WO2016038269A1 - Procédé de recuit par lampes flash - Google Patents

Procédé de recuit par lampes flash Download PDF

Info

Publication number
WO2016038269A1
WO2016038269A1 PCT/FR2015/052238 FR2015052238W WO2016038269A1 WO 2016038269 A1 WO2016038269 A1 WO 2016038269A1 FR 2015052238 W FR2015052238 W FR 2015052238W WO 2016038269 A1 WO2016038269 A1 WO 2016038269A1
Authority
WO
WIPO (PCT)
Prior art keywords
coating
annealed
substrate
flash lamp
mask
Prior art date
Application number
PCT/FR2015/052238
Other languages
English (en)
Inventor
Lorenzo CANOVA
Emmanuel Mimoun
Brice DUBOST
Original Assignee
Saint-Gobain Glass France
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to AU2015314079A priority Critical patent/AU2015314079A1/en
Priority to BR112017002958A priority patent/BR112017002958A2/pt
Priority to CN201580048670.3A priority patent/CN106605290A/zh
Priority to JP2017513808A priority patent/JP2017536689A/ja
Priority to EP15767209.8A priority patent/EP3192095A1/fr
Priority to CA2957845A priority patent/CA2957845A1/fr
Application filed by Saint-Gobain Glass France filed Critical Saint-Gobain Glass France
Priority to EA201790593A priority patent/EA201790593A1/ru
Priority to KR1020177006735A priority patent/KR20170051447A/ko
Priority to US15/507,883 priority patent/US20170291848A1/en
Priority to MX2017002996A priority patent/MX2017002996A/es
Publication of WO2016038269A1 publication Critical patent/WO2016038269A1/fr
Priority to CONC2017/0002325A priority patent/CO2017002325A2/es

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3657Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer the multilayer coating having optical properties
    • C03C17/366Low-emissivity or solar control coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/324Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/06Surface treatment of glass, not in the form of fibres or filaments, by coating with metals
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/22Surface treatment of glass, not in the form of fibres or filaments, by coating with other inorganic material
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C23/00Other surface treatment of glass not in the form of fibres or filaments
    • C03C23/0005Other surface treatment of glass not in the form of fibres or filaments by irradiation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5806Thermal treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02565Oxide semiconducting materials not being Group 12/16 materials, e.g. ternary compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/268Bombardment with radiation with high-energy radiation using electromagnetic radiation, e.g. laser radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67115Apparatus for thermal treatment mainly by radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67739Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations into and out of processing chamber
    • H01L21/6776Continuous loading and unloading into and out of a processing chamber, e.g. transporting belts within processing chambers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1884Manufacture of transparent electrodes, e.g. TCO, ITO
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/21Oxides
    • C03C2217/24Doped oxides
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/25Metals
    • C03C2217/251Al, Cu, Mg or noble metals
    • C03C2217/254Noble metals
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/25Metals
    • C03C2217/251Al, Cu, Mg or noble metals
    • C03C2217/254Noble metals
    • C03C2217/256Ag
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/30Aspects of methods for coating glass not covered above
    • C03C2218/32After-treatment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a method and apparatus for rapid annealing of thin layers deposited on flat substrates by means of flash lamps.
  • Laser annealing is used to heat thin coatings at high temperatures, on the order of several hundred degrees, while preserving the underlying substrate.
  • FIG. 1 shows a Planitherm ONE ® coating after annealing with flash lamps under the following conditions: Intensity of each light pulse: 35 J / cm 2
  • Periodic streaks about 2.6 cm apart, were observed which were absent from the coating directly after the Planitherme ® ONE stack was deposited.
  • This solution consists in interposing between the flash lamp and the coating to anneal an opaque mask having an irradiation slot.
  • an opaque mask having an irradiation slot.
  • the mask and the irradiation slot must have a fixed position with respect to the flash lamp
  • the frequency of the flash lamp and the speed of travel of the substrate shall be such that each point of the coating receives at least one light pulse
  • the mask must be positioned as close as possible to the surface of the coating to be annealed, at most within a few millimeters of it,
  • the shape and extent of the irradiation slit should be such that the mask intercepts the light of the lamp, that is, obscures the substrate, in all areas where the light intensity is less than an intensity luminous threshold, hereinafter referred to as nominal luminous intensity.
  • nominal luminous intensity is the intensity of a light pulse, of a given duration, beyond which a second pulse of intensity greater than or equal to that of the first pulse and of same duration as this, does not cause a change of color in reflection of the coating.
  • L ⁇ ai and bi are the coordinates in the CIELab color space of the first color and L 2 , 32 and t> 2 those of the second.
  • the second pulse when the second pulse causes a significant color change ( ⁇ * 2 - ⁇ * ⁇ > 1), it is considered that the second pulse affects the color of the coating and that the light intensity is considered to be less than the nominal luminous intensity.
  • the light intensities to be considered are of course those measured at the level of the work plane, that is to say at the level of the coating to be annealed.
  • the light emitted by the flash lamp has, at the level of the work plane, a light intensity profile, also called a power density profile, at least one zone where the luminous intensity is greater than or equal to the nominal intensity. as defined above, and other zones, generally on the periphery of the irradiated zone, where the luminous intensity is lower than the nominal luminous intensity.
  • the irradiation mask must be positioned between the lamp and the coating so as to intercept all of the light which, at the level of the coating to be annealed, has a luminous intensity lower than the nominal intensity.
  • the mask may possibly intercept a small portion of the light having an intensity greater than or equal to the nominal intensity.
  • the present invention relates to a surface annealing process of a coated substrate, said method comprising
  • the distance between the lower face of the mask and the surface of the coating to be annealed is at most equal to 1 mm, preferably at most equal to 500 ⁇ , ideally at most equal to 100 ⁇ ,
  • the shape and extent of the slot are such that the mask obscures the coating to be annealed in all areas where the light intensity which, in the absence of a mask, would reach the level of the coating to be annealed is less than a threshold light intensity, hereinafter called the nominal luminous intensity.
  • flashlamp designates a single flashlamp or a set of flashlamps, for example 5 to 20 lamps, or 8 to 15 lamps, arranged preferably parallel to each other, and associated with one or more mirrors.
  • a set of flash lamps and mirrors is used for example in the method disclosed in WO 2013/026817.
  • the function of the mirrors is to direct all the light emitted by the lamps in the direction of the substrate and to give the luminous intensity profile a desired shape in a truncated bell with a central plateau of approximately constant intensity (less than 5%) and lateral flanks where the intensity gradually decreases.
  • These mirrors can be flat mirrors or focusing mirrors.
  • Flash lamps used in the present invention are generally in the form of sealed glass tubes or quartz tubes filled with a rare gas, provided with electrodes at their ends. Under the effect of a short-term electrical pulse, obtained by discharging a capacitor, the gas ionizes and produces a particularly intense incoherent light.
  • the emission spectrum comprises generally at least two emission lines; it is preferably a continuous spectrum having a maximum emission in the near ultraviolet.
  • the lamp is preferably a xenon lamp. It can also be a lamp with argon, helium or krypton.
  • the emission spectrum preferably comprises several lines, especially at wavelengths ranging from 160 to 1000 nm.
  • the duration of the light pulse is preferably in a range from 0.05 to 20 milliseconds, in particular from 0.1 to 5 milliseconds.
  • the repetition rate (frequency) is preferably in a range from 0.1 to 5 Hz, in particular from 0.2 to 2 Hz.
  • the lamp, or lamps is preferably disposed transversely to the longer sides of the substrate. It has a length preferably of at least 1 m, especially at least 2 m and even at least 3 m, so as to allow the treatment of large substrates.
  • the capacitor is typically charged at a voltage of 500 V to 500 kV.
  • the current density is preferably at least 4000 A / cm 2 .
  • the total energy density emitted by the flash lamps, relative to the surface of the coating, is preferably between 1 and 100 J / cm 2 , preferably between 2 and 30 J / cm 2 , in particular between 5 and 20 J / cm 2 .
  • the substrate bearing the coating to be annealed is preferably glass or glass ceramic. It is preferably transparent, colorless (clear or extra-clear glass) or colored, for example blue, gray, green or bronze.
  • the glass is preferably of the silico-soda-lime type, but it may also be of borosilicate or alumino-borosilicate type glass.
  • the substrate advantageously has at least one dimension greater than or equal to 1 m, or even 2 m and even 3 m.
  • the thickness of the substrate generally varies between 0.1 mm and 19 mm, preferably between 0.7 and 9 mm, especially between 1 and 6 mm, or even between 2 and 4 mm.
  • the material of the coating to be annealed can in principle be any material, organic or mineral, which is not destroyed by the superficial annealing treatment whose physical properties, and in particular the color, are modified following this treatment.
  • the coating to be annealed preferably comprises at least one layer of a transparent conductive oxide (TCO).
  • TCO transparent conductive oxide
  • This oxide is preferably chosen from indium tin oxide (ITO), indium zinc oxide (IZO) and antimony or fluorine doped tin oxide (ATO). and FTO), zinc oxide doped with aluminum (AZO) and / or gallium (GZO) and / or titanium, titanium oxide doped with niobium and / or tantalum, cadmium stannate or of zinc.
  • a particularly preferred oxide is tin and indium oxide, frequently referred to as "ITO".
  • the atomic percentage of Sn is preferably in a range from 5 to 70%, especially from 6 to 60%, advantageously from 8 to 12%.
  • is appreciated for its high electrical conductivity, allowing the use of small thicknesses to obtain a good emissivity or resistivity level.
  • the coating to be annealed comprises one or more thin layers of a metal, in particular of a noble metal, typically layers based on silver or gold, preferably at least one layer of metal. 'money.
  • the physical thickness of the coating to be annealed is advantageously at least equal to 30 nm and at most equal to 5000 nm, preferably between 50 nm and 2000 nm.
  • the substrate carrying the annealing coating under or before the flashlamps partially obscured by the irradiation mask is rotated.
  • the flash lamps are preferably close to the coating to be annealed, advantageously located less than 20 cm, preferably less than 10 cm and in particular less than 5 cm.
  • This distance the higher the luminous intensity at the level of the work surface (coating to anneal) is important for a given operating power.
  • the irradiation mask comprises a slot whose longitudinal axis is perpendicular to the direction of travel of the substrate.
  • the simplest form of the slot guaranteeing a homogeneous irradiation of the coating to be annealed is the rectangle.
  • the slot therefore preferably has a substantially rectangular shape. More complex shapes, less preferred, are however also possible and the invention is not limited to the embodiment where the slot is a rectangle.
  • An arc-like, zigzag or wavy slot would be equivalent to a rectangular slot provided that the upstream and downstream edges of the slot are parallel, allowing for the perfect juxtaposition (without vacuum) of the corresponding irradiation zones. successive light pulses.
  • the substrate carrying the coating to be annealed can be set in scrolling motion using any suitable mechanical conveyor means, for example using strips, rollers, translational trays.
  • the conveyor system controls and controls the speed of travel.
  • the rate of travel of the substrate should be adjusted according to the frequency of the pulses and the slit width of the mask so that each point of the coating receives at least one light pulse, ie the scroll speed must be lower or equal to the L / P ratio of the width of the slot (L) to the period (P) separating two pulses.
  • the running speed of the substrate For an irradiation frequency of 1 Hz and a width of the slot of 10 cm, the running speed of the substrate must thus be at most 10 cm / second.
  • the running speed of the substrate is less than L / P, a certain number of points receive two light pulses (overlap area), which is not very favorable from the point of view of the energy efficiency of the process.
  • overlap area The existence of a zone of recovery, relatively narrow, however ensures the continuity of the irradiated area in case of small changes in the speed of travel.
  • the frequency of the flashlamp, the width of the slot and the speed of travel of the substrate are such that at least 90%, preferably at least 95%, more preferably at least 98% of the points of the coating to be annealed receive a single light pulse. In other words, at most 10%, preferably at most 5%, and more preferably at most 2% of the points of the coating receive two light pulses.
  • the speed of travel of the substrate is therefore preferably between L / P and 0.9 L / P.
  • the rate of travel of the substrate carrying the coating to be annealed is advantageously between 0.1 and 30 m / minute, preferably between 1 and 20 m / minute, and in particular between 2 and 10 m / minute.
  • the width of the irradiation slot is advantageously between 1 and 50 cm, preferably between 5 and 20 cm.
  • the length of the slot is substantially equal to the width of the coating to be annealed, namely generally at least 1 m, preferably at least 2 m, in particular at least 3 m.
  • the irradiation mask must be as close as possible to the coating to be annealed, that is to say the distance between its underside and the surface of the coating to be annealed must not exceed 1 mm, preferably does not exceed 500 ⁇ , and ideally is at most equal to 100 ⁇ .
  • the present invention also relates to an apparatus for the surface annealing of a substrate bearing a coating to be annealed, particularly suitable for the implementation of the method of the present application.
  • the apparatus of the present invention comprises
  • a mask located, in a fixed position relative to the flash lamp, between the flash lamp and the transport means, said mask comprising a slot whose longitudinal axis is perpendicular to the direction of travel of the substrate and which is positioned from whereby the light emitted by the flash lamp is projected through the slot towards the flat substrate carrying a coating to be annealed,
  • the mask will preferably be made of a metallic material, typically aluminum or copper.
  • the body of the mask will preferably be in contact with a cooling circuit, so as to maintain its temperature below 100 ° C., preferably below 50 ° C.
  • a diffusing reflective layer for the mask, so that the intercepted light is not absorbed but diffused in order to lower the reflected light intensity and thus its dangerousness.
  • the thickness of the mask at the edges of the slot must be as small as possible, preferably less than 500 ⁇ , or even less than 200 ⁇ or less than ⁇ ⁇ .
  • the parts thereof that are farthest from the slot may be thicker.
  • the edges of the slot can then be made bevel, so that the light is intercepted by the thinnest part.
  • Figure 1 shows a photograph of a substrate bearing a Planitherme ® ONE coating irradiated under the conditions as indicated above in the absence of a mask. There are periodic horizontal streaks spaced about 2.6 cm apart.
  • Figure 2 is a photograph of a Planitherme ® ONE substrate treated according to the method of the invention. The streaks visible in FIG. 1 have completely disappeared thanks to the interposition of a mask under the conditions according to the invention.
  • FIG. 3 is an explanatory diagram showing the operation of the method of the present invention and, more particularly, the appropriate positioning of the irradiation mask in relation to the luminous intensity profile of the lamps.
  • the annealing coating 2 is irradiated with light emitted by a set of lamps 4 and directed downwards by means of a set of mirrors 5, through a mask 3.
  • the distance between the two parts of the mask 3 corresponds to the width of the longitudinal slot.
  • the distance between the lower face of the mask 3 and the upper face of the annealing coating 2 is less than 1 mm.
  • the intensity profile of a light pulse as it exists at the level of the coating to be annealed 2 in the absence of the mask 3.
  • the mask 3 is positioned such that the light having a intensity below the nominal intensity is intercepted by the opaque areas of the mask.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • High Energy & Nuclear Physics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Electromagnetism (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Electroluminescent Light Sources (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)
  • Recrystallisation Techniques (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Heat Treatment Of Articles (AREA)
  • Furnace Details (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

Procédé de recuit superficiel d'un substrat portant un revêtement, ledit procédé comprenant; le défilement du substrat (1) portant le revêtement à recuire (2) sous une lampe flash (4), la face du substrat (1 ) portant ledit revêtement (2) étant tournée vers la lampe flash (4), l'irradiation du revêtement à recuire par la lumière intense puisée émise par la lampe flash (4) à travers un masque (3) situé entre la lampe flash et le revêtement à recuire et comportant une fente dont l'axe longitudinal est perpendiculaire à la direction de défilement du substrat, la fréquence de la lampe flash et la vitesse de défilement du substrat étant réglées de manière à ce que chaque point du revêtement à recuire reçoive au moins une impulsion lumineuse, caractérisé par le fait que la distance entre la face inférieure du masque et la surface du revêtement à recuire est au plus égale à 1 mm, et par le fait que la forme et l'étendue de la fente sont telles que le masque occulte le revêtement à recuire dans toutes les zones où l'intensité lumineuse qui, en absence de masque, arriverait au niveau du revêtement à recuire est inférieure à une intensité lumineuse seuil, appelée ci-après intensité lumineuse nominale.

Description

PROCEDE DE RECUIT PAR LAMPES FLASH
La présente invention concerne un procédé et un appareil pour le recuit rapide de couches minces déposées sur des substrats plats, au moyen de lampes flash.
Il est connu d'effectuer un recuit laser local et rapide (laser flash heating) de revêtements minces déposés sur des substrats plats. Pour cela on fait défiler le substrat avec le revêtement à recuire sous une ligne laser, ou bien une ligne laser au-dessus du substrat portant le revêtement (voir par exemple WO2008/096089 et WO 2013/156721 ).
Le recuit laser permet de chauffer des revêtements minces à des températures élevées, de l'ordre de plusieurs centaines de degrés, tout en préservant le substrat sous-jacent.
Plus récemment il a été proposé de remplacer dans un tel procédé de recuit superficiel les sources de lumière laser, telles que des diodes laser, par des lampes à lumière intense puisée (IPL, Intense Pulsed Light) également appelées lampes flash. Dans la demande internationale WO 2013/026817 il est ainsi proposé un procédé de fabrication d'un revêtement bas émissif comprenant une étape de dépôt d'une couche mince à base d'argent, puis une étape de recuit superficiel rapide de ladite couche dans le but de diminuer son émissivité et d'augmenter sa conductivité. Pour l'étape de recuit on fait défiler le substrat revêtu de la couche d'argent sous un ensemble de lampes flash en aval de la station de dépôt de la couche.
En essayant de reproduire ce procédé avec un vitrage Planitherm ONE® (verre clair revêtu d'un empilement de fines couches transparentes, dont certaines couches en métaux nobles, déposées par pulvérisation cathodique sous vide), la Demanderesse a observé des inhomogénéités d'aspect du revêtement après recuit. La figure 1 montre un revêtement Planitherm ONE® après recuit avec des lampes flash dans les conditions suivantes : Intensité de chaque impulsion de lumière : 35 J/cm2
Durée de chaque impulsion: 2,7 ms
Fréquence des puises : 0,5 Hz
Vitesse de défilement du substrat : 0,78 m/min
Largeur approximative de la zone éclairée par la lampe dans le sens du défilement du substrat : 10 cm
Distance entre la lampe flash et le substrat : 20 mm
On observe des stries périodiques, distantes d'environ 2,6 cm, qui étaient absentes du revêtement directement après dépôt de l'empilement Planitherme® ONE.
Ces stries n'apparaissent pas non plus lorsqu'on effectue le recuit du revêtement en faisant défiler un substrat identique sous une ligne laser générée par des diodes laser. L'apparition des défauts d'homogénéité d'aspect semble donc être liée à l'utilisation d'une source de lumière puisée (lampe flash) en remplacement d'une source de lumière continue (diode laser).
Après de nombreux essais visant à mieux comprendre ce phénomène indésirable, la Demanderesse a trouvé une solution, assez simple à mettre en œuvre, qui permet de réduire considérablement, voire de supprimer totalement ce défaut périodique d'homogénéité du substrat recuit.
Cette solution consiste à interposer entre la lampe flash et le revêtement à recuire un masque opaque comportant une fente d'irradiation. Pour que l'utilisation d'un tel masque aboutisse à la réduction ou à la suppression des défauts d'homogénéité du revêtement recuit, les conditions suivantes doivent être remplies :
Le masque et la fente d'irradiation doivent avoir une position fixe par rapport à la lampe flash,
La fréquence de la lampe flash et la vitesse de défilement du substrat doivent être telles que chaque point du revêtement reçoive au moins une impulsion lumineuse,
Le masque doit être positionné le plus près possible de la surface du revêtement à recuire, tout au plus à quelques millimètres de celle-ci, La forme et l'étendue de la fente d'irradiation doivent être telles que le masque intercepte la lumière de la lampe, c'est-à-dire occulte le substrat, dans toutes les zones où l'intensité lumineuse est inférieure à une intensité lumineuse seuil, appelée ci-après intensité lumineuse nominale.
Dans la présente demande, on appelle « intensité lumineuse nominale » l'intensité d'une impulsion lumineuse, d'une durée donnée, au-delà de laquelle une deuxième impulsion d'une intensité supérieure ou égale à celle de la première impulsion et de même durée que celle-ci, n'entraîne pas de changement de couleur en réflexion du revêtement.
On appelle changement de couleur la différence entre deux couleurs (ΔΕ*)
= {¾ ~~ ¾f - (% - %)f + (h ~ ½}s telle que défini par le système colorimétrique CIE L*a*b* (illuminant D65). Le système CIELab définit un espace colorimétrique en forme de sphère avec un axe L* caractérisant la clarté, un axe a* rouge/vert et un axe b* bleu/jaune. Une valeur a* supérieure à 0 correspond à des teintes avec une composante rouge, une valeur a* négative à des teintes avec une composante verte, une valeur b* positive à des teintes avec une composante jaune et une valeur b* négative à des teintes avec une composante bleue. Dans la formule ci-dessus L^ ai et bi sont les coordonnées dans l'espace colorimétrique CIELab de la première couleur et L2, 32 et t>2 ceux de la deuxième.
Lorsqu'on irradie le revêtement à recuire avec une première impulsion d'une intensité suffisante, cette irradiation provoque un changement de la couleur du revêtement (ΔΕ*ι). Puis, lorsqu'on répète cette même irradiation avec une impulsion de même énergie (même intensité, même durée), le changement de couleur additionnel provoqué aboutit à un changement de couleur total (ΔΕ* 2). Lorsque ΔΕ2 est sensiblement égal à ΔΕ1 , c'est-à-dire lorsque ΔΕ2 - ΔΕΪ est inférieur ou égal à 1 , on considère que la deuxième impulsion n'a pas eu d'incidence significative sur la couleur du revêtement et que l'intensité de l'impulsion est supérieure ou égale à l'intensité nominale telle que définie ci-dessus.
Par contre, lorsque la deuxième impulsion provoque un changement de couleur significatif (ΔΕ*2 - ΔΕ*ι > 1 ), on considère que la deuxième impulsion a une incidence sur la couleur du revêtement et que l'intensité lumineuse est considérée comme inférieure à l'intensité lumineuse nominale.
Les intensités lumineuses à considérer sont bien entendu celles mesurées au niveau du plan de travail, c'est-à-dire au niveau du revêtement à recuire.
La lumière émise par la lampe flash présente, au niveau du plan de travail, un profil d'intensité de lumière, également appelé profil de densité de puissance, au moins une zone où l'intensité lumineuse est supérieure ou égale à l'intensité nominale telle que définie ci-dessus, et d'autres zones, généralement en périphérie de la zone irradiée, où l'intensité lumineuse est inférieure à l'intensité lumineuse nominale.
Le masque d'irradiation doit être positionné entre la lampe et le revêtement de manière à intercepter la totalité de la lumière qui, au niveau du revêtement à recuire, a une intensité lumineuse inférieure à l'intensité nominale. Le masque peut éventuellement intercepter une faible partie de la lumière qui présente une intensité supérieure ou égale à l'intensité nominale.
La présente invention a pour objet un procédé de recuit superficiel d'un substrat portant un revêtement, ledit procédé comprenant
le défilement du substrat portant le revêtement à recuire sous une lampe flash émettant une lumière intense puisée, la face du substrat portant ledit revêtement étant tournée vers la lampe flash,
l'irradiation du revêtement à recuire par la lumière intense puisée émise par la lampe flash à travers un masque situé, en une position fixe par rapport à la lampe flash, entre la lampe flash et le revêtement à recuire et comportant une fente dont l'axe longitudinal est perpendiculaire à la direction de défilement du substrat, la fréquence de la lampe flash et la vitesse de défilement du substrat étant réglées de manière à ce que chaque point du revêtement à recuire reçoive au moins une impulsion lumineuse,
caractérisé par le fait que
la distance entre la face inférieure du masque et la surface du revêtement à recuire est au plus égale à 1 mm, de préférence au plus égale à 500 μιτι, idéalement au plus égale à 100 μιτι,
et par le fait que la forme et l'étendue de la fente sont telles que le masque occulte le revêtement à recuire dans toutes les zones où l'intensité lumineuse qui, en absence de masque, arriverait au niveau du revêtement à recuire est inférieure à une intensité lumineuse seuil, appelée ci-après intensité lumineuse nominale.
A chaque fois qu'il sera fait mention d'une « lampe flash » dans la présente demande, ce terme désigne une lampe flash unique ou bien un ensemble de lampes flash, par exemple 5 à 20 lampes, ou encore 8 à 15 lampes, disposées de préférence parallèlement les unes aux autres, et associées à un ou plusieurs miroirs. Un tel ensemble de lampes flash et de miroirs est utilisé par exemple dans le procédé divulgué dans WO 2013/026817. Les miroirs ont pour fonction de diriger toute la lumière émise par les lampes dans la direction du substrat et de conférer au profil d'intensité lumineuse une forme voulue en cloche tronquée présentant un plateau central d'intensité à peu près constante (variant de moins de 5 %) et des flancs latéraux où l'intensité diminue progressivement. Ces miroirs peuvent être des miroirs plans ou des miroirs focalisants.
Les lampes flash utilisées dans la présente invention se présentent généralement sous la forme de tubes en verre ou en quartz scellés et remplis d'un gaz rare, munis d'électrodes à leurs extrémités. Sous l'effet d'une impulsion électrique de courte durée, obtenue par décharge d'un condensateur, le gaz s'ionise et produit une lumière incohérente particulièrement intense. Le spectre d'émission comporte généralement au moins deux raies d'émission ; il s'agit de préférence d'un spectre continu présentant un maximum d'émission dans le proche ultraviolet.
La lampe est de préférence une lampe au xénon. Elle peut également être une lampe à l'argon, à l'hélium ou au krypton. Le spectre d'émission comprend de préférence plusieurs raies, notamment à des longueurs d'onde allant de 160 à 1000 nm.
La durée de l'impulsion de lumière (flash) est de préférence comprise dans un domaine allant de 0,05 à 20 millisecondes, notamment de 0,1 à 5 millisecondes. Le taux de répétition (fréquence) est de préférence compris dans un domaine allant de 0,1 à 5 Hz, notamment de 0,2 à 2 Hz.
La lampe, ou les lampes, est de préférence disposée transversalement aux plus grands côtés du substrat. Elle possède une longueur de préférence d'au moins 1 m, notamment d'au moins 2 m et même d'au moins 3 m, de manière à permettre le traitement de substrats de grande taille.
Le condensateur est typiquement chargé à une tension de 500 V à 500 kV. La densité de courant est de préférence d'au moins 4000 A/cm2. La densité d'énergie totale émise par les lampes flash, rapportée à la surface du revêtement, est de préférence comprise entre 1 et 100 J/cm2, de préférence entre 2 et 30 J/cm2, en particulier entre 5 et 20 J/cm2.
Le substrat portant le revêtement à recuire est de préférence en verre ou en vitrocéramique. Il est de préférence transparent, incolore (verre clair ou extra-clair) ou coloré, par exemple en bleu, gris, vert ou bronze. Le verre est de préférence de type silico-sodo-calcique, mais il peut également être en verre de type borosilicate ou alumino-borosilicate. Le substrat possède avantageusement au moins une dimension supérieure ou égale à 1 m, voire 2 m et même 3 m. L'épaisseur du substrat varie généralement entre 0,1 mm et 19 mm, de préférence entre 0,7 et 9 mm, notamment entre 1 et 6 mm, voire entre 2 et 4 mm.
Le matériau du revêtement à recuire peut en principe être n'importe quel matériau, organique ou minéral, qui n'est pas détruit par le traitement de recuit superficiel et dont les propriétés physiques, et notamment la couleur, sont modifiées suite à ce traitement.
Il s'agit de préférence d'un revêtement minéral, en particulier d'un revêtement comportant une ou plusieurs couches d'un oxyde métallique et/ou une ou plusieurs couches d'un métal, de préférence d'un métal noble, à l'état métallique.
Dans un mode de réalisation, le revêtement à recuire comprend de préférence au moins une couche d'un oxyde conducteur transparent (TCO de l'anglais transparent conductive oxide). Cet oxyde est de préférence choisi parmi l'oxyde d'étain et d'indium (ITO), l'oxyde d'indium et de zinc (IZO), l'oxyde d'étain dopé à l'antimoine ou au fluor (ATO et FTO), l'oxyde de zinc dopé à l'aluminium (AZO) et/ou au gallium (GZO) et/ou au titane, l'oxyde de titane dopé au niobium et/ou au tantale, le stannate de cadmium ou de zinc.
Un oxyde particulièrement préféré est l'oxyde d'étain et d'indium, fréquemment appelé « ITO ». Le pourcentage atomique de Sn est de préférence compris dans un domaine allant de 5 à 70%, notamment de 6 à 60%, avantageusement de 8 à 12%. Par rapport à d'autres oxydes conducteurs, tels que l'oxyde d'étain dopé au fluor, ΙΤΟ est apprécié pour sa conductivité électrique élevée, autorisant l'emploi de faibles épaisseurs pour obtenir un bon niveau d'émissivité ou de résistivité.
Dans un autre mode de réalisation, le revêtement à recuire comporte une ou plusieurs couches minces d'un métal, en particulier d'un métal noble, typiquement des couches à base d'argent ou d'or, de préférence au moins une couche d'argent.
L'épaisseur physique du revêtement à recuire est avantageusement au moins égale à 30 nm et au plus égale à 5000 nm, de préférence comprise entre 50 nm et 2000 nm.
Dans le procédé de la présente invention, on fait défiler le substrat portant le revêtement à recuire sous ou devant les lampes flash partiellement masquées par le masque d'irradiation.
Afin d'augmenter l'efficacité énergétique du procédé, les lampes flash sont de préférence proches du revêtement à recuire, avantageusement situées à moins de 20 cm, de préférence à moins de 10 cm et en particulier à moins de 5 cm. Plus cette distance est faible, plus l'intensité lumineuse au niveau du plan de travail (revêtement à recuire) est importante pour une puissance de fonctionnement donnée.
Le masque d'irradiation comporte une fente dont l'axe longitudinal est perpendiculaire à la direction de défilement du substrat. La forme la plus simple de la fente garantissant une irradiation homogène du revêtement à recuire est le rectangle. La fente a donc de préférence une forme sensiblement rectangulaire. Des formes plus complexes, moins préférées, sont toutefois également envisageables et l'invention n'est pas limitée au mode de réalisation où la fente est un rectangle. Une fente en forme d'arc, de zigzag ou d'ondulation serait équivalente à une fente rectangulaire à condition que le bord amont et le bord aval de la fente soient parallèles, permettant la juxtaposition parfaite (sans vide) des zones d'irradiation correspondant aux impulsions lumineuses successives.
Le substrat portant le revêtement à recuire peut être mis en mouvement de défilement à l'aide de tous moyens mécaniques de convoyage appropriés, par exemple à l'aide de bandes, de rouleaux, de plateaux en translation. Le système de convoyage permet de contrôler et réguler la vitesse du déplacement.
La vitesse de défilement du substrat doit être ajustée en fonction de la fréquence des impulsions et de la largeur de fente du masque de manière à ce que chaque point du revêtement reçoive au moins une impulsion lumineuse, autrement dit la vitesse de défilement doit être inférieure ou égale au rapport L/P de la largeur de la fente (L) à la période (P) séparant deux impulsions.
Pour une fréquence d'irradiation de 1 Hz et une largeur de la fente de 10 cm, la vitesse de défilement du substrat doit ainsi être d'au plus 10cm/seconde. Lorsque la vitesse de défilement du substrat est inférieure à L/P, un certain nombre de points reçoivent deux impulsions lumineuses (zone de recouvrement), ce qui n'est pas très favorable du point de vue de l'efficacité énergétique du procédé. L'existence d'une zone de recouvrement, relativement étroite, garantit toutefois la continuité de la zone irradiée en cas de faibles variations de la vitesse de défilement.
Par conséquent, dans un mode de réalisation préféré du procédé de la présente invention la fréquence de la lampe flash, la largeur de la fente et la vitesse de défilement du substrat sont telles qu'au moins 90 %, de préférence au moins 95 %, plus préférentiellement au moins 98 % des points du revêtement à recuire ne reçoivent une seule impulsion lumineuse. En d'autres termes, au plus 10 %, de préférence au plus 5 %, et plus préférentiellement au plus 2 % des points du revêtement reçoivent deux impulsions lumineuses.
La vitesse de défilement du substrat est donc de préférence comprise entre L/P et 0,9 L/P.
La vitesse de défilement du substrat portant le revêtement à recuire est avantageusement comprise entre 0,1 et 30 m/minute, de préférence entre 1 et 20 m/minute, et en particulier entre 2 et 10 m/minute.
La largeur de la fente d'irradiation est avantageusement comprise entre 1 et 50 cm, de préférence entre 5 et 20 cm.
La longueur de la fente est sensiblement égale à la largeur du revêtement à recuire, à savoir généralement au moins égale à 1 m, de préférence au moins égale à 2 m, en particulier au moins égale à 3 m.
Comme indiqué ci-avant, le masque d'irradiation doit être le plus proche possible du revêtement à recuire, c'est-à-dire la distance entre sa face inférieure et la surface du revêtement à recuire ne doit pas dépasser 1 mm, de préférence ne dépasse pas 500 μιτι, et idéalement est au plus égale à 100 μιτι.
Bien évidemment, dans le cadre d'un procédé continu qui suppose le défilement continu du substrat sous des lampes fixes - ou bien le défilement continu d'une lampe et d'un masque par rapport à un substrat fixe - il est impossible de poser le masque directement en contact avec le revêtement à recuire. Il est indispensable, pour ajuster la distance entre le masque et le revêtement à recuire de tenir compte des ondulations de la surface du substrat qui se répercutent sur la surface du revêtement à recuire. Il est donc important de comprendre qu'il existe non seulement une distance maximale entre le masque et la surface du revêtement mais également une distance minimale qui doit être suffisante pour garantir l'absence de contact entre le masque et le revêtement. Cette distance minimale dépend bien entendu de la planéité du substrat et/ou de la rugosité du revêtement. Elle peut être par exemple de 10 μιτι, voire de 20 μιτι, ou même de 50 μιτι.
La présente invention a également pour objet un appareil pour le recuit superficiel d'un substrat portant un revêtement à recuire, particulièrement approprié à la mise en œuvre du procédé de la présente demande.
L'appareil de la présente invention, comprend
- une lampe flash capable d'émettre de la lumière intense puisée,
- un moyen de transport permettant de faire défiler un substrat plat portant un revêtement à recuire devant la lampe flash,
- un masque situé, en une position fixe par rapport à la lampe flash, entre la lampe flash et le moyen de transport, ledit masque comportant une fente dont l'axe longitudinal est perpendiculaire à la direction de défilement du substrat et qui est positionnée de manière que la lumière émise par la lampe flash soit projeté à travers la fente en direction du substrat plat portant un revêtement à recuire,
et comporte en outre des moyens de réglage de la distance entre le masque et le moyen de transport tels que la distance entre la face inférieure du masque et la surface du revêtement à recuire puisse être ajustée à une valeur inférieure à 1 mm, de préférence inférieure à 500 μιτι, en particulier inférieure à 100 μιτι.
Le masque sera réalisé de préférence dans un matériau métallique, typiquement de l'aluminium ou du cuivre.
Il pourra être recouvert d'une couche absorbante, ou subir un traitement d'anodisation qui le rend absorbant, afin d'absorber toute la lumière qu'il intercepte. Dans ce cas, le corps du masque sera de préférence en contact avec un circuit de refroidissement, de manière à maintenir sa température inférieure à 100°C, de préférence inférieure à 50°C. Une autre possibilité est l'emploi d'une couche réfléchissante diffusante pour le masque, de manière à ce que la lumière interceptée ne soit pas absorbée mais diffusée afin d'abaisser l'intensité lumineuse réfléchie et donc sa dangerosité.
L'épaisseur du masque au niveau des bords de la fente doit être la plus faible possible, de préférence inférieure à 500 μιτι, voire inférieure à 200μηη ou encore inférieure à Ι ΟΟμιτι.
Afin d'assurer la rigidité mécanique du masque et son refroidissement, les parties de celui-ci les plus éloignées de la fente pourront être plus épaisses. Les bords de la fente pourront alors être réalisés en biseau, de manière à ce que la lumière soit interceptée par la partie la plus fine.
L'invention est expliquée plus en détail en référence aux figures.
La figure 1 montre une photographie d'un substrat portant un revêtement de Planitherme® ONE irradié dans les conditions telles que indiquées ci-avant en l'absence d'un masque. On perçoit des stries horizontales périodiques, espacées d'environ 2,6 cm.
La figure 2 est une photographie d'un substrat de Planitherme® ONE traité selon le procédé de l'invention. Les stries visibles sur la Figure 1 ont totalement disparu grâce à l'interposition d'un masque dans les conditions selon l'invention.
La figure 3 est un schéma explicatif montrant le fonctionnement du procédé de la présente invention et, plus particulièrement, le positionnement approprié du masque d'irradiation en relation avec le profil d'intensité lumineuse des lampes.
Sur cette figure 3 un substrat plat 1 continu portant un revêtement à recuire 2 est convoyé par des rouleaux 6 dans la direction de défilement indiquée par la flèche.
Le revêtement à recuire 2 est irradié avec de la lumière émise par un ensemble de lampes 4 et dirigée vers le bas au moyen d'un ensemble de miroirs 5, à travers un masque 3. La distance entre les deux parties du masque 3 correspond à la largeur de la fente longitudinale. La distance entre la face inférieure du masque 3 et la face supérieur du revêtement à recuire 2 est inférieure à 1 mm.
Dans la partie inférieure de la figure est représenté le profil d'intensité d'une impulsion lumineuse tel qu'il existerait au niveau du revêtement à recuire 2 en l'absence du masque 3. Le masque 3 est positionné tel que la lumière ayant une intensité inférieure à l'intensité nominale soit interceptée par les zones opaques du masque.

Claims

REVENDICATIONS
1 . Procédé de recuit superficiel d'un substrat portant un revêtement, ledit procédé comprenant
- le défilement du substrat (1 ) portant le revêtement à recuire (2) sous une lampe flash (4) émettant une lumière intense puisée, la face du substrat portant ledit revêtement étant tournée vers la lampe flash, - l'irradiation du revêtement à recuire par la lumière intense puisée émise par la lampe flash à travers un masque (3) situé, en une position fixe par rapport à la lampe flash, entre la lampe flash et le revêtement à recuire et comportant une fente dont l'axe longitudinal est perpendiculaire à la direction de défilement du substrat, la fréquence de la lampe flash et la vitesse de défilement du substrat étant réglées de manière à ce que chaque point du revêtement à recuire reçoive au moins une impulsion lumineuse,
caractérisé par le fait que
la distance entre la face inférieure du masque et la surface du revêtement à recuire est au plus égale à 1 mm, de préférence au plus égale à 500 μιτι, idéalement au plus égale à 100 μιτι,
et par le fait que la forme et l'étendue de la fente sont telles que le masque occulte le revêtement à recuire dans toutes les zones où l'intensité lumineuse qui, en absence de masque, arriverait au niveau du revêtement à recuire est inférieure à une intensité lumineuse seuil, appelée ci-après intensité lumineuse nominale.
2. Procédé selon la revendication 1 , caractérisé par le fait que la fente a une forme sensiblement rectangulaire.
3. Procédé selon la revendication 1 ou 2, caractérisé par le fait que la fréquence de la lampe flash, la largeur de la fente et la vitesse de défilement du substrat sont telles qu'au moins 90 %, de préférence au moins 95 %, plus préférentiellement au moins 98 % des points du revêtement à recuire reçoivent une seule impulsion lumineuse.
4. Procédé selon l'une quelconque des revendications précédentes, caractérisé par le fait que la longueur de la fente est sensiblement égale à la largeur du revêtement à recuire.
5. Procédé selon l'une quelconque des revendications précédentes, caractérisé par le fait que la largeur du revêtement à recuire est au moins égale à 1 m, de préférence au moins égale à 2 m, en particulier au moins égale à 3 m.
6. Procédé selon l'une des revendications précédentes, caractérisé par le fait que la largeur de la fente est comprise entre 1 et 50 cm, de préférence entre 5 et 20 cm.
7. Procédé selon l'une quelconque des revendications précédentes, caractérisé par le fait que la vitesse de défilement du substrat portant le revêtement à recuire est comprise entre 0,1 et 30 m/minute, de préférence entre 1 et 20 m/minute, et en particulier entre 2 et 10 m/minute.
8. Procédé selon l'une quelconque des revendications précédentes, caractérisé par le fait que le revêtement à recuire comporte au moins une couche d'un métal, de préférence une couche d'argent, ou au moins une couche d'un oxyde conducteur transparent.
9. Appareil pour le recuit superficiel d'un substrat portant un revêtement, comprenant
Une lampe flash (4) capable d'émettre de la lumière intense puisée, - Un moyen de transport (6) permettant de faire défiler un substrat plat (1 ) portant un revêtement à recuire (2) devant la lampe flash,
Un masque (3) situé, en une position fixe par rapport à la lampe flash, entre la lampe flash et le moyen de transport, ledit masque comportant une fente dont l'axe longitudinal est perpendiculaire à la direction de défilement du substrat et qui est positionnée de manière que la lumière émise par la lampe flash soit projeté à travers la fente en direction du substrat plat portant un revêtement à recuire, caractérisé par le fait qu'il comporte des moyens de réglage de la distance entre le masque et le moyen de transport tels que la distance entre la face inférieure du masque et la surface du revêtement à recuire puisse être ajustée à une valeur inférieure à 1 mm, de préférence inférieure à 500 μιτι, en particulier inférieure à 100 μιτι.
PCT/FR2015/052238 2014-09-11 2015-08-20 Procédé de recuit par lampes flash WO2016038269A1 (fr)

Priority Applications (11)

Application Number Priority Date Filing Date Title
BR112017002958A BR112017002958A2 (pt) 2014-09-11 2015-08-20 processo de recozimento por lâmpadas flash
CN201580048670.3A CN106605290A (zh) 2014-09-11 2015-08-20 使用闪光灯的退火方法
JP2017513808A JP2017536689A (ja) 2014-09-11 2015-08-20 フラッシュランプを使用するアニーリング方法
EP15767209.8A EP3192095A1 (fr) 2014-09-11 2015-08-20 Procédé de recuit par lampes flash
CA2957845A CA2957845A1 (fr) 2014-09-11 2015-08-20 Procede de recuit par lampes flash
AU2015314079A AU2015314079A1 (en) 2014-09-11 2015-08-20 Annealing method using flash lamps
EA201790593A EA201790593A1 (ru) 2014-09-11 2015-08-20 Способ отжига при помощи ламп-вспышек
KR1020177006735A KR20170051447A (ko) 2014-09-11 2015-08-20 플래시 램프를 이용한 어닐링 방법
US15/507,883 US20170291848A1 (en) 2014-09-11 2015-08-20 Annealing method using flash lamps
MX2017002996A MX2017002996A (es) 2014-09-11 2015-08-20 Método de fijacion termica utilizando lamparas de destello.
CONC2017/0002325A CO2017002325A2 (es) 2014-09-11 2017-03-09 Procedimiento de recocción por lámparas flash

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1458520A FR3025936B1 (fr) 2014-09-11 2014-09-11 Procede de recuit par lampes flash
FR1458520 2014-09-11

Publications (1)

Publication Number Publication Date
WO2016038269A1 true WO2016038269A1 (fr) 2016-03-17

Family

ID=51866184

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2015/052238 WO2016038269A1 (fr) 2014-09-11 2015-08-20 Procédé de recuit par lampes flash

Country Status (14)

Country Link
US (1) US20170291848A1 (fr)
EP (1) EP3192095A1 (fr)
JP (1) JP2017536689A (fr)
KR (1) KR20170051447A (fr)
CN (1) CN106605290A (fr)
AU (1) AU2015314079A1 (fr)
BR (1) BR112017002958A2 (fr)
CA (1) CA2957845A1 (fr)
CO (1) CO2017002325A2 (fr)
EA (1) EA201790593A1 (fr)
FR (1) FR3025936B1 (fr)
MX (1) MX2017002996A (fr)
TW (1) TWI663637B (fr)
WO (1) WO2016038269A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200039709A (ko) * 2017-08-04 2020-04-16 비트로 플랫 글래스 엘엘씨 은 코팅의 플래쉬-어닐링
CN111149230A (zh) * 2017-08-04 2020-05-12 维特罗平板玻璃有限责任公司 透明导电氧化物和半导体涂层的闪光退火

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3042492B1 (fr) * 2015-10-16 2018-01-19 Saint-Gobain Glass France Procede de recuit rapide d'un empilement de couches minces contenant une surcouche a base d'indium
KR102118365B1 (ko) 2017-04-21 2020-06-04 주식회사 엘지화학 유기전자소자 봉지용 조성물
US11384425B2 (en) * 2017-07-13 2022-07-12 Purdue Research Foundation Method of enhancing electrical conduction in gallium-doped zinc oxide films and films made therefrom
DE102019134818A1 (de) * 2019-02-16 2020-08-20 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung eingetragener Verein Verfahren zum Erhöhen der Festigkeit eines Glassubstrates

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997045827A1 (fr) * 1996-05-28 1997-12-04 The Trustees Of Columbia University In The City Of New York Procede de cristallisation de regions d'une couche de semi-conducteur sur un substrat, et dispositifs realises selon ce procede
WO2001018854A1 (fr) * 1999-09-03 2001-03-15 The Trustees Of Columbia University In The City Of New York Procedes de production de semi-conducteurs a couches minces polycristallins a gros grains uniformes et a emplacements de joints de grains diriges par utilisation de solidification laterale sequentielle
CN101041209A (zh) * 2002-08-30 2007-09-26 住友重机械工业株式会社 激光加工方法及加工装置
WO2008096089A2 (fr) 2007-01-05 2008-08-14 Saint-Gobain Glass France Procede de depot de couche mince et produit obtenu
US20080299496A1 (en) * 2007-06-01 2008-12-04 Semiconductor Energy Laboratory Co., Ltd. Manufacturing Apparatus and Manufacturing Method of Light-Emitting Device
WO2013026817A1 (fr) 2011-08-19 2013-02-28 Von Ardenne Anlagentechnik Gmbh Procédé et dispositif de production d'un système de couches à faible émissivité
WO2013156721A1 (fr) 2012-04-17 2013-10-24 Saint-Gobain Glass France Procede d'obtention d'un substrat revetu

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100906964B1 (ko) * 2002-09-25 2009-07-08 삼성전자주식회사 유기 전계발광 구동 소자와 이를 갖는 유기 전계발광 표시패널
JP2004303792A (ja) * 2003-03-28 2004-10-28 Seiko Epson Corp フラッシュランプの照射装置
WO2006071419A2 (fr) * 2004-11-24 2006-07-06 Nanotechnologies, Inc. Utilisations electriques, de revetement metallique et catalytiques de compositions de nanomateriaux metalliques
JP5209237B2 (ja) * 2007-06-19 2013-06-12 大日本スクリーン製造株式会社 熱処理装置
WO2009111340A2 (fr) * 2008-02-29 2009-09-11 The Trustees Of Columbia University In The City Of New York Cristallisation de recuit par lampe flash pour films minces à large surface
JP5640890B2 (ja) * 2011-05-23 2014-12-17 ウシオ電機株式会社 光照射装置および光照射方法
JP2014027252A (ja) * 2012-06-19 2014-02-06 Dainippon Screen Mfg Co Ltd 熱処理装置および熱処理方法
JP2014011256A (ja) * 2012-06-28 2014-01-20 Dainippon Screen Mfg Co Ltd 熱処理方法および熱処理装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997045827A1 (fr) * 1996-05-28 1997-12-04 The Trustees Of Columbia University In The City Of New York Procede de cristallisation de regions d'une couche de semi-conducteur sur un substrat, et dispositifs realises selon ce procede
WO2001018854A1 (fr) * 1999-09-03 2001-03-15 The Trustees Of Columbia University In The City Of New York Procedes de production de semi-conducteurs a couches minces polycristallins a gros grains uniformes et a emplacements de joints de grains diriges par utilisation de solidification laterale sequentielle
CN101041209A (zh) * 2002-08-30 2007-09-26 住友重机械工业株式会社 激光加工方法及加工装置
WO2008096089A2 (fr) 2007-01-05 2008-08-14 Saint-Gobain Glass France Procede de depot de couche mince et produit obtenu
US20080299496A1 (en) * 2007-06-01 2008-12-04 Semiconductor Energy Laboratory Co., Ltd. Manufacturing Apparatus and Manufacturing Method of Light-Emitting Device
WO2013026817A1 (fr) 2011-08-19 2013-02-28 Von Ardenne Anlagentechnik Gmbh Procédé et dispositif de production d'un système de couches à faible émissivité
WO2013156721A1 (fr) 2012-04-17 2013-10-24 Saint-Gobain Glass France Procede d'obtention d'un substrat revetu

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SATO TAKESHI ET AL: "High throughput ELA process with a long proximity stripe phase shift mask", IDW, AMDP - 35L (LATE-NEWS PAPER), LONDON UK, 1 January 2004 (2004-01-01), pages 503 - 504, XP007013750 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200039709A (ko) * 2017-08-04 2020-04-16 비트로 플랫 글래스 엘엘씨 은 코팅의 플래쉬-어닐링
CN111149230A (zh) * 2017-08-04 2020-05-12 维特罗平板玻璃有限责任公司 透明导电氧化物和半导体涂层的闪光退火
JP2020529384A (ja) * 2017-08-04 2020-10-08 ビトロ フラット グラス エルエルシー 銀コーティングのフラッシュアニール
JP2020529387A (ja) * 2017-08-04 2020-10-08 ビトロ フラット グラス エルエルシー 透明導電性酸化物及び半導体被覆のフラッシュ・アニーリング
US11220455B2 (en) 2017-08-04 2022-01-11 Vitro Flat Glass Llc Flash annealing of silver coatings
JP7187535B2 (ja) 2017-08-04 2022-12-12 ビトロ フラット グラス エルエルシー 透明導電性酸化物及び半導体被覆のフラッシュ・アニーリング
JP7221933B2 (ja) 2017-08-04 2023-02-14 ビトロ フラット グラス エルエルシー 銀コーティングのフラッシュアニール
CN111149230B (zh) * 2017-08-04 2023-09-19 维特罗平板玻璃有限责任公司 透明导电氧化物和半导体涂层的闪光退火
KR102638081B1 (ko) * 2017-08-04 2024-02-19 비트로 플랫 글래스 엘엘씨 은 코팅의 플래쉬-어닐링

Also Published As

Publication number Publication date
CA2957845A1 (fr) 2016-03-17
CO2017002325A2 (es) 2017-06-20
BR112017002958A2 (pt) 2017-12-05
TWI663637B (zh) 2019-06-21
US20170291848A1 (en) 2017-10-12
AU2015314079A1 (en) 2017-04-13
MX2017002996A (es) 2017-06-19
CN106605290A (zh) 2017-04-26
EP3192095A1 (fr) 2017-07-19
JP2017536689A (ja) 2017-12-07
KR20170051447A (ko) 2017-05-11
FR3025936B1 (fr) 2016-12-02
EA201790593A1 (ru) 2017-06-30
TW201616555A (zh) 2016-05-01
FR3025936A1 (fr) 2016-03-18

Similar Documents

Publication Publication Date Title
EP3192095A1 (fr) Procédé de recuit par lampes flash
EP2438024B1 (fr) Procede de depot de couche mince
EP2768785B1 (fr) Procede de traitement thermique de couches d'argent
FR2972447B1 (fr) Procede d'obtention d'un substrat muni d'un revetement
EP2652812B1 (fr) Procede de fabrication d'un dispositif oled
EP1263538B1 (fr) Procede d'enlevement local d'un revetement applique sur un substrat translucide ou transparent
EP1641720A2 (fr) Substrat revetu d'une couche dielectrique et procede et installation pour sa fabrication
CA2924811A1 (fr) Procede d'obtention d'un substrat revetu par un empilement comprenant une couche d'oxyde transparent conducteur
EP2792650A1 (fr) Procédé de dépôt de couche mince et produit obtenu
EP2266140A1 (fr) Substrat en verre portant une electrode
US20150024541A1 (en) Method for fabricating photovoltaic cells with plated contacts
EP2946027A1 (fr) Procede d'obtention d'un substrat muni d'un revêtement
EP3341154A1 (fr) Appareil laser comprenant plusieurs modules laser générant chacun une ligne, les lignes se recouvrant avec un décalage dans le sens de la largeur
WO2016193577A1 (fr) Substrat muni d'un empilement a proprietes thermiques a couche terminale metallique et a couche preterminale oxydee.
WO2020070393A1 (fr) Procede d'obtention d'une feuille de verre revetue d'une couche fonctionnelle
WO2017064420A1 (fr) Procede de recuit rapide d'un empilement de couches minces contenant une surcouche a base d'indium
WO2019043334A1 (fr) Dispositif de traitement thermique amélioré
FR3088850A1 (fr) Procede de fabrication d’un vitrage electrochrome
FR2991980A1 (fr) Procede de depot de couches minces avec etape de traitement sous vide et produit obtenu
EP3195373A1 (fr) Dispositif photovoltaïque semi-transparent avec trou traversant
EP4199118A1 (fr) Procédé d'activation thermique d'une couche de passivation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15767209

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2957845

Country of ref document: CA

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112017002958

Country of ref document: BR

REEP Request for entry into the european phase

Ref document number: 2015767209

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015767209

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15507883

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: MX/A/2017/002996

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: NC2017/0002325

Country of ref document: CO

ENP Entry into the national phase

Ref document number: 20177006735

Country of ref document: KR

Kind code of ref document: A

Ref document number: 2017513808

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 201790593

Country of ref document: EA

ENP Entry into the national phase

Ref document number: 2015314079

Country of ref document: AU

Date of ref document: 20150820

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112017002958

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20170214