WO2016026070A1 - 信号处理装置、射频拉远单元和基站 - Google Patents

信号处理装置、射频拉远单元和基站 Download PDF

Info

Publication number
WO2016026070A1
WO2016026070A1 PCT/CN2014/084650 CN2014084650W WO2016026070A1 WO 2016026070 A1 WO2016026070 A1 WO 2016026070A1 CN 2014084650 W CN2014084650 W CN 2014084650W WO 2016026070 A1 WO2016026070 A1 WO 2016026070A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
predistortion
feedback
processing
input end
Prior art date
Application number
PCT/CN2014/084650
Other languages
English (en)
French (fr)
Inventor
叶四清
朱尔霓
肖宇翔
余志坚
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201480019558.2A priority Critical patent/CN105556913B/zh
Priority to PCT/CN2014/084650 priority patent/WO2016026070A1/zh
Publication of WO2016026070A1 publication Critical patent/WO2016026070A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/62Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission for providing a predistortion of the signal in the transmitter and corresponding correction in the receiver, e.g. for improving the signal/noise ratio
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/38Synchronous or start-stop systems, e.g. for Baudot code
    • H04L25/40Transmitting circuits; Receiving circuits
    • H04L25/49Transmitting circuits; Receiving circuits using code conversion at the transmitter; using predistortion; using insertion of idle bits for obtaining a desired frequency spectrum; using three or more amplitude levels ; Baseband coding techniques specific to data transmission systems

Definitions

  • the present invention relates to information technology, and more particularly to a signal processing apparatus, a radio remote unit, and a base station. Background technique
  • the techniques for linearizing a power amplifier (PA, Power Amplifier) in a transmitter in a mobile communication system mainly include feedforward and predistortion techniques.
  • the forward feed method has been widely used, but the method is not stable and the equipment is complicated. Therefore, predistortion technology is an ideal technique for linearizing PA.
  • the pre-distortion technique used in the prior art is to pre-distort a transmission signal to be sent by a base station, for example, a digital downlink signal, to compensate for distortion of a transmission channel including a PA, so that ideally, The signal obtained after passing through the PA is the same as the signal before predistortion.
  • This requires predistortion to be completely complementary to the distortion of the transmit channel including PA, so the output signal of the PA needs to be measured, and then a pre-distortion coefficient is extracted from these signals by a certain algorithm for transmitting the signal. Predistortion processing.
  • a feedback channel including a feedback receiver is provided for extracting the predistortion coefficient.
  • the outer loop compensation method is also used to compensate the feedback signal processed by the feedback channel so that the two signals at the input end of the subtractor, that is, the feedback signal after the outer loop compensation and the downlink service signal after the second integer delay
  • the three characteristics of delay, amplitude and phase are aligned in an average sense.
  • the downlink service signal after the second integer delay is also called the feedforward signal, so that the compensated feedback signal is aligned with the feedforward signal.
  • the error signal output by the subtractor is used to generate a predistortion coefficient in the predistortion system, and then the predistortion processing is performed on the downlink service signal according to the predistortion coefficient.
  • the outer loop of the so-called predistortion processing in the prior art refers to a loop composed of: a predistortion processing unit + a transmission channel + a feedback receiver + a subtractor + an integer delay.
  • This alignment can be summarized into eight words: outer loop alignment, outer loop subtraction. Specifically, the delay signal, the amplitude, and the phase of the feedback signal after the outer loop compensation and the downlink service signal subjected to the second integer delay are aligned in an average sense, that is, the compensated feedback signal is aligned with the feedforward signal. Of course the compensated feedback signal is subtracted from the downlink service signal after the second integer delay, that is, the compensated feedback signal is subtracted from the feedforward signal.
  • the problem with this alignment is: In the long-term iterative process of pre-distortion processing of the transmitted signal, the outer loop compensation can only guarantee that the average complex gain of the outer loop loop as a whole is
  • the average phase shift is 0, and the average amplitude gain is 1, more specifically, the average complex gain of the signal from the downlink traffic signal to the outer loop compensation unit as shown in FIG. 1 is 1, and cannot be from the downlink service.
  • the complex gain of the signal to the transmitted signal is constant. This means that the amplitude-phase characteristic drift occurs during the processing from the downlink traffic signal to the transmitted signal, which easily leads to the convergence of the entire pre-distortion algorithm and the unstable transmission power of the PA.
  • the present invention provides a signal processing apparatus, a radio remote unit, and a base station, which are used to solve the problem that a signal may appear when pre-distortion processing is performed on a PA-equipped transmitter in a mobile communication system by using an existing pre-distortion technique.
  • Phase characteristic drift which in turn leads to a technical problem that the entire predistortion algorithm does not converge and the transmit power of the PA is unstable.
  • an embodiment of the present invention provides a signal processing apparatus, including: a predistortion module, a transmitter, a coupler, and a feedback channel, where the predistortion module has three inputs and an output, and the transmitter There is an input end and an output end, and the feedback channel has an input end and an output end;
  • the first input end of the predistortion module is a downlink service signal input end
  • the second input end is a feedback signal input end
  • the third input end is a predistortion feedback end
  • the output end of the predistortion module is a pre a distortion signal output end
  • the predistortion signal output end is connected to the predistortion feedback end
  • the input end of the transmitter is connected to the predistortion signal output end of the predistortion module, and the output end of the transmitter is a transmit signal end
  • the main part of the transmission signal outputted by the transmitting signal end is transmitted to the antenna and then transmitted to the wireless space, and the remaining part of the transmitting signal is transmitted to the input end of the feedback channel through the coupler, and processed through the feedback channel.
  • the feedback signal is transmitted to the feedback signal input end of the predistortion module through the output end of the feedback channel.
  • the pre-distortion module specifically includes:
  • An inner loop compensation unit configured to perform inner loop compensation on the feedback signal according to the first error signal Processing, generating a compensated feedback signal, the first error signal being generated by subtracting the predistortion signal and the compensated feedback signal by a first subtractor; the first subtractor being included in the predistortion In the module, wherein the predistortion signal is a signal outputted by an output of the predistortion module.
  • the feedforward signal is a signal input by the first input end of the predistortion module The signal obtained after the delay processing.
  • a predistortion coefficient calculation unit configured to perform an update process on the digital predistortion coefficient according to the second error signal and the downlink service signal, to generate the updated digital predistortion coefficient
  • a predistortion processing unit configured to perform The updated digital pre-distortion coefficient performs pre-distortion processing on the downlink service signal to generate the pre-distortion signal.
  • the inner loop compensation unit is configured to calculate an inner loop compensation according to an average power of the first error signal. a compensation coefficient of the unit, and performing the inner loop compensation processing on the feedback signal according to the compensation coefficient, so that the compensated feedback signal generated after the compensation processing and the first generated by the predistortion signal The average power of an error signal is minimal.
  • the predistortion module further includes:
  • a first integer delay unit configured to perform a first delay processing on the predistortion signal, and send the processed predistortion signal to the first subtractor;
  • a second integer delay unit configured to perform a second delay processing on the downlink service signal, and send the processed downlink service signal to the pre-distortion coefficient calculation unit and the second subtractor.
  • an embodiment of the present invention provides a radio remote unit RRU, including the signal processing apparatus of the first aspect.
  • an embodiment of the present invention provides a base station, including the radio remote unit RRU of the second aspect.
  • the invention provides a signal processing device, a radio remote unit and a base station, wherein the signal processing device comprises: a predistortion module, a transmitter, a coupler and a feedback channel, wherein the predistortion module has three inputs and an output, the transmitter There is one input and one output, feedback
  • the circuit has an input end and an output end; the first input end of the predistortion module is a downlink service signal input end, the second input end is a feedback signal input end, and the third input end is a predistortion feedback end, predistortion
  • the output end of the module is a predistortion signal output end, and the predistortion signal output end is connected to the predistortion feedback end; the input end of the transmitter is connected to the predistortion signal output end of the predistortion module, and the output end of the transmitter is a transmit signal end;
  • the main part of the transmitted signal outputted by the transmitting signal end is transmitted to the antenna and then
  • the remaining part of the transmitted signal is transmitted to the input end of the feedback channel through the coupler, and the feedback signal is processed through the feedback channel to obtain the feedback signal.
  • the terminal is transmitted to the feedback signal input terminal of the predistortion module.
  • FIG. 1 is a flow chart of an embodiment of a method for predistorting a signal provided by the prior art
  • FIG. 2 is a schematic structural diagram of an embodiment of a signal processing apparatus according to the present invention.
  • FIG. 3 is a schematic structural diagram of another embodiment of a signal processing apparatus according to the present invention.
  • FIG. 4 is a flowchart of an embodiment of a signal processing method provided by the present invention.
  • FIG. 5 is a flowchart of another embodiment of a signal processing method provided by the present invention.
  • the technical solutions in the embodiments of the present invention are clearly and completely described in the following with reference to the accompanying drawings in the embodiments of the present invention. It is obvious that the described embodiments are only a part of the embodiments of the present invention, and not all of the embodiments. example. All other embodiments obtained by those skilled in the art based on the embodiments of the present invention without creative efforts are within the scope of the present invention.
  • FIG. 2 is a schematic structural diagram of an embodiment of a signal processing apparatus according to the present invention, which is used for pre-distortion processing of a downlink service signal to be transmitted.
  • the signal processing device in this embodiment specifically includes: a predistortion module 21, a transmitter 22, a coupler 23, and a feedback channel 24, wherein The distortion module 21 has three input terminals and one output terminal.
  • the transmitter 22 has an input terminal and an output terminal.
  • the feedback channel 25 has an input terminal and an output terminal.
  • the first input terminal of the predistortion module 21 is a downlink service signal.
  • the input end, the second input end is a feedback signal input end, the third input end is a predistortion feedback end, the output end of the predistortion module 21 is a predistortion signal output end, and the predistortion signal output end is connected to the predistortion feedback end.
  • the input end of the transmitter 22 is connected to the predistortion signal output end of the predistortion module 21, and the output end of the transmitter 22 is a transmit signal end; the main part of the transmit signal outputted by the transmit signal end is transmitted to the antenna and then transmitted to the wireless space.
  • the predistortion module 21 specifically includes: an inner loop compensation unit 211, a first subtractor 212, a second subtractor 213, a predistortion coefficient calculation unit 214, and a predistortion processing unit. 215 ; where:
  • the inner loop compensation unit 211 is configured to perform an inner loop compensation process on the feedback signal according to the first error signal to generate a compensated feedback signal, where the first error signal is used to pass the predistortion signal and the compensated feedback signal through the first subtractor 212 is generated by performing subtraction processing; wherein the predistortion signal is a signal outputted by an output end of the predistortion module 21.
  • a second subtracter 213, configured to perform subtraction processing on the compensated feedback signal and the feedforward signal to generate a second error signal; wherein the feedforward signal is a signal input by the first input end of the predistortion module 21 The signal obtained after the delay processing.
  • a pre-distortion coefficient calculation unit 214 configured to perform an update process on the digital pre-distortion coefficient according to the second error signal and the feedforward signal to generate an updated digital pre-distortion coefficient
  • the predistortion processing unit 215 is configured to perform predistortion processing on the downlink service signal according to the updated digital predistortion coefficient to generate the predistortion signal.
  • the inner loop compensation unit 211 is specifically configured to calculate a compensation coefficient of the inner loop compensation unit according to the average power of the first error signal, and perform the inner loop compensation processing on the feedback signal according to the compensation coefficient, so as to generate compensation after the compensation processing.
  • the average power of the first feedback signal generated by the post feedback signal and the predistortion signal is minimized.
  • the predistortion module further includes:
  • the first integer delay unit 216 is configured to perform a first delay processing on the predistortion signal, and send the processed predistortion signal to the first subtractor 212;
  • the second integer delay unit 217 is configured to perform a second delay processing on the downlink service signal, and send the processed downlink service signal to the pre-distortion coefficient calculation unit 214 and the second subtractor 213.
  • the feedback channel 24 is specifically a feedback receiving unit formed by a feedback receiver.
  • the signal processing device comprises: a predistortion module, a transmitter, a coupler and a feedback channel, wherein the predistortion module has three inputs and an output, the transmitter has an input and an output, and the feedback channel There is an input end and an output end; the first input end of the predistortion module is a downlink service signal input end, the second input end is a feedback signal input end, and the third input end is a predistortion feedback end, and the predistortion module The output end is a predistortion signal output end, and the predistortion signal output end is connected to the predistortion feedback end; the input end of the transmitter is connected to the predistortion signal output end of the predistortion module, and the output end of the transmitter is a transmit signal end; The main part of the transmitted signal outputted by the signal end is transmitted to the antenna and then transmitted to the wireless space. The remaining part of the transmitted signal is transmitted to the input end of the feedback channel through the couple
  • the present invention also provides a flowchart of an embodiment of a signal processing method performed by the above-described signal processing apparatus shown in Fig. 2.
  • the method specifically includes:
  • S401 Perform PD processing on the downlink service signal according to the predistortion signal obtained by the predistortion processing and the TX output signal obtained by processing the predistortion signal through the transmitter TX to obtain a predistortion signal;
  • the pre-distortion signal may be a historical first output signal obtained by pre-distortion processing, and the historical first output signal is generated by performing PD processing on a historical signal input by the PD, and the TX output signal may be regarded as A historical second output signal generated by transmitter TX processing on the historical first output signal.
  • the downlink service signal may be a digital baseband signal, such as a downlink (DL) signal sent by the base station in the mobile communication network to the terminal.
  • DL downlink
  • the pre-distortion processing module may perform pre-distortion processing on the downlink service signal received from the base station.
  • the historical first output signal and the historical second output signal may be any one of the signals before the received downlink service signal, which is sequentially generated by the PD processing and the TX processing, and specifically before the downlink service signal is selected.
  • a signal depends on the data sampling period corresponding to the PD module in the specific acquisition history signal in this embodiment. For example, a sampling point between a set of historical first output signals and a historical second output signal and another set of historical first output signals and historical second output signals tends to differ by tens to tens of thousands, or even larger amounts of data.
  • the predistortion processing module performs predistortion processing on a historical signal of the downlink service signal to generate a historical first output signal, and the historical first output signal is processed by a transmitter (Transmitter, TX) to generate a history. a second output signal, and performing PD processing on the downlink service signal according to the historical first output signal and the historical second output signal to generate a current first output signal.
  • TX Transmitter
  • the predistortion signal is equivalent to the first output signal, and the transmit signal can be regarded as a second output signal after the predistortion signal is subjected to TX processing.
  • the TX process can generate a current second output signal that can be transmitted through an antenna to a particular terminal.
  • the above TX processing process specifically includes:
  • the digital to analog converter (DAC) processing of the first output signal is converted into an analog baseband signal, that is, an analog I&Q signal; then the above analog I&Q signal is up-converted to generate a radio frequency signal; finally, the PA is amplified to a predetermined After the power is output. Since the distortion characteristic of the TX is exactly opposite to the predistortion characteristic of the PD module described above, the historical second output signal output via the TX is restored to the historical signal of the downlink traffic signal, that is, a signal without distortion.
  • the signal processing method provided by the present invention is based on a predistortion signal obtained through predistortion processing and a TX output signal obtained by processing the predistortion signal through a transmitter TX to a downlink service signal.
  • the historical parameter signal for performing pre-distortion processing on the received signal includes the pre-distorted signal after PD processing, in addition to the transmitting signal to be transmitted to the terminal through the antenna (currently In the prior art, only the above-mentioned transmitting signal is used.
  • the method introduced by this parameter can separately consider the influencing factors of the PA module and the downlink channel in the transmitting channel, so that the PD module and the signal processed by the TX can be compensated later.
  • the amplitude and phase characteristics corresponding to the signals generated by each of them are guaranteed to be constant.
  • the amplitude and phase characteristics corresponding to the signal processed by the PD processing unit are constant, which makes the predistortion algorithm convergence and the transmission power of the PA stable.
  • FIG. 5 is a flowchart of another embodiment of a signal processing method according to the present invention, which is a specific implementation manner of the embodiment shown in FIG. 4. As shown in FIG. 5, the signal processing method specifically includes:
  • step S501 performing PD processing on the downlink service signal according to the predistortion signal obtained by the predistortion processing and the TX output signal obtained by processing the predistortion signal through the transmitter TX, to obtain a predistortion signal; the specific execution process of the step can be seen in the step The corresponding content of 401.
  • this embodiment provides a specific implementation manner of the step, including (step S5011 ⁇ 5015):
  • the TX output signal after TX processing that is, the above history, the second output signal is divided into two ways: according to the power division, most of it is sent to the duplexer (Duplexer, DUP) for bandpass filtering, and then the antenna is delivered. Transmitted to the wireless space; a small part of the signal is separated from the original signal by the coupler, and sent to the Feedback Receiver (FBRX) unit for feedback reception processing to generate the current feedback signal.
  • Duplexer Duplexer, DUP
  • FBRX Feedback Receiver
  • the feedback receiving process specifically includes: firstly, a small part of the signal separated from the original history second output signal is processed by the coupler to perform down-conversion processing to generate an analog baseband signal, that is, an analog I&Q signal; and then performing analog modulus on the analog I&Q signal.
  • the conversion Digital to Analog Converter, DAC
  • S5012 performing an inner loop compensation process on the feedback signal according to the first error signal to generate a compensated feedback signal, where the first error signal is generated by subtracting the predistortion signal from the compensated feedback signal;
  • the above-mentioned historical first output signal processed by the PD and the last compensated feedback signal of the current compensated feedback signal are subtracted by the first subtractor to generate a current first error signal. number.
  • the historical first output signal may be subjected to delay processing by the delay device before the subtraction processing of the history first output signal, so that the historical first output signal after the delay processing and the previous compensation
  • the post feedback signal is aligned to accurately implement the subtraction process for the two time aligned signals.
  • the ILC module performs an inner loop compensation process on the current feedback signal output from the FBRX module according to the current first error signal to generate the current compensated feedback signal.
  • the inner loop involved in the ILC is specifically: a loop composed of a TX+FBRX+ILC+ first subtractor delay device.
  • the inner loop compensation processing is performed on the current feedback signal according to the current first error signal, and the process of generating the current compensated feedback signal is:
  • the ILC module calculates a compensation coefficient according to the average power of the current first error signal, and then performs an inner loop compensation process on the feedback signal according to the compensation coefficient, thereby generating the current compensated feedback signal.
  • the principle of the inner loop compensation processing is the same as the principle of the outer loop compensation processing in the prior art, and the inner loop compensation principle is an average power of the first error signal generated by the compensated feedback signal and the predistortion signal generated after the compensation processing. The smallest. The only difference is that one input signal that produces the first error signal is different, that is, the original downlink traffic signal in the prior art is changed to the predistortion processed predistortion signal.
  • the downlink service signal may be subjected to an integer delay by the delay device to obtain the current compensation after processing with the ILC module.
  • the signal after the feedback signal is aligned is sent to the second subtractor described above.
  • S5014 Update the digital pre-distortion coefficient according to the second error signal and the feedforward signal to generate an updated digital pre-distortion coefficient
  • the digital pre-distortion coefficient is a previous digital pre-distortion of the current digital pre-distortion coefficient according to the previous second error signal of the current second error signal and the received historical signal.
  • the coefficient is updated and processed. For the specific processing, refer to the processing in the prior art, and details are not described herein.
  • S5015 Perform PD processing on the downlink service signal according to the updated digital pre-distortion coefficient to generate a pre-distortion signal.
  • the pre-distortion process used in the step can be referred to the processing process in the prior art, and details are not described herein.
  • S502 Perform TX processing on the predistortion signal to generate a transmit signal. For details of the process, refer to the corresponding content in step 402.
  • an inner loop compensation method is given, that is, the feedback signal is aligned with the predistortion signal output by the PD module, instead of being received with the input of the PD module. Signal alignment.
  • the above ILC loop can ensure that the signals output by the PD module and the inner loop compensation module are each constant, thereby Ensure that the delay, amplitude, and phase characteristics of the PD signal processed by the PD module do not drift, thus ensuring the convergence of the PD algorithm and the stability of the PA transmit power in the TX; if the amplitude and phase characteristics of the PA vary with temperature
  • the inner loop compensation loop can ensure that the inner loop compensation module only compensates for the delay, amplitude, and phase characteristic drift of the PA-processed transmit signal, without causing the PD module to process
  • the delay, amplitude, and phase characteristics of the predistortion signal drift that is, the convergence of the PD algorithm and the stability of the PA transmit power in the TX can still be guaranteed.
  • the signal processing method provided by the present invention performs PD processing on a downlink service signal according to a predistortion signal obtained through predistortion processing and a TX output signal obtained by processing the predistortion signal through a transmitter TX to obtain a predistortion signal;
  • the predistortion signal performs the TX processing to generate a transmit signal.
  • the parameter signal for performing pre-distortion processing on the received signal includes the pre-distorted signal after the PD processing, in addition to the above-mentioned transmitting signal to be transmitted to the terminal through the antenna (currently In the prior art, only the above-mentioned transmitting signal is used.
  • the method introduced by this parameter can separately consider the influencing factors of the PA module and the downlink channel in the transmitting channel, so that the PD module and the signal processed by the TX can be compensated later.
  • the amplitude and phase characteristics corresponding to the signals generated by each of them are guaranteed to be constant.
  • the amplitude and phase characteristics of the signal processed by the PD processing unit are constant, which makes the predistortion algorithm converge and the transmit power of the PA stable.
  • the present invention also provides a Radio Remote Unit (RRU) comprising the signal processing apparatus of any of the above.
  • RRU Radio Remote Unit
  • the present invention also provides a base station comprising the RRU as described above.
  • the invention can also be summarized as eight words: inner loop alignment, outer loop subtraction.
  • the feedback signal after the inner loop compensation and the pre-distortion signal after the first integer delay are also referred to as the feed signal.
  • the delay, amplitude, and phase characteristics of the (feeddown signal) are aligned in an average sense. Then, the compensated feedback signal is subtracted from the downlink service signal subjected to the second integer delay, that is, the compensated feedback signal is subtracted from the feedforward signal.
  • This scheme enables the predistortion algorithm to converge and the transmit power of the PA to be stable when the downlink service signal is processed by predistortion.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Transmitters (AREA)
  • Amplifiers (AREA)

Abstract

本发明提供一种信号处理装置、射频拉远单元和基站;其中,信号处理装置包括:预失真模块,发射机,耦合器以及反馈通道;预失真模块的第一个输入端为下行业务信号输入端,第二个输入端为反馈信号输入端,第三个输入端为预失真反馈端,输出端为预失真信号输出端且与预失真反馈端相连;发射机的输入端与预失真模块的预失真信号输出端相连,输出端为发射信号端;发射信号端输出的发射信号的主要部分传输至天线后发射到无线空间,发射信号的剩余部分经过耦合器传输至反馈通道处理得到反馈信号,并经输出端传输至预失真模块。本发明实施例解决了现有技术中,采用预失真处理下行业务信号时,预失真算法不收敛以及PA的发射功率不稳定的技术问题。

Description

信号处理装置、 射频拉远单元和基站
技术领域
本发明涉及信息技术, 尤其涉及一种信号处理装置、 射频拉远单元和 基站。 背景技术
目前, 对于移动通信系统中的发射机中的功率放大器 (PA, Power Amplifier) 进行线性化的技术中主要包括前馈和预失真技术。 正向前馈法已 广泛使用, 然而该方法稳定性不好, 而且设备很复杂。 因此预失真技术成为 对 PA进行线性化的理想技术。
如图 1所示, 现有技术中采用的预失真技术为先对基站欲下发的发射信 号, 例如数字下行信号进行预失真, 以补偿含 PA在内的发射通道的失真, 这样理想情况下经过 PA后得到的信号与预失真前的信号相同。 这要求预失 真是和含 PA在内的发射通道的失真完全互补的,所以需要对 PA的输出信号 进行测量, 再由一定的算法从这些信号中提取出预失真系数, 用来对发射信 号进行预失真处理。 在使用预失真技术的发射机中, 为了提取预失真系数设 有一个含反馈接收机的反馈通道。 现有技术中还使用外环补偿方法对经过反 馈通道处理的反馈信号进行补偿处理以使减法器输入端的两个信号, 即外环 补偿后的反馈信号与经过第二整数延时的下行业务信号的延时、 幅度、 相位 三方面特征在平均意义上对齐。 经过第二整数延时的下行业务信号, 又称前 馈信号(feedforward signal),所以也就是补偿后的反馈信号与前馈信号对齐。 对齐之后经减法器输出的误差信号, 用于生成预失真系统中的预失真系数, 进而依据该预失真系数对下行业务信号进行预失真处理。 其中, 现有技术中 所谓的预失真处理的外环是指由: 预失真处理单元 +发送通道 +反馈接收机 + 减法器 +整数延时这些模块组成的一个环。
可以将这种对齐方式总结为八个字: 外环对齐, 外环相减。 具体地是, 将外环补偿后的反馈信号与经过第二整数延时的下行业务信号的延时、幅度、 相位三方面特征在平均意义上对齐, 即补偿后反馈信号与前馈信号对齐, 然 后将补偿后的反馈信号与经过第二整数延时的下行业务信号相减, 即补偿后 反馈信号与前馈信号相减。 这种对齐方式的问题是: 在对发射信号进行预失 真处理的长期迭代过程中, 外环补偿只能保证外环环路整体的平均复增益为
1, 即平均相移为 0, 平均幅度增益为 1, 更具体地说, 是保证如图 1中从下行 业务信号到经过外环补偿单元的信号的平均复增益为 1,而不能从下行业务信 号到发射信号的复增益为常数。 这意味着从下行业务信号到发射信号的处理 过程中会出现幅相特性漂移, 很容易导致整个预失真算法不收敛以及 PA的发 射功率不稳定。 发明内容 本发明提供一种信号处理装置、 射频拉远单元和基站, 用于解决采用 现有预失真技术对移动通信系统中的含 PA的发射机进行预失真处理时, 可能会出现信号的幅相特性漂移, 进而导致整个预失真算法不收敛以及 PA的发射功率不稳定的技术问题。 第一方面, 本发明实施例提供一种信号处理装置,包括: 预失真模块, 发射机, 耦合器以及反馈通道, 其中, 所述预失真模块有三个输入端和一 个输出端, 所述发射机有一个输入端和一个输出端, 所述反馈通道有一个 输入端和一个输出端;
所述预失真模块的第一个输入端为下行业务信号输入端, 第二个输入 端为反馈信号输入端, 第三个输入端为预失真反馈端, 所述预失真模块的 输出端为预失真信号输出端, 预失真信号输出端与预失真反馈端相连; 所述发射机的输入端与所述预失真模块的预失真信号输出端相连, 所 述发射机的输出端为发射信号端;
所述发射信号端输出的发射信号的主要部分传输至天线后发射到无 线空间, 所述发射信号的剩余部分经过所述耦合器传输至所述反馈通道的 输入端, 经过所述反馈通道处理得到反馈信号, 经过所述反馈通道的输出 端传输至所述预失真模块的反馈信号输入端。
结合第一方面, 在第一方面的第一种可能的实施方式中, 所述预失真 模块具体包括:
内环补偿单元, 用于根据第一误差信号对所述反馈信号进行内环补偿 处理, 生成补偿后反馈信号, 所述第一误差信号是对预失真信号与所述补 偿后反馈信号通过第一减法器进行相减处理生成的; 所述第一减法器包含 在所述预失真模块中; 其中, 所述预失真信号为预失真模块的输出端输出 的信号。
第二减法器, 用于将所述补偿后反馈信号与前馈信号进行相减处理, 生成第二误差信号; 所述前馈信号为预失真模块的第一个输入端输入的信 号经过第二延时处理后得到的信号。
预失真系数计算单元, 用于根据所述第二误差信号和所述下行业务信 号对数字预失真系数进行更新处理, 生成更新后的所述数字预失真系数; 预失真处理单元, 用于根据所述更新后的数字预失真系数对所述下行 业务信号进行预失真处理, 生成所述预失真信号。
结合第一方面的第一种可能的实施方式, 在第一方面的第二种可能的 实施方式中, 所述内环补偿单元具体用于根据所述第一误差信号的平均功 率计算内环补偿单元的补偿系数, 并依据所述补偿系数对所述反馈信号进 行所述内环补偿处理, 以使所述补偿处理后生成的所述补偿后反馈信号与 所述预失真信号产生的所述第一误差信号的平均功率最小。
结合第一方面的第一种或第二种可能的实施方式, 在第一方面的第三 种可能的实施方式中, 所述预失真模块还包括:
第一整数延时单元, 用于对所述预失真信号进行第一延时处理, 并将 处理后的所述预失真信号发送至所述第一减法器;
第二整数延时单元, 用于对所述下行业务信号进行第二延时处理, 并 将处理后的所述下行业务信号发送至所述预失真系数计算单元和所述第 二减法器。
第二方面, 本发明实施例提供一种射频拉远单元 RRU,包括第一方面 所述的信号处理装置。
第三方面, 本发明实施例提供一种基站, 包括第二方面所述的射频拉 远单元 RRU。
本发明提供的信号处理装置、 射频拉远单元和基站, 其中信号处理装 置包括; 预失真模块, 发射机, 耦合器以及反馈通道, 其中, 预失真模块 有三个输入端和一个输出端, 发射机有一个输入端和一个输出端, 反馈通 道有一个输入端和一个输出端; 预失真模块的第一个输入端为下行业务信 号输入端, 第二个输入端为反馈信号输入端, 第三个输入端为预失真反馈 端, 预失真模块的输出端为预失真信号输出端, 预失真信号输出端与预失 真反馈端相连; 发射机的输入端与预失真模块的预失真信号输出端相连, 发射机的输出端为发射信号端; 发射信号端输出的发射信号的主要部分传 输至天线后发射到无线空间, 发射信号的剩余部分经过耦合器传输至反馈 通道的输入端, 经过反馈通道处理得到反馈信号, 经过所述反馈通道的输 出端传输至所述预失真模块的反馈信号输入端。 该方案使得在采用预失真 处理下行业务信号时, 预失真算法得到收敛且 PA的发射功率稳定。 附图说明 为了更清楚地说明本发明实施例或现有技术中的技术方案, 下面将对实 施例或现有技术描述中所需要使用的附图作简单地介绍, 显而易见地, 下面 描述中的附图仅仅是本发明的一些实施例, 对于本领域普通技术人员来讲, 在不付出创造性劳动的前提下, 还可以根据这些附图获得其他的附图。
图 1为现有技术提供的对信号进行预失真处理方法一个实施例的流程 图;
图 2为本发明提供的信号处理装置一个实施例的结构示意图。
图 3为本发明提供的信号处理装置另一个实施例的结构示意图; 图 4为本发明提供的信号处理方法一个实施例的流程图;
图 5为本发明提供的信号处理方法另一个实施例的流程图。 具体实施方式 下面将结合本发明实施例中的附图, 对本发明实施例中的技术方案进行 清楚、 完整地描述, 显然, 所描述的实施例仅仅是本发明一部分实施例, 而 不是全部的实施例。 基于本发明中的实施例, 本领域普通技术人员在没有做 出创造性劳动前提下所获得的所有其他实施例, 都属于本发明保护的范围。
图 2为本发明提供的信号处理装置一个实施例的结构示意图, 用于对 待发射的下行业务信号进行预失真处理。 本实施例所述信号处理装置具体 包括: 预失真模块 21, 发射机 22, 耦合器 23以及反馈通道 24, 其中, 预 失真模块 21有三个输入端和一个输出端, 发射机 22有一个输入端和一个 输出端, 反馈通道 25有一个输入端和一个输出端; 预失真模块 21的第一 个输入端为下行业务信号输入端, 第二个输入端为反馈信号输入端, 第三 个输入端为预失真反馈端, 预失真模块 21的输出端为预失真信号输出端, 预失真信号输出端与预失真反馈端相连; 发射机 22的输入端与预失真模 块 21的预失真信号输出端相连, 发射机 22的输出端为发射信号端; 该发 射信号端输出的发射信号的主要部分传输至天线后发射到无线空间, 而发 射信号的剩余部分经过耦合器 23传输至反馈通道 24的输入端, 经过反馈 通道 24处理得到反馈信号, 并经过反馈通道 24的输出端传输至预失真模 块 21的反馈信号输入端。 如图 3所示, 本实施例给出了上述信号处理装 置的一种具体实现方式。 进一歩的, 在图 3所示实施例中, 上述预失真模 块 21具体包括: 内环补偿单元 211、 第一减法器 212、 第二减法器 213、 预失真系数计算单元 214和预失真处理单元 215 ; 其中:
内环补偿单元 211, 用于根据第一误差信号对上述反馈信号进行内环 补偿处理, 生成补偿后反馈信号, 上述第一误差信号是对上述预失真信号 与补偿后反馈信号通过第一减法器 212进行相减处理生成的; 其中, 上述 预失真信号为预失真模块 21的输出端输出的信号。
第二减法器 213, 用于将上述补偿后反馈信号与前馈信号进行相减处 理, 生成第二误差信号; 上述前馈信号为预失真模块 21的第一个输入端 输入的信号经过第二延时处理后得到的信号。
预失真系数计算单元 214, 用于根据上述第二误差信号和前馈信号对 数字预失真系数进行更新处理, 生成更新后的数字预失真系数;
预失真处理单元 215, 用于根据上述更新后的数字预失真系数对上述 下行业务信号进行预失真处理, 生成上述预失真信号。
进一歩的, 在图 3所示实施例中,
上述内环补偿单元 211具体用于根据上述第一误差信号的平均功率计 算内环补偿单元的补偿系数, 并依据补偿系数对反馈信号进行所述内环补 偿处理, 以使补偿处理后生成的补偿后反馈信号与上述预失真信号产生的 第一误差信号的平均功率最小。
进一歩的, 在图 3所示实施例中, 上述预失真模块还包括: 第一整数延时单元 216, 用于对上述预失真信号进行第一延时处理, 并将处理后的预失真信号发送至第一减法器 212;
第二整数延时单元 217,用于对上述下行业务信号进行第二延时处理, 并将处理后的下行业务信号发送至上述预失真系数计算单元 214和第二减 法器 213。
进一歩的, 在图 3所示实施例中, 上述反馈通道 24具体为反馈接收 机构成的反馈接收单元。
本发明提供的信号处理装置, 包括; 预失真模块, 发射机, 耦合器以 及反馈通道, 其中, 预失真模块有三个输入端和一个输出端, 发射机有一 个输入端和一个输出端, 反馈通道有一个输入端和一个输出端; 预失真模 块的第一个输入端为下行业务信号输入端, 第二个输入端为反馈信号输入 端, 第三个输入端为预失真反馈端, 预失真模块的输出端为预失真信号输 出端, 预失真信号输出端与预失真反馈端相连; 发射机的输入端与预失真 模块的预失真信号输出端相连, 发射机的输出端为发射信号端; 发射信号 端输出的发射信号的主要部分传输至天线后发射到无线空间, 发射信号的 剩余部分经过耦合器传输至反馈通道的输入端, 经过反馈通道处理得到反 馈信号, 经过反馈通道的输出端传输至预失真模块的反馈信号输入端。
进一歩的, 如图 4所示, 本发明还提供了通过上述图 2所示信号处理装 置执行的一种信号处理方法的实施例的流程图。 该方法具体包括:
S401 , 根据经过预失真处理得到的预失真信号和将预失真信号经过发 射机 TX处理得到的 TX输出信号对下行业务信号进行 PD处理, 得到预 失真信号;
其中, 上述预失真信号可以为经过预失真处理后得到的一个历史第一 输出信号, 该历史第一输出信号是对 PD输入的历史信号进行上述 PD处 理生成的, 上述 TX输出信号可以视为是对上述历史第一输出信号进行发 射机 TX处理生成的一个历史第二输出信号。
本实施例中, 上述下行业务信号具体可以为数字基带信号, 如移动通 信网络中的基站下发给终端的下行 (Down Link, DL) 信号。 上述 DL信 号在通过发送通道传输到天线的过程中, 特别是经过 PA处理后的 DL信 号会产生失真, 因此需要在上述 DL信号通过上述发送通道前对上述 DL 信号进行预失真 (Predistortion , PD ) 处理。 本实施例中可通过预失真处 理模块对从基站接收的下行业务信号进行预失真处理。
本实施例中, 上述历史第一输出信号和历史第二输出信号可以是接收 的下行业务信号之前的任一个信号依次通过 PD处理和 TX处理过程中产 生的信号, 具体选用下行业务信号之前的哪一个信号, 取决于本实施例中 PD模块在具体采集历史信号时对应的数据采样周期。 譬如, 一组历史第 一输出信号和历史第二输出信号与另一组历史第一输出信号和历史第二 输出信号之间相差的采样点往往相差几十至几万、 甚至更大的数据量区 间, 每经过一次这样的输出信号的数据量区间变化后, 才重新采集一组上 述历史第一输出信号和历史第二输出信号来完成一次 PD处理过程中相关 系数的计算与更新。
具体地, 上述预失真处理模块对下行业务信号的一个历史信号进行预 失真处理生成一个历史第一输出信号, 对该历史第一输出信号通过发送通 道进行发射机 (Transmitter , TX ) 处理生成一个历史第二输出信号, 并根 据该历史第一输出信号和历史第二输出信号对上述下行业务信号进行 PD 处理生成当前第一输出信号。
S402 , 对预失真信号进行 TX处理, 生成发射信号;
其中, 上述预失真信号等同于上述第一输出信号, 上述发射信号可视 为上述预失真信号经过 TX处理后的一个第二输出信号。
通过上述 PD处理后生成的当前第一输出信号通过上述发送通道的
TX处理可生成当前第二输出信号, 该第二输出信号通过天线可发射到具 体的终端上。 上述 TX处理过程具体包括:
首先对第一输出信号做数字模拟转换 (Digital to Analog Converter , DAC ) 处理变为模拟基带信号, 即模拟 I&Q信号; 然后对上述模拟 I&Q 信号做上变频处理生成射频信号;最后经 PA放大为预定的功率之后输出。 由于 TX的失真特性正好与上述 PD模块的预失真特性相反, 所以经 TX 输出的历史第二输出信号还原为上述下行业务信号的那个历史信号, 即成 为无失真的信号。
本发明提供的信号处理方法,根据经过预失真处理得到的预失真信号和 将所述预失真信号经过发射机 TX处理得到的 TX输出信号对下行业务信号进 行 PD处理, 得到预失真信号; 对所述预失真信号进行所述 TX处理, 生成发 射信号。 该方案与现有技术相比较区别在于: 针对接收的信号进行预失真 处理的历史参数信号中, 除了待通过天线发送给终端的发射信号外, 还包 括经过 PD处理后的上述预失真信号(现有技术中只有上述发射信号) , 这 种参数引入的方法可以将 PD模块和发送通道中 PA对于下行业务信号的影 响因素分开考虑, 从而使的 PD模块和 TX处理后的信号再后期的信号补偿 中各自产生的信号所对应的幅相特性均保证为常数。 对于 PD处理单元而 言, 经过 PD处理单元处理后的信号所对应的幅相特性为常数, 可使得预失 真算法收敛以及 PA的发射功率稳定。
图 5为本发明提供的信号处理方法另一个实施例的流程图, 是如图 4 所示实施例的一种具体实现方式。如图 5所示,该信号处理方法具体包括:
S501 , 根据经过预失真处理得到的预失真信号和将预失真信号经过发 射机 TX处理得到的 TX输出信号对下行业务信号进行 PD处理, 得到预 失真信号; 该歩骤具体执行过程可参见歩骤 401的相应内容。 具体地, 本 实施例给出了该歩骤的一种具体实现方式, 包括 (歩骤 S5011~5015 ) :
S5011 : 将 TX输出信号进行反馈接收处理, 生成反馈信号;
经过 TX处理后的 TX输出信号, 即上述历史第二输出信号被分为两路:按 功率划分, 其大部分被送到双工器 (Duplexer, DUP) 做带通滤波处理, 然 后送达天线发射到无线空间; 其小部分信号经过耦合器从原始信号中分离出 来, 被发送到反馈接收(Feedback Receiver, FBRX)单元进行反馈接收处理, 生成当前反馈信号。
反馈接收处理具体包括: 首先对经上述耦合器处理后从原始历史第二 输出信号中分离出来小部分信号进行下变频处理生成模拟基带信号, 即模 拟 I&Q信号; 再对该模拟 I&Q信号进行模数转换 (Digital to Analog Converter, DAC ) 处理转换为数字信号, 即上述当前反馈信号。
S5012: 根据第一误差信号对反馈信号进行内环补偿处理, 生成补偿 后反馈信号, 该第一误差信号是对预失真信号与补偿后反馈信号进行相减 处理生成的;
将经过 PD处理的上述历史第一输出信号与当前补偿后反馈信号的上 一个补偿后反馈信号通过第一减法器进行相减处理, 生成当前第一误差信 号。 其中, 在上述历史第一输出信号进行相减处理之前, 可通过延时装置 对该历史第一输出信号进行延时处理, 以使延时处理后的上述历史第一输 出信号与上述上一个补偿后反馈信号对齐, 以准确对两个时间上对齐的信 号实现相减过程。
将上述相减过程后生成的当前第一误差信号发送至内环补偿 (Inner
Loop Compensation, ILC ) 模块。 ILC模块根据当前第一误差信号对上述 从 FBRX模块输出的上述当前反馈信号进行内环补偿处理, 以生成上述当 前补偿后反馈信号。
其中, 上述 ILC中涉及的内环具体为: 由 TX+FBRX+ILC+第一减法 器延时装置组成的环路。
具体地, 根据当前第一误差信号对上述当前反馈信号进行内环补偿处 理, 生成当前补偿后反馈信号的过程为:
ILC模块根据上述当前第一误差信号的平均功率计算补偿系数,然后依据 该补偿系数对上述反馈信号进行内环补偿处理, 从而生成上述当前补偿后反 馈信号。 其中, 该内环补偿处理的原理与现有技术中外环补偿处理的原理相 同, 内环补偿原则为使补偿处理后生成的补偿后反馈信号与预失真信号产生 的第一误差信号的平均功率最小。 而区别仅在于产生第一误差信号的一个输 入信号不同, 即由现有技术中的原始的下行业务信号变为经过预失真处理后 的预失真信号。
S5013:将补偿后反馈信号与前馈信号进行相减处理,生成第二误差信号; 该前馈信号为下行业务信号经过第二延时处理后得到的信号;
将上述经 ILC模块处理后得到的当前补偿后反馈信号与上述接收的下行 业务信号通过第二减法器进行相减处理, 生成第二误差信号。 其中, 为保证 相减处理过程中的上述下行业务信号与上述当前补偿后反馈信号在时间上对 齐, 可将下行业务信号经过延时装置进行整数延时,得到与 ILC模块处理后的 上述当前补偿后反馈信号对齐的信号, 再将该信号发送至上述第二减法器。
S5014: 根据第二误差信号和前馈信号对数字预失真系数进行更新处 理, 生成更新后的数字预失真系数;
其中, 该数字预失真系数是根据当前第二误差信号的上一个第二误差 信号和上述接收的历史信号对当前数字预失真系数的上一个数字预失真 系数进行更新处理生成的; 具体处理过程可参见现有技术中的处理过程, 在此不作赘述。
S5015 : 根据更新后的数字预失真系数对下行业务信号进行 PD处理, 生成预失真信号; 该歩骤中采用的预失真处理过程可参见现有技术中的处 理过程, 在此不作赘述。
S502: 对预失真信号进行 TX处理, 生成发射信号; 该歩骤具体执行 过程可参见歩骤 402的相应内容。
区别于现有技术中的外环补偿, 本实施例中, 给出了一种内环补偿方 法, 即将反馈信号与 PD模块输出的上述预失真信号对齐, 而不是与 PD 模块输入端的所接收的信号对齐。 这样, 在长期对当接收的号进行预失真 PD迭代处理的过程中, 如果 PA的幅相特性为常数, 则上述 ILC环路可 以保证 PD模块和内环补偿模块输出的信号各自为常数,从而保证经过 PD 模块处理后的 PD信号的延时、 幅值、 相位特性不致发生漂移, 从而保证 了 PD算法的收敛性与 TX中 PA发射功率的稳定性; 如果 PA的幅值、 相 位特性随温度变化, 或者由于器件老化发生变化, 上述内环补偿环路可以 保证内环补偿模块只补偿经 PA处理后的发射信号的延时、 幅值、 相位特 性漂移, 而不致使经 PD模块处理后的预失真信号的延时、 幅值、 相位特 性发生漂移, 即仍然可以保证 PD算法的收敛性与 TX中 PA发射功率的 稳定性。
本发明提供的信号处理方法,根据经过预失真处理得到的预失真信号和 将所述预失真信号经过发射机 TX处理得到的 TX输出信号对下行业务信号 进行 PD处理, 得到预失真信号; 对所述预失真信号进行所述 TX处理, 生 成发射信号。 该方案与现有技术相比较区别在于: 针对接收的信号进行预 失真处理的参数信号中, 除了待通过天线发送给终端的上述发射信号外, 还包括经过 PD 处理后的上述预失真信号 (现有技术中只有上述发射信 号) , 这种参数引入的方法可以将 PD模块和发送通道中 PA对于下行业 务信号的影响因素分开考虑, 从而使的 PD模块和 TX处理后的信号再后 期的信号补偿中各自产生的信号所对应的幅相特性均保证为常数。 对于 PD处理单元, 经过 PD处理单元处理后的信号所对应的幅值, 相位特性为 常数, 可使得预失真算法收敛以及 PA的发射功率稳定。 本领域普通技术人员可以理解:实现上述各方法实施例的全部或部分歩骤 可以通过程序指令相关的硬件来完成。前述的程序可以存储于一计算机可读取 存储介质中。 该程序在执行时, 执行包括上述各方法实施例的歩骤; 而前述的 存储介质包括: ROM、 RAM,磁碟或者光盘等各种可以存储程序代码的介质。
本发明还提供一种射频拉远单元 (Radio Remote Unit, RRU ) , 包括 如上任一种所述的信号处理装置。
本发明还提供一种基站, 包括如上所述的 RRU。
本发明也可以总结为八个字: 内环对齐, 外环相减。 具体地是, 将内环 补偿后的反馈信号与经过第一整数延时的预失真信号也称下馈信号
(feeddown signal) 的延时、 幅度、 相位三方面特征在平均意义上对齐。 然后 将补偿后的反馈信号与经过第二整数延时的下行业务信号相减, 即上述补偿 后反馈信号与前馈信号相减。 本方案使得在采用预失真处理下行业务信号 时, 预失真算法得到收敛且 PA的发射功率稳定。
最后应说明的是: 以上各实施例仅用以说明本发明的技术方案, 而非 对其限制; 尽管参照前述各实施例对本发明进行了详细的说明, 本领域的 普通技术人员应当理解: 其依然可以对前述各实施例所记载的技术方案进 行修改, 或者对其中部分或者全部技术特征进行等同替换; 而这些修改或 者替换, 并不使相应技术方案的本质脱离本发明各实施例技术方案的范 围。

Claims

权 利 要 求
1、 一种信号处理装置, 其特征在于, 包括; 预失真模块, 发射机, 耦合器以及反馈通道,其中,所述预失真模块有三个输入端和一个输出端, 所述发射机有一个输入端和一个输出端, 所述反馈通道有一个输入端和一 个输出端;
所述预失真模块的第一个输入端为下行业务信号输入端, 第二个输入 端为反馈信号输入端, 第三个输入端为预失真反馈端, 所述预失真模块的 输出端为预失真信号输出端, 预失真信号输出端与预失真反馈端相连; 所述发射机的输入端与所述预失真模块的预失真信号输出端相连, 所 述发射机的输出端为发射信号端;
所述发射信号端输出的发射信号的主要部分传输至天线后发射到无 线空间, 所述发射信号的剩余部分经过所述耦合器传输至所述反馈通道的 输入端, 经过所述反馈通道处理得到反馈信号, 经过所述反馈通道的输出 端传输至所述预失真模块的反馈信号输入端。
2、 根据权利要求 1所述的装置, 其特征在于, 所述预失真模块具体 包括:
内环补偿单元, 用于根据第一误差信号对所述反馈信号进行内环补偿 处理, 生成补偿后反馈信号, 所述第一误差信号是对预失真信号与所述补 偿后反馈信号通过第一减法器进行相减处理生成的; 所述第一减法器包含 在所述预失真模块中; 其中, 所述预失真信号为预失真模块的输出端输出 的信号;
第二减法器, 用于将所述补偿后反馈信号与前馈信号进行相减处理, 生成第二误差信号; 所述前馈信号为预失真模块的第一个输入端输入的信 号经过第二延时处理后得到的信号;
预失真系数计算单元, 用于根据所述第二误差信号和所述前馈信号对 数字预失真系数进行更新处理, 生成更新后的所述数字预失真系数;
预失真处理单元, 用于根据所述更新后的数字预失真系数对所述下行 业务信号进行预失真处理, 生成所述预失真信号。
3、 根据权利要求 2所述的装置, 其特征在于, 所述内环补偿单元具 体用于根据所述第一误差信号的平均功率计算内环补偿单元的补偿系数, 并依据所述补偿系数对所述反馈信号进行所述内环补偿处理, 以使所述补 偿处理后生成的所述补偿后反馈信号与所述预失真信号产生的所述第一 误差信号的平均功率最小。
4、 根据权利要求 2或 3所述的装置, 其特征在于, 所述预失真模块 还包括:
第一整数延时单元, 用于对所述预失真信号进行第一延时处理, 并将 处理后的所述预失真信号发送至所述第一减法器;
第二整数延时单元, 用于对所述下行业务信号进行第二延时处理, 并 将处理后的所述下行业务信号发送至所述预失真系数计算单元和所述第 二减法器。
5、 一种射频拉远单元 RRU, 其特征在于, 包括权利要求 1-4任一项 所述的信号处理装置。
6、一种基站, 其特征在于,包括权利要求 5所述的射频拉远单元 RRU。
PCT/CN2014/084650 2014-08-18 2014-08-18 信号处理装置、射频拉远单元和基站 WO2016026070A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201480019558.2A CN105556913B (zh) 2014-08-18 2014-08-18 信号处理装置、射频拉远单元和基站
PCT/CN2014/084650 WO2016026070A1 (zh) 2014-08-18 2014-08-18 信号处理装置、射频拉远单元和基站

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/084650 WO2016026070A1 (zh) 2014-08-18 2014-08-18 信号处理装置、射频拉远单元和基站

Publications (1)

Publication Number Publication Date
WO2016026070A1 true WO2016026070A1 (zh) 2016-02-25

Family

ID=55350063

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/084650 WO2016026070A1 (zh) 2014-08-18 2014-08-18 信号处理装置、射频拉远单元和基站

Country Status (2)

Country Link
CN (1) CN105556913B (zh)
WO (1) WO2016026070A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106911624B (zh) * 2017-02-27 2020-01-03 北京睿信丰科技有限公司 一种通道补偿校准方法与系统
CN110190885A (zh) * 2019-05-28 2019-08-30 清华大学 基于空域反馈的面向混合大规模mimo阵列的数字预失真结构
CN114553245B (zh) * 2020-11-26 2023-07-18 上海华为技术有限公司 一种射频芯片以及通过射频芯片的信号反馈方法
CN113612455B (zh) * 2021-08-16 2024-01-26 重庆大学 一种基于迭代学习控制和主曲线分析的数字预失真系统工作方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7113036B2 (en) * 2004-04-15 2006-09-26 Agere Systems Inc. Method and apparatus for adaptive digital predistortion using nonlinear and feedback gain parameters
CN101459636A (zh) * 2007-12-12 2009-06-17 中兴通讯股份有限公司 自适应预失真方法
CN101567667A (zh) * 2009-04-24 2009-10-28 福建三元达通讯股份有限公司 增强型模拟预失真线性化功率放大器

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203942533U (zh) * 2014-06-03 2014-11-12 京信通信系统(中国)有限公司 多载波功率放大装置和数字光纤拉远系统

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7113036B2 (en) * 2004-04-15 2006-09-26 Agere Systems Inc. Method and apparatus for adaptive digital predistortion using nonlinear and feedback gain parameters
CN101459636A (zh) * 2007-12-12 2009-06-17 中兴通讯股份有限公司 自适应预失真方法
CN101567667A (zh) * 2009-04-24 2009-10-28 福建三元达通讯股份有限公司 增强型模拟预失真线性化功率放大器

Also Published As

Publication number Publication date
CN105556913B (zh) 2019-05-28
CN105556913A (zh) 2016-05-04

Similar Documents

Publication Publication Date Title
US9008153B2 (en) Microwave predistorted signal generating method and apparatus
US20180323813A1 (en) High efficiency, remotely reconfigurable remote radio head unit system and method for wireless communications
WO2014110961A1 (zh) 数字预失真处理方法及系统
US8995572B1 (en) Digital Predistortion for nonlinear RF power amplifiers
US7529524B1 (en) Adaptive power amplifier linearization in time division duplex communication systems
US8224266B2 (en) Power amplifier predistortion methods and apparatus using envelope and phase detector
US9762268B2 (en) Wireless transceiver
EP3068047A2 (en) Modulation agnostic digital hybrid mode power amplifier system and method
WO2008116402A1 (fr) Appareil de prédistorsion, émetteur et procédé correspondant
EP2724503A2 (en) Centralized adaptor architecture for power amplifier linearizations in advanced wireless communication systems
WO2016026070A1 (zh) 信号处理装置、射频拉远单元和基站
US8385857B2 (en) Wireless communication apparatus
WO2017185750A1 (zh) 模拟预失真系统、收发信机和通信设备
US20100008446A1 (en) Transceiver architecture with combined smart antenna calibration and digital predistortion
CN103685109A (zh) 宽带数字预失真多载波功率放大系统及其功放增益均衡装置与方法
WO2011103822A2 (zh) 数字模拟预失真处理装置和信号发射系统及信号发射方法
US9263994B2 (en) Amplifying device, distortion compensating device, and amplifying method
WO2019105293A1 (zh) 非线性补偿的方法和光载无线通信系统
JP6475320B2 (ja) 送信機および干渉キャンセル方法
KR20140076143A (ko) 왜곡 보상 장치
RU2777654C1 (ru) Система дистанционного повышения линейности высокочастотных усилителей мощности
WO2011157168A2 (zh) 射频信号的发射方法及基站设备
KR20220015627A (ko) 상향링크 신호 교정 방법 및 장치
KR101094202B1 (ko) 다중대역/다중모드 송신기를 위한 전치왜곡 장치 및 방법
Zhao et al. An Automatic Error Compensation Method For The Feedback Loop In Adaptive DPD Systems

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480019558.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14899977

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14899977

Country of ref document: EP

Kind code of ref document: A1