WO2014110961A1 - 数字预失真处理方法及系统 - Google Patents

数字预失真处理方法及系统 Download PDF

Info

Publication number
WO2014110961A1
WO2014110961A1 PCT/CN2013/090475 CN2013090475W WO2014110961A1 WO 2014110961 A1 WO2014110961 A1 WO 2014110961A1 CN 2013090475 W CN2013090475 W CN 2013090475W WO 2014110961 A1 WO2014110961 A1 WO 2014110961A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
predistortion
feedback signal
reference signal
feedback
Prior art date
Application number
PCT/CN2013/090475
Other languages
English (en)
French (fr)
Inventor
熊军
张永丽
薛斌
Original Assignee
大唐移动通信设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大唐移动通信设备有限公司 filed Critical 大唐移动通信设备有限公司
Priority to EP13871392.0A priority Critical patent/EP2947833B1/en
Priority to US14/761,362 priority patent/US9450621B2/en
Publication of WO2014110961A1 publication Critical patent/WO2014110961A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • H04B1/0475Circuits with means for limiting noise, interference or distortion
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/38Synchronous or start-stop systems, e.g. for Baudot code
    • H04L25/40Transmitting circuits; Receiving circuits
    • H04L25/49Transmitting circuits; Receiving circuits using code conversion at the transmitter; using predistortion; using insertion of idle bits for obtaining a desired frequency spectrum; using three or more amplitude levels ; Baseband coding techniques specific to data transmission systems
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/32Modifications of amplifiers to reduce non-linear distortion
    • H03F1/3241Modifications of amplifiers to reduce non-linear distortion using predistortion circuits
    • H03F1/3247Modifications of amplifiers to reduce non-linear distortion using predistortion circuits using feedback acting on predistortion circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/62Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission for providing a predistortion of the signal in the transmitter and corresponding correction in the receiver, e.g. for improving the signal/noise ratio
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • H04L27/36Modulator circuits; Transmitter circuits
    • H04L27/366Arrangements for compensating undesirable properties of the transmission path between the modulator and the demodulator
    • H04L27/367Arrangements for compensating undesirable properties of the transmission path between the modulator and the demodulator using predistortion
    • H04L27/368Arrangements for compensating undesirable properties of the transmission path between the modulator and the demodulator using predistortion adaptive predistortion
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • H04B2001/0408Circuits with power amplifiers
    • H04B2001/0433Circuits with power amplifiers with linearisation using feedback

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a digital predistortion processing method and system. Background technique
  • PA Power Amplifier
  • the essence of Digital Predistortion is to pre-distort the amplitude and phase of the amplifier input signal to offset the nonlinearity of the amplifier.
  • the specific implementation method is to compare the power amplifier feedback signal y(n) and the forward transmission signal z(n), obtain a set of coefficients by using a reasonable modeling of the power amplifier to approximate the nonlinear characteristics of the power amplifier, and then use the coefficient and the model.
  • the mathematical model of the MP model for predistortion processing of the signal is:
  • x(n - m) - LUT m (Q(r n ) K is a nonlinear factor, which is a natural number, and the value is 3 ⁇ 7; ⁇ is the memory depth, which is a natural number, and the value is 3 ⁇ 6; ⁇ is the number of sampling points, which is a natural number, and the value is generally 4096 ⁇ 16384.
  • the forward transmit signal obtained after pre-distortion processing of the input signal 2( ⁇ ) is the quantization factor, which is the amplitude of the input signal: _ m )l ; Lt/7 ⁇ _ m )l) is according to the input signal amplitude 1 " - m) l is the predistortion parameter corresponding to the index, Lt/r 4 " - m) l)
  • the input address is determined according to the quantized amplitude ⁇ (/ , TM) of the input signal;
  • w ⁇ is the DPD adaptive filter calculation Predistortion coefficient; After obtaining 1 ⁇ , the predistortion module can calculate the predistortion signal ").
  • the DPD module When the DPD module performs predistortion update, it stores the predistortion parameter according to I 4 "" m )l, and predistortion processing Extract the predistortion parameters according to
  • R is the length of the LUT parameter table stored by the primary memory factor, such as 256, 512, etc.
  • the above model can well cope with the nonlinearity of the power amplifier under normal circumstances.
  • LTE Long Term Evolution
  • ACPR Adjacent Channel Power Ratio
  • the signals used in broadband DPD technology are high-speed sampling signals, the delay requirements are very high and need to be accurate.
  • the delay will jitter, and even a small jitter will cause a relatively large error in the predistortion processing.
  • the input signal is usually a low-speed baseband signal, but digital pre-distortion needs to work at a high rate, it is necessary to interpolate the input baseband signal to increase the rate of the input signal. In order to obtain better pre-distortion effect, it is usually necessary to The input signal is interpolated to increase the input signal rate.
  • LTE-Time Division Duplexing has an interpolation factor of 48 and an intermediate frequency rate of 245.76 MHz.
  • TDD LTE-Time Division Duplexing
  • the delay needs to be very accurate. It is best to be accurate to one clock cycle. On the one hand, it is difficult to determine the loopback time of the link on the one hand.
  • the technical problem to be solved by the present invention is to provide a digital predistortion processing method and system for improving the radio frequency index of a broadband system.
  • the present invention provides a digital predistortion processing method, including:
  • a predistortion coefficient parameter table is formed based on the predistortion coefficient and the amplitude of the input signal.
  • the step of performing the synchronization correlation operation on the reference signal and the feedback signal, and the step of calibrating the feedback signal further comprises:
  • the method further includes: determining a power of the feedback signal, if the power of the feedback signal is not lower than a set power threshold, continuing the subsequent step; otherwise, the feedback signal appears Abnormal, the method ends.
  • the maximum peak point information of the correlation peak includes an amplitude of a maximum peak value of the correlation peak
  • the step of obtaining the maximum peak point information of the correlation peak includes: determining whether the amplitude of the maximum peak of the correlation peak is greater than a set threshold Value, if yes, continue with the next step; otherwise, re-find the maximum peak point information of the relevant peak.
  • the method further comprises: determining whether a peak power of the amplitude-corrected feedback signal is lower than a value set by the reference signal peak power, and if not, continuing the subsequent step; The signal is over-compressed and the method ends.
  • the step of acquiring the output signal to obtain a feedback signal comprises: removing a nominal linear gain of the acquired output signal to obtain the feedback signal.
  • the predetermined number of the predetermined number of sampling points is: an integer between _5 and 5.
  • the predetermined number is 1 or 2.
  • the step of training the pre-distortion coefficient according to the reference signal and the calibrated feedback signal comprises: finding the pre-distortion coefficient by a memory polynomial model.
  • the present invention further provides a digital predistortion processing system, including: a predistortion processor, configured to extract a predistortion parameter corresponding to an input signal in a predistortion coefficient parameter table, and perform predistortion processing on the input signal, Obtaining a forward transmission signal;
  • a predistortion processor configured to extract a predistortion parameter corresponding to an input signal in a predistortion coefficient parameter table, and perform predistortion processing on the input signal, Obtaining a forward transmission signal;
  • a digital-to-analog converter and a radio frequency transmitting channel configured to perform digital-to-analog conversion on the forward transmit signal and send the signal to a power amplifier
  • a power amplifier for performing power amplification on the digital-to-analog converted forward transmit signal to obtain an output signal
  • An RF receiving channel and an analog-to-digital converter configured to receive the output signal, perform analog-to-digital conversion on the output signal, and send the signal to a receiving end to capture a data controller
  • a transmitting end capture data controller configured to delay the predetermined number of sampling points to collect the forward transmit signal, obtain a reference signal, and send the reference signal to a synchronization related processor; Performing a synchronization correlation operation on the reference signal and the feedback signal, and calibrating the feedback signal to be sent to the predistortion coefficient training module together with the reference signal; and a predistortion coefficient training module, configured to perform calibration according to the reference signal and calibration
  • the subsequent feedback signal trains the pre-distortion coefficient, and sends the pre-distortion parameter to the pre-distortion parameter memory and the pre-distortion processor;
  • the pre-distortion parameter memory is configured to form a pre-distortion coefficient according to the pre-distortion coefficient and the amplitude of the corresponding input signal Distortion coefficient parameter table.
  • the invention continues to adopt the MP model of the single tube without increasing the hardware resource and software processing complexity, and only delays the transmission signal by a predetermined number of sampling points, so that the RF index ACPR can be greatly improved;
  • the invention adopts the phase of the signal corresponding to the maximum peak point as the calibration phase to phase align the feedback signal, thereby ensuring the consistency of the phase of the signal, so that the phase of the predistortion coefficient is not reversed.
  • FIG. 1 is a flowchart of a digital pre-distortion processing method according to an embodiment of the present invention
  • FIG. 2 is a flowchart of another digital pre-distortion processing method according to an embodiment of the present invention.
  • 3 is a correlation peak diagram of a reference signal and a feedback signal of a digital predistortion processing method according to an embodiment of the present invention
  • 4 is a peak diagram of a digital pre-distortion processing method for delaying correlation between a reference signal and a feedback signal of two sampling points according to an embodiment of the present invention
  • FIG. 5 is a schematic diagram showing amplitude alignment of an imaginary part of a feedback signal and a reference signal before predistortion according to a digital predistortion processing method according to an embodiment of the present invention
  • FIG. 6 is a schematic diagram showing amplitude alignment of a real part of a feedback signal and a reference signal before predistortion according to a digital predistortion processing method according to an embodiment of the present invention
  • FIG. 7 is a schematic diagram showing a case where a peak power compression exceeds 1.5 dBc in a digital predistortion processing method according to an embodiment of the present invention
  • FIG. 8 is a schematic structural diagram of a digital predistortion processing system according to an embodiment of the present invention.
  • Embodiment 1 is a diagrammatic representation of Embodiment 1:
  • FIG. 1 is a flowchart of a digital pre-distortion processing method according to an embodiment of the present invention.
  • the method includes: S101: extracting a predistortion parameter corresponding to an input signal in a predistortion coefficient parameter table, and performing predistortion processing on the input signal, Obtaining a forward transmission signal;
  • S103 Collect the output signal to obtain a feedback signal.
  • S104 Delay a predetermined number of sampling points to collect the forward transmission signal to obtain a reference signal
  • S105 Perform a synchronization correlation operation on the reference signal and the feedback signal, and perform calibration on the feedback signal.
  • S106 Train a pre-distortion coefficient according to the reference signal and the calibrated feedback signal;
  • FIG. 2 is a flow chart showing a digital predistortion processing method according to the embodiment.
  • S203 collecting an output signal, in order to maintain power balance, eliminating a rated linear gain of the power amplifier, and obtaining a feedback signal;
  • S204 delay M sampling points to collect the forward transmission signal to obtain a reference signal, where M is an integer between -5 and 5, preferably M is 1 or 2;
  • step S205 Determine the power of the feedback signal, if the power of the feedback signal is not lower than the set power threshold, go to step S206; otherwise, the feedback signal is abnormal, and the method ends; in general, the power of the feedback signal cannot be Below -24dBFS;
  • S206 Perform synchronous correlation operation on the reference signal and the feedback signal, complete delay calibration, amplitude calibration, and frequency calibration of the feedback signal, and obtain maximum peak point information of the correlation peak, and determine whether the maximum peak amplitude of the correlation peak is If the value is greater than the set threshold, if yes, continue with the subsequent steps; otherwise, find the maximum peak point information of the relevant peak again;
  • S207 Perform phase calibration on the feedback signal by using a phase of the maximum peak point corresponding signal
  • S210 Form a predistortion coefficient parameter table according to the predistortion coefficient and the amplitude of the input signal. The following describes the embodiment in a more specific manner:
  • the user can select a certain training sequence, in the protection time slot.
  • the length of the GP intermediate segment is 1 ⁇ , ( L ⁇ : 35 ⁇ 85) so that the transmission training sequence does not affect the transmission of different base stations DwPTS, and does not affect the user UE access.
  • the training sequence at this time selects a code with a relatively good correlation. This embodiment assumes that the training sequence has a length of N, a memory depth Q, and a crossover level of 3 ⁇ 4K.
  • the forward transmission signal Z after the predistortion processing of the input signal (W and the output signal y of the power amplifier have the following relationship: z(n) X - q) ⁇ y(n - q)f ⁇ l ;
  • the delay time Td of the feedback signal with respect to the reference signal path is approximately:
  • the correlation between the reference signal and the feedback signal is adjusted in time and the amplitude is calibrated. Since the calibration of the delay and the amplitude are both prior art, they are not described; the maximum correlation is obtained by the following formula. Peak point information:
  • ⁇ . Rr , z ' represents the correlation operation between the reference signal and the feedback signal
  • m a x(xcorr(y, z r ) represents the maximum value of the correlation operation, and obtains the maximum value max_ ⁇ to of the correlation peak-to-peak value, and
  • the position information P.w'"' As shown in Fig. 3, the correlation peak map of the reference signal and the feedback signal; the maximum correlation amplitude is 6.14e+010, and the position is (4160, 6.14e+010).
  • the maximum peak point corresponds to the phase book gle _d a of the signal as the calibration phase ⁇ :
  • the feedback signal and the reference signal complete the phase calibration so that the amplitudes of the real and imaginary parts of the feedback signal and the reference signal can be aligned before the pre-distortion (as shown in Figures 5 and 6), not just the signal. Power alignment.
  • the frequency offset is then calibrated.
  • the calibration of the frequency offset is also prior art and therefore will not be described in detail herein.
  • the peak power amplifier If the peak power amplifier is damaged, the peak amplification does not work, causing the peak value of the feedback signal to be greatly compressed.
  • the amplitude of the feedback signal and the reference signal after amplitude calibration it can be judged whether the peak value of the feedback signal is excessively compressed, thereby judging whether the power amplifier is damaged. .
  • Figure 7 shows the peak power compression over 1.5dBc, which indicates that the power amplifier has been damaged.
  • the predistortion coefficients are trained using a memory polynomial model:
  • the pre-distortion coefficient obtained after delaying the forward transmission signal z by M sampling points can better reflect the memory characteristics of the power amplifier.
  • Table 1 shows the comparison of the test results before and after the delayed sampling of the forward transmitted signal:
  • the present embodiment provides a relatively large improvement of the radio frequency index ACPR, and also uses the phase of the relevant peak point as a phase calibration to ensure the consistency of the signal phase, so that the predistortion is performed.
  • the phase of the coefficient is no longer flipped.
  • FIG. 8 is a schematic structural diagram of a digital pre-distortion processing system according to the embodiment, which is used to implement the method of the first embodiment or the second embodiment, and includes:
  • a predistortion processor 301 configured to extract a predistortion parameter corresponding to the input signal in a predistortion coefficient parameter table, and perform predistortion processing on the input signal to obtain a forward transmit signal;
  • the digital-to-analog converter and the RF transmit channel 302 are configured to perform digital-to-analog conversion of the forward transmit signal and send it to the power amplifier 303;
  • a power amplifier 303 configured to perform power amplification on the digital-to-analog converted forward transmit signal to obtain an output signal
  • the RF receiving channel and analog-to-digital converter 304 is configured to receive the output signal, and perform analog-to-digital conversion on the output signal, and then send the data to the receiving end capture data controller 305;
  • the receiving end capture data controller 305 is configured to collect the output signal after the analog-to-digital conversion to obtain a feedback signal
  • the transmitting end capture data controller 306 is configured to delay the predetermined number of sampling points to collect the forward transmit signal, obtain a reference signal, and send the reference signal to the synchronization related processor 307;
  • the synchronization correlation processor 307 is configured to perform a synchronous correlation operation on the reference signal and the feedback signal, and calibrate the feedback signal to be sent to the predistortion coefficient training module 308 together with the reference signal;
  • the pre-distortion coefficient training module 308 is configured to train the pre-distortion coefficient according to the reference signal and the calibrated feedback signal, and send the pre-distortion parameter to the pre-distortion parameter memory 309 and the pre-distortion processor 301;
  • the predistortion parameter memory 309 is configured to form a predistortion coefficient parameter table according to the predistortion coefficient and the amplitude of the corresponding input signal.
  • the transmission signal is delayed by a predetermined number of sampling points, so that the radio frequency index ACPR has a larger improvement.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Nonlinear Science (AREA)
  • Power Engineering (AREA)
  • Amplifiers (AREA)

Abstract

本发明公开了一种数字预失真处理方法及系统,所述方法包括:在预失真系数参数表中提取与输入信号对应的预失真参数对输入信号进行预失真处理,得到前向发送信号;对所述前向发送信号进行功率放大处理得到输出信号;对所述输出信号进行采集得到反馈信号;延时预定数量的采样点对所述前向发送信号进行采集,得到参考信号;将所述参考信号和反馈信号进行同步相关运算,对所述反馈信号进行校准;根据所述参考信号和校准后的反馈信号训练预失真系数;根据所述预失真系数和输入信号的幅值形成预失真系数参数表。本实施例对发射信号延时预定数量的采样点,使得射频指标ACPR有比较大的改善。

Description

数字预失真处理方法及系统 技术领域
本发明涉及通信技术领域, 尤其涉及一种数字预失真处理方法及系统。 背景技术
在无线通信系统中, 往往需要功率放大器(Power Amplifier, PA)的输出 具有很高的线性度以满足空中接口标准的苛刻要求, 但是线性 PA效率很低 且非常昂贵, 而高效率的非线性 PA会产生 3、 5、 7阶等交调分量, 会干扰 相邻信道。 为了尽可能提升 PA的输出效率和降低成本, 必须校正 PA的非 线性特性, 而对 PA的输入信号进行预失真处理是一个不错的选择。
数字预失真( Digital Predistortion, DPD )的本质就是预先对功放输入信 号的幅度和相位进行预定的反失真以抵消功放的非线性。具体的实现方式就 是通过比较功放反馈信号 y(n)和前向发射信号 z(n), 利用对功放的合理建模 获得一组系数来近似表征功放非线性特征, 然后利用该系数和该模型对发射 信号 x(n)进行非线性预失真, 使得预失真后的信号通过功放后的输出信号就 是原始发射信号的线性放大 y(n)=G x(n)。
由于现在的 DPD 算法中的功放模型一般采用记忆多项式 (Memory Polynomial, MP)模型, 所述 MP模型对信号的预失真处理的数学模型为:
Figure imgf000003_0001
x(n - m) - LUTm (Q(rn ) K是非线性因子, 为自然数, 取值是 3~7; Μ是记忆深度, 是自然数, 取值是 3~6; Ν是采样点数, 是自然数, 取值一般是 4096~16384。
为输入信号预失真处理后得到的前向发送信号; 2(·)是量化因子, 是输入信号的幅度: _m)l ; Lt/7^^_m)l)是按照输入信号幅度 1 " - m)l为索引对应的预失真参数, Lt/r 4" - m)l)的输入地址根据输入信号 量化后的幅度 β(/,™)来决定; w^是 DPD自适应滤波计算得到的预失真系数; 通过计算得到1 ^以后, 预失真模块就可以计算得到预失真信号 ")。 DPD 模块进行预失真更新时按照 I4" " m)l存入预失真参数 , 预失真处理时按照 |4"_m)|提取预失真参数。每完成一次 DPD系数计算后,保存在 LUT参数表 中的 DPD参数会全部更新一次。 具体的, 在计算获得了预失真系数之后, 通过如下算法得到更新后的 LUT参数表:
LUTm{r) = A- jwm (r - Qf-l) r = l,...R m = l,...M
k=l
其中, R是一级记忆因子存储的 LUT参数表的长度,如一般取 256, 512 等。量化因子 Q等于系统能够保存的最大信号/ R,如 Q=32768/R,如果 R=512, 那么 Q=64。
上述模型能很好的应对一般情况下功放的非线性。但是对于宽频长期演 进( Long Term Evolution, LTE ) 40MHz系统或者更宽的系统的邻信道功率 比(Adjacent Channel Power Ratio, ACPR )左右差距大且效果不太好。 因为 宽频 DPD技术用的信号都是高速采样的信号, 对延时的要求很高, 需要很 准确才行。 而且功放器件随着使用时间的推移和温度的变化, 时延会抖动, 就算 4艮小的抖动都会使得预失真处理出现比较大的误差。
现有技术中有提出通过正确抽取出叠加在数字预失真无线发射机输出 上的非线性失真的延迟同步环电路, 来达到发射和接收同步。 但是其在预失 真同步之后, 是否对同步的信号做进一步的失步处理和修正没有提及, 因此 无法通过延时来提升 DPD效果。
由于输入信号通常为低速基带信号,但是数字预失真需要在高速率下工 作, 所以需要对输入基带信号进行内插滤波, 以便提高输入信号的速率, 为 了得到较好的预失真效果, 通常需要将输入信号内插来提高输入信号速率, 例如 LTE-时分双工 (Time Division Duplexing , TDD )的内插倍数为 48 , 中频 速率为 245.76MHz, 但是这样带来的一个难题就是延时需要非常精确, 最好 可以精确到一个时钟周期。 一方面现有技术很难测定链路的环回时间, 另一 方面, 就算可以准确测定所述环回时间, 器件随着使用时间的推移和温度的 变化,时延会抖动,就算很小的抖动都会使得预失真处理出现比较大的误差。 发明内容
本发明要解决的技术问题是: 提供一种数字预失真处理方法及系统, 以 改善宽频系统的射频指标。
为解决上述问题, 一方面, 本发明提供了一种数字预失真处理方法, 包 括:
在预失真系数参数表中提取与输入信号对应的预失真参数对输入信号 进行预失真处理, 得到前向发送信号;
对所述前向发送信号进行功率放大处理得到输出信号;
对所述输出信号进行采集得到反馈信号;
延时预定数量的采样点对所述前向发送信号进行采集, 得到参考信号; 将所述参考信号和反馈信号进行同步相关运算,对所述反馈信号进行校 准;
根据所述参考信号和校准后的反馈信号训练预失真系数;
根据所述预失真系数和输入信号的幅值形成预失真系数参数表。
优选地, 将所述参考信号和反馈信号进行同步相关运算, 对所述反馈信 号进行校准的步骤进一步包括:
将所述参考信号和反馈信号进行同步相关运算, 完成对反馈信号的时延 校准、 幅度校准和频率校准, 同时获得相关峰的最大峰值点信息; 通过所述最大峰值点对应信号的相位对所述反馈信号进行相位校准。 优选地, 在进行所述同步相关运算前, 还包括对所述反馈信号的功率进 行判断的步骤, 若所述反馈信号的功率不低于设定功率阈值, 则继续后续步 骤; 否则反馈信号出现异常, 方法结束。
优选地, 所述相关峰的最大峰值点信息包括相关峰最大峰值的幅度, 所 述获得相关峰的最大峰值点信息的步骤包括: 判断所述相关峰最大峰值的幅 度是否大于设定的门限值, 如果是, 则继续后续步骤; 否则重新寻找相关峰 的最大峰值点信息。
优选地, 在对所述反馈信号进行幅度校准的步骤之后还包括: 判断幅度 校准后的反馈信号的峰值功率是否低于参考信号峰值功率设定的值,如果没 有, 则继续后续步骤; 否则反馈信号压缩过度, 方法结束。
优选地, 对所述输出信号进行采集得到反馈信号的步骤包括: 去除采集 的输出信号的额定线性增益, 得到所述反馈信号。
优选地,所述延时预定数量的采样点中的预定数量为: _5到 5之间的整 数。
优选地, 所述预定数量为 1或 2。
优选地,根据所述参考信号和校准后的反馈信号训练预失真系数的步骤 包括: 通过记忆多项式模型求出所述预失真系数。
另一方面, 本发明还提供了一种数字预失真处理系统, 包括: 预失真处理器,用于在预失真系数参数表中提取与输入信号对应的预失 真参数对输入信号进行预失真处理, 得到前向发送信号;
数模转换器及射频发射通道,用于将所述前向发送信号进行数模转换并 发送至功率放大器;
功率放大器,用于对所述数模转换转换后的前向发送信号进行功率放大 得到输出信号; 射频接收通道及模数转换器, 用于接收所述输出信号, 并对所述输出信 号进行模数转换后发送至接收端捕获数据控制器;
接收端捕获数据控制器,用于采集所述模数转换后的输出信号得到反馈 信号;
发送端捕获数据控制器,用于延时预定数量的采样点对所述前向发送信 号进行采集, 得到参考信号, 并将所述参考信号发送至同步相关处理器; 同步相关处理器, 用于将所述参考信号和反馈信号进行同步相关运算, 对所述反馈信号进行校准后与所述参考信号一起送入预失真系数训练模块; 预失真系数训练模块,用于根据所述参考信号和校准后的反馈信号训练 预失真系数, 并将所述预失真参数送入预失真参数存储器和预失真处理器; 预失真参数存储器,用于根据所述预失真系数和对应输入信号的幅值形 成预失真系数参数表。
本发明在不增加硬件资源和软件处理复杂度的基础上,继续采用筒单的 MP模型,仅仅对发射信号延时预定数量的采样点,就能够使得射频指标 ACPR 有比较大的改善;
本发明采用最大峰值点对应信号的相位作为校准相位对反馈信号进行 相位校准, 保证了信号相位的一致性, 使得预失真系数的相位不再翻转。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案, 下面将对实 施例或现有技术描述中所需要使用的附图作一筒单地介绍, 显而易见地, 下 面描述中的附图是本发明的一些实施例, 对于本领域普通技术人员来讲, 在 不付出创造性劳动的前提下, 还可以根据这些附图获得其他的附图。
图 1为本发明实施例一种数字预失真处理方法的流程图;
图 2为本发明实施例另一种数字预失真处理方法的流程图;
图 3为根据本发明实施例数字预失真处理方法参考信号和反馈信号的相 关峰值图; 图 4为根据本发明实施例数字预失真处理方法延时两个采样点的参考信 号和反馈信号相关后各自的峰值图;
图 5为根据本发明实施例数字预失真处理方法预失真之前反馈信号和参 考信号的虚部的幅度对齐的示意图;
图 6为根据本发明实施例数字预失真处理方法预失真之前反馈信号和参 考信号的实部的幅度对齐的示意图;
图 7 为根据本发明实施例数字预失真处理方法出现峰值功率压缩超过 1.5dBc的情况的示意图;
图 8为根据本发明实施例数字预失真处理系统的结构示意图。
具体实施方式
为使本发明实施例的目的、 技术方案和优点更加清楚, 下面将结合本发 明实施例中的附图, 对本发明实施例中的技术方案进行清楚地描述, 显然, 所描述的实施例是本发明一部分实施例, 而不是全部的实施例。 基于本发明 中的实施例, 本领域普通技术人员在没有做出创造性劳动前提下所获得的所 有其他实施例, 都属于本发明保护的范围。
下面结合附图及实施例对本发明进行详细说明如下。
实施例一:
图 1所示为本实施例一种数字预失真处理方法的流程图,所述方法包括: S101:在预失真系数参数表中提取与输入信号对应的预失真参数对输入 信号进行预失真处理, 得到前向发送信号;
S102: 对所述前向发送信号进行功率放大处理得到输出信号;
S103: 对所述输出信号进行采集得到反馈信号;
S104: 延时预定数量的采样点对所述前向发送信号进行采集, 得到参考 信号;
S105: 将所述参考信号和反馈信号进行同步相关运算, 对所述反馈信号 进行校准; S106: 根据所述参考信号和校准后的反馈信号训练预失真系数;
S107: 根据所述预失真系数和输入信号的幅值形成预失真系数参数表。 本发明在不增加硬件资源和软件处理复杂度的基础上, 继续采用筒单的 MP模型, 仅仅对发射信号延时预定数量的采样点, 就能够使得射频指标 ACPR有比较大的改善。 实施例二:
图 2所示为本实施例一种数字预失真处理方法的流程图。
本实施例所述方法包括以下步骤:
S201 :在预失真系数参数表中提取与输入信号对应的预失真参数对输入 信号进行预失真处理, 得到前向发送信号;
S202: 对所述前向发送信号进行功率放大处理得到输出信号;
S203: 采集输出信号, 为了保持功率平衡, 消除功率放大器的额定线性 增益, 得到反馈信号;
S204: 延时 M个采样点对所述前向发送信号进行采集, 得到参考信号, 这里 M为 -5到 5之间的整数, 优选 M为 1或 2;
S205: 对所述反馈信号的功率进行判断, 若所述反馈信号的功率不低于 设定功率阈值, 则转到步骤 S206; 否则反馈信号出现异常, 方法结束; 一 般情况下反馈信号的功率不能低于 -24dBFS;
S206: 将所述参考信号和反馈信号进行同步相关运算, 完成对反馈信号 的时延校准、 幅度校准和频率校准, 同时获得相关峰的最大峰值点信息, 判 断所述相关峰最大峰值的幅度是否大于设定的门限值, 如果是, 则继续后续 步骤; 否则重新寻找相关峰的最大峰值点信息;
S207:通过所述最大峰值点对应信号的相位对所述反馈信号进行相位校 准;
S208:判断幅度校准后的反馈信号的峰值功率是否低于参考信号峰值功 率设定的值, 如果没有, 则继续后续步骤; 否则反馈信号压缩过度, 方法结 束;
S209: 根据所述参考信号和校准后的反馈信号, 利用记忆多项式模型训 练预失真系数;
S210: 根据所述预失真系数和输入信号的幅值形成预失真系数参数表。 下面以更为具体的方式来描述本实施例:
对于 TDD 系统, 可以由用户自己选取一定的训练序列, 在保护时隙
(Guard Period, GP)发送, 位置为 GP中间一段长度为1^ , (L^:35~85)这 样在发送训练序列既不影响不同基站 DwPTS的发送,同时也不影响用户 UE 的接入, 此时的训练序列选择相关性比较好的码。 本实施例假定训练序列长 度为 N, 记忆深度 Q, 交调阶 ¾K
本实施例输入信号 经过预失真处理后的前向发送信号 Z(W和功率放 大器的输出信号 y 之间有如下关系: z(n) X
Figure imgf000010_0001
- q)\y(n - q)f~l
,...,L 」
其中, 为了保持功率平衡, 需消除输出信号 中功率放大器的额定线 性增益 G , 得到的每个输出信号的反馈信号" 如下;
¾ (") =
Figure imgf000010_0003
上述信号的矩阵表示如下:
反馈信号:
U = [u10,---uif0,---ule,---uife] , kq( i kq(N 前向发送信号 (即训练序列):
Figure imgf000010_0002
前向发送信号进行延时一定的采样点个数 Μ后得到的反馈信号的矩阵 表示如下: z' = [z(M),---,z(M + N-l)f 所述反馈信号相对于参考信号路径的延时时间 Td 大致是:
T delay ~ ^ DAC+ ^tx _ rf + ^ TPA+^ rx _rf + ^ADC
其中, 为信号通过数模转换器的延时; - 为信号通过射频发射通 道的延时; τ™为信号通过功率放大器的延时; 为信号通过射频接收通 道的延时; 为信号通过模数转换器的延时。
首先通过相关使得参考信号和反馈信号在时间上不同的延时得到调整 并对幅度进行校准,由于对延时和幅度的校准都为现有技术,因此不在累述; 通过下面的公式获得相关最大峰值点信息:
[max— data, position] = ax(xcorr(y, z '))
其中 ^。 rr ,z')表示参考信号和反馈信号之间进行的相关运算; max(xcorr(y,zr)表示取相关运算的最大值, 获得相关峰峰值的最大值 max_^to , 及其位置信息 P。w'"'。 如图 3所示为参考信号和反馈信号的相关 峰值图; 其相关幅度最大值为 6.14e+010, 位置为 (4160, 6.14e+010)。 图 4 所示为延时两个采样点对前向发送信号进行采样得到的参考信号和反馈信 号相关后各自的峰值图; 如果相关以后的相关峰峰值的最大值 max- ^低于 一定门限, 表明峰值寻找的不对, 因此相关最大峰值的幅度需要大于一定门 限 threshold _ cor _ valve ·
|max_ data\ > threshold cor valve 设相关峰的峰值幅度为 max_ra^ ,
max— value = |max_ data\
最大峰值点对应信号的相位冊 gle _da 作为校准相位 Θ:
Θ = angle(max_ data) . 通过该校准相位对反馈信号进行相位校准;
y = y-exp(_^)。 这样反馈信号和参考信号就完成了的相位的校准,使得在预失真之前反 馈信号和参考信号的实部和虚部的幅度均能对齐(如图 5和图 6所示), 而 不仅是信号的功率对齐。
然后对频率偏移进行校准, 在本实施例中, 对频率偏移的校准也为已有 技术, 因此这里也不再详细表述。
如果峰值功率放大器损坏, 峰值放大没有起作用, 导致反馈信号的峰值 被极大压缩,通过幅度校准后反馈信号和参考信号的幅度可以判断反馈信号 的峰值是否被过度压缩, 进而判断功率放大器是否损坏。
在幅度校准之后, 反馈信号和参考信号的平均幅度应该一样, 如果反馈 信号的峰值功率低于训练信号峰值功率 20*loglO(1.18)=1.5dBc, 即反馈信号 的峰值功率低于平均功率的幅度大小 (1.18 ) 时则认为反馈信号出现异常。 图 7就是出现峰值功率压缩超过 1.5dBc的情况, 此时说明功率放大器已损 坏。
在对反馈信号进行了上述的校准后, 利用记忆多项式模型训练预失真系 数:
设 a'为延时采样之后的目标 DPD系数,
z' = Ua',
a'的最小二乘解 为:
Figure imgf000012_0001
a' = (UHU)— 1 υΗ [z(M), - -, z(M + N - l)f
此时对前向发送信号 z进行延时 M个采样点之后得到的预失真系数能够 更好的反映功放的记忆特性。
表一是未对前向发送信号进行延时采样前和延时采样后的测试结果对 比:
功率 (dBm ) ACPR左(dBc ) ACPR右( dBc ) 延时釆样前 41.57 -50.16 -46.91 延时釆样后 41.58 -51.41 -47.87
表一: 延时采样前后 DPD后 ACPR结果
从上表分析可看出, 延时采样后, DPD后 ACPR效果有所改善。
本实施例除了本发明对发射信号延时预定数量的采样点,使得射频指标 ACPR有比较大的改善外, 还采用相关峰值点的相位作为相位校准, 保证了 信号相位的一致性, 使得预失真系数的相位不再翻转。 实施例三:
图 8所示为本实施例记载的一种数字预失真处理系统的结构示意图, 用 于实现实施例一或实施例二的方法, 其包括:
预失真处理器 301 , 用于在预失真系数参数表中提取与输入信号对应的 预失真参数对输入信号进行预失真处理, 得到前向发送信号;
数模转换器及射频发射通道 302, 用于将所述前向发送信号进行数模转 换并发送至功率放大器 303;
功率放大器 303 , 用于对所述数模转换转换后的前向发送信号进行功率 放大得到输出信号;
射频接收通道及模数转换器 304, 用于接收所述输出信号, 并对所述输 出信号进行模数转换后发送至接收端捕获数据控制器 305;
接收端捕获数据控制器 305 , 用于采集所述模数转换后的输出信号得到 反馈信号;
发送端捕获数据控制器 306, 用于延时预定数量的采样点对所述前向发 送信号进行采集, 得到参考信号, 并将所述参考信号发送至同步相关处理器 307;
同步相关处理器 307, 用于将所述参考信号和反馈信号进行同步相关运 算,对所述反馈信号进行校准后与所述参考信号一起送入预失真系数训练模 块 308; 预失真系数训练模块 308 , 用于根据所述参考信号和校准后的反馈信号 训练预失真系数, 并将所述预失真参数送入预失真参数存储器 309和预失真 处理器 301 ;
预失真参数存储器 309, 用于根据所述预失真系数和对应输入信号的幅 值形成预失真系数参数表。
本实施例对发射信号延时预定数量的采样点,使得射频指标 ACPR有比 较大的改善。
以上实施方式仅用于说明本发明, 而并非对本发明的限制, 有关技术领 域的普通技术人员, 在不脱离本发明的精神和范围的情况下, 还可以做出各 种变化和变型, 因此所有等同的技术方案也属于本发明的范畴, 本发明的专 利保护范围应由权利要求限定。

Claims

权利要求
1、 一种数字预失真处理方法, 其特征在于, 包括:
在预失真系数参数表中提取与输入信号对应的预失真参数对输入信号 进行预失真处理, 得到前向发送信号;
对所述前向发送信号进行功率放大处理得到输出信号;
对所述输出信号进行采集得到反馈信号;
延时预定数量的采样点对所述前向发送信号进行采集, 得到参考信号; 将所述参考信号和反馈信号进行同步相关运算,对所述反馈信号进行校 准;
根据所述参考信号和校准后的反馈信号训练预失真系数;
根据所述预失真系数和输入信号的幅值形成预失真系数参数表。
2、 如权利要求 1所述的方法, 其特征在于, 将所述参考信号和反馈信 号进行同步相关运算, 对所述反馈信号进行校准的步骤进一步包括:
将所述参考信号和反馈信号进行同步相关运算, 完成对反馈信号的时延 校准、 幅度校准和频率校准, 同时获得相关峰的最大峰值点信息;
通过所述最大峰值点对应信号的相位对所述反馈信号进行相位校准。
3、 如权利要求 2所述的方法, 其特征在于, 在进行所述同步相关运算 前, 还包括对所述反馈信号的功率进行判断的步骤, 若所述反馈信号的功率 不低于设定功率阈值,则继续后续步骤; 否则反馈信号出现异常,方法结束。
4、 如权利要求 2所述的方法, 其特征在于, 所述相关峰的最大峰值点 信息包括相关峰最大峰值的幅度, 所述获得相关峰的最大峰值点信息的步骤 包括: 判断所述相关峰最大峰值的幅度是否大于设定的门限值, 如果是, 则 继续后续步骤; 否则重新寻找相关峰的最大峰值点信息。
5、 如权利要求 2所述的方法, 其特征在于, 在对所述反馈信号进行幅 度校准的步骤之后还包括: 判断幅度校准后的反馈信号的峰值功率是否低于 参考信号峰值功率设定的值, 如果没有, 则继续后续步骤; 否则反馈信号压 缩过度, 方法结束。
6、 如权利要求 1所述的方法, 其特征在于, 对所述输出信号进行采集 得到反馈信号的步骤包括: 去除采集的输出信号的额定线性增益, 得到所述 反馈信号。
7、 如权利要求 1所述的方法, 其特征在于, 所述延时预定数量的采样 点中的所述预定数量为: -5到 5之间的整数。
8、 如权利要求 7所述的方法, 其特征在于, 所述预定数量为 1或 2。
9、 如权利要求 1所述的方法, 其特征在于, 根据所述参考信号和校准 后的反馈信号训练预失真系数的步骤包括: 通过记忆多项式模型求出所述预 失真系数。
10、 一种数字预失真处理系统, 其特征在于, 包括:
预失真处理器, 用于在预失真系数参数表中提取与输入信号对应的预失 真参数对输入信号进行预失真处理, 得到前向发送信号;
数模转换器及射频发射通道, 用于将所述前向发送信号进行数模转换并 发送至功率放大器;
功率放大器, 用于对所述数模转换转换后的前向发送信号进行功率放大 得到输出信号;
射频接收通道及模数转换器, 用于接收所述输出信号, 并对所述输出信 号进行模数转换后发送至接收端捕获数据控制器;
接收端捕获数据控制器,用于采集所述模数转换后的输出信号得到反馈 信号;
发送端捕获数据控制器, 用于延时预定数量的采样点对所述前向发送信 号进行采集, 得到参考信号, 并将所述参考信号发送至同步相关处理器; 同步相关处理器, 用于将所述参考信号和反馈信号进行同步相关运算, 对所述反馈信号进行校准后与所述参考信号一起送入预失真系数训练模块; 预失真系数训练模块, 用于根据所述参考信号和校准后的反馈信号训练 预失真系数, 并将所述预失真参数送入预失真参数存储器和预失真处理器; 预失真参数存储器, 用于根据所述预失真系数和对应输入信号的幅值形 成预失真系数参数表。
PCT/CN2013/090475 2013-01-16 2013-12-25 数字预失真处理方法及系统 WO2014110961A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP13871392.0A EP2947833B1 (en) 2013-01-16 2013-12-25 Digital predistortion processing method and system
US14/761,362 US9450621B2 (en) 2013-01-16 2013-12-25 Digital predistortion processing method and system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310015605.3 2013-01-16
CN201310015605.3A CN103051574B (zh) 2013-01-16 2013-01-16 数字预失真处理方法及系统

Publications (1)

Publication Number Publication Date
WO2014110961A1 true WO2014110961A1 (zh) 2014-07-24

Family

ID=48064079

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/090475 WO2014110961A1 (zh) 2013-01-16 2013-12-25 数字预失真处理方法及系统

Country Status (4)

Country Link
US (1) US9450621B2 (zh)
EP (1) EP2947833B1 (zh)
CN (1) CN103051574B (zh)
WO (1) WO2014110961A1 (zh)

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103051574B (zh) * 2013-01-16 2016-05-11 大唐移动通信设备有限公司 数字预失真处理方法及系统
US20140228993A1 (en) * 2013-02-14 2014-08-14 Sony Europe Limited Apparatus, system and method for control of resource consumption and / or production
US8971446B2 (en) * 2013-07-22 2015-03-03 Mstar Semiconductor, Inc. Predistortion factor determination for predistortion in power amplifiers
CN103888312B (zh) * 2014-03-04 2017-06-09 京信通信系统(广州)有限公司 一种预失真系统的报警方法及装置
CN103957179B (zh) * 2014-04-04 2018-04-20 京信通信系统(中国)有限公司 Dpd实现方法和系统
CN104486272A (zh) * 2014-12-08 2015-04-01 大唐移动通信设备有限公司 一种反馈信号的修正方法及装置
CN104580042B (zh) * 2014-12-08 2017-12-05 大唐移动通信设备有限公司 一种数字预失真的方法和装置
CN104580044B (zh) * 2014-12-29 2018-12-18 大唐移动通信设备有限公司 一种预失真处理方法和系统
CN104869091A (zh) * 2015-04-29 2015-08-26 大唐移动通信设备有限公司 一种数字预失真系数训练方法及系统
CN104901914B (zh) * 2015-05-14 2018-11-02 大唐移动通信设备有限公司 一种多频段联合预失真的处理方法和装置
US20170302483A1 (en) * 2015-10-06 2017-10-19 Maxlinear Asia Singapore Private Limited Receiver Based Envelope Detector
US9590668B1 (en) 2015-11-30 2017-03-07 NanoSemi Technologies Digital compensator
CN106817328B (zh) * 2015-11-30 2020-08-21 南京中兴软件有限责任公司 数字预失真表生成方法及装置
US9730165B2 (en) * 2016-01-12 2017-08-08 Qualcomm Incorporated Techniques for modifying transceiver power during digital pre-distortion training
CN107276546B (zh) * 2016-04-08 2020-05-08 大唐移动通信设备有限公司 一种数字预失真处理方法及装置
US9813190B1 (en) * 2016-07-01 2017-11-07 Intel IP Corporation Pre-distortion calibration
US10812166B2 (en) 2016-10-07 2020-10-20 Nanosemi, Inc. Beam steering digital predistortion
US11057004B2 (en) 2017-02-25 2021-07-06 Nanosemi, Inc. Multiband digital predistorter
CN106911624B (zh) * 2017-02-27 2020-01-03 北京睿信丰科技有限公司 一种通道补偿校准方法与系统
US10141961B1 (en) 2017-05-18 2018-11-27 Nanosemi, Inc. Passive intermodulation cancellation
KR102360496B1 (ko) * 2017-06-07 2022-02-10 삼성전자주식회사 신호 위상을 보상하는 전자 장치 및 그 방법
US11115067B2 (en) 2017-06-09 2021-09-07 Nanosemi, Inc. Multi-band linearization system
US10931318B2 (en) * 2017-06-09 2021-02-23 Nanosemi, Inc. Subsampled linearization system
US10581470B2 (en) 2017-06-09 2020-03-03 Nanosemi, Inc. Linearization system
WO2019014422A1 (en) 2017-07-12 2019-01-17 Nanosemi, Inc. SYSTEMS AND METHODS FOR CONTROLLING RADIOS MADE WITH DIGITAL PREDISTORSION
US11303251B2 (en) 2017-10-02 2022-04-12 Nanosemi, Inc. Digital predistortion adjustment based on determination of load condition characteristics
EP3724992A4 (en) * 2017-12-14 2020-12-23 Telefonaktiebolaget LM Ericsson (publ) LINEARIZATION OF NON-LINEAR AMPLIFIERS
FR3076135B1 (fr) * 2017-12-21 2019-12-27 Thales Syncronisation temporelle faible complexite dans une boucle de calcul de predistorsion numerique
CN108600129B (zh) * 2018-04-13 2020-01-14 维沃移动通信有限公司 信号处理方法及移动终端
JP2021523629A (ja) 2018-05-11 2021-09-02 ナノセミ, インク.Nanosemi, Inc. 非線形システム用デジタル補償器
US10644657B1 (en) 2018-05-11 2020-05-05 Nanosemi, Inc. Multi-band digital compensator for a non-linear system
US11863210B2 (en) 2018-05-25 2024-01-02 Nanosemi, Inc. Linearization with level tracking
US10931238B2 (en) 2018-05-25 2021-02-23 Nanosemi, Inc. Linearization with envelope tracking or average power tracking
CN112640299A (zh) 2018-05-25 2021-04-09 纳诺塞米有限公司 变化操作条件下的数字预失真
US11502708B2 (en) * 2020-04-15 2022-11-15 Qualcomm Incorporated Digital pre-distorter training
US10992326B1 (en) 2020-05-19 2021-04-27 Nanosemi, Inc. Buffer management for adaptive digital predistortion
CN115529049A (zh) * 2021-06-25 2022-12-27 广州海格通信集团股份有限公司 基于闭环的短波通信方法、装置、设备及可读存储介质
CN113468814B (zh) * 2021-07-09 2024-02-27 成都德芯数字科技股份有限公司 一种基于神经网络的数字预失真训练数据筛选方法及装置
CN113630361A (zh) * 2021-07-12 2021-11-09 深圳金信诺高新技术股份有限公司 一种峰值采数方法、采数装置及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101162913A (zh) * 2006-10-11 2008-04-16 大唐移动通信设备有限公司 预失真装置及方法
CN101355536A (zh) * 2007-07-24 2009-01-28 鼎桥通信技术有限公司 对基带信号进行数字预失真处理的装置及方法
CN102195912A (zh) * 2010-03-16 2011-09-21 富士通株式会社 数字预失真处理设备和方法
CN103051574A (zh) * 2013-01-16 2013-04-17 大唐移动通信设备有限公司 数字预失真处理方法及系统

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080139141A1 (en) * 2006-12-06 2008-06-12 George Varghese Method and system for estimating and compensating non-linear distortion in a transmitter using data signal feedback
KR20100014339A (ko) * 2006-12-26 2010-02-10 달리 시스템즈 씨오. 엘티디. 다중 채널 광대역 통신 시스템에서의 기저 대역 전치 왜곡 선형화를 위한 방법 및 시스템
FR2915642B1 (fr) * 2007-04-25 2009-07-10 Eads Secure Networks Soc Par A Linearisation dans une chaine d'emission
CN101409929B (zh) * 2007-10-11 2011-04-27 中国移动通信集团公司 一种通信方法和装置
CN101771383B (zh) * 2008-12-31 2012-04-18 大唐移动通信设备有限公司 一种实现信号预失真处理的方法和装置
US8737523B2 (en) * 2009-06-04 2014-05-27 Xilinx, Inc. Apparatus and method for predictive over-drive detection
CN101945069B (zh) * 2009-07-08 2014-02-26 电信科学技术研究院 一种调整数字预失真反馈延时的方法和装置
CN102014094B (zh) * 2009-09-07 2013-04-03 电信科学技术研究院 智能天线发射通道及接收通道的校准方法及相关装置
CN102035076B (zh) * 2009-09-29 2014-06-04 电信科学技术研究院 天线校准系统和方法
US8804870B2 (en) * 2009-12-21 2014-08-12 Dali Systems Co. Ltd. Modulation agnostic digital hybrid mode power amplifier system and method
CN102082752B (zh) * 2010-02-25 2014-03-19 电信科学技术研究院 一种数字预失真处理方法及设备
CN102158265B (zh) * 2010-08-25 2014-04-30 华为技术有限公司 多天线系统及其反馈信号接收链路复用方法
CN102231620A (zh) * 2010-09-06 2011-11-02 刘郁林 一种基于基带数字预失真技术的功放线性化方法和装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101162913A (zh) * 2006-10-11 2008-04-16 大唐移动通信设备有限公司 预失真装置及方法
CN101355536A (zh) * 2007-07-24 2009-01-28 鼎桥通信技术有限公司 对基带信号进行数字预失真处理的装置及方法
CN102195912A (zh) * 2010-03-16 2011-09-21 富士通株式会社 数字预失真处理设备和方法
CN103051574A (zh) * 2013-01-16 2013-04-17 大唐移动通信设备有限公司 数字预失真处理方法及系统

Also Published As

Publication number Publication date
US9450621B2 (en) 2016-09-20
EP2947833A1 (en) 2015-11-25
EP2947833A4 (en) 2016-08-17
US20150358039A1 (en) 2015-12-10
CN103051574A (zh) 2013-04-17
CN103051574B (zh) 2016-05-11
EP2947833B1 (en) 2019-02-06

Similar Documents

Publication Publication Date Title
WO2014110961A1 (zh) 数字预失真处理方法及系统
TWI516019B (zh) 通訊裝置及提高數位預失真線性化的方法
US9008153B2 (en) Microwave predistorted signal generating method and apparatus
WO2015096735A1 (zh) 一种数字预失真参数的求取方法及预失真系统
US9762268B2 (en) Wireless transceiver
CN107566308B (zh) 用于预失真校准的方法、设备及计算机存储介质
KR20100042243A (ko) 다차원 볼테라 시리즈 송신기 선형화
WO2012126431A2 (zh) 预失真校正方法、预失真校正装置、发射机及基站
WO2006033256A1 (ja) 歪補償増幅装置
JP5621666B2 (ja) デジタルプレディストーション処理装置及び方法
US9755583B2 (en) Using fractional delay computations to improve intermodulation performance
CN102231620A (zh) 一种基于基带数字预失真技术的功放线性化方法和装置
WO2009089731A1 (fr) Procédé et appareil, émetteur et procédé d'émission pour déterminer un paramètre de pré-distorsion en boucle ouverte
CN102412855A (zh) 阻抗匹配情况确定方法和设备
WO2021052459A1 (zh) 数字预失真处理方法及装置、计算机设备和可读存储介质
WO2010008968A1 (en) Digital predistortion in a multi transceiver system provided with a smart antenna array
WO2016026070A1 (zh) 信号处理装置、射频拉远单元和基站
CN114189413A (zh) 一种基于fpga的多载波宽带数字预失真装置
TWI711283B (zh) 用於越空非線性度估計的技術
US9203447B2 (en) Distortion compensating device and distortion compensating method
CN201947373U (zh) 一种高效率数字电视发射装置
US7816984B2 (en) Lookup table generation method and related device for a predistorter
KR20140076143A (ko) 왜곡 보상 장치
WO2014205797A1 (zh) 一种辨识方法、装置、系统及基站
WO2024036588A1 (zh) 一种信号处理装置,方法及相关设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13871392

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2013871392

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14761362

Country of ref document: US