WO2014109198A1 - Apparatus for manufacturing optical display device, and system for producing optical display device - Google Patents

Apparatus for manufacturing optical display device, and system for producing optical display device Download PDF

Info

Publication number
WO2014109198A1
WO2014109198A1 PCT/JP2013/084033 JP2013084033W WO2014109198A1 WO 2014109198 A1 WO2014109198 A1 WO 2014109198A1 JP 2013084033 W JP2013084033 W JP 2013084033W WO 2014109198 A1 WO2014109198 A1 WO 2014109198A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical member
optical display
optical
substrate
sheet
Prior art date
Application number
PCT/JP2013/084033
Other languages
French (fr)
Japanese (ja)
Inventor
幹士 藤井
大充 田中
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Priority to JP2014556358A priority Critical patent/JP5828972B2/en
Priority to KR1020157016145A priority patent/KR101993029B1/en
Priority to CN201380065832.5A priority patent/CN104854502B/en
Publication of WO2014109198A1 publication Critical patent/WO2014109198A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/1303Apparatus specially adapted to the manufacture of LCDs
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133351Manufacturing of individual cells out of a plurality of cells, e.g. by dicing
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133354Arrangements for aligning or assembling substrates

Definitions

  • the present invention relates to an optical display device manufacturing apparatus and an optical display device production system.
  • This application claims priority based on Japanese Patent Application No. 2013-002830 filed on January 10, 2013, the contents of which are incorporated herein by reference.
  • a mother panel is formed by sandwiching and bonding a liquid crystal layer between two mother glasses, and then the mother panel is divided into a plurality of liquid crystal panels (optical display components). ) Is used (so-called multi-chamfering).
  • the mother panel can be divided into a plurality of liquid crystal panels by, for example, imprinting a scribe line on the mother glass, then pressurizing and dividing along the scribe line (see, for example, Patent Document 1).
  • optical members such as a polarizing film, a retardation film, and a brightness enhancement film are formed on a sheet piece having a size including a surplus part that protrudes not only to the display area of the liquid crystal panel but also to the peripheral part (frame part) of the display area. It is pasted after being cut out. Thereby, the surplus part is arrange
  • optical display components have been studied to reduce the peripheral portion of the display area on the display surface to increase the display area and reduce the size of the device (hereinafter, the frame portion of the optical display component is reduced). This is sometimes referred to as “narrowing the frame”).
  • the optical member is cut into a sheet piece having a size that matches the shape of the liquid crystal panel in plan view, and the edge of the sheet piece is bonded to the outer periphery of the liquid crystal panel.
  • the outer periphery shape of a liquid crystal panel is detected, and the operation which cuts out a sheet piece in the magnitude
  • a method for detecting the outer shape it is conceivable to detect the four corners (corner portions) of the liquid crystal panel in a plan view and to make a rectangle connecting the four corners into the outer peripheral shape of the liquid crystal panel.
  • the liquid crystal panel is manufactured by multi-chamfering by the above-described method, a burr or a chip is likely to occur at the corners in a liquid crystal panel having a rectangular shape. Therefore, in the case of a liquid crystal panel manufactured by multi-chamfering, when detecting the outer peripheral shape of the liquid crystal panel, it is affected by burrs and chips, and an outer shape that is larger or smaller than the actual outer peripheral shape of the liquid crystal panel is detected. A sheet piece of the optical member that matches the actual outer peripheral shape of the liquid crystal panel cannot be cut out, and a defective optical display device is likely to occur.
  • An object of the present invention is to provide an optical display device manufacturing apparatus that can be processed. It is another object of the present invention to provide an optical display device production system that has such a manufacturing apparatus and that can easily produce a narrow frame optical display device.
  • An optical display device manufacturing apparatus is an optical display device manufacturing apparatus in which an optical member is bonded to an optical display component, and the optical display device has a substrate surface of the optical display component.
  • An imaging device that captures an image including a corner portion of the substrate in a plan view of a laminate in which an optical member sheet wider than the surface is bonded; a display that the optical display component includes the optical member sheet A cutting device for separating the optical member that is a portion facing the region and a surplus portion outside the optical member; an approximate contour line that approximates the contour line in plan view of the substrate is obtained based on the image And a control device that controls the cutting device so as to cut the optical member sheet based on the approximate contour line, and the control device uses the corner of the image of the substrate included in the image.
  • a virtual point corresponding to a part is set, the virtual point is set for each of the plurality of corners of the substrate, and a figure obtained by connecting the virtual points with line segments is obtained as the approximate contour line.
  • the “part facing the display area” is an area that is not less than the size of the display area and not more than the size of the outer shape of the optical display component, and avoids a functional part such as an electrical component mounting portion. Indicates the area. That is, the optical member may be formed by being separated from the surplus portion along the outer peripheral edge of the optical display component, and is formed by being separated from the surplus portion at the frame portion that is the peripheral portion of the display area. It may be a thing.
  • cutting the optical member sheet based on the approximate contour line means a region along the calculated approximate contour line or the size of the display region and inside the approximate contour line.
  • seat is shown. That is, the cutting position of the optical member sheet may be a position along the approximate contour line, or may be a position overlapping with a frame portion that is a peripheral portion of the display area.
  • an illumination device that illuminates the multilayer body from the side opposite to the imaging device across the multilayer body may be provided.
  • control device detects the plurality of points overlapping each of the two sides of the substrate except for a predetermined region in the vicinity of the corner portion. May be.
  • An optical display device production system is an optical display device production system in which an optical member is bonded to an optical display component, and the optical display component is conveyed on a line.
  • An optical member sheet wider than the surface is bonded to the surface of the sheet to form a laminate including the optical display component and the optical member sheet; and the optical member sheet included in the laminate.
  • an apparatus for manufacturing an optical display device that detects the outer peripheral shape of a liquid crystal panel that has been freed from the influence of burrs and chips at the peripheral edge and can process an optical member in accordance with the outer peripheral shape.
  • an optical display device production system that has such a manufacturing apparatus and that can easily produce a narrow frame optical display device.
  • FIG. 1 is a schematic sectional view showing an optical display device production system 100 (hereinafter, production system 100).
  • the production system 100 cuts the sheet piece FA by bonding the sheet piece (optical member sheet) FA to the liquid crystal panel (optical display component) P conveyed on the line, and the optical member.
  • the cutting unit 20 corresponds to the optical display device manufacturing apparatus according to the present embodiment.
  • the bonding unit 10 includes a transport device 11 that transports the belt-shaped optical member sheet F1 in the longitudinal direction of the optical member sheet F1, a cutting device 12 that cuts out the sheet piece FA from the optical member sheet F1, and the sheet piece FA as a liquid crystal panel. And a bonding device 13 for bonding to the upper surface of P.
  • FIG. 2 is a schematic diagram showing the optical member sheet F1.
  • the optical member sheet F ⁇ b> 1 is a belt-shaped optical member original fabric F ⁇ b> 2 from which a sheet piece FA to be bonded to the liquid crystal panel P is obtained by cutting to a unit length, and an optical member original fabric F ⁇ b> 2.
  • a separator sheet F3 provided in a stacked manner. The separator sheet F3 is used as a carrier for conveying the optical member original fabric F2.
  • An adhesive layer F4 is provided between the optical member original fabric F2 and the separator sheet F3.
  • the optical member original fabric F2 is cut into a unit length (sheet piece FA unit) along a cut line C formed over the entire width in the width direction of the optical member sheet F1 together with the adhesive layer F4. Become.
  • the sheet piece FA is peeled from the separator sheet F3 and bonded to the upper surface of the liquid crystal panel P as will be described later.
  • the conveying device 11 holds the original roll R1 around which the belt-shaped optical member sheet F1 is wound, and also feeds the optical member sheet F1 along the longitudinal direction of the optical member sheet F1. And a winding unit 112 that holds the separator roll R2 that winds up the separator sheet F3 that has been separated from the sheet piece FA.
  • the conveying apparatus 11 has a some guide roller which winds the optical member sheet
  • the optical member sheet F1 has a width that is wider than the substrate on the side on which the sheet pieces of the liquid crystal panel P are bonded in the horizontal direction (sheet width direction) orthogonal to the conveying direction of the optical member sheet F1.
  • the unwinding unit 111 and the winding unit 112 are driven in synchronization with each other, for example. Thereby, the operation of the unwinding unit 111 that feeds the optical member sheet F1 in the transport direction and the operation of the winding unit 112 that winds up the separator sheet F3 are synchronized, and the slack of the optical member sheet F1 and the separator sheet F3 is suppressed. To do.
  • the unwinding unit 111 and the winding unit 112 convey the optical member sheet F1 unwound from the original fabric roll R1 toward the cutting device 12 side with the optical member original fabric F2 side facing.
  • the cutting device 12 is disposed facing the optical member original fabric F2 in the process of conveying the optical member sheet F1.
  • the cutting device 12 includes, for example, a circular cutting blade, and is configured to be movable in the set cutting direction of the optical member sheet F1.
  • the cutting device 12 cuts the optical member original fabric F2 included in the optical member sheet F1 over the entire width in the sheet width direction of the optical member sheet F1 every time the optical member sheet F1 is fed out by a preset unit length. .
  • a cut line C is formed in the cut optical member sheet F1 over the entire width of the optical member original fabric F2 in the sheet width direction.
  • the range defined by the cut line C is the sheet piece FA, and the cutting device 12 forms the sheet piece FA on the separator sheet F3.
  • the cutting device 12 advances and retracts the cutting blade so that a predetermined thickness remains on the separator sheet F3. And half-cut to the vicinity of the interface between the adhesive layer F4 and the separator sheet F3. In addition, you may burn out using the apparatus which inject
  • the size and shape of the sheet piece FA formed by the cutting device 12 can be arbitrarily set according to the shape of the optical member, the setting direction of the optical axis in the optical member, and the like.
  • the optical member sheet F1 is half-cut in a direction intersecting with the longitudinal direction of the optical member sheet F1, and a cut line C is formed in the optical member sheet F1 with a predetermined interval, thereby forming a sheet piece FA. Have gained.
  • the laminating apparatus 13 winds the optical member sheet F1 at an acute angle and separates the sheet piece FA from the separator sheet F3, holds the sheet piece FA, and transports and pastes it onto the liquid crystal panel P. It has the bonding head 132 to combine, and the mounting base 133 by which liquid crystal panel P is mounted and the liquid crystal panel P and sheet piece FA are bonded.
  • the peeling portion 131 is positioned below the optical member sheet F1 that is conveyed substantially horizontally with the separator sheet F3 side downward in FIG. 1, and extends at least over the entire width of the optical member sheet F1 in the sheet width direction. .
  • An optical member sheet F1 after half cut is wound around the peeling portion 131 so that the separator sheet F3 side is in contact therewith.
  • the tip 131a of the peeling part 131 is formed at an acute angle in a sectional view.
  • the sheet piece FA is turned up and peeled from the separator sheet F3 starting from the cut line C formed by the above-described half cut.
  • the adhesive layer F4 formed between the sheet piece FA and the separator sheet F3 is peeled off from the separator sheet F3 together with the sheet piece FA. Therefore, in the sheet piece FA that peels from the separator sheet F3, the adhesive layer F4 is disposed on the lower surface.
  • the pasting head 132 has an arc-shaped holding surface 132a that is parallel to the sheet width direction and convex downward.
  • the holding surface 132a has, for example, a weaker adhesion force than the adhesive layer F4 of the sheet piece FA, and can repeatedly perform the adhesion and peeling of the sheet piece FA.
  • the bonding head 132 has a driving device (not shown), can move up and down by a predetermined amount above the peeling portion 131 (tip portion 131a) and above a mounting table 133 described later, and is mounted on the peeling portion 131. It can be appropriately moved between the table 133. Furthermore, the bonding head 132 can be translated (rotated) in both the forward and reverse directions around the normal line of the placement surface for horizontal position correction.
  • the pasting head 132 is configured to be tiltable along the curvature of the holding surface 132a around the axis along the sheet width direction of the optical member sheet F1. Tilt of the bonding head 132 is appropriately performed when the sheet piece FA is bonded and held, and when the bonded sheet piece FA is bonded to the liquid crystal panel P.
  • the mounting table 133 mounts the liquid crystal panel P, and can be translated and rotated for horizontal position correction.
  • the bonding unit 10 is disposed below the leading end of the peeling unit 131, and the first detection camera 141 that detects the leading end of the sheet piece FA on the downstream side of the sheet conveyance and the sheet that is stuck and held on the holding surface 132a. It has the 2nd detection camera 142 which images piece FA, and the 3rd detection camera 143 which images the liquid crystal panel P on the mounting base 133. It is also possible to use sensors in place of the detection cameras 141 to 143.
  • Such a bonding part 10 is driven as follows as a whole.
  • the transport device 11 temporarily stops, and the cutting device 12 half-cuts the optical member sheet F1. That is, the distance along the sheet conveyance path between the detection position by the first detection camera 141 (the optical axis extension position of the first detection camera 141) and the cutting position by the cutting device 12 (the cutting blade advance / retreat position of the cutting device 12) is This corresponds to the length of the sheet piece FA.
  • the cutting device 12 is movable along the sheet conveyance path, and the distance along the sheet conveyance path between the detection position by the first detection camera 141 and the cutting position by the cutting device 12 can be changed. it can. For example, when the length of the created sheet piece FA is different from the preset standard of the sheet piece FA, the deviation is corrected by the movement of the cutting device 12, and the sheet piece FA having a predetermined length is formed. can do. Further, the sheet pieces FA having different lengths can be formed by the movement of the cutting device 12.
  • the bonding head 132 is tilted so that the curved one end 132x of the holding surface 132a is on the lower side (inclined to the right in FIG. 1; indicated by the symbol ⁇ ).
  • the curved one end side 132x of the holding surface 132a is pressed from above, and the downstream end of the sheet piece FA at the leading end 131a is adhered to the holding surface 132a.
  • the connection between the bonding head 132 and the driving device is cut off so that the bonding head 132 can be tilted.
  • the bonding head 132 is arranged such that the curved other end side 132y of the holding surface 132a is on the lower side (in FIG. 1). Tilt to the left (indicated by the symbol ⁇ ) and tilt passively. Thereby, the whole sheet piece FA is stuck on the holding surface 132a.
  • the laminating head 132 holding the sheet piece FA moves above the mounting table 133.
  • the sheet piece FA held by the bonding head 132 is imaged by the second detection camera 142 when moving from above the peeling unit 131 to above the mounting table 133.
  • the captured image data is sent to a control device (not shown), and the holding posture of the sheet piece FA on the holding surface 132a of the bonding head 132 (the position in the horizontal direction, the rotation angle around the normal line of the holding surface 132a). Detected.
  • the liquid crystal panel P placed on the placing table 133 is imaged by the third detection camera 143.
  • the captured image data is sent to a control device (not shown), and the attitude of the liquid crystal panel P on the mounting table 133 (horizontal position, rotation around the normal of the upper surface of the mounting table on which the liquid crystal panel P is mounted) Angle) is detected.
  • the bonding head 132 and the mounting table 133 adjust the relative positions of the sheet piece FA and the liquid crystal panel P based on the detected position of the sheet piece FA and the liquid crystal panel P, respectively.
  • the bonding head 132 is actively tilted, for example, by the operation of a driving device, and a sheet piece is formed on the upper surface of the liquid crystal panel P mounted on the mounting table 133 along the curvature of the holding surface 132a. Press the FA and paste it securely.
  • the laminate S in which the sheet piece FA and the liquid crystal panel P are bonded is formed.
  • the relative positions of which are adjusted the bonding variation of the sheet piece FA is suppressed, and the accuracy of the optical axis direction of the sheet piece FA with respect to the liquid crystal panel P is improved.
  • the display device is enhanced in definition and contrast.
  • the first detection camera 141 may also detect a defect mark marked on the optical member original fabric F2 of the optical member sheet F1.
  • the defect mark is provided by using an ink jet apparatus or the like on the optical member original fabric F2 at the defect location found in the optical member sheet F1 when the original fabric roll R1 is manufactured.
  • the sheet piece FA in which the defect mark is detected is pasted on the pasting head 132, and is not pasted on the liquid crystal panel P, but is moved to a separately disposed pasting position and pasted on a waste material sheet or the like.
  • the cutting device 12 may be moved, cut shorter than the sheet piece FA that can be bonded to the liquid crystal panel P, and the portion including the defect mark may be cut and discarded.
  • the cutting unit 20 includes an imaging device 210 that captures an image of the stacked body S, an optical member F that is a portion facing the display area of the liquid crystal panel P, the sheet piece FA included in the stacked body S, and the optical member F.
  • a cutting device 220 that separates the excess portion FX on the outside and a control device 230 that controls the cutting device 220 based on an image captured by the imaging device 210 are provided.
  • it has the illuminating device 240 which illuminates the laminated body S from the opposite side to the imaging device 210 on both sides of the laminated body S.
  • FIG. 3A to 8 are explanatory diagrams for explaining the operation of the cutting unit 20.
  • FIG. 3A and 3B are schematic diagrams illustrating a state in which the stacked body S is imaged using the imaging device 210.
  • FIG. First as shown in FIG. 3A, a plurality of (four in the figure) imaging devices 210 are used to image the periphery of the corners of the liquid crystal panel P in the stacked body S.
  • the laminate S has a liquid crystal panel P and a sheet piece FA bonded to the liquid crystal panel P.
  • the liquid crystal panel P has a liquid crystal layer sandwiched between the counter substrate P1 and the element substrate P2. Further, in the liquid crystal panel P, the counter substrate P1 has a smaller area in plan view than the element substrate P2, and one end side of the element substrate P2 is exposed in plan view when both are overlapped. A terminal portion P4 is provided in the exposed region P3 of the element substrate P2.
  • FIG. 3B is a partial plan view of the liquid crystal panel P.
  • the liquid crystal panel P of this embodiment is manufactured by multi-chamfering. Therefore, as shown in FIG. 3B, burrs and chipping occur near the corners PA1 and PA2 of the counter substrate P1 (for example, corners C1 and C2 at both ends of the side PA) as compared to the central part PA3 of the side PA. It is not in shape. For example, in the case of a liquid crystal panel for a 4-inch display, the lengths of the vicinity PA1 and PA2 are about 5 mm empirically.
  • the sheet piece FA is bonded to the surface of the counter substrate P1.
  • the sheet piece FA has a rectangular shape in plan view, and has a larger plan view area than the counter substrate P1.
  • the imaging device 210 is used to image the imaging area AR including the corner of the counter substrate P1. At that time, using the illumination device 240 shown in FIG. Thereby, compared with the case where the laminated body S is illuminated from the same side as the imaging device 210, halation due to the reflected light generated in the sheet piece FA can be suppressed, and an image suitable for analysis described later can be captured.
  • the image data of the image captured by the imaging device 210 is input to the control device 230, and the next processing (image processing, calculation) is performed.
  • the second region is brighter than the first region in the captured image. Therefore, when the captured image is binarized, the first region becomes a bright region (white), the second region becomes a dark region (black), and the outline of the counter substrate P1 becomes clear as a light / dark boundary.
  • the threshold value of the gradation value at the time of binarization differs depending on the type of the sheet piece FA to be bonded, the structure of the liquid crystal panel P at the position to be imaged, etc. To set.
  • FIG. 4 is a schematic diagram of an image captured by the imaging device 210A in FIG. 3A.
  • the first area is indicated by a symbol AR1
  • the second area is indicated by a symbol AR2.
  • As the second process as shown in FIG. 4, based on the image data binarized in the first image process (hereinafter referred to as binarized data), it overlaps with the outline (side) of the counter substrate P1. The coordinates of a plurality of points D are detected.
  • an X axis with the upper left corner of the binarized data as the origin for example, an X axis with the right direction of the image as the + direction, and a Y axis with the down direction of the image as the + direction is set.
  • image data is appropriately selected in the image captured by the imaging device 210.
  • a process (trimming process) for cutting out an arbitrary area suitable for analysis from (or binarized data) may be performed, and the second process may be performed on the processed image.
  • the white (first The coordinates (x1, y1) of the point D can be obtained from the position (y1) in the Y direction of the position changing from black (second area) to black (second area).
  • a similar process is performed on each of two sides sandwiching the corner portion C1 of the counter substrate P1, and the coordinates of a plurality of points that overlap the side are detected on each side.
  • the number of points D to be detected is preferably large, but it is preferable to set the number so that the processing load of the arithmetic processing described later does not become excessive. For example, 100 points D may be detected on each of the two sides.
  • the counter substrate P1 is burred or chipped, and each side is not linear. Therefore, when the point D is detected, the vicinity PA1 (a predetermined range as the vicinity of the corner) is selected. ) Should not be included in the detection range.
  • the range of the neighborhood PA1 to be excluded from the detection range can be appropriately set according to a value obtained empirically or experimentally.
  • a straight line corresponding to the side overlapping the point D is approximated from the coordinates of the plurality of points D detected in the second process.
  • a generally known statistical method can be used. For example, an approximation method for obtaining a regression line (approximate line) using the least square method can be given.
  • the point D1 plotted on the + y side and the point D2 plotted on the -y side have a larger separation distance from the approximate line L1 than the other points D, and the calculation result of the approximate line L1 It is thought that it has had a big influence on. In such a case, the approximate straight line may be obtained again using the remaining points excluding the points D1 and D2.
  • a threshold is determined for the distance between the approximate line L1 and the point D (the absolute value of the Y coordinate with respect to the point D in FIG. 5), and the point D whose absolute value of the Y coordinate is larger than the threshold is excluded to obtain the approximate line again. It doesn't matter. About a threshold value, it can set suitably according to the value calculated
  • the approximate straight line obtained in this way is performed for two sides included in the captured image, and is further performed for each image captured by the four imaging devices 210.
  • intersections of approximate lines obtained for two sides included in one image are obtained as coordinates of virtual points corresponding to corners of the counter substrate P1 sandwiched between the two sides.
  • FIG. 6 is a diagram in which the virtual point CX obtained as the intersection of the two approximate straight lines L1 and L2 obtained in the fourth process is reflected in the image taken by the imaging device 210. Since the coordinates of each point D used to obtain the approximate lines L1 and L2 are known, the approximate lines L1 and L2 and the virtual point CX can be reflected on the image captured by the imaging device 210.
  • FIG. 7A to 7C are schematic diagrams showing a process of obtaining the approximate contour OL. Since the relative actual positions of the four imaging devices 210 are known, the relative positions of the imaging regions AR of the four imaging devices 210 are also known. Therefore, four virtual points when images (FIG. 7A) obtained by imaging the imaging area AR with the four imaging devices 210 in FIG. 3A are arranged in one common coordinate system (real (actual) coordinate system). The coordinates of CX can also be calculated, and the coordinates at which the virtual point CX is located when the stacked body S is viewed in plan can be obtained (FIG. 7B). The approximate contour OL can be obtained by connecting the four virtual points CX obtained in this way (FIG. 7C).
  • FIG. 8 is a schematic diagram showing how the sheet piece FA of the laminate S is cut using the cutting device 220.
  • the cutting device 220 a device that emits laser light LB can be used.
  • the control device 230 controls the cutting device 220, emits the laser beam LB based on the approximate contour OL obtained as described above, cuts the sheet piece FA, and separates the optical member F and the surplus portion FX. .
  • the sheet piece FA can be cut substantially along the edge of the counter substrate P1, and the optical member F can be suitably bonded to the narrowed liquid crystal panel P. Furthermore, if necessary, an optical display device in which a plurality of types of optical members are bonded to the liquid crystal panel P using the above-described apparatus and the optical members are bonded to the liquid crystal panel P can be obtained.
  • the optical display device manufacturing apparatus having the above-described configuration, it is possible to detect the outer peripheral shape of the liquid crystal panel without the influence of burrs and chips on the peripheral portion, and to process the optical member according to the outer peripheral shape. Become.
  • optical display device production system configured as described above, it is possible to easily produce a narrow frame optical display device.
  • the sheet piece FA is cut along the approximate contour line OL.
  • the present invention is not limited to this, and is, for example, a region inside the approximate contour OL and the frame of the liquid crystal panel P.
  • the sheet piece FA may be cut at a position overlapping the portion.
  • the control device 230 calculates a shape that is smaller than the shape drawn by the approximate contour as a true cut portion based on the calculated approximate contour, and then calculates the true cut portion.
  • the cutting device 220 may be controlled so as to cut the sheet piece FA along.
  • the shape showing the true cut portion may be a similar shape obtained by reducing the shape drawn by the approximate contour OL at a predetermined scale, and only a predetermined width from the shape drawn by the approximate contour OL.
  • the shape shrunk inward may be sufficient.
  • the approximate line is obtained again.
  • points that do not satisfy a predetermined criterion among points D may be excluded, and an approximate line may be obtained using the remaining points D.
  • liquid crystal panel P included in the stacked body S is illustrated and described as using the imaging device 210 as a plan view from the counter substrate P1 side, but the present invention is not limited thereto. .
  • the position of the end portion may be shifted between the upper and lower substrates constituting the liquid crystal panel P.
  • the liquid crystal panel P shown in FIG. 3A has such a shift and the edge of the element substrate P2 farther from the imaging device 210 than the edge of the counter substrate P1 close to the imaging device 210 is disposed outside, the imaging is performed.
  • the edge of the element substrate P2 is mistaken as the edge of the counter substrate P1, and it is difficult to obtain an approximate contour line along the contour line of the counter substrate P1.
  • the imaging device 210 may be inclined to the inside of the counter substrate P1 with respect to the normal line of the counter substrate P1, and an image of a corner portion of the counter substrate P1 may be captured from the inside of the counter substrate P1.
  • the corner of the element substrate P2 is captured in a state where it is hidden behind the corner of the counter substrate P1, so that the counter substrate P1 is not mistaken for the edge of the element substrate P2 as the edge of the counter substrate P1. It is possible to reliably capture the image.
  • the inclination angle of the imaging device 210 may be changed each time according to the amount of deviation between the counter substrate P1 and the element substrate P2 in each liquid crystal panel P. Further, when the maximum value of the deviation amount is empirically known, an inclination angle that can hide the corner portion of the element substrate P2 in the corner portion of the counter substrate P1 even if the maximum deviation occurs is obtained and obtained.
  • the imaging device 210 may be imaged by tilting the image by the tilt angle.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mathematical Physics (AREA)
  • Liquid Crystal (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Polarising Elements (AREA)

Abstract

This apparatus for manufacturing an optical display device is provided with: an image-capture device for capturing an image, containing the corner part (C1) of a substrate (P1) of an optical display component in planar view, of a laminated body obtained by affixing an optical member sheet to the surface of the substrate (P1), the optical member sheet being wider than the surface of the substrate (P1); a cutting device for cutting the optical member sheet into an optical member that is a portion facing a display region of the optical display component, and a surplus portion on the outer side of the optical member; and a control device for finding an approximate contour line that approximates the contour line in planar view of the substrate (P1) on the basis of the image, and controlling the cutting device so as to cut the optical member sheet on the basis of the approximate contour line. The control device: detects multiple points (D) that each lie on the two sides of the substrate (P1) that flank the corner part (C1) in the image of the substrate (P1) included in the image; calculates two approximate straight lines (L1, L2) corresponding to the two sides on the basis of the multiple points (D); sets an intersection point of the two approximate straight lines (L1, L2) as a hypothetical point (CX) corresponding to the corner part (C1); sets the hypothetical point (CX) for each of the plurality of corner parts (C1) of the substrate (P1); and acquires, as the approximate contour line, a diagram obtained by connecting the hypothetical points (CX) with line segments.

Description

光学表示デバイスの製造装置および光学表示デバイスの生産システムOptical display device manufacturing apparatus and optical display device production system
 本発明は、光学表示デバイスの製造装置および光学表示デバイスの生産システムに関する。
 本願は、2013年1月10日に出願された日本国特願2013-002830号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to an optical display device manufacturing apparatus and an optical display device production system.
This application claims priority based on Japanese Patent Application No. 2013-002830 filed on January 10, 2013, the contents of which are incorporated herein by reference.
 従来、液晶ディスプレイ等の光学表示デバイスの生産システムにおいては、2枚のマザーガラスの間に液晶層を挟持して張り合わせ、マザーパネルを作成した後に、マザーパネルを複数枚の液晶パネル(光学表示部品)に分割する方法(いわゆる、多面取り)が採用されている。マザーパネルは、例えば、マザーガラスにスクライブラインを刻印し、次いで加圧してスクライブラインに沿って割ることで、複数枚の液晶パネルに分割することができる(例えば、特許文献1参照)。 Conventionally, in a production system of an optical display device such as a liquid crystal display, a mother panel is formed by sandwiching and bonding a liquid crystal layer between two mother glasses, and then the mother panel is divided into a plurality of liquid crystal panels (optical display components). ) Is used (so-called multi-chamfering). The mother panel can be divided into a plurality of liquid crystal panels by, for example, imprinting a scribe line on the mother glass, then pressurizing and dividing along the scribe line (see, for example, Patent Document 1).
日本国特開平11-90900号公報Japanese Unexamined Patent Publication No. 11-90900
 液晶パネルには、偏光フィルム、位相差フィルム、輝度上昇フィルム等の光学部材が、液晶パネルの表示領域のみならず表示領域の周辺部(額縁部)にはみ出る余剰部分を含む大きさのシート片に切り出された後に貼合されている。これにより、シート片は、表示領域を確実に覆いながら、余剰部分が額縁部に配置される。従来は、光学部材の縁が、液晶パネルの額縁部に配置されるように貼合されていた。 In a liquid crystal panel, optical members such as a polarizing film, a retardation film, and a brightness enhancement film are formed on a sheet piece having a size including a surplus part that protrudes not only to the display area of the liquid crystal panel but also to the peripheral part (frame part) of the display area. It is pasted after being cut out. Thereby, the surplus part is arrange | positioned in a frame part, covering the display area reliably. Conventionally, the edges of the optical member are bonded so as to be arranged in the frame portion of the liquid crystal panel.
 しかし近年では、光学表示部品は、表示面における表示領域の周辺部を縮小して、表示領域の拡大および機器の小型化を図る検討がなされている(以下、光学表示部品において額縁部を縮小することを「狭額縁化」と称することがある)。狭額縁化された液晶パネルに対して、光学部材は、液晶パネルの平面視形状に合わせた大きさのシート片に切り出され、シート片の縁を液晶パネルの外周に合わせて貼合される。 In recent years, however, optical display components have been studied to reduce the peripheral portion of the display area on the display surface to increase the display area and reduce the size of the device (hereinafter, the frame portion of the optical display component is reduced). This is sometimes referred to as “narrowing the frame”). The optical member is cut into a sheet piece having a size that matches the shape of the liquid crystal panel in plan view, and the edge of the sheet piece is bonded to the outer periphery of the liquid crystal panel.
 このように、光学部材のシート片を貼合する場合には、液晶パネルの外周形状を検出し、この外周形状に合わせた大きさや形状にシート片を切り出す操作を行う。外形形状の検出の方法としては、平面視において液晶パネルの四隅(角部)を検出した上で、四隅をつないだ矩形を液晶パネルの外周形状とする方法が考えられる。 Thus, when bonding the sheet piece of an optical member, the outer periphery shape of a liquid crystal panel is detected, and the operation which cuts out a sheet piece in the magnitude | size and shape match | combined with this outer periphery shape is performed. As a method for detecting the outer shape, it is conceivable to detect the four corners (corner portions) of the liquid crystal panel in a plan view and to make a rectangle connecting the four corners into the outer peripheral shape of the liquid crystal panel.
 しかし、液晶パネルを上述のような方法で多面取りにより製造する場合、通常は矩形を有する液晶パネルにおいて、角部にバリや欠けが生じやすい。そのため、多面取りにより製造された液晶パネルの場合、液晶パネルの外周形状の検出時に、バリや欠けによる影響を受け、実際の液晶パネルの外周形状よりも大きいまたは小さい外形形状を検出してしまい、実際の液晶パネルの外周形状に合わせた光学部材のシート片を切り出せず、光学表示デバイスの不良品が生じやすくなる。 However, when the liquid crystal panel is manufactured by multi-chamfering by the above-described method, a burr or a chip is likely to occur at the corners in a liquid crystal panel having a rectangular shape. Therefore, in the case of a liquid crystal panel manufactured by multi-chamfering, when detecting the outer peripheral shape of the liquid crystal panel, it is affected by burrs and chips, and an outer shape that is larger or smaller than the actual outer peripheral shape of the liquid crystal panel is detected. A sheet piece of the optical member that matches the actual outer peripheral shape of the liquid crystal panel cannot be cut out, and a defective optical display device is likely to occur.
 本発明に係る態様はこのような事情に鑑みてなされたものであって、周縁部のバリや欠けによる影響を廃した液晶パネルの外周形状の検出を行い、この外周形状に合わせた光学部材の加工を可能とする光学表示デバイスの製造装置を提供することを目的とする。また、このような製造装置を有し、狭額縁化された光学表示デバイスを容易に生産可能とする光学表示デバイスの生産システムを提供することを目的とする。 The aspect according to the present invention has been made in view of such circumstances, and detects the outer peripheral shape of the liquid crystal panel that is free from the influence of burrs and chips on the peripheral edge, and the optical member matched to the outer peripheral shape is detected. An object of the present invention is to provide an optical display device manufacturing apparatus that can be processed. It is another object of the present invention to provide an optical display device production system that has such a manufacturing apparatus and that can easily produce a narrow frame optical display device.
 本発明は、上記の課題を解決するため、以下の態様を採用した。
(1)本発明に係る一態様の光学表示デバイスの製造装置は、光学表示部品に光学部材を貼合してなる光学表示デバイスの製造装置であって、前記光学表示部品が有する基板の表面に、前記表面よりも広い光学部材シートが貼合されてなる積層体について、平面視で前記基板の角部を含む画像を撮像する撮像装置と;前記光学部材シートを、前記光学表示部品が有する表示領域との対向部分である前記光学部材と、前記光学部材の外側の余剰部分と、に切り離す切断装置と;前記画像に基づいて、前記基板の平面視における輪郭線を近似した近似輪郭線を求め、前記近似輪郭線に基づいて前記光学部材シートを切断するように前記切断装置を制御する制御装置と;を備え、前記制御装置は、前記画像に含まれる前記基板の像について、前記角部を挟む前記基板の2つの辺のそれぞれに重なる複数点を検出し、前記複数点に基づいて前記2つの辺に対応する2つの近似直線を算出し、前記2つの近似直線の交点を、前記角部に対応する仮想点として設定し、前記基板が有する複数の前記角部のそれぞれについて前記仮想点を設定し、前記仮想点を線分で結んで得られる図形を前記近似輪郭線として求める。
The present invention employs the following aspects in order to solve the above-described problems.
(1) An optical display device manufacturing apparatus according to one aspect of the present invention is an optical display device manufacturing apparatus in which an optical member is bonded to an optical display component, and the optical display device has a substrate surface of the optical display component. An imaging device that captures an image including a corner portion of the substrate in a plan view of a laminate in which an optical member sheet wider than the surface is bonded; a display that the optical display component includes the optical member sheet A cutting device for separating the optical member that is a portion facing the region and a surplus portion outside the optical member; an approximate contour line that approximates the contour line in plan view of the substrate is obtained based on the image And a control device that controls the cutting device so as to cut the optical member sheet based on the approximate contour line, and the control device uses the corner of the image of the substrate included in the image. A plurality of points overlapping each of the two sides of the substrate sandwiching the substrate, calculating two approximate lines corresponding to the two sides based on the plurality of points, and calculating the intersection of the two approximate lines as the angle A virtual point corresponding to a part is set, the virtual point is set for each of the plurality of corners of the substrate, and a figure obtained by connecting the virtual points with line segments is obtained as the approximate contour line.
 なお、本明細書において「表示領域との対向部分」とは、表示領域の大きさ以上、光学表示部品の外形状の大きさ以下の領域で、かつ電気部品取り付け部等の機能部分を避けた領域を示す。すなわち、光学部材は、光学表示部品の外周縁に沿って余剰部分と切り離されて形成されるものであってもよく、表示領域の周辺部である額縁部において余剰部分と切り離されて形成されるものであってもよい。 In the present specification, the “part facing the display area” is an area that is not less than the size of the display area and not more than the size of the outer shape of the optical display component, and avoids a functional part such as an electrical component mounting portion. Indicates the area. That is, the optical member may be formed by being separated from the surplus portion along the outer peripheral edge of the optical display component, and is formed by being separated from the surplus portion at the frame portion that is the peripheral portion of the display area. It may be a thing.
 また、本明細書において「近似輪郭線に基づいて前記光学部材シートを切断する」とは、算出した近似輪郭線に沿って、または表示領域の大きさ以上であって近似輪郭線の内側の領域において光学部材シートを切断する態様を示す。すなわち、光学部材シートの切断位置は、近似輪郭線に沿った位置であってもよく、表示領域の周縁部である額縁部と重なる位置であってもよい。 Further, in the present specification, “cutting the optical member sheet based on the approximate contour line” means a region along the calculated approximate contour line or the size of the display region and inside the approximate contour line. The mode which cut | disconnects an optical member sheet | seat is shown. That is, the cutting position of the optical member sheet may be a position along the approximate contour line, or may be a position overlapping with a frame portion that is a peripheral portion of the display area.
(2)上記(1)の態様において、前記積層体を挟んで前記撮像装置とは反対側から、前記積層体を照明する照明装置を有してもよい。 (2) In the aspect of the above (1), an illumination device that illuminates the multilayer body from the side opposite to the imaging device across the multilayer body may be provided.
(3)上記(1)または(2)の態様において、前記制御装置は、前記角部の近傍の予め定めた領域を除いて、前記基板の前記2つの辺のそれぞれに重なる前記複数点を検出してもよい。 (3) In the above aspect (1) or (2), the control device detects the plurality of points overlapping each of the two sides of the substrate except for a predetermined region in the vicinity of the corner portion. May be.
(4)本発明に係る一態様の光学表示デバイスの生産システムは、光学表示部品に光学部材を貼合してなる光学表示デバイスの生産システムであって、ライン上を搬送される前記光学表示部品の表面に、前記表面よりも広い光学部材シートを貼合して、前記光学表示部品と前記光学部材シートとを有する積層体を形成する貼合装置と、前記積層体が有する前記光学部材シートを切断する上記(1)から(3)いずれか1つの光学表示デバイスの製造装置と、を備える。 (4) An optical display device production system according to an aspect of the present invention is an optical display device production system in which an optical member is bonded to an optical display component, and the optical display component is conveyed on a line. An optical member sheet wider than the surface is bonded to the surface of the sheet to form a laminate including the optical display component and the optical member sheet; and the optical member sheet included in the laminate. (1) to (3) any one optical display device manufacturing apparatus to be cut.
 本発明に係る態様によれば、周縁部のバリや欠けによる影響を廃した液晶パネルの外周形状の検出を行い、この外周形状に合わせた光学部材の加工を可能とする光学表示デバイスの製造装置を提供することができる。また、このような製造装置を有し、狭額縁化された光学表示デバイスを容易に生産可能とする光学表示デバイスの生産システムを提供することができる。 According to the aspect of the present invention, an apparatus for manufacturing an optical display device that detects the outer peripheral shape of a liquid crystal panel that has been freed from the influence of burrs and chips at the peripheral edge and can process an optical member in accordance with the outer peripheral shape. Can be provided. Further, it is possible to provide an optical display device production system that has such a manufacturing apparatus and that can easily produce a narrow frame optical display device.
光学表示デバイスの生産システムを示す概略断面図である。It is a schematic sectional drawing which shows the production system of an optical display device. 光学部材シートを示す模式図である。It is a schematic diagram which shows an optical member sheet | seat. 撮像装置を用いて積層体を撮像する様子を示す模式図である。It is a schematic diagram which shows a mode that a laminated body is imaged using an imaging device. 撮像装置を用いて積層体を撮像する様子を示す模式図である。It is a schematic diagram which shows a mode that a laminated body is imaged using an imaging device. 撮像装置で撮像した画像の模式図である。It is a schematic diagram of the image imaged with the imaging device. 輪郭線上の複数点から求めた近似直線を示すグラフである。It is a graph which shows the approximate straight line calculated | required from several points on an outline. 求めた仮想点を撮像装置で撮像した画像に反映させた図である。It is the figure which reflected the calculated | required virtual point on the image imaged with the imaging device. 近似輪郭線を求める過程を示す模式図である。It is a schematic diagram which shows the process of calculating | requiring an approximate outline. 近似輪郭線を求める過程を示す模式図である。It is a schematic diagram which shows the process of calculating | requiring an approximate outline. 近似輪郭線を求める過程を示す模式図である。It is a schematic diagram which shows the process of calculating | requiring an approximate outline. 切断装置を用いて積層体のシート片を切断する様子を示す模式図である。It is a schematic diagram which shows a mode that the sheet piece of a laminated body is cut | disconnected using a cutting device.
 以下、図1~8を参照して本実施形態に係る光学表示デバイスの製造装置、および光学表示デバイスの生産システムについて説明する。 Hereinafter, an optical display device manufacturing apparatus and an optical display device production system according to this embodiment will be described with reference to FIGS.
 図1は光学表示デバイスの生産システム100(以下、生産システム100)を示す概略断面図である。生産システム100は、ライン上を搬送される液晶パネル(光学表示部品)Pに対して、シート片(光学部材シート)FAを貼合する貼合部10と、シート片FAを切断して光学部材Fとし、光学部材Fと液晶パネルPとを有する光学表示デバイスを製造する切断部20と、を有している。切断部20は、本実施形態に係る光学表示デバイスの製造装置に該当する。 FIG. 1 is a schematic sectional view showing an optical display device production system 100 (hereinafter, production system 100). The production system 100 cuts the sheet piece FA by bonding the sheet piece (optical member sheet) FA to the liquid crystal panel (optical display component) P conveyed on the line, and the optical member. F and a cutting part 20 for manufacturing an optical display device having the optical member F and the liquid crystal panel P. The cutting unit 20 corresponds to the optical display device manufacturing apparatus according to the present embodiment.
(貼合部)
 貼合部10は、帯状の光学部材シートF1を、光学部材シートF1の長手方向に搬送する搬送装置11と、光学部材シートF1からシート片FAを切り出す切断装置12と、シート片FAを液晶パネルPの上面に貼合する貼合装置13と、を備えている。
(Pasting part)
The bonding unit 10 includes a transport device 11 that transports the belt-shaped optical member sheet F1 in the longitudinal direction of the optical member sheet F1, a cutting device 12 that cuts out the sheet piece FA from the optical member sheet F1, and the sheet piece FA as a liquid crystal panel. And a bonding device 13 for bonding to the upper surface of P.
 図2は、光学部材シートF1を示す模式図である。図2に示すように、光学部材シートF1は、単位長さに切断することで液晶パネルPに貼合されるシート片FAが得られる帯状の光学部材原反F2と、光学部材原反F2と積層して設けられるセパレータシートF3とを有している。セパレータシートF3は、光学部材原反F2を搬送するキャリアとして用いられる。 FIG. 2 is a schematic diagram showing the optical member sheet F1. As shown in FIG. 2, the optical member sheet F <b> 1 is a belt-shaped optical member original fabric F <b> 2 from which a sheet piece FA to be bonded to the liquid crystal panel P is obtained by cutting to a unit length, and an optical member original fabric F <b> 2. And a separator sheet F3 provided in a stacked manner. The separator sheet F3 is used as a carrier for conveying the optical member original fabric F2.
 光学部材原反F2とセパレータシートF3との間には、粘着層F4が設けられている。
 光学部材原反F2は、粘着層F4とともに光学部材シートF1の幅方向の全幅に亘って形成される切込線Cに沿って単位長さ(シート片FA単位)に切断され、シート片FAとなる。シート片FAは、セパレータシートF3から剥離され、後述するように液晶パネルPの上面に貼合される。
An adhesive layer F4 is provided between the optical member original fabric F2 and the separator sheet F3.
The optical member original fabric F2 is cut into a unit length (sheet piece FA unit) along a cut line C formed over the entire width in the width direction of the optical member sheet F1 together with the adhesive layer F4. Become. The sheet piece FA is peeled from the separator sheet F3 and bonded to the upper surface of the liquid crystal panel P as will be described later.
 図1に戻って、搬送装置11は、帯状の光学部材シートF1を巻回した原反ロールR1を保持すると共に、光学部材シートF1を光学部材シートF1の長手方向に沿って繰り出す巻き出し部111と、シート片FAが剥離され単独となったセパレータシートF3を巻き取るセパレータロールR2を保持する巻き取り部112とを有する。 Returning to FIG. 1, the conveying device 11 holds the original roll R1 around which the belt-shaped optical member sheet F1 is wound, and also feeds the optical member sheet F1 along the longitudinal direction of the optical member sheet F1. And a winding unit 112 that holds the separator roll R2 that winds up the separator sheet F3 that has been separated from the sheet piece FA.
 なお、図示は略すが、搬送装置11は光学部材シートF1を所定の搬送経路に沿うように巻きかける複数のガイドローラを有する。光学部材シートF1は、光学部材シートF1の搬送方向と直交する水平方向(シート幅方向)で、液晶パネルPのシート片が貼合される側の基板よりも広い幅を有している。 In addition, although illustration is abbreviate | omitted, the conveying apparatus 11 has a some guide roller which winds the optical member sheet | seat F1 along a predetermined | prescribed conveyance path | route. The optical member sheet F1 has a width that is wider than the substrate on the side on which the sheet pieces of the liquid crystal panel P are bonded in the horizontal direction (sheet width direction) orthogonal to the conveying direction of the optical member sheet F1.
 巻き出し部111と巻き取り部112とは、例えば互いに同期して駆動する。これにより、光学部材シートF1を搬送方向へ繰り出す巻き出し部111の動作と、セパレータシートF3を巻き取る巻き取り部112の動作と、が同期し、光学部材シートF1およびセパレータシートF3の弛みを抑制する。巻き出し部111と巻き取り部112とは、原反ロールR1から巻き出された光学部材シートF1を、切断装置12側に光学部材原反F2側を向けて搬送する。 The unwinding unit 111 and the winding unit 112 are driven in synchronization with each other, for example. Thereby, the operation of the unwinding unit 111 that feeds the optical member sheet F1 in the transport direction and the operation of the winding unit 112 that winds up the separator sheet F3 are synchronized, and the slack of the optical member sheet F1 and the separator sheet F3 is suppressed. To do. The unwinding unit 111 and the winding unit 112 convey the optical member sheet F1 unwound from the original fabric roll R1 toward the cutting device 12 side with the optical member original fabric F2 side facing.
 切断装置12は、光学部材シートF1の搬送過程において、光学部材原反F2に面して配置されている。切断装置12は、例えば円形状の切断刃を備えており、設定された光学部材シートF1の切断方向に移動可能に構成されている。 The cutting device 12 is disposed facing the optical member original fabric F2 in the process of conveying the optical member sheet F1. The cutting device 12 includes, for example, a circular cutting blade, and is configured to be movable in the set cutting direction of the optical member sheet F1.
 切断装置12は、光学部材シートF1が予め設定された単位長さ分繰り出される度に、光学部材シートF1のシート幅方向の全幅にわたって、光学部材シートF1に含まれる光学部材原反F2を切断する。切断後の光学部材シートF1には、光学部材原反F2のシート幅方向の全幅に亘る切込線Cが形成される。切込線Cで区画される範囲がシート片FAであり、切断装置12はセパレータシートF3上にシート片FAを形成する。 The cutting device 12 cuts the optical member original fabric F2 included in the optical member sheet F1 over the entire width in the sheet width direction of the optical member sheet F1 every time the optical member sheet F1 is fed out by a preset unit length. . A cut line C is formed in the cut optical member sheet F1 over the entire width of the optical member original fabric F2 in the sheet width direction. The range defined by the cut line C is the sheet piece FA, and the cutting device 12 forms the sheet piece FA on the separator sheet F3.
 以下の説明においては、光学部材シートF1の厚み方向の全てを切断するのではなく、少なくともセパレータシートF3の一部をつなげた状態で光学部材原反F2を切断することを、「ハーフカット」と称することがある。 In the following description, not cutting all of the thickness direction of the optical member sheet F1, but cutting the optical member original fabric F2 in a state where at least a part of the separator sheet F3 is connected is referred to as “half cut”. Sometimes called.
 切断装置12は、光学部材シートF1の搬送中に働くテンションによって光学部材シートF1(セパレータシートF3)が破断することを防ぐため、所定の厚さがセパレータシートF3に残るように切断刃の進退位置を調整し、粘着層F4とセパレータシートF3との界面の近傍までハーフカットを施す。なお、切断刃の代わりに、レーザー光を射出する装置を用いて焼き切ってもよい。 In order to prevent the optical member sheet F1 (separator sheet F3) from being broken by the tension acting during the conveyance of the optical member sheet F1, the cutting device 12 advances and retracts the cutting blade so that a predetermined thickness remains on the separator sheet F3. And half-cut to the vicinity of the interface between the adhesive layer F4 and the separator sheet F3. In addition, you may burn out using the apparatus which inject | emits a laser beam instead of a cutting blade.
 切断装置12が形成するシート片FAの大きさや形状は、光学部材の形状や光学部材における光学軸の設定方向などに応じて、任意に設定することができる。本実施形態では、光学部材シートF1を光学部材シートF1の長手方向と交差する方向にハーフカットし、光学部材シートF1に所定の間隔を空けて切込線Cを形成することにより、シート片FAを得ている。 The size and shape of the sheet piece FA formed by the cutting device 12 can be arbitrarily set according to the shape of the optical member, the setting direction of the optical axis in the optical member, and the like. In the present embodiment, the optical member sheet F1 is half-cut in a direction intersecting with the longitudinal direction of the optical member sheet F1, and a cut line C is formed in the optical member sheet F1 with a predetermined interval, thereby forming a sheet piece FA. Have gained.
 貼合装置13は、光学部材シートF1を鋭角に巻きかけてセパレータシートF3からシート片FAを分離させる剥離部131と、シート片FAを付着させて保持し、液晶パネルP上に搬送して貼合する貼合ヘッド132と、液晶パネルPが載置され液晶パネルPとシート片FAとの貼合が行われる載置台133と、を有している。 The laminating apparatus 13 winds the optical member sheet F1 at an acute angle and separates the sheet piece FA from the separator sheet F3, holds the sheet piece FA, and transports and pastes it onto the liquid crystal panel P. It has the bonding head 132 to combine, and the mounting base 133 by which liquid crystal panel P is mounted and the liquid crystal panel P and sheet piece FA are bonded.
 剥離部131は、図1においてセパレータシートF3側を下方に向けて略水平に搬送される光学部材シートF1の下方に位置し、少なくとも光学部材シートF1のシート幅方向の全幅にわたって延在している。剥離部131には、セパレータシートF3側が接するようにハーフカット後の光学部材シートF1が巻きかけられている。 The peeling portion 131 is positioned below the optical member sheet F1 that is conveyed substantially horizontally with the separator sheet F3 side downward in FIG. 1, and extends at least over the entire width of the optical member sheet F1 in the sheet width direction. . An optical member sheet F1 after half cut is wound around the peeling portion 131 so that the separator sheet F3 side is in contact therewith.
 剥離部131の先端部131aは、断面視において鋭角に形成されている。剥離部131の先端部131aで光学部材シートF1を鋭角に折り返す際、シート片FAは、上述のハーフカットで形成した切込線Cを起点としてセパレータシートF3からめくれて剥離する。シート片FAが剥離する際、シート片FAとセパレータシートF3との間に形成された粘着層F4は、シート片FAとともにセパレータシートF3から剥離する。そのため、セパレータシートF3から剥離するシート片FAにおいては、粘着層F4が下面に配置されている。 The tip 131a of the peeling part 131 is formed at an acute angle in a sectional view. When the optical member sheet F1 is folded at an acute angle at the distal end portion 131a of the peeling portion 131, the sheet piece FA is turned up and peeled from the separator sheet F3 starting from the cut line C formed by the above-described half cut. When the sheet piece FA is peeled off, the adhesive layer F4 formed between the sheet piece FA and the separator sheet F3 is peeled off from the separator sheet F3 together with the sheet piece FA. Therefore, in the sheet piece FA that peels from the separator sheet F3, the adhesive layer F4 is disposed on the lower surface.
 貼合ヘッド132は、前記シート幅方向と平行かつ下方に凸の円弧状の保持面132aを有している。保持面132aは、例えばシート片FAの粘着層F4よりも弱い貼着力を有し、シート片FAの貼着および剥離を繰り返し行うことが可能となっている。 The pasting head 132 has an arc-shaped holding surface 132a that is parallel to the sheet width direction and convex downward. The holding surface 132a has, for example, a weaker adhesion force than the adhesive layer F4 of the sheet piece FA, and can repeatedly perform the adhesion and peeling of the sheet piece FA.
 また、貼合ヘッド132は、不図示の駆動装置を有し、剥離部131(先端部131a)の上方、及び後述する載置台133の上方で所定量昇降可能であり、かつ剥離部131と載置台133との間で適宜移動可能である。さらに、貼合ヘッド132は、水平方向の位置補正のために平行移動、及び載置面の法線回りを正逆両方向に回転(回動)可能となっている。 Further, the bonding head 132 has a driving device (not shown), can move up and down by a predetermined amount above the peeling portion 131 (tip portion 131a) and above a mounting table 133 described later, and is mounted on the peeling portion 131. It can be appropriately moved between the table 133. Furthermore, the bonding head 132 can be translated (rotated) in both the forward and reverse directions around the normal line of the placement surface for horizontal position correction.
 貼合ヘッド132は、光学部材シートF1のシート幅方向に沿う軸を中心として、保持面132aの湾曲に沿うように傾動可能に構成されている。貼合ヘッド132の傾動は、シート片FAを貼着保持する際、及び貼着保持したシート片FAを液晶パネルPに貼合する際に適宜行われる。 The pasting head 132 is configured to be tiltable along the curvature of the holding surface 132a around the axis along the sheet width direction of the optical member sheet F1. Tilt of the bonding head 132 is appropriately performed when the sheet piece FA is bonded and held, and when the bonded sheet piece FA is bonded to the liquid crystal panel P.
 載置台133は、液晶パネルPを載置すると共に、水平方向の位置補正のために平行移動、及び回動可能となっている。 The mounting table 133 mounts the liquid crystal panel P, and can be translated and rotated for horizontal position correction.
 さらに、貼合部10は、剥離部131の先端部の下方に配置され、シート片FAのシート搬送下流側の先端を検出する第一検出カメラ141と、保持面132aに貼着保持されたシート片FAを撮像する第二検出カメラ142と、載置台133上の液晶パネルPを撮像する第三検出カメラ143と、を有している。なお、各検出カメラ141~143に代わるセンサーを用いることも可能である。 Further, the bonding unit 10 is disposed below the leading end of the peeling unit 131, and the first detection camera 141 that detects the leading end of the sheet piece FA on the downstream side of the sheet conveyance and the sheet that is stuck and held on the holding surface 132a. It has the 2nd detection camera 142 which images piece FA, and the 3rd detection camera 143 which images the liquid crystal panel P on the mounting base 133. It is also possible to use sensors in place of the detection cameras 141 to 143.
 このような貼合部10は、全体として以下のように駆動する。
 光学部材シートF1が繰り出されると、例えば第一検出カメラ141がシート片FAの下流側端を検出した時点で、搬送装置11が一旦停止し、切断装置12が光学部材シートF1をハーフカットする。すなわち、第一検出カメラ141による検出位置(第一検出カメラ141の光軸延長位置)と切断装置12によるカット位置(切断装置12の切断刃進退位置)との間のシート搬送経路に沿う距離が、シート片FAの長さに相当する。
Such a bonding part 10 is driven as follows as a whole.
When the optical member sheet F1 is fed out, for example, when the first detection camera 141 detects the downstream end of the sheet piece FA, the transport device 11 temporarily stops, and the cutting device 12 half-cuts the optical member sheet F1. That is, the distance along the sheet conveyance path between the detection position by the first detection camera 141 (the optical axis extension position of the first detection camera 141) and the cutting position by the cutting device 12 (the cutting blade advance / retreat position of the cutting device 12) is This corresponds to the length of the sheet piece FA.
 切断装置12は、シート搬送経路に沿って移動可能となっており、第一検出カメラ141による検出位置と、切断装置12によるカット位置と、の間のシート搬送経路に沿う距離を変化させることができる。例えば、作成したシート片FAの長さが、予め設定したシート片FAの規格とは異なっている場合には、切断装置12の移動によりズレを補正し、所定の長さのシート片FAを形成することができる。また、切断装置12の移動により、長さの異なるシート片FAを形成することができる。 The cutting device 12 is movable along the sheet conveyance path, and the distance along the sheet conveyance path between the detection position by the first detection camera 141 and the cutting position by the cutting device 12 can be changed. it can. For example, when the length of the created sheet piece FA is different from the preset standard of the sheet piece FA, the deviation is corrected by the movement of the cutting device 12, and the sheet piece FA having a predetermined length is formed. can do. Further, the sheet pieces FA having different lengths can be formed by the movement of the cutting device 12.
 同時に、貼合ヘッド132は、保持面132aの湾曲一端側132xが下側となるように傾斜した状態(図1では右に傾いた状態。符号αで示す)で、剥離部131の先端部131aに保持面132aの湾曲一端側132xを上方から押し付け、先端部131aにあるシート片FAの下流側端を保持面132aに貼着させる。その後、貼合ヘッド132と駆動装置との接続を絶って貼合ヘッド132を傾動自在とする。 At the same time, the bonding head 132 is tilted so that the curved one end 132x of the holding surface 132a is on the lower side (inclined to the right in FIG. 1; indicated by the symbol α). The curved one end side 132x of the holding surface 132a is pressed from above, and the downstream end of the sheet piece FA at the leading end 131a is adhered to the holding surface 132a. Thereafter, the connection between the bonding head 132 and the driving device is cut off so that the bonding head 132 can be tilted.
 この状態で巻き出し部111と巻き取り部112とを駆動させ、シート片FAを繰り出すと、貼合ヘッド132は、保持面132aの湾曲他端側132yが下側となるように(図1では左に傾いた状態。符号βで示す)、受動的に傾動する。これにより、保持面132aにシート片FAの全体が貼着される。 When the unwinding unit 111 and the winding unit 112 are driven in this state and the sheet piece FA is unwound, the bonding head 132 is arranged such that the curved other end side 132y of the holding surface 132a is on the lower side (in FIG. 1). Tilt to the left (indicated by the symbol β) and tilt passively. Thereby, the whole sheet piece FA is stuck on the holding surface 132a.
 シート片FAを保持した貼合ヘッド132は、載置台133の上方へ移動する。その際、貼合ヘッド132に保持されたシート片FAは、剥離部131の上方から載置台133の上方へ移動する際、第二検出カメラ142によって撮像される。撮像された画像データは、不図示の制御装置に送られ、貼合ヘッド132の保持面132aにおけるシート片FAの保持姿勢(水平方向の位置、保持面132aの法線回りの回動角度)が検出される。 The laminating head 132 holding the sheet piece FA moves above the mounting table 133. At that time, the sheet piece FA held by the bonding head 132 is imaged by the second detection camera 142 when moving from above the peeling unit 131 to above the mounting table 133. The captured image data is sent to a control device (not shown), and the holding posture of the sheet piece FA on the holding surface 132a of the bonding head 132 (the position in the horizontal direction, the rotation angle around the normal line of the holding surface 132a). Detected.
 載置台133に載置された液晶パネルPは、第三検出カメラ143により撮像される。
 撮像された画像データは、不図示の制御装置に送られ、載置台133上における液晶パネルPの姿勢(水平方向の位置、液晶パネルPが載置される載置台上面の法線回りの回動角度)が検出される。
The liquid crystal panel P placed on the placing table 133 is imaged by the third detection camera 143.
The captured image data is sent to a control device (not shown), and the attitude of the liquid crystal panel P on the mounting table 133 (horizontal position, rotation around the normal of the upper surface of the mounting table on which the liquid crystal panel P is mounted) Angle) is detected.
 貼合ヘッド132および載置台133は、それぞれ検出されるシート片FAおよび液晶パネルPの姿勢に基づいて、シート片FAと液晶パネルPとの相対位置を調整する。載置台133においては、貼合ヘッド132が、例えば駆動装置の作動により能動的に傾動し、載置台133上に載置された液晶パネルPの上面に、保持面132aの湾曲に沿ってシート片FAを押し付け、確実に貼合する。 The bonding head 132 and the mounting table 133 adjust the relative positions of the sheet piece FA and the liquid crystal panel P based on the detected position of the sheet piece FA and the liquid crystal panel P, respectively. In the mounting table 133, the bonding head 132 is actively tilted, for example, by the operation of a driving device, and a sheet piece is formed on the upper surface of the liquid crystal panel P mounted on the mounting table 133 along the curvature of the holding surface 132a. Press the FA and paste it securely.
 これにより、シート片FAと液晶パネルPとが貼合された積層体Sが形成される。相対位置が調整された液晶パネルPとシート片FAとを貼合することで、シート片FAの貼合バラツキが抑えられ、液晶パネルPに対するシート片FAの光学軸方向の精度が向上し、光学表示デバイスの精彩及びコントラストが高まる。 Thereby, the laminate S in which the sheet piece FA and the liquid crystal panel P are bonded is formed. By bonding the liquid crystal panel P and the sheet piece FA, the relative positions of which are adjusted, the bonding variation of the sheet piece FA is suppressed, and the accuracy of the optical axis direction of the sheet piece FA with respect to the liquid crystal panel P is improved. The display device is enhanced in definition and contrast.
 なお、切断装置12が光学部材シートF1をハーフカットする際には、第一検出カメラ141が、光学部材シートF1の光学部材原反F2に印された欠点マークも検出することとしてもよい。欠点マークは、原反ロールR1の製造時に、光学部材シートF1に発見された欠点箇所の光学部材原反F2に、インクジェット装置等を用いて設けられる。この欠点マークが検出されたシート片FAは、貼合ヘッド132に貼着した後、液晶パネルPに貼合せず、別途設けた捨貼位置に移動して廃材シート等に重ね貼りされる。なお、欠点マークを検出した際に、切断装置12を移動させ、液晶パネルPに貼合可能なシート片FAよりも短く切断して欠点マークを含む部分を切り分け、捨貼することとしてもよい。 When the cutting device 12 half-cuts the optical member sheet F1, the first detection camera 141 may also detect a defect mark marked on the optical member original fabric F2 of the optical member sheet F1. The defect mark is provided by using an ink jet apparatus or the like on the optical member original fabric F2 at the defect location found in the optical member sheet F1 when the original fabric roll R1 is manufactured. The sheet piece FA in which the defect mark is detected is pasted on the pasting head 132, and is not pasted on the liquid crystal panel P, but is moved to a separately disposed pasting position and pasted on a waste material sheet or the like. In addition, when the defect mark is detected, the cutting device 12 may be moved, cut shorter than the sheet piece FA that can be bonded to the liquid crystal panel P, and the portion including the defect mark may be cut and discarded.
(切断部)
 切断部20は、積層体Sの画像を撮像する撮像装置210と、積層体Sが有するシート片FAを、液晶パネルPが有する表示領域との対向部分である光学部材Fと、光学部材Fの外側の余剰部分FXと、に切り離す切断装置220と、撮像装置210で撮像した画像に基づいて切断装置220を制御する制御装置230と、を備えている。さらに、積層体Sを挟んで撮像装置210とは反対側から、積層体Sを照明する照明装置240を有している。
(Cutting part)
The cutting unit 20 includes an imaging device 210 that captures an image of the stacked body S, an optical member F that is a portion facing the display area of the liquid crystal panel P, the sheet piece FA included in the stacked body S, and the optical member F. A cutting device 220 that separates the excess portion FX on the outside and a control device 230 that controls the cutting device 220 based on an image captured by the imaging device 210 are provided. Furthermore, it has the illuminating device 240 which illuminates the laminated body S from the opposite side to the imaging device 210 on both sides of the laminated body S.
 図3A~8は、切断部20の動作を説明する説明図である。
 図3Aおよび3Bは、撮像装置210を用いて積層体Sを撮像する様子を示す模式図である。まず、図3Aに示すように、複数の(図では4つ)撮像装置210を用いて、積層体Sにおける液晶パネルPの角部の周辺を撮像する。
3A to 8 are explanatory diagrams for explaining the operation of the cutting unit 20. FIG.
3A and 3B are schematic diagrams illustrating a state in which the stacked body S is imaged using the imaging device 210. FIG. First, as shown in FIG. 3A, a plurality of (four in the figure) imaging devices 210 are used to image the periphery of the corners of the liquid crystal panel P in the stacked body S.
 積層体Sは、液晶パネルPと液晶パネルPに貼合されたシート片FAとを有している。
 液晶パネルPは、対向基板P1および素子基板P2で挟持された液晶層を有している。また、液晶パネルPは、対向基板P1が素子基板P2よりも平面視面積が小さく、両者を重ね合せたときに素子基板P2の一端側が平面視で露出している。素子基板P2の露出する領域P3には端子部P4が設けられている。
The laminate S has a liquid crystal panel P and a sheet piece FA bonded to the liquid crystal panel P.
The liquid crystal panel P has a liquid crystal layer sandwiched between the counter substrate P1 and the element substrate P2. Further, in the liquid crystal panel P, the counter substrate P1 has a smaller area in plan view than the element substrate P2, and one end side of the element substrate P2 is exposed in plan view when both are overlapped. A terminal portion P4 is provided in the exposed region P3 of the element substrate P2.
 図3Bは、液晶パネルPの一部平面図である。本実施形態の液晶パネルPは、多面取りで製造されている。そのため、図3Bに示すように対向基板P1の角部(例えば、辺PAの両端の角部C1,C2)近傍PA1,PA2は、辺PAの中央部PA3と比べて、バリや欠けが生じ直線状になっていない。近傍PA1、PA2の長さは、例えば4インチディスプレイ用の液晶パネルにおいては、経験的に5mm程度である。 FIG. 3B is a partial plan view of the liquid crystal panel P. The liquid crystal panel P of this embodiment is manufactured by multi-chamfering. Therefore, as shown in FIG. 3B, burrs and chipping occur near the corners PA1 and PA2 of the counter substrate P1 (for example, corners C1 and C2 at both ends of the side PA) as compared to the central part PA3 of the side PA. It is not in shape. For example, in the case of a liquid crystal panel for a 4-inch display, the lengths of the vicinity PA1 and PA2 are about 5 mm empirically.
 シート片FAは、対向基板P1の表面に貼合されている。図に示す積層体Sにおいては、シート片FAは平面視矩形を有し、対向基板P1よりも広い平面視面積を有している。 The sheet piece FA is bonded to the surface of the counter substrate P1. In the laminated body S shown in the drawing, the sheet piece FA has a rectangular shape in plan view, and has a larger plan view area than the counter substrate P1.
 このような積層体Sについて、撮像装置210を用い、対向基板P1の角部を含む撮像領域ARを撮像する。その際、図1に示す照明装置240を用い、積層体Sを挟んで撮像装置210とは反対側から光Lを照射し、積層体Sを照明する。これにより、撮像装置210と同じ側から積層体Sを照明した場合と比べ、シート片FAで生じる反射光によるハレーションを抑制することができ、後述する解析に適した画像を撮像することができる。 For such a laminate S, the imaging device 210 is used to image the imaging area AR including the corner of the counter substrate P1. At that time, using the illumination device 240 shown in FIG. Thereby, compared with the case where the laminated body S is illuminated from the same side as the imaging device 210, halation due to the reflected light generated in the sheet piece FA can be suppressed, and an image suitable for analysis described later can be captured.
 撮像装置210で撮像した画像の画像データは、制御装置230に入力され、次の処理(画像処理、演算)がなされる。 The image data of the image captured by the imaging device 210 is input to the control device 230, and the next processing (image processing, calculation) is performed.
(第1の処理)
 まず、第1の処理として、積層体Sが有する液晶パネルPを図3Aに示す対向基板P1側(対向基板P1下方)から平面視したときの対向基板P1の輪郭線を、画像データ上で強調する処理を行う。
(First process)
First, as a first process, the outline of the counter substrate P1 when the liquid crystal panel P included in the stacked body S is viewed in plan from the counter substrate P1 side (below the counter substrate P1) shown in FIG. 3A is emphasized on the image data. Perform the process.
 例えば、積層体Sを平面視したとき対向基板P1とシート片FAとが重なっている領域(第1の領域)と、対向基板P1からはみ出たシート片FAのみの領域(第2の領域)と、では光の透過率が異なるため、撮像した画像においては第1の領域よりも第2の領域の方が明るい像となる。そのため、撮像した画像を二値化すると、第1の領域が明領域(白)、第2の領域が暗領域(黒)となり、明暗の境界として対向基板P1の輪郭線が明らかとなる。 For example, when the stacked body S is viewed in plan, an area where the counter substrate P1 and the sheet piece FA overlap (first area), and an area only of the sheet piece FA that protrudes from the counter substrate P1 (second area). Since the light transmittance is different in, the second region is brighter than the first region in the captured image. Therefore, when the captured image is binarized, the first region becomes a bright region (white), the second region becomes a dark region (black), and the outline of the counter substrate P1 becomes clear as a light / dark boundary.
 なお、二値化する際の階調値の閾値は、貼合するシート片FAの種類や、撮像する位置の液晶パネルPの構造等に応じて適切な値が異なるため、適宜予備実験をして設定するとよい。 Note that the threshold value of the gradation value at the time of binarization differs depending on the type of the sheet piece FA to be bonded, the structure of the liquid crystal panel P at the position to be imaged, etc. To set.
(第2の処理)
 図4は、図3Aにおける撮像装置210Aで撮像した画像の模式図である。図4では、第1の領域を符号AR1、第2の領域を符号AR2として示している。第2の処理として、図4に示すように、第1の画像処理において二値化した画像データ(以下、二値化データと称する)に基づいて、対向基板P1の輪郭線(辺)と重なる複数の点Dの座標を検出する。
(Second process)
FIG. 4 is a schematic diagram of an image captured by the imaging device 210A in FIG. 3A. In FIG. 4, the first area is indicated by a symbol AR1, and the second area is indicated by a symbol AR2. As the second process, as shown in FIG. 4, based on the image data binarized in the first image process (hereinafter referred to as binarized data), it overlaps with the outline (side) of the counter substrate P1. The coordinates of a plurality of points D are detected.
 検出する座標の座標軸は、例えば、二値化データの左上端を原点とし、画像の右方向を+方向とするX軸、画像の下方向を+方向とするY軸を設定する。なお、撮像装置210で撮像した画像において、対向基板P1の角部を挟む2つの辺(輪郭線)が、撮像される画像の外周の辺と略平行になっていない場合には、適宜画像データ(または二値化データ)から解析に適した任意の領域を切り出す処理(トリミング処理)を行い、処理後の画像について第2の処理を行っても構わない。 As the coordinate axes of the coordinates to be detected, for example, an X axis with the upper left corner of the binarized data as the origin, an X axis with the right direction of the image as the + direction, and a Y axis with the down direction of the image as the + direction is set. In addition, in the image captured by the imaging device 210, when two sides (contour lines) sandwiching the corner of the counter substrate P1 are not substantially parallel to the outer peripheral side of the image to be captured, image data is appropriately selected. A process (trimming process) for cutting out an arbitrary area suitable for analysis from (or binarized data) may be performed, and the second process may be performed on the processed image.
 点Dの座標を検出する際には、例えば、二値化データに基づく画像のX軸方向の任意の位置(x1)において、上端から+Y方向に階調を検出したときに、白(第1の領域)から黒(第2の領域)に変化する位置のY方向の位置(y1)から、点Dの座標(x1,y1)を求めることができる。同様の処理を、対向基板P1の角部C1を挟む2つの辺のそれぞれにおいて行い、各辺において辺に重なる複数点の座標を検出する。 When detecting the coordinates of the point D, for example, when the gradation is detected in the + Y direction from the upper end at an arbitrary position (x1) in the X-axis direction of the image based on the binarized data, the white (first The coordinates (x1, y1) of the point D can be obtained from the position (y1) in the Y direction of the position changing from black (second area) to black (second area). A similar process is performed on each of two sides sandwiching the corner portion C1 of the counter substrate P1, and the coordinates of a plurality of points that overlap the side are detected on each side.
 なお、検出する点Dの数は、多い方が望ましいが、後述する演算処理の処理負担が過大とならないような数を設定するとよい。例えば、2つの辺それぞれにおいて、100個の点Dを検出するとよい。 It should be noted that the number of points D to be detected is preferably large, but it is preferable to set the number so that the processing load of the arithmetic processing described later does not become excessive. For example, 100 points D may be detected on each of the two sides.
 なお、図に示す近傍PA1では対向基板P1にバリや欠けが生じ、各辺が直線状となっていないため、点Dの検出の際には、近傍PA1(角部の近傍として予め定めた範囲)を検出範囲に含まないように設定するとよい。検出範囲から除外する近傍PA1の範囲は、経験的または実験的に求められる値にしたがって、適宜設定することができる。 In the vicinity PA1 shown in the drawing, the counter substrate P1 is burred or chipped, and each side is not linear. Therefore, when the point D is detected, the vicinity PA1 (a predetermined range as the vicinity of the corner) is selected. ) Should not be included in the detection range. The range of the neighborhood PA1 to be excluded from the detection range can be appropriately set according to a value obtained empirically or experimentally.
(第3の処理)
 第3の処理として、第2の処理で検出した複数の点Dの座標から、点Dと重なる辺に対応する直線を近似して求める。近似としては、通常知られた統計学的手法を用いることができ、例えば、最小二乗法を用いた回帰直線(近似直線)を求める近似方法を挙げることができる。
(Third process)
As a third process, a straight line corresponding to the side overlapping the point D is approximated from the coordinates of the plurality of points D detected in the second process. As the approximation, a generally known statistical method can be used. For example, an approximation method for obtaining a regression line (approximate line) using the least square method can be given.
 図5は、第3の処理で求めた近似直線L1を示すグラフであり、近似直線L1をY=0として示した図である。 FIG. 5 is a graph showing the approximate straight line L1 obtained in the third process, and shows the approximate straight line L1 as Y = 0.
 ここで、図において、+y側にプロットされた点D1や、-y側にプロットされた点D2は、他の点Dと比べて近似直線L1からの離間距離が大きく、近似直線L1の算出結果に大きな影響を与えていると考えられる。このような場合、点D1および点D2を除外した残りの点を用いて、再度近似直線を求めることとしてもよい。 Here, in the figure, the point D1 plotted on the + y side and the point D2 plotted on the -y side have a larger separation distance from the approximate line L1 than the other points D, and the calculation result of the approximate line L1 It is thought that it has had a big influence on. In such a case, the approximate straight line may be obtained again using the remaining points excluding the points D1 and D2.
 また、除外する点Dは図5に示すように2つとは限らない。近似直線L1と点Dとの距離(図5における点DとのY座標の絶対値)について閾値を定め、Y座標の絶対値が閾値よりも大きい点Dについては除外して再度近似直線を求めることとしても構わない。閾値については、経験的または実験的に求められる値にしたがって、適宜設定することができる。 Further, the points D to be excluded are not necessarily two as shown in FIG. A threshold is determined for the distance between the approximate line L1 and the point D (the absolute value of the Y coordinate with respect to the point D in FIG. 5), and the point D whose absolute value of the Y coordinate is larger than the threshold is excluded to obtain the approximate line again. It doesn't matter. About a threshold value, it can set suitably according to the value calculated | required empirically or experimentally.
 このようにして求められる近似直線を、撮像した画像に含まれる2辺について行い、さらに、4つの撮像装置210で撮像した各画像について、それぞれ行う。 The approximate straight line obtained in this way is performed for two sides included in the captured image, and is further performed for each image captured by the four imaging devices 210.
(第4の処理)
 第4の処理として、1つの画像に含まれる2辺についてそれぞれ求めた近似直線の交点を、当該2辺に挟まれる対向基板P1の角部に対応する仮想点の座標として求める。
(Fourth process)
As a fourth process, intersections of approximate lines obtained for two sides included in one image are obtained as coordinates of virtual points corresponding to corners of the counter substrate P1 sandwiched between the two sides.
 図6は、第4の処理で求めた2つの近似直線L1,L2の交点として求めた仮想点CXを、撮像装置210で撮像した画像に反映させた図である。近似直線L1,L2を求めるために用いた各点Dの座標は既知であるため、近似直線L1,L2および仮想点CXを撮像装置210で撮像した画像上に反映させることができる。 FIG. 6 is a diagram in which the virtual point CX obtained as the intersection of the two approximate straight lines L1 and L2 obtained in the fourth process is reflected in the image taken by the imaging device 210. Since the coordinates of each point D used to obtain the approximate lines L1 and L2 are known, the approximate lines L1 and L2 and the virtual point CX can be reflected on the image captured by the imaging device 210.
(第5の処理)
 第5の処理として、4つの撮像装置210で撮像した画像のそれぞれにおいて求めた仮想点CXを用い、仮想点CXを結んで得られる図形を、対向基板P1の輪郭線(近似輪郭線)と仮定して求める。
(Fifth process)
As a fifth process, it is assumed that a figure obtained by connecting the virtual points CX using the virtual points CX obtained in each of the images captured by the four imaging devices 210 is the contour line (approximate contour line) of the counter substrate P1. And ask.
 図7A~7Cは、近似輪郭線OLを求める過程を示す模式図である。4つの撮像装置210の相対的な現実の位置は既知であるため、4つの撮像装置210の撮像領域ARの相対的な位置も既知である。そのため、図3Aにおける4つの撮像装置210で撮像領域ARを撮像した画像(図7A)を、1つの共通する座標系(現実の(実際の)座標系)に配置した場合の、4つの仮想点CXの座標も算出することができ、積層体Sを平面視したときに仮想点CXが位置する座標を求めることができる(図7B)。このようにして求めた4つの仮想点CXを結ぶことで、近似輪郭線OLを求めることができる(図7C)。 7A to 7C are schematic diagrams showing a process of obtaining the approximate contour OL. Since the relative actual positions of the four imaging devices 210 are known, the relative positions of the imaging regions AR of the four imaging devices 210 are also known. Therefore, four virtual points when images (FIG. 7A) obtained by imaging the imaging area AR with the four imaging devices 210 in FIG. 3A are arranged in one common coordinate system (real (actual) coordinate system). The coordinates of CX can also be calculated, and the coordinates at which the virtual point CX is located when the stacked body S is viewed in plan can be obtained (FIG. 7B). The approximate contour OL can be obtained by connecting the four virtual points CX obtained in this way (FIG. 7C).
 図8は、切断装置220を用いて積層体Sのシート片FAを切断する様子を示す模式図である。切断装置220としては、レーザー光LBを射出する装置を用いることができる。制御装置230は、切断装置220を制御し、上述のようにして求めた近似輪郭線OLに基づいてレーザー光LBを射出してシート片FAを切断し、光学部材Fと余剰部分FXとを切り離す。 FIG. 8 is a schematic diagram showing how the sheet piece FA of the laminate S is cut using the cutting device 220. As the cutting device 220, a device that emits laser light LB can be used. The control device 230 controls the cutting device 220, emits the laser beam LB based on the approximate contour OL obtained as described above, cuts the sheet piece FA, and separates the optical member F and the surplus portion FX. .
 以上により、シート片FAを対向基板P1の縁に略沿って切断することができ、狭額縁化された液晶パネルPに対して好適に光学部材Fを貼合することができる。さらに、必要に応じて、上述した装置を用いて複数種の光学部材を液晶パネルPに貼合し、液晶パネルPに光学部材が貼合されてなる光学表示デバイスを得ることができる。 Thus, the sheet piece FA can be cut substantially along the edge of the counter substrate P1, and the optical member F can be suitably bonded to the narrowed liquid crystal panel P. Furthermore, if necessary, an optical display device in which a plurality of types of optical members are bonded to the liquid crystal panel P using the above-described apparatus and the optical members are bonded to the liquid crystal panel P can be obtained.
 以上のような構成の光学表示デバイスの製造装置によれば、周縁部のバリや欠けによる影響を廃した液晶パネルの外周形状の検出を行い、この外周形状に合わせた光学部材の加工が可能となる。 According to the optical display device manufacturing apparatus having the above-described configuration, it is possible to detect the outer peripheral shape of the liquid crystal panel without the influence of burrs and chips on the peripheral portion, and to process the optical member according to the outer peripheral shape. Become.
 また、以上のような構成の光学表示デバイスの生産システムによれば、狭額縁化された光学表示デバイスを容易に生産することができる。 Also, according to the optical display device production system configured as described above, it is possible to easily produce a narrow frame optical display device.
 なお、本実施形態においては、近似輪郭線OLに沿ってシート片FAを切断することとしたが、これに限らず、例えば、近似輪郭線OLの内側の領域であって、液晶パネルPの額縁部と重なる位置においてシート片FAを切断することとしてもよい。その場合は、制御装置230において、算出される近似輪郭線に基づき、近似輪郭線で描かれる形状よりも所定の大きさだけ小さい形状を真の切断部分として算出した後に、この真の切断部分に沿ってシート片FAを切断するように切断装置220を制御するとよい。 In the present embodiment, the sheet piece FA is cut along the approximate contour line OL. However, the present invention is not limited to this, and is, for example, a region inside the approximate contour OL and the frame of the liquid crystal panel P. The sheet piece FA may be cut at a position overlapping the portion. In that case, the control device 230 calculates a shape that is smaller than the shape drawn by the approximate contour as a true cut portion based on the calculated approximate contour, and then calculates the true cut portion. The cutting device 220 may be controlled so as to cut the sheet piece FA along.
 このような真の切断部分を示す形状としては、近似輪郭線OLで描かれる形状を既定の縮尺率で縮小した相似形状であってもよく、近似輪郭線OLで描かれる形状から既定の幅だけ内側に縮めた形状であってもよい。 The shape showing the true cut portion may be a similar shape obtained by reducing the shape drawn by the approximate contour OL at a predetermined scale, and only a predetermined width from the shape drawn by the approximate contour OL. The shape shrunk inward may be sufficient.
 また、本実施形態においては、複数の点Dを用いて近似直線を求めた後に、近似直線と各点Dとの離間距離に基づいて閾値よりも離れたものを除外し、近似直線を再度求めることとしたが、これに限らない。例えば、近似直線を求める前に、点Dのうち予め設けた基準を満たさない点を除外しておき、残る点Dを用いて近似直線を求めることとしてもよい。 Further, in the present embodiment, after obtaining an approximate line using a plurality of points D, excluding those that are further than the threshold based on the distance between the approximate line and each point D, the approximate line is obtained again. However, it is not limited to this. For example, before obtaining an approximate line, points that do not satisfy a predetermined criterion among points D may be excluded, and an approximate line may be obtained using the remaining points D.
 また、本実施形態においては、撮像装置210を用いて、積層体Sが有する液晶パネルPを、対向基板P1側から平面視した画像を撮像することとして図示し、説明したが、これに限らない。 Further, in the present embodiment, the liquid crystal panel P included in the stacked body S is illustrated and described as using the imaging device 210 as a plan view from the counter substrate P1 side, but the present invention is not limited thereto. .
 液晶パネルPを多面取りで成形した際には、液晶パネルPを構成する上下基板間に、端部の位置のズレが生じることがある。図3Aに示す液晶パネルPが、このようなズレを有し、撮像装置210に近い対向基板P1の縁よりも撮像装置210から遠い素子基板P2の縁が外側に配置される場合には、撮像装置210を用いて平面視した画像を撮像すると、素子基板P2の縁が対向基板P1の縁として誤認され、対向基板P1の輪郭線に沿った近似輪郭線を求めることが困難となる。 When the liquid crystal panel P is formed by multi-chamfering, the position of the end portion may be shifted between the upper and lower substrates constituting the liquid crystal panel P. When the liquid crystal panel P shown in FIG. 3A has such a shift and the edge of the element substrate P2 farther from the imaging device 210 than the edge of the counter substrate P1 close to the imaging device 210 is disposed outside, the imaging is performed. When an image viewed in plan using the apparatus 210 is taken, the edge of the element substrate P2 is mistaken as the edge of the counter substrate P1, and it is difficult to obtain an approximate contour line along the contour line of the counter substrate P1.
 このような場合、撮像装置210を、対向基板P1の法線に対して対向基板P1の内側に傾斜させ、対向基板P1の内側から対向基板P1の角部の画像を撮像することとするとよい。このように撮像すると、素子基板P2の角部が、対向基板P1の角部に隠れた状態で撮像されるため、素子基板P2の縁を対向基板P1の縁として誤認することなく、対向基板P1の像を確実に撮像することができる。 In such a case, the imaging device 210 may be inclined to the inside of the counter substrate P1 with respect to the normal line of the counter substrate P1, and an image of a corner portion of the counter substrate P1 may be captured from the inside of the counter substrate P1. When imaging is performed in this manner, the corner of the element substrate P2 is captured in a state where it is hidden behind the corner of the counter substrate P1, so that the counter substrate P1 is not mistaken for the edge of the element substrate P2 as the edge of the counter substrate P1. It is possible to reliably capture the image.
 撮像装置210の傾斜角度は、各液晶パネルPにおける対向基板P1と素子基板P2とのズレ量に応じて都度変更してもよい。また、経験的にズレ量の最大値が分かっている場合には、最大のズレが生じたとしても素子基板P2の角部を対向基板P1の角部に隠すことができる傾斜角度を求め、得られた傾斜角度だけ撮像装置210を傾斜させて撮像することとするとよい。 The inclination angle of the imaging device 210 may be changed each time according to the amount of deviation between the counter substrate P1 and the element substrate P2 in each liquid crystal panel P. Further, when the maximum value of the deviation amount is empirically known, an inclination angle that can hide the corner portion of the element substrate P2 in the corner portion of the counter substrate P1 even if the maximum deviation occurs is obtained and obtained. The imaging device 210 may be imaged by tilting the image by the tilt angle.
 以上、添付図面を参照しながら本発明に係る好適な実施の形態例について説明したが、本発明は係る例に限定されないことは言うまでもない。上述した例において示した各構成部材の諸形状や組み合わせ等は一例であって、本発明の主旨から逸脱しない範囲において設計要求等に基づき種々変更可能である。 As described above, the preferred embodiments according to the present invention have been described with reference to the accompanying drawings, but the present invention is not limited to such examples. Various shapes, combinations, and the like of the constituent members shown in the above-described examples are examples, and various modifications can be made based on design requirements and the like without departing from the gist of the present invention.
 13…貼合装置、20…切断部(光学表示デバイスの製造装置)、100…光学表示デバイスの生産システム、210…撮像装置、220…切断装置、230…制御装置、240…照明装置、C1…角部、CX…仮想点、D,D1,D2…点、F…光学部材、F1…光学部材シート、FX…余剰部分、L…光、OL…近似輪郭線、P…液晶パネル(光学表示部品)、S…積層体 DESCRIPTION OF SYMBOLS 13 ... Pasting apparatus, 20 ... Cutting | disconnection part (manufacturing apparatus of an optical display device), 100 ... Production system of an optical display device, 210 ... Imaging apparatus, 220 ... Cutting apparatus, 230 ... Control apparatus, 240 ... Illuminating device, C1 ... Corner, CX ... virtual point, D, D1, D2 ... point, F ... optical member, F1 ... optical member sheet, FX ... excess part, L ... light, OL ... approximate contour line, P ... liquid crystal panel (optical display component) ), S ... Laminate

Claims (4)

  1.  光学表示部品に光学部材を貼合してなる光学表示デバイスの製造装置であって、
     前記光学表示部品が有する基板の表面に、前記表面よりも広い光学部材シートが貼合されてなる積層体について、平面視で前記基板の角部を含む画像を撮像する撮像装置と;
     前記光学部材シートを、前記光学表示部品が有する表示領域との対向部分である前記光学部材と、前記光学部材の外側の余剰部分と、に切り離す切断装置と;
     前記画像に基づいて、前記基板の平面視における輪郭線を近似した近似輪郭線を求め、前記近似輪郭線に基づいて前記光学部材シートを切断するように前記切断装置を制御する制御装置と;を備え、
     前記制御装置は、
     前記画像に含まれる前記基板の像について、前記角部を挟む前記基板の2つの辺のそれぞれに重なる複数点を検出し、
     前記複数点に基づいて前記2つの辺に対応する2つの近似直線を算出し、
     前記2つの近似直線の交点を、前記角部に対応する仮想点として設定し、
     前記基板が有する複数の前記角部のそれぞれについて前記仮想点を設定し、
     前記仮想点を線分で結んで得られる図形を前記近似輪郭線として求める光学表示デバイスの製造装置。
    An optical display device manufacturing apparatus comprising an optical member bonded to an optical display component,
    An imaging device that captures an image including a corner portion of the substrate in a plan view of a laminated body in which an optical member sheet wider than the surface is bonded to the surface of the substrate included in the optical display component;
    A cutting device that separates the optical member sheet into the optical member that is a portion facing the display area of the optical display component, and a surplus portion outside the optical member;
    A control device that obtains an approximate contour line that approximates a contour line in plan view of the substrate based on the image and controls the cutting device to cut the optical member sheet based on the approximate contour line; Prepared,
    The control device includes:
    For the image of the substrate included in the image, detect a plurality of points overlapping each of the two sides of the substrate sandwiching the corner,
    Calculating two approximate lines corresponding to the two sides based on the plurality of points;
    Set the intersection of the two approximate lines as a virtual point corresponding to the corner,
    Setting the virtual point for each of the plurality of corners of the substrate;
    An apparatus for manufacturing an optical display device, wherein a figure obtained by connecting the virtual points with line segments is obtained as the approximate contour line.
  2.  前記積層体を挟んで前記撮像装置とは反対側から、前記積層体を照明する照明装置を有する請求項1に記載の光学表示デバイスの製造装置。 The apparatus for manufacturing an optical display device according to claim 1, further comprising: an illumination device that illuminates the multilayer body from a side opposite to the imaging device with the multilayer body interposed therebetween.
  3.  前記制御装置は、前記角部の近傍の予め定めた領域を除いて、前記基板の前記2つの辺のそれぞれに重なる前記複数点を検出する請求項1に記載の光学表示デバイスの製造装置。 The apparatus for manufacturing an optical display device according to claim 1, wherein the control device detects the plurality of points overlapping each of the two sides of the substrate except for a predetermined region in the vicinity of the corner.
  4.  光学表示部品に光学部材を貼合してなる光学表示デバイスの生産システムであって、
     ライン上を搬送される前記光学表示部品の表面に、前記表面よりも広い光学部材シートを貼合して、前記光学表示部品と前記光学部材シートとを有する積層体を形成する貼合装置と、
     前記積層体が有する前記光学部材シートを切断する請求項1から3のいずれか1項に記載の光学表示デバイスの製造装置と、を備える光学表示デバイスの生産システム。
    An optical display device production system in which an optical member is bonded to an optical display component,
    A bonding apparatus for bonding a surface of the optical display component conveyed on the line to an optical member sheet wider than the surface to form a laminate having the optical display component and the optical member sheet;
    An optical display device production system comprising: the optical display device manufacturing apparatus according to any one of claims 1 to 3, wherein the optical member sheet included in the laminate is cut.
PCT/JP2013/084033 2013-01-10 2013-12-19 Apparatus for manufacturing optical display device, and system for producing optical display device WO2014109198A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2014556358A JP5828972B2 (en) 2013-01-10 2013-12-19 Optical display device manufacturing apparatus and optical display device production system
KR1020157016145A KR101993029B1 (en) 2013-01-10 2013-12-19 Apparatus for manufacturing optical display device, and system for producing optical display device
CN201380065832.5A CN104854502B (en) 2013-01-10 2013-12-19 The manufacture device of optical display means and the production system of optical display means

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-002830 2013-01-10
JP2013002830 2013-01-10

Publications (1)

Publication Number Publication Date
WO2014109198A1 true WO2014109198A1 (en) 2014-07-17

Family

ID=51166857

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/084033 WO2014109198A1 (en) 2013-01-10 2013-12-19 Apparatus for manufacturing optical display device, and system for producing optical display device

Country Status (5)

Country Link
JP (1) JP5828972B2 (en)
KR (1) KR101993029B1 (en)
CN (1) CN104854502B (en)
TW (1) TWI578060B (en)
WO (1) WO2014109198A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107180924A (en) * 2016-03-11 2017-09-19 三星显示有限公司 Display device and its manufacture method
CN108037599A (en) * 2017-11-27 2018-05-15 江西合力泰科技有限公司 A kind of backlight module and detection method

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6037564B2 (en) * 2013-06-24 2016-12-07 住友化学株式会社 Optical display device production system
CN106483692A (en) * 2016-12-28 2017-03-08 武汉华星光电技术有限公司 Maked corrections the stacking precision methods measuring between high offset film layer by focus
KR102267731B1 (en) * 2019-05-03 2021-06-22 주식회사 탑 엔지니어링 Apparatus and method for cutting film
CN112433398B (en) * 2020-11-12 2023-04-18 深圳创维-Rgb电子有限公司 Liquid crystal panel laminating process method and display device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003107452A (en) * 2001-09-17 2003-04-09 Internatl Business Mach Corp <Ibm> Method of manufacturing liquid crystal display panel, method of manufacturing liquid crystal display device, and device for manufacturing the liquid crystal display device
JP2006259542A (en) * 2005-03-18 2006-09-28 Sharp Corp Method for manufacturing liquid crystal display panel
WO2010026768A1 (en) * 2008-09-04 2010-03-11 芝浦メカトロニクス株式会社 Bonding apparatus and method for controlling same
WO2013151035A1 (en) * 2012-04-03 2013-10-10 住友化学株式会社 Optical display device production system

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1190900A (en) 1997-09-26 1999-04-06 Matsushita Electric Ind Co Ltd Liquid crystal display panel dividing method and device
JP4904198B2 (en) * 2007-05-15 2012-03-28 リンテック株式会社 Sheet pasting apparatus, sheet cutting method and wafer grinding method
WO2009128115A1 (en) * 2008-04-15 2009-10-22 日東電工株式会社 Optical film layered roll and method and device for manufacturing the same
JP4774123B1 (en) * 2010-03-18 2011-09-14 住友化学株式会社 Method for inspecting bonding accuracy of polarizing plate and apparatus for inspecting bonding accuracy
JP4981944B2 (en) * 2010-03-26 2012-07-25 三星ダイヤモンド工業株式会社 Method for manufacturing liquid crystal display cell

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003107452A (en) * 2001-09-17 2003-04-09 Internatl Business Mach Corp <Ibm> Method of manufacturing liquid crystal display panel, method of manufacturing liquid crystal display device, and device for manufacturing the liquid crystal display device
JP2006259542A (en) * 2005-03-18 2006-09-28 Sharp Corp Method for manufacturing liquid crystal display panel
WO2010026768A1 (en) * 2008-09-04 2010-03-11 芝浦メカトロニクス株式会社 Bonding apparatus and method for controlling same
WO2013151035A1 (en) * 2012-04-03 2013-10-10 住友化学株式会社 Optical display device production system

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107180924A (en) * 2016-03-11 2017-09-19 三星显示有限公司 Display device and its manufacture method
EP3217211A3 (en) * 2016-03-11 2017-12-27 Samsung Display Co., Ltd. Display apparatus and method of manufacturing the same
US10483491B2 (en) 2016-03-11 2019-11-19 Samsung Display Co., Ltd. Display apparatus and method of manufacturing the same
CN107180924B (en) * 2016-03-11 2021-07-02 三星显示有限公司 Display device and method of manufacturing the same
US11139454B2 (en) 2016-03-11 2021-10-05 Samsung Display Co., Ltd. Display apparatus and method of manufacturing the same
CN108037599A (en) * 2017-11-27 2018-05-15 江西合力泰科技有限公司 A kind of backlight module and detection method
CN108037599B (en) * 2017-11-27 2023-10-13 江西合力泰科技有限公司 Backlight module and detection method

Also Published As

Publication number Publication date
TW201430444A (en) 2014-08-01
CN104854502A (en) 2015-08-19
CN104854502B (en) 2017-08-15
KR20150104560A (en) 2015-09-15
JPWO2014109198A1 (en) 2017-01-19
TWI578060B (en) 2017-04-11
JP5828972B2 (en) 2015-12-09
KR101993029B1 (en) 2019-06-25

Similar Documents

Publication Publication Date Title
JP5828972B2 (en) Optical display device manufacturing apparatus and optical display device production system
JP6037564B2 (en) Optical display device production system
WO2015025703A1 (en) Defect inspection device, optical member manufacturing system, and optical display device production system
KR102098431B1 (en) System for manufacturing optical display device
KR20150048757A (en) Device for producing optical member pasted body
JP2014209266A (en) Production system of optical display device
KR102185157B1 (en) Optical display device manufacturing system
KR20150144313A (en) Laser irradiation device and manufacturing method of laminate optical member
KR102207122B1 (en) Apparatus and method for manufacturing optical member-bonded body
JP5804404B2 (en) Optical display device production system and optical display device production method
EP2500766A1 (en) Method for continuously manufacturing liquid crystal display panel and inspection method
KR20150133177A (en) System and method for producing optical display devices
KR20150104561A (en) Method for manufacturing optical member bonded body, and optical member bonded body
JP5022507B1 (en) Product panel continuous manufacturing method, detection system, and detection method
JP5793821B2 (en) Detecting device, optical member bonded body manufacturing apparatus, and optical member bonded body manufacturing method
WO2014148333A1 (en) Detection device, laser light emission device, and method for manufacturing optical member affixing body
WO2014125993A1 (en) Cutting device, cutting method, and method of manufacturing laminate optical member
WO2014192334A1 (en) Defect inspection apparatus, and production system of optical display device
WO2014024803A1 (en) System for producing optical display device and method for producing optical display device
JP6193618B2 (en) Optical display device production system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13870828

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014556358

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20157016145

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13870828

Country of ref document: EP

Kind code of ref document: A1