ligne laser unique, chaque ligne élémentaire (LA1, LA2) présentant un recouvrement (R) dans la direction de la longueur avec une ou deux lignes (LA2, LA1) laser élémentaires adjacentes; et au moins deux lignes laser élémentaires adjacentes (LA1, LA2) présentent un décalage (D) l'une par rapport à l'autre dans la direction de la largeur, ledit décalage (D) étant inférieur à la demi-somme des largeurs desdites au moins deux lignes laser élémentaires adjacentes (LA1, LA2); le recouvrement (R) desdites au moins deux lignes laser élémentaires adjacentes (LA1, LA2) étant tel que, en l'absence de décalage (D), le profil de puissance linéique de la ligne laser unique présente un maximum local au niveau de la zone de recouvrement (R).

Description

APPAREIL LASER COMPRENANT LUSIEURS MODULES LASER GENERANT CHACUN UNE LIGNE, LES LIGNES SE RECOUVRANT AVEC UN DECALAGE
DANS LE SENS DE LA LARGEUR
La présente invention concerne un appareil laser pour le recuit de revêtements déposés sur des substrats de grande largeur formé d'une pluralité de modules laser juxtaposables sans limitation particulière.
Il est connu d'effectuer un recuit laser local et rapide {laser flash heating) de revêtements déposés sur des substrats plats. Pour cela on fait défiler le substrat avec le revêtement à recuire sous une ligne laser, ou bien une ligne laser au-dessus du substrat portant le revêtement.
Le recuit laser permet de chauffer des revêtements minces à des températures élevées, de l'ordre de plusieurs centaines de degrés, tout en préservant le substrat sous-jacent. Les vitesses de défilement sont bien entendu de préférence les plus élevées possibles, avantageusement au moins de plusieurs mètres par minute.
Afin de pouvoir traiter à grande vitesse des substrats de grande largeur, tels que les feuilles de verre plat de taille « jumbo » (6 m x 3,21 m) sortant des procédés de float, il est nécessaire de disposer de lignes laser elles-mêmes très longues (>3m). Or, la fabrication d'optiques monolithiques permettant l'obtention d'une ligne laser unique n'est pas envisageable pour de telles longueurs. Des appareils laser modulaires ont donc été envisagés, dans lesquels il est proposé de combiner des lignes laser élémentaires de moindre dimension (quelques dizaines de centimètres) chacune générée par des modules laser indépendants.
Une première solution pour combiner les lignes laser élémentaires consiste à les disposer sur des lignes distinctes, par exemple en quinconce ou en « vol d'oiseau », sans qu'il y ait de zone de recouvrement entre les lignes laser élémentaires, de sorte à traiter l'ensemble de la largeur du substrat. Ainsi, chacun des points sur la largeur du substrat passe au moins une fois sous une ligne laser élémentaire. Cette solution est relativement simple à mettre en œuvre notamment parce qu'elle impose peu de contraintes d'encombrement pour les modules laser.
Cependant, cette solution est source d'inhomogénéité. En effet, certains points du substrat subissent deux traitements, éventuellement avec des puissances différentes, en passant successivement sous deux lignes laser élémentaires. Cela se traduit généralement par des défauts sur le substrat traité.
Une autre solution consiste à aligner exactement les lignes laser élémentaires entre elles et de les superposer partiellement entre elles dans la direction de la longueur tout en choisissant les profils de puissance linéique des lignes laser élémentaires tels qu'ils s'additionnent pour former une ligne homogène (c'est-à-dire une largeur de ligne et un profil de puissance linéique constant sur toute la longueur de la ligne). Il est généralement proposé pour les lignes laser élémentaires des profils de puissance linéique ayant la forme d'un « chapeau claque » (en anglais top-hat) avec un plateau central très étendu où la puissance est forte et constante et, de part et d'autre de ce plateau, des flancs descendant en pente raide, comme par exemple dans US 6717105. Le choix de ce type de profil permet de minimiser la zone de recouvrement entre deux lignes laser élémentaires adjacentes mais nécessite un positionnement très précis des lignes lasers élémentaires. WO 2015/059388 propose de réduire l'étendue du plateau central de forte puissance des lignes laser élémentaires. Ainsi, la pente des deux flancs du profil de puissance des lignes laser élémentaires est plus faible. Cela permet de réduire la répercussion d'une erreur de positionnement des lignes laser élémentaires sur le profil de densité de la ligne laser obtenue par combinaison des lignes laser élémentaires. Cependant, il est très difficile en pratique d'obtenir des lignes laser élémentaires ayant exactement le profil de puissance souhaité. Plus particulièrement, il est difficile d'obtenir des lignes laser élémentaires présentant des profils de puissance suffisamment identiques les uns aux autres, notamment au niveau des pentes sur les flancs des profils de puissance. Dans la pratique, le gradient d'intensité sur les flancs des profils de puissance varie d'une ligne laser élémentaire à l'autre. Ces différences de profils de puissance entre les lignes laser élémentaires font que les lignes laser élémentaires ne sont pas parfaitement complémentaires entre elles. Cela engendre des surintensités et/ou des sous-intensités de puissance au niveau des zones de recouvrement entre les lignes laser élémentaires et provoque une inhomogénéité de traitement des parties du substrat passant sous ces zones de recouvrement par rapport au reste du substrat. Pour certains revêtements, cette inhomogénéité de traitement suffît pour occasionner des défauts visibles sur le produit final.
La présente invention propose une nouvelle manière de combiner les lignes laser élémentaires qui permet de garantir une meilleure homogénéité de traitement dans les zones de recouvrement des lignes laser élémentaires. Plus précisément, la présente invention concerne un appareil laser comprenant :
plusieurs modules laser générant chacun une ligne laser élémentaire de longueur L et de largeur
W focalisée au niveau d'un plan de travail ; et
des moyens de convoyage destinés à accueillir un substrat;
dans lequel lesdits modules laser sont positionnés de manière à ce que les lignes laser élémentaires générées sont sensiblement parallèles entre elles et se combinent en une ligne laser unique, chaque ligne élémentaire présentant un recouvrement dans la direction de la longueur avec une ligne laser élémentaire adjacente ; et
les moyens de convoyage permettent le défilement du substrat perpendiculairement à la ligne de laser unique ;
caractérisé en ce que, pour au moins deux lignes laser élémentaires adjacentes, les deux lignes laser élémentaires adjacentes présentent un décalage l'une par rapport à l'autre dans la direction de la largeur, ledit décalage étant inférieur à la demi-somme des largeurs desdites deux lignes laser élémentaires adjacentes ; le recouvrement desdites deux lignes laser élémentaires adjacentes étant tel que, en l'absence de décalage, le profil de puissance linéique de la ligne laser unique présente un maximum local au niveau de la zone de recouvrement. FIG. 1 représente un exemple de ligne laser élémentaire (A) et son profil de puissance correspondant (B).
FIG. 2 représente des exemples de zones de recouvrement entre deux lignes laser élémentaires sans décalage (A) et avec décalage (B). FIG. 3 représente des exemples de profil du facteur de mérite au niveau de la zone de recouvrement de deux lignes laser élémentaires sans décalage (A) et avec décalage (B).
Contrairement à l'état de la technique, on ne cherche pas dans la présente invention à aligner parfaitement les lignes laser élémentaires entre elles pour faire correspondre les profils de puissance des lignes de laser élémentaires, théoriquement identiques, entre eux. La Demanderesse a en effet trouvé que l'homogénéité du traitement peut être améliorée par un décalage des lignes lasers élémentaires adjacentes, créant ainsi localement une augmentation de la largeur de la ligne laser unique au niveau des zones de recouvrement entre ces lignes laser élémentaires adjacentes. Cette approche va à l'encontre des préjugés de l'homme du métier qui, pour améliorer l'homogénéité du traitement, cherche à faire subir à tous les points du substrat le même historique de traitement, et notamment une même durée de traitement. Au contraire, l'élargissement de la ligne sur certaines zones de recouvrement augmente la durée de traitement des parties du substrat passant sous ces zones. De manière surprenante, l'élargissement de la ligne laser unique au niveau des zones de recouvrement permet cependant d'améliorer l'homogénéité du traitement malgré l'augmentation de la durée du traitement. Il semble en effet que la répartition sur un laps de temps plus important des surintensités, provoquées par le recouvrement de profils de puissance de deux lignes laser élémentaires adjacentes qui ne seraient pas parfaitement complémentaires, s'avère moins préjudiciable pour l'homogénéité du traitement. Plus particulièrement, l'augmentation de la largeur de la ligne laser unique au niveau des zones de recouvrement permet de diminuer, au niveau des zones de recouvrement, la variation d'un facteur de mérite F, défini dans la présente demande comme étant le rapport de la puissance linéique sur la racine carré de la largeur de la ligne. La Demanderesse a en effet mis en évidence que l'homogénéité du traitement thermique par la ligne laser unique peut être corrélée à l'homogénéité du facteur de mérite F. Le facteur de mérite F en un point d'une ligne laser est déterminé par la formule suivante :
Figure imgf000007_0001
dans laquelle w et P sont respectivement la largeur de la ligne laser à ce point donné et la puissance linéique locale (cumulée sur toute la largeur) de la ligne laser à ce point donné.
Par l'expression « en un point donné » d'une ligne laser au sens de la présente invention, on entend « à une position donnée » le long de la ligne laser. Autrement dit, un point de la ligne laser est assimilé à une position sur l'axe longitudinal x de la ligne laser (c'est-à-dire dans le plan de travail et perpendiculairement à la direction du défilement).
Au sens de la présente invention, la « puissance linéique locale » P en un point donné d'une ligne laser désigne la puissance délivrée par le module sur l'ensemble de la largeur de la ligne laser à ce point donné. On appelle « largeur en un point donné » w d'une ligne laser la dimension, mesurée à ce point donné dans la direction transversale y de la ligne laser (c'est-à- dire et parallèlement à la direction du défilement), d'une zone ayant une puissance au moins égale à 1 /e fois la puissance maximale de la ligne laser. Si l'axe longitudinal est nommé x, on peut définir une distribution de largeurs selon cet axe, nommé w(x).
L'appareil laser comprend de préférence au moins 3 modules, en particulier au moins 5 modules, voire au moins 10 modules, chaque module laser générant une ligne laser élémentaire focalisée au niveau du plan de travail qui correspond au plan du revêtement à recuire, c'est-à- dire généralement à la surface supérieure ou inférieure du substrat. Les modules laser sont assemblés et montés sur l'appareil laser de manière à ce que les faisceaux lasers formant les lignes laser coupent le plan de travail avec un angle non nul par rapport à la normal au plan de travail, typiquement supérieur à 2° et inférieur à 20°, de préférence inférieur à 10°.
Comme illustré à la Fig. lA, chaque ligne laser élémentaire présente une longueur L et une largeur W. On appelle « longueur » L d'une ligne laser la dimension, mesurée dans la direction longitudinale x, d'une zone ayant une puissance au moins égale à 1/e2 fois la puissance maximale de la ligne laser. La « largeur moyenne » W d'une ligne laser, aussi appelée simplement « largeur » d'une ligne laser par opposition à la largeur en un point w de la ligne laser, est définie par la moyenne arithmétique des largeurs en chacun des points de la ligne laser. Afin d'éviter toute hétérogénéité de traitement, la distribution de largeurs w(x) est étroite toute la longueur d'une ligne. Ainsi, la variation de la distribution de largeur w(x) le long de la ligne laser ne varie pas de plus de 10%, de préférence pas de plus de 5%, plus préférentiellement pas de plus de 3%, par rapport à la largeur moyenne de la ligne laser. Les lignes laser élémentaires ont généralement une longueur et une largeur sensiblement identiques les unes aux autres. Les lignes laser élémentaires ont typiquement une longueur de 10 à 100 cm, de préférence 20 à 75 cm, plus préférentiellement de 30 à 60 cm, et une largeur de 10 à 100 μιη, de préférence de 40 à 75 μιη.
Prises indépendamment, les lignes de laser élémentaires ont typiquement un profil de puissance linéique présentant un plateau central p et deux flancs latéraux / tels qu'illustrés schématiquement à la Fig.lB. Au sens de la présente invention, on entend par « profil de puissance linéique » d'une ligne laser la distribution, sur l'ensemble de la longueur de la ligne laser, de la puissance linéique locale P en fonction de la position sur la ligne laser. L'axe longitudinal étant nommé x, le profil de puissance linéique est donc définit par P(x).Le plateau central a une puissance sensiblement constante, et chaque flanc latéral correspond à un gradient de puissance. Le plateau central représente généralement au moins 50%, de préférence 70 à 98%>, plus préférentiellement 80 à 96%, de la longueur de la ligne laser élémentaire. La largeur d'une ligne laser élémentaire est sensiblement constante le long du plateau central. Par l'expression « sensiblement constant » on entend que la grandeur considérée ne varie de pas plus de 10%>, de préférence de pas plus de 5%, plus préférentiellement de pas plus de 3%. Les flancs latéraux représentent généralement chacun indépendamment moins de 25%, de préférence de 1 à 15%, plus préférentiellement de 2 à 10%, de la longueur de la ligne laser élémentaire. Les flancs latéraux ont de préférence sensiblement la même longueur.
Les lignes laser élémentaires sont aboutées les unes aux autres dans la direction de leurs longueurs de sorte à former une ligne laser unique continue. La ligne laser unique a typiquement une longueur supérieure à 1,2 m, de préférence supérieure à 2 m, plus préférentiellement supérieure à 3 m. Par ligne laser continue, on entend qu'il existe un chemin allant d'un bout à l'autre le long de la ligne laser unique sur lequel la puissance n'est jamais inférieure à 90%> de la puissance maximale de la ligne de laser unique. Pour cela, deux lignes laser élémentaires adjacentes présentent une zone de recouvrement. Par « zone de recouvrement » on entend une zone dans laquelle deux lignes élémentaires adjacentes se superposent. On entend par « recouvrement » R la dimension de la zone de recouvrement mesurée en projection sur l'axe longitudinal x. Le décalage est défini par rapport à une position de référence dans laquelle les lignes laser élémentaires sont exactement alignées. Comme illustré à la FIG. 2A, deux lignes laser élémentaires adjacentes LAI et LA2 sont considérées comme étant exactement alignées lorsque, au niveau de la zone de recouvrement entre les deux lignes laser élémentaires adjacentes, les barycentres des distributions d'intensité Cl et C2 des deux lignes laser élémentaires projetés sur l'axe transversal y ont une coordonnée identique. Ainsi, le « décalage » D entre deux lignes laser élémentaires adjacentes est défini comme la distance entre les projections, sur l'axe transversal y, des barycentres des puissances des extrémités des deux lignes laser élémentaires adjacentes participant à la zone de recouvrement entre ces deux lignes. Un barycentre des distributions d'intensité est défini par le point ayant comme coordonnées la moyenne des coordonnées, pondérée par la valeur des distributions d'intensité, de l'ensemble des points de la zone considérée. En pratique, pour deux lignes laser élémentaires adjacentes décalées comme illustrées à la FIG. 2B, on peut définir pour chacune des lignes élémentaires LAI et LA2 une ligne enveloppe El, respectivement E2, définie par le contour de la zone ayant une puissance au moins égale à 1/e2 fois la puissance maximale de la ligne laser. Les lignes- enveloppes présentent alors deux point d'intersection I et F. Le recouvrement R peut être défini par la distance entre les projections des points I et F sur l'axe longitudinal x. Le décalage D peut être défini par la différence entre la demi-somme des largeurs moyennes des lignes laser élémentaires adjacentes et la distance entre les projections des points I et F sur l'axe transversal y-
Le recouvrement entre deux lignes laser élémentaires adjacentes est généralement au moins égal au plus court des flancs latéraux desdites deux lignes laser élémentaires adjacentes au niveau de la zone de recouvrement. Ainsi, le recouvrement est généralement égal à moins de 25%, de préférence 1 à 15%, plus préférentiellement 2 à 10%>, de la longueur de chacune des lignes laser élémentaires. Dans un mode de réalisation préféré, les flancs latéraux des lignes laser élémentaires ont une longueur sensiblement égale entre eux et le recouvrement est sensiblement égal à la longueur des flancs latéraux.
Dans la présente invention, au moins deux lignes laser élémentaires adjacentes présentent un décalage non nul, de préférence supérieur à 10%>, plus préférentiellement supérieur à 25%o, de la largeur de chacune desdites lignes laser élémentaires adjacentes. Lesdites au moins deux lignes laser élémentaires adjacentes présentent en outre, un recouvrement tel que, en l'absence de décalage, le profil de puissance linéique de la ligne laser unique présente un maximum local au niveau de la zone de recouvrement. Autrement dit, lesdites au moins deux lignes laser élémentaires adjacentes présentent des profils de puissance linéique dont les flancs latéraux ne sont pas exactement complémentaires. Ledit maximum local du profil de puissance linéique de la ligne laser unique a de préférence une valeur supérieure de 20%, plus préférentiellement supérieur de 10%, par rapport à la puissance linéique moyenne de chacune des lignes laser élémentaires adjacentes hors des zones de recouvrement. Le décalage et le recouvrement desdites au moins deux lignes laser élémentaires adjacentes sont de préférence tels que le facteur de mérite F de la ligne laser unique au niveau de la zone de recouvrement présente une variation inférieure à 20%, de préférence inférieure à 15%, plus préférentiellement inférieure à 10%, encore plus préférentiellement inférieure à 5% par rapport au facteur de mérite moyen de chacune desdites au moins deux lignes laser élémentaires adjacentes hors des zones de recouvrement. Dans le cas de lignes laser élémentaires présentant une puissance et une largeur sensiblement constantes au niveau du plateau central du profil de puissance linéique, la puissance linéique moyenne et le facteur de mérite moyen hors des zones de recouvrement peuvent être assimilés à la puissance linéique moyenne et au facteur de mérite moyen sur le plateau central du profil de puissance linéique.
Les moyens de convoyage sont destinés à accueillir un substrat et permettre le défilement du substrat perpendiculairement à la ligne laser unique. L'important étant de permettre le défilement relatif du substrat par rapport à la ligne laser unique, l'appareil peut être conçu de manière à ce que le substrat soit fixe et les modules laser défilent au-dessus ou au- dessous du substrat ou inversement. Cependant, du point de vue industriel, notamment pour le traitement de substrats de grande taille de type « jumbo », il est préférable que les modules laser soient fixes et le substrat à traiter défile au-dessous ou au-dessus des modules. Le substrat peut être mis en mouvement à l'aide de tous moyens mécaniques de convoyage, par exemple à l'aide de bandes, de rouleaux, de plateaux en translation. Le système de convoyage permet de contrôler et réguler la vitesse du déplacement. Le moyen de convoyage comprend de préférence un châssis rigide et une pluralité de rouleaux. Le pas des rouleaux est avantageusement compris dans un domaine allant de 50 à 300 mm. Les rouleaux comprennent de préférence des bagues métalliques, typiquement en acier, recouvertes de bandages en matière plastique. Les rouleaux sont de préférence montés sur des paliers à jeu réduit, typiquement à raison de trois rouleaux par palier. Afin d'assurer une parfaite planéité du plan de convoyage, le positionnement de chacun des rouleaux est avantageusement réglable. Les rouleaux sont de préférence mus à l'aide de pignons ou de chaînes, de préférence de chaînes tangentielles, entraînés par au moins un moteur. Si le substrat est en matière organique polymérique souple, le déplacement peut être réalisé à l'aide d'un système d'avance de films sous forme d'une succession de rouleaux. Dans ce cas, la planéité peut être assurée par un choix adéquat de la distance entre les rouleaux, en tenant compte de l'épaisseur du substrat (et donc de sa flexibilité) et de l'impact que peut avoir le traitement thermique sur la création d'une éventuelle flèche. La présente invention concerne également un procédé de réglage d'un appareil laser comprenant :
plusieurs modules laser générant chacun une ligne laser élémentaire de longueur L et de largeur W focalisée au niveau d'un plan de travail ; et
des moyens de convoyage destinés à accueillir un substrat;
dans lequel lesdits modules laser sont positionnés de manière à ce que les lignes laser élémentaires générées sont sensiblement parallèles entre elles et se combinent dans la direction de la longueur en une ligne laser unique; et
les moyens de convoyage permettent le défilement du substrat perpendiculairement à la ligne de laser unique ;
ledit procédé comprenant :
- la mesure des profils de puissance linéique et des largeurs de deux lignes laser élémentaires adjacentes prises individuellement ;
- la détermination du couple recouvrement-décalage nécessaire pour que le facteur de mérite F de la ligne de laser unique au niveau de la zone de recouvrement présente une variation inférieure à 20%, de préférence inférieure à 15%, plus préférentiellement inférieure à 10% par rapport au facteur de mérite moyen de chacune desdites deux lignes laser élémentaires adjacentes hors zone de recouvrement ; et
- le positionnement des modules lasers correspondants auxdites deux lignes laser élémentaires adjacentes de manière à ce que lesdites deux lignes laser élémentaires adjacentes présentent le couple recouvrement-décalage déterminés.
Les profils de puissance linéique de chacune des lignes laser élémentaires sont mesurés séparément les unes des autres au niveau du plan de travail. Ils peuvent être mesurés en disposant un détecteur de puissance le long de la ligne laser, par exemple un puissance-mètre calorimétrique, tel que notamment le puissance-mètre Beam Finder de la société Cohérent Inc., ou un System d'analyse de faisceau laser à l'aide d'une caméra, telle que le système FM 100 de la société Métro lux GmbH. Un système d'analyse de faisceau laser a pour avantage de permettre une mesure simultanée des largeurs des lignes laser. A partir des profils mesurés, il est possible de déterminer par simulation, pour un recouvrement et un décalage donné entre deux lignes laser élémentaires, le profil du facteur de mérite F au niveau de la zone de recouvrement. Ainsi, en balayant les couples recouvrement-décalage avec un pas adapté, ceux-ci peuvent être choisis, par exemple à l'aide d'un logiciel adapté, de façon à ce que le facteur de mérite F satisfasse les conditions mentionnées ci-dessus. Idéalement, on choisira le couple recouvrement-décalage pour lequel la variation du facteur de mérite est minimale. Cependant, une simple diminution de la variation du facteur de mérite de façon à ce que cette variation soit inférieure à 20% par rapport au facteur de mérite moyen de chacune desdites deux lignes laser élémentaires adjacentes hors zone de recouvrement, même si celle-ci n'est pas minimale, permet déjà d'améliorer l'homogénéité du traitement de façon satisfaisante pour la plupart des revêtements à traiter.
Dans un mode de réalisation préféré, dans lequel l'appareil laser comprend n modules laser générant n lignes laser élémentaires, n étant strictement supérieur à 2, il est également possible de déterminer en outre quelle combinaison de lignes laser élémentaires avec quels couples recouvrement-décalage est susceptible de minimiser la variation du facteur de mérite. En effet, chacune des lignes laser élémentaire n'ayant pas strictement le même profil de puissance linéaire, notamment au niveau des flancs latéraux, le profil de la ligne unique dépend également de l'ordre dans lequel les lignes laser élémentaires sont combinées. Par exemple, pour trois lignes élémentaires A, B et C, les différentes combinaisons de juxtaposition des lignes laser élémentaires ABC, ACB, BAC, BCA, CAB et CBA ne donnent pas nécessairement, même après optimisation des couples recouvrement-décalage, des profils de facteur de mérite identiques. Ainsi, le procédé de réglage selon l'invention comprend de préférence :
- la mesure des profils de puissance linéique de chacune des n lignes laser élémentaires prises individuellement ;
- la détermination de la combinaison de juxtaposition des n lignes laser élémentaires et, pour chaque couple de lignes laser adjacentes, du couple recouvrement-décalage nécessaires pour que le facteur de mérite F de la ligne de laser unique au niveau des zones de recouvrement présentent une variation inférieure à 20%, de préférence inférieure à 15%, plus préférentiellement inférieure à 10% par rapport au facteur de mérite moyen de chacune desdites lignes laser élémentaires hors zones de recouvrement ; et
- le positionnement des modules lasers correspondants aux lignes laser élémentaires de manière à ce que lesdites lignes laser élémentaires soient dans la combinaison de juxtaposition déterminée et chaque couple de lignes laser élémentaires adjacentes présentent le recouvrement et le décalage déterminés.
Il est entendu que plusieurs combinaisons de juxtaposition des lignes laser élémentaires, avec le choix adéquat des couples recouvrement-décalage pour chaque couple de lignes laser élémentaires adjacentes, peuvent permettre de satisfaire les conditions mentionnées ci-dessus pour le facteur de mérite F, voire de minimiser la variation du facteur de mérite. L'appareil laser de la présente invention est adapté au traitement thermique de revêtements déposés à la surface d'un substrat. Un autre objet de la présente invention concerne l'utilisation de l'appareil laser tel que décrit ci-dessus pour le traitement thermique d'un revêtement déposé sur un substrat.
La présente invention concerne également un procédé de traitement thermique d'un revêtement déposé sur un substrat à l'aide de l'appareil laser tel que défini ci-dessus comprenant :
- la fourniture du substrat revêtu du revêtement à traiter sur les moyens de convoyage de façon à ce que le revêtement soit au niveau du plan de travail ;
- le défilement du substrat perpendiculairement à la ligne laser unique ; et
- la récupération du substrat revêtu du revêtement traité thermiquement.
Alternativement, le procédé de traitement thermique d'un revêtement déposé sur un substrat comprend :
- la fourniture d'un appareil laser tel que défini dans le procédé de réglage ci-dessus ;
- le réglage de l'appareil laser selon le procédé de réglage ci-dessus ;
- la fourniture du substrat revêtu du revêtement à traiter sur les moyens de convoyage de façon à ce que le revêtement soit au niveau du plan de travail ;
- le défilement du substrat perpendiculairement à la ligne laser unique ;
- la récupération du substrat revêtu du revêtement traité thermiquement.
Le substrat peut être un substrat organique ou inorganique. Le substrat est de préférence en verre, en vitrocéramique ou en matière organique polymérique. Il est de préférence transparent, incolore (il s'agit alors d'un verre clair ou extra-clair) ou coloré, par exemple en bleu, gris, vert ou bronze. Le verre est de préférence de type silico-sodo-calcique, mais il peut également être en verre de type borosilicate ou alumino-borosilicate. Les matières organiques polymériques préférées sont le polycarbonate, le polyméthacrylate de méthyle, le polyéthylène téréphtalate (PET) , le polyéthylène naphtalate (PEN), ou encore les polymères fluorés tels que l'éthylène tétrafluoroéthylène (ETFE). Le substrat possède avantageusement au moins une dimension supérieure ou égale à 1 m, voire 2 m et même 3 m. L'épaisseur du substrat varie généralement entre 0,5 et 19 mm, de préférence entre 0,7 et 9 mm, notamment entre 2 et 8 mm, voire entre 4 et 6 mm. Le substrat peut être plan ou bombé, voire flexible.
Le revêtement comprend de préférence une couche dont au moins une propriété est améliorée lorsque le taux de cristallisation de ladite couche augmente. La couche est de préférence à base d'un métal, oxyde, nitrure, ou mélange d'oxydes choisi parmi l'argent, le titane, le molybdène, le niobium, l'oxyde de titane, les oxydes mixtes d'indium et de zinc ou d'étain, l'oxyde de zinc dopé à l'aluminium ou au gallium, les nitrures de titane, d'aluminium ou de zirconium, l'oxyde de titane dopé au niobium, le stannate de cadmium et/ou d'étain, l'oxyde d'étain dopé au fluor et/ou à l'antimoine. La présente invention est particulièrement adaptée aux revêtements comprenant une couche à base d'argent ou de titane, ceux-ci étant plus sensibles aux inhomogénéités du traitement thermique. L'expression « à base de » en référence à la composition d'une couche signifie que ladite couche comprends plus de 80%, de préférence plus de 90%, plus préférentiellement plus de 95%, en poids du matériau concerné. La couche peut être essentiellement constituée dudit matériau, c'est-à-dire comprenant plus de 99% en poids dudit matériau.
Le substrat est positionné sur les moyens de convoyage de façon à ce que le revêtement soit au niveau du plan de travail. En d'autres termes, le substrat est positionné de façon à ce que les lignes laser élémentaires soient focalisées au niveau du revêtement à traiter. La vitesse de défilement du substrat par rapport à la ligne laser dépend bien entendu de la nature du revêtement à traiter, de son épaisseur mais également de la puissance des lignes laser. A titre d'indication, la vitesse de défilement est avantageusement d'au moins 4 m/min, notamment 5 m/min et même 6 m/min ou 7 m/min, ou encore 8 m/min et même 9 m/min ou 10 m/min. Selon certains modes de réalisation, la vitesse de déplacement du substrat est d'au moins 12 m/min ou 15 m/min, notamment 20 m/min et même 25 ou 30 m/min. Afin d'assurer un traitement qui soit le plus homogène possible, la vitesse de déplacement du substrat varie lors du traitement d'au plus 10% en relatif, notamment 2% et même 1% par rapport à sa valeur nominale.
L'invention est illustrée à l'aide d'exemples non limitatifs suivants. EXEMPLE
Un appareille laser est doté de deux modules laser générant chacun une ligne laser élémentaire de longueur 40 cm et de largeur 65 μιη et dont les profils de puissance linéique présentent un plateau central et deux flancs latéraux, avec un puissance linéique de 250 W/cm au niveau du plateau.
Deux échantillons SI et S2 d'un substrat en verre silico-sodo-calcique flotté, vendu sous la dénomination Planiclear® par la demanderesse, de dimension 80 cm* 80 cm et revêtus d'un revêtement PLANITHERM® comprenant une couche d'argent, ont été soumis à un traitement thermique par passage, à une vitesse de défilement de 3 m/s, sous une ligne laser unique formée par les deux lignes laser élémentaires.
Pour le traitement de l'échantillon SI, les deux lignes laser élémentaires sont combinées avec un recouvrement de 20 mm et un décalage nul. La ligne laser unique ainsi
p
formée présente une largeur constante. Le profil du facteur de mérite F =— de la ligne laser unique au niveau de la zone de recouvrement des deux lignes laser élémentaires est représenté à la FIG. 3A. Pour faciliter la lecture, le facteur de mérite a été normalisé par rapport au facteur de mérite moyen hors zone de recouvrement. On peut remarquer que le facteur de mérite présente un maximum supérieur de plus de 20% par rapport au facteur de mérite moyen hors zone de recouvrement.
Pour le traitement de l'échantillon S2, les deux lignes laser élémentaires sont combinées avec un recouvrement identique au traitement de S 1 (20 mm) et un décalage de 60 μιη. La ligne laser unique présente ainsi une largeur plus importante (100 μιη) au niveau de la zone de recouvrement par rapport aux zones hors recouvrement. Le profil du facteur de
p
mérite F =— de la ligne laser unique au niveau de la zone de recouvrement des deux lignes laser élémentaires est représenté à la FIG. 3B. On peut remarquer que le facteur de mérite ne varie pas de plus de 15% par rapport au facteur de mérite moyen hors zone de recouvrement. Après traitement, les échantillons sont observés à l'œil nu sous un ciel artificiel.
L'échantillon SI présente une marque visible à l'œil nu au niveau de la zone du substrat correspondant au passage sous la zone de recouvrement des lignes laser élémentaires. Au contraire, l'échantillon S2 apparaît homogène. Le décalage des deux lignes laser élémentaires permet donc de diminuer de manière satisfaisante les défauts provoqués par une inhomogénéité de traitement au niveau du recouvrement de deux lignes laser élémentaires.

Claims

REVENDICATIONS
1. Appareil laser comprenant :
plusieurs modules laser générant chacun une ligne laser élémentaire de longueur (L) et de largeur (W focalisée au niveau d'un plan de travail ; et
des moyens de convoyage destinés à accueillir un substrat;
dans lequel lesdits modules laser sont positionnés de manière à ce que les lignes laser élémentaires générées sont sensiblement parallèles entre elles et se combinent en une ligne laser unique, chaque ligne élémentaire présentant un recouvrement (R) dans la direction de la longueur avec une ligne laser élémentaires adjacentes ; et
les moyens de convoyage permettent le défilement du substrat perpendiculairement à la ligne de laser unique ;
caractérisé en ce que, pour au moins deux lignes laser élémentaires adjacentes (LAI , LA2), les lignes laser élémentaires présentent un décalage (D) l'une par rapport à l'autre dans la direction de la largeur, ledit décalage étant inférieur à la demi-somme des largeurs desdites deux lignes laser élémentaires adjacentes ; le recouvrement (R) desdites au moins deux lignes laser élémentaires adjacentes (LAI , LA2) étant tel que, en l'absence de décalage, le profil de puissance linéique de la ligne laser unique présente un maximum local au niveau de la zone de recouvrement.
2. Appareil selon la revendication 1 , caractérisé en ce que ledit maximum local du profil de puissance linéique de la ligne laser unique a une valeur supérieure de 20%, de préférence supérieur de 10%, par rapport à la puissance linéique moyenne de chacune desdites au moins deux lignes laser élémentaires adjacentes (LAI , LA2) hors zone de recouvrement.
3. Appareil selon la revendication 1 ou 2, caractérisé en ce que ledit décalage (D) est choisi de façon à ce que le facteur de mérite F de la ligne laser unique au niveau du recouvrement présente une variation inférieure à 20%, de préférence inférieure à 15%, plus préférentiellement inférieure à 10%, encore plus préférentiellement inférieur à 5%, par rapport au facteur de mérite moyen de chacune desdites au moins deux lignes laser élémentaires adjacentes (LAI , LA2) hors zone de recouvrement ;
le facteur de mérite F en un point donné d'une ligne laser étant défini par :
Figure imgf000020_0001
dans laquelle w et P sont respectivement la largeur et la puissance linéique locale de la ligne laser à ce point donné.
4. Appareil selon l'une quelconque des revendications 1 à 3, caractérisé en ce que ledit décalage (D) est supérieur à 10%> de la largeur de chacune desdites au moins deux lignes laser élémentaires adjacentes (LAI , LA2).
5. Appareil selon l'une quelconque des revendications 1 à 4, caractérisé en ce que les profils de puissance linéique des lignes laser élémentaires présentent un plateau central (p) et deux flancs latéraux (f), le plateau central (p) ayant une puissance linéique sensiblement constante, et chaque flanc latéral (f) ayant un gradient de puissance linéique.
6. Appareil selon la revendication 5, caractérisé en ce que le recouvrement (R) entre deux lignes laser élémentaires adjacentes (LAI , LA2) est au moins égal à la longueur du plus court des flancs latéraux (f) desdites deux lignes laser élémentaires adjacentes (LAI , LA2) au niveau de la zone de recouvrement.
7. Procédé de réglage d'un appareil laser comprenant plusieurs modules laser générant chacun une ligne laser élémentaire de longueur (L) et de largeur
(W focalisée au niveau d'un plan de travail ; et
des moyens de convoyage destinés à accueillir un substrat;
dans lequel lesdits modules laser sont positionnés de manière à ce que les lignes laser élémentaires générées sont sensiblement parallèles entre elles et se combinent dans la direction de la longueur en une ligne laser unique; et
les moyens de convoyage permettent le défilement du substrat perpendiculairement à la ligne de laser unique ;
ledit procédé comprenant :
- la mesure des profils de puissance linéique et des largeurs de deux lignes laser élémentaires adjacentes (LAI , LA2) prises individuellement ;
- la détermination du couple recouvrement-décalage (R, D) nécessaire pour que le facteur de mérite F de la ligne de laser unique au niveau de la zone de recouvrement présente une variation inférieure à 20%, de préférence inférieure à 15%, plus préférentiellement inférieure à 10%, encore plus préférentiellement inférieure à 5%, par rapport au facteur de mérite moyen de chacune desdites deux lignes laser élémentaires adjacentes (LAI , LA2) hors zone de recouvrement ;
le facteur de mérite F en un point donné d'une ligne laser étant défini par :
P
Vw
dans laquelle w et sont respectivement la largeur et la puissance linéique locale de la ligne laser à ce point donné; et
- le positionnement des modules lasers correspondants auxdites deux lignes laser élémentaires adjacentes (LAI , LA2) de manière à ce que lesdites deux lignes laser élémentaires adjacentes présentent le couple recouvrement-décalage déterminé.
8. Utilisation de l'appareil laser tel défini à l'une quelconque des revendications 1 à 6 pour le traitement thermique d'un revêtement déposé sur un substrat.
9. Procédé de traitement thermique d'un revêtement déposé sur un substrat comprenant :
- la fourniture d'un appareil laser tel que défini à la revendication 7 ;
- le réglage de l'appareil laser selon le procédé de réglage de la revendication 7 ;
- la fourniture du substrat revêtu du revêtement à traiter sur les moyens de convoyage de façon à ce que le revêtement soit au niveau du plan de travail ;
- le défilement du substrat perpendiculairement à la ligne laser unique ;
- la récupération du substrat revêtu du revêtement traité thermiquement.
PCT/FR2016/052104 2015-08-25 2016-08-23 Appareil laser comprenant plusieurs modules laser generant chacun une ligne, les lignes se recouvrant avec un decalage dans le sens de la largeur WO2017032947A1 (fr)

Priority Applications (12)

Application Number Priority Date Filing Date Title
MX2018002260A MX2018002260A (es) 2015-08-25 2016-08-23 Dispositivo laser modular.
CN201680062429.0A CN108136542A (zh) 2015-08-25 2016-08-23 包括其中每个生成一条线、各条线在宽度方向上偏移的情况下重叠的多个激光模块的激光装置
KR1020187008014A KR20180043323A (ko) 2015-08-25 2016-08-23 각각 하나의 라인을 발생시키는 복수의 레이저 모듈을 포함하며, 상기 라인들은 폭 방향에서 오프셋을 가지며 중첩하는 것인, 레이저 장치
AU2016311313A AU2016311313A1 (en) 2015-08-25 2016-08-23 Laser apparatus comprising a plurality of laser modules, each generating one line, the lines overlapping with an offset in the widthwise direction
JP2018510353A JP2018529523A (ja) 2015-08-25 2016-08-23 モジュール式レーザー装置
CA2995655A CA2995655A1 (fr) 2015-08-25 2016-08-23 Appareil laser comprenant plusieurs modules laser generant chacun une ligne, les lignes se recouvrant avec un decalage dans le sens de la largeur
BR112018003218-2A BR112018003218A2 (pt) 2015-08-25 2016-08-23 aparelho de laser que compreende vários módulos de laser que geram cada um deles uma linha, as linhas se recobrindo com uma decalagem no sentido da largura
RU2018110269A RU2018110269A (ru) 2015-08-25 2016-08-23 Лазерный прибор, содержащий множество лазерных модулей, каждый из которых генерирует одну линию, при этом линии перекрываюся со смещением в направлении ширины
US15/754,869 US20180264593A1 (en) 2015-08-25 2016-08-23 Modular laser device
EP16763921.0A EP3341154A1 (fr) 2015-08-25 2016-08-23 Appareil laser comprenant plusieurs modules laser générant chacun une ligne, les lignes se recouvrant avec un décalage dans le sens de la largeur
ZA2018/01194A ZA201801194B (en) 2015-08-25 2018-02-21 Laser apparatus comprising a plurality of laser modules, each generating one line, the lines overlapping with an offset in the widthwise direction
CONC2018/0001868A CO2018001868A2 (es) 2015-08-25 2018-02-22 Aparato láser que comprende varios módulos láser que generan cada uno una línea, líneas que se superponen con un desfasaje a lo ancho

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1557907A FR3040319B1 (fr) 2015-08-25 2015-08-25 Appareil laser modulaire
FR1557907 2015-08-25

Publications (1)

Publication Number Publication Date
WO2017032947A1 true WO2017032947A1 (fr) 2017-03-02

Family

ID=54291512

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2016/052104 WO2017032947A1 (fr) 2015-08-25 2016-08-23 Appareil laser comprenant plusieurs modules laser generant chacun une ligne, les lignes se recouvrant avec un decalage dans le sens de la largeur

Country Status (14)

Country Link
US (1) US20180264593A1 (fr)
EP (1) EP3341154A1 (fr)
JP (1) JP2018529523A (fr)
KR (1) KR20180043323A (fr)
CN (1) CN108136542A (fr)
AU (1) AU2016311313A1 (fr)
BR (1) BR112018003218A2 (fr)
CA (1) CA2995655A1 (fr)
CO (1) CO2018001868A2 (fr)
FR (1) FR3040319B1 (fr)
MX (1) MX2018002260A (fr)
RU (1) RU2018110269A (fr)
WO (1) WO2017032947A1 (fr)
ZA (1) ZA201801194B (fr)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190035439A (ko) * 2017-09-26 2019-04-03 주식회사 포스코아이씨티 산세공정용 레이저 시스템 및 이를 이용한 산세공정 수행 방법
WO2019086794A1 (fr) 2017-10-31 2019-05-09 Saint-Gobain Glass France Procede, programme informatique et dispositif d'alignement d'une pluralite de lignes lasers
US10822270B2 (en) 2018-08-01 2020-11-03 Guardian Glass, LLC Coated article including ultra-fast laser treated silver-inclusive layer in low-emissivity thin film coating, and/or method of making the same
WO2022084087A3 (fr) * 2020-10-19 2022-07-21 Ams-Osram International Gmbh Boîtier laser et procédé de fonctionnement d'un boîtier laser

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4088449A4 (fr) 2020-04-20 2023-07-05 Lumus Ltd. Affichage proche de l'?il présentant un rendement laser amélioré et une sécurité oculaire améliorée
TWI755109B (zh) * 2020-10-23 2022-02-11 新代科技股份有限公司 雷射加工系統及其雷射加工方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6717105B1 (en) * 2000-11-02 2004-04-06 Mitsubishi Denki Kabushiki Kaisha Laser annealing optical system and laser annealing apparatus using the same
US20040136416A1 (en) * 2001-12-21 2004-07-15 Koichiro Tanaka Method and apparatus for laser irradiation and manufacturing method of semiconductor device
US6884699B1 (en) * 2000-10-06 2005-04-26 Mitsubishi Denki Kabushiki Kaisha Process and unit for production of polycrystalline silicon film
WO2014111664A1 (fr) * 2013-01-18 2014-07-24 Saint-Gobain Glass France Procede d'obtention d'un substrat muni d'un revêtement

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6370802A (ja) * 1986-09-12 1988-03-31 Fanuc Ltd レ−ザ用集光鏡
JP2002254191A (ja) * 2001-03-01 2002-09-10 Hitachi Via Mechanics Ltd レーザ加工方法およびレーザ加工装置
JP2003249460A (ja) * 2001-12-21 2003-09-05 Semiconductor Energy Lab Co Ltd レーザ照射装置
US7097709B2 (en) * 2002-11-27 2006-08-29 Mitsubishi Denki Kabushiki Kaisha Laser annealing apparatus
FR3005878B1 (fr) * 2013-05-24 2016-05-27 Saint Gobain Procede d'obtention d'un substrat muni d'un revetement
FR3012264B1 (fr) * 2013-10-21 2017-04-21 Saint Gobain Appareil laser modulaire

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6884699B1 (en) * 2000-10-06 2005-04-26 Mitsubishi Denki Kabushiki Kaisha Process and unit for production of polycrystalline silicon film
US6717105B1 (en) * 2000-11-02 2004-04-06 Mitsubishi Denki Kabushiki Kaisha Laser annealing optical system and laser annealing apparatus using the same
US20040136416A1 (en) * 2001-12-21 2004-07-15 Koichiro Tanaka Method and apparatus for laser irradiation and manufacturing method of semiconductor device
WO2014111664A1 (fr) * 2013-01-18 2014-07-24 Saint-Gobain Glass France Procede d'obtention d'un substrat muni d'un revêtement

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190035439A (ko) * 2017-09-26 2019-04-03 주식회사 포스코아이씨티 산세공정용 레이저 시스템 및 이를 이용한 산세공정 수행 방법
KR102110016B1 (ko) * 2017-09-26 2020-05-12 주식회사 포스코아이씨티 산세공정용 레이저 시스템 및 이를 이용한 산세공정 수행 방법
WO2019086794A1 (fr) 2017-10-31 2019-05-09 Saint-Gobain Glass France Procede, programme informatique et dispositif d'alignement d'une pluralite de lignes lasers
US10822270B2 (en) 2018-08-01 2020-11-03 Guardian Glass, LLC Coated article including ultra-fast laser treated silver-inclusive layer in low-emissivity thin film coating, and/or method of making the same
US11236014B2 (en) 2018-08-01 2022-02-01 Guardian Glass, LLC Coated article including ultra-fast laser treated silver-inclusive layer in low-emissivity thin film coating, and/or method of making the same
WO2022084087A3 (fr) * 2020-10-19 2022-07-21 Ams-Osram International Gmbh Boîtier laser et procédé de fonctionnement d'un boîtier laser

Also Published As

Publication number Publication date
CN108136542A (zh) 2018-06-08
ZA201801194B (en) 2019-01-30
BR112018003218A2 (pt) 2018-09-25
CA2995655A1 (fr) 2017-03-02
MX2018002260A (es) 2018-03-23
KR20180043323A (ko) 2018-04-27
AU2016311313A1 (en) 2018-04-12
FR3040319B1 (fr) 2017-11-24
FR3040319A1 (fr) 2017-03-03
CO2018001868A2 (es) 2018-05-10
RU2018110269A (ru) 2019-09-26
EP3341154A1 (fr) 2018-07-04
JP2018529523A (ja) 2018-10-11
RU2018110269A3 (fr) 2020-02-07
US20180264593A1 (en) 2018-09-20

Similar Documents

Publication Publication Date Title
WO2017032947A1 (fr) Appareil laser comprenant plusieurs modules laser generant chacun une ligne, les lignes se recouvrant avec un decalage dans le sens de la largeur
EP3036352B1 (fr) Procede d'obtention d'un substrat muni d'un revetement comprenant une couche mince metallique discontinue
EP3060957B1 (fr) Appareil laser modulaire
EP2839054B1 (fr) Procede d'obtention d'un substrat revetu
EP2652812B1 (fr) Procede de fabrication d'un dispositif oled
EP3058412A1 (fr) Appareil laser modulaire
WO2008152300A2 (fr) Procede d'obtention d'un substrat texture pour panneau photovoltaïque
EP2782741B1 (fr) Unité de traitement thermique d'ébauches de récipients à double paroi rayonnante en quinconce
WO2016038269A1 (fr) Procédé de recuit par lampes flash
EP2962326B1 (fr) Procede de traitement d'une structure
WO2012072914A2 (fr) Machine d'exposition de panneaux
EP3362416A1 (fr) Procede de recuit rapide d'un empilement de couches minces contenant une surcouche a base d'indium
EP3956095A1 (fr) Procédé de réalisation d'un effet d'irisation sur la surface d'un matériau, et dispositifs pour sa mise en oeuvre
WO2019043334A1 (fr) Dispositif de traitement thermique amélioré
FR3073839B1 (fr) Systeme d’alignement d’un dispositif de traitement thermique et son fonctionnement
FR3132382A1 (fr) Procede d’obtention d’un substrat muni d’un revêtement comprenant une couche mince metallique discontinue
FR3112892A1 (fr) Procédé de traitement par balayage interrompu d’une cellule photovoltaïque a hétérojonction
BE1019539A3 (fr) Methode de determination de la transmission opto-energetique d'un materiau transparent ou translucide et dispositif pour sa mise en oeuvre.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16763921

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2995655

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: MX/A/2018/002260

Country of ref document: MX

ENP Entry into the national phase

Ref document number: 2018510353

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15754869

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187008014

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2018110269

Country of ref document: RU

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112018003218

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2016311313

Country of ref document: AU

Date of ref document: 20160823

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112018003218

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20180220