WO2014109158A1 - 光インターコネクション装置 - Google Patents

光インターコネクション装置 Download PDF

Info

Publication number
WO2014109158A1
WO2014109158A1 PCT/JP2013/083033 JP2013083033W WO2014109158A1 WO 2014109158 A1 WO2014109158 A1 WO 2014109158A1 JP 2013083033 W JP2013083033 W JP 2013083033W WO 2014109158 A1 WO2014109158 A1 WO 2014109158A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
semiconductor substrate
light emitting
semiconductor
layer
Prior art date
Application number
PCT/JP2013/083033
Other languages
English (en)
French (fr)
Inventor
梶山 康一
水村 通伸
晋 石川
正康 金尾
吉司 小川
Original Assignee
株式会社ブイ・テクノロジー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ブイ・テクノロジー filed Critical 株式会社ブイ・テクノロジー
Priority to US14/760,378 priority Critical patent/US20160006518A1/en
Priority to KR1020157016255A priority patent/KR20150105309A/ko
Priority to CN201380070056.8A priority patent/CN104919731A/zh
Publication of WO2014109158A1 publication Critical patent/WO2014109158A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/80Optical aspects relating to the use of optical transmission for specific applications, not provided for in groups H04B10/03 - H04B10/70, e.g. optical power feeding or optical transmission through water
    • H04B10/801Optical aspects relating to the use of optical transmission for specific applications, not provided for in groups H04B10/03 - H04B10/70, e.g. optical power feeding or optical transmission through water using optical interconnects, e.g. light coupled isolators, circuit board interconnections
    • H04B10/803Free space interconnects, e.g. between circuit boards or chips
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/12Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof structurally associated with, e.g. formed in or on a common substrate with, one or more electric light sources, e.g. electroluminescent light sources, and electrically or optically coupled thereto
    • H01L31/16Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof structurally associated with, e.g. formed in or on a common substrate with, one or more electric light sources, e.g. electroluminescent light sources, and electrically or optically coupled thereto the semiconductor device sensitive to radiation being controlled by the light source or sources
    • H01L31/167Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof structurally associated with, e.g. formed in or on a common substrate with, one or more electric light sources, e.g. electroluminescent light sources, and electrically or optically coupled thereto the semiconductor device sensitive to radiation being controlled by the light source or sources the light sources and the devices sensitive to radiation all being semiconductor devices characterised by potential barriers
    • H01L31/173Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof structurally associated with, e.g. formed in or on a common substrate with, one or more electric light sources, e.g. electroluminescent light sources, and electrically or optically coupled thereto the semiconductor device sensitive to radiation being controlled by the light source or sources the light sources and the devices sensitive to radiation all being semiconductor devices characterised by potential barriers formed in, or on, a common substrate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Definitions

  • the present invention relates to an optical interconnection device capable of realizing optical interconnection between substrates.
  • Optical interconnection is now widely used in the field of long-distance signal transmission using optical fibers, taking advantage of features such as high-speed and large-capacity transmission, excellent noise resistance, and cable diameter reduction.
  • optical interconnection at an extremely short distance such as between boards, between chips, or within a chip is indispensable.
  • Inter-substrate optical interconnection is attracting attention as a technology that realizes signal transmission between stacked semiconductor substrates without performing connection using conductive wires or connection using optical fibers.
  • Patent Document 1 a plurality of optical transmission substrates are stacked and an optical signal is transmitted and received between a light emitting element provided on one substrate and a light receiving element provided on another substrate. It has been shown.
  • optical signals are transmitted and received between a pair of light emitting elements and light receiving elements that are aligned with high accuracy between different substrates.
  • the directivity between the light emitting element and the light receiving element is weak, and there is a problem that erroneous transmission (crosstalk) of the signal occurs such that the light receiving element that should not receive the optical signal emitted from one light emitting element is received. was there.
  • the present invention is an example of a problem to deal with such a problem. That is, it is possible to improve the alignment accuracy of the light emitting element or the light receiving element on the substrate with a relatively simple manufacturing process, and also with a relatively simple manufacturing process even when transmitting and receiving optical signals through one substrate. It is an object of the present invention that it can be formed and that crosstalk of signal transmission between substrates can be suppressed even when light emitting elements or light receiving elements are arranged at high density.
  • an optical interconnection device has at least the following configuration.
  • An optical interconnection device that transmits and receives an optical signal between a plurality of stacked semiconductor substrates, wherein the light emitting element or the light receiving element arranged on one semiconductor substrate uses the semiconductor substrate as a common semiconductor layer
  • An optical interconnection device characterized by being transmitted through a substrate and received by the light receiving element.
  • a plurality of light emitting elements or light receiving elements are provided with a pn junction having a semiconductor substrate as a common semiconductor layer, and are formed on one semiconductor substrate using semiconductor lithography technology. Therefore, the alignment accuracy of the light emitting element or the light receiving element on the semiconductor substrate can be increased by a relatively simple manufacturing process.
  • a pair of light-emitting elements and light-receiving elements that transmit and receive optical signals between different semiconductor substrates have the light emitted by the light-emitting elements transmitted through the semiconductor substrate and received by the light-receiving elements, so that only on one side of the semiconductor substrate
  • a relay substrate can be formed by arranging a light emitting element or a light receiving element. Also by this, the relay board
  • a pair of light-emitting elements and light-receiving elements that transmit and receive optical signals between different semiconductor substrates perform light emission and light reception at a common wavelength, respectively. ) Signal transmission crosstalk can be suppressed.
  • a pair of light-emitting elements and light-receiving elements that transmit and receive optical signals between different semiconductor substrates are configured such that light emitted from the light-emitting elements is received by the light-receiving elements via a light collecting unit, so that the light-emitting elements or light-receiving elements are Even in the case of high density arrangement, crosstalk of signal transmission between substrates (between chips) can be suppressed.
  • the optical interconnection device 1 includes a plurality of semiconductor substrates 10 (10-1 and 10-2) arranged in a stacked manner, and transmits and receives optical signals between the plurality of semiconductor substrates 10 (10-1 and 10-2). Is to do.
  • the optical interconnection device 1 includes a plurality of semiconductor substrates 10 (10-1 and 10-2) arranged in a stacked manner, and transmits and receives optical signals between the plurality of semiconductor substrates 10 (10-1 and 10-2). Is to do.
  • two semiconductor substrates 10 are stacked and arranged.
  • the present invention is not limited to this, and any semiconductor substrate 10 may be used as long as two or more semiconductor substrates 10 are stacked.
  • the light emitting element 2 or the light receiving element 3 is disposed on one semiconductor substrate 10.
  • the light emitting element 2 or the light receiving element 3 may be plural or singular.
  • the arrangement form in the case where a plurality of light emitting elements 2 or light receiving elements 3 are arranged is not particularly limited, and includes arbitrary arrangements such as a dot matrix arrangement, a stripe arrangement, and a linear arrangement. Alternatively, only the light emitting element 2 may be disposed on one semiconductor substrate 10 and only the light receiving element 3 may be disposed on another semiconductor substrate 10.
  • each semiconductor substrate 10 includes a driving circuit for driving the light emitting element 2 and the light receiving element 3, and an arithmetic processing circuit (integrated circuit) that outputs a signal to the driving circuit for the light emitting element 2.
  • An arithmetic processing circuit (integrated circuit) to which a signal from the drive circuit of the light receiving element 3 is input can be formed or mounted.
  • the light emitting element 2 or the light receiving element 3 arranged on one semiconductor substrate 10 includes a pn junction 10 pn having the semiconductor substrate 10 as a common semiconductor layer.
  • the light emitting element 2 or the light receiving element 3 disposed on one semiconductor substrate 10 is formed on one surface side of the semiconductor substrate 10.
  • the light receiving element 3 receives the light.
  • the light emitting element 2 and the light receiving element 3 can form two types of transmission / reception units 11 (11a, 11b).
  • the transmission / reception unit 11 a the light emitted from the light emitting element 2 is transmitted through the semiconductor substrate 10 on which the light emitting element 2 is formed and is received by the light receiving element 3 formed on the other semiconductor substrate 10.
  • the transmission / reception unit 11 b the light emitted from the light emitting element 2 passes through another semiconductor substrate 10 and is received by the light receiving element 3 formed on the semiconductor substrate 10.
  • Element 3 (3-1, 3-2) emits and receives light at a common wavelength.
  • the light emitting element 2-1 has a wavelength.
  • the light receiving element 3-1 has a function of receiving only light having the wavelength ⁇ 1.
  • the light of wavelength ⁇ 1 here includes light having a wavelength band having a central wavelength near ⁇ 1.
  • the light emitting elements 2-1 and 2-2 disposed adjacent to one semiconductor substrate 10-1 emit light at different wavelengths
  • the light receiving elements 3-1 disposed adjacent to one semiconductor substrate 10-2. , 3-2 receive light at different wavelengths. That is, the light emitting elements 2-1 and 2-2 are adjacently disposed on the semiconductor substrate 10-1, and the light receiving elements 3-1 and 3- corresponding to the light emitting elements 2-1 and 2-2 on the semiconductor substrate 10-2. 2 are arranged adjacent to each other, the light emitting element 2-1 emits light with the wavelength ⁇ 1, the light receiving element 3-1 receives only light with the wavelength ⁇ 1, and the light emitting element 2-2 emits light with the wavelength ⁇ 2.
  • the light receiving element 3-2 receives only light of wavelength ⁇ 2.
  • the wavelengths ⁇ 1 and ⁇ 2 are required to be wavelengths that can be transmitted through the semiconductor substrate 10.
  • the semiconductor substrate 10 is a Si substrate
  • the light with wavelengths ⁇ 1 and ⁇ 2 is long wavelength light of near infrared or higher.
  • the optical interconnection device 1 shown in FIG. 2 a pair of light emitting element 2 and light receiving element 3 that transmit and receive optical signals between different semiconductor substrates 10 (10-1 and 10-2) emit light by the light emitting element 2.
  • the received light is received by the light receiving element 3 through the light collecting means 4.
  • the light condensing means 4 is constituted by a lens portion 4A, and the lens portion 4A is formed on the other surface side of the semiconductor substrate 10 on which the light emitting element 2 or the light receiving element 3 is formed on one surface side.
  • the lens portion 4A can be formed by processing the surface of the semiconductor substrate 10 by etching or the like.
  • FIG. 3 is an explanatory diagram showing a configuration example of a light emitting element or a light receiving element in the optical interconnection device according to the embodiment of the present invention.
  • the light emitting element 2 or the light receiving element 3 disposed on the semiconductor substrate 10 includes a pn junction 10 pn having the semiconductor substrate 10 as a common semiconductor layer.
  • a first semiconductor layer 10n and a second semiconductor layer 10p which are common semiconductor layers, are formed on the semiconductor substrate 10, and a pn junction is formed near the boundary between the first semiconductor layer 10n and the second semiconductor layer 10p. 10 pn is formed.
  • the semiconductor substrate 10 is a Si (silicon) substrate (single crystal substrate), and the first semiconductor layer 10n has a group 15 element such as As (arsenic), P (phosphorus), Sb on the semiconductor substrate 10.
  • the n-type Si layer is doped with an impurity selected from (antimony), and the second semiconductor layer 10p includes a group 13 element such as B (boron), Al (aluminum), Ga (gallium) in the first semiconductor layer 10n.
  • the periphery of the second semiconductor layer 10p isolated for each light emitting element 2 or light receiving element 3 is partitioned by the insulating film 5, and the second semiconductor layer 10p has the electrode 6 Is connected.
  • a drive circuit 7 that drives the light emitting element 2 by applying a forward voltage to the pn junction 10 pn is connected to the electrode 6.
  • a drive circuit 7 that detects a voltage generated when light enters the pn junction 10 pn and drives the light receiving element 3 is connected to the electrode 6.
  • the first semiconductor layer 10n is grounded in the illustrated example.
  • FIG. 4 is an explanatory view showing a method of forming a light emitting element or a light receiving element of the optical interconnection device according to the embodiment of the present invention.
  • the light emitting element 2 or the light receiving element 3 formed on the semiconductor substrate 10 uses a Si (silicon) substrate as the semiconductor substrate 10, and a group 15 element such as As (arsenic), P (phosphorus), Sb (antimony) is used for the Si substrate.
  • a group 15 element such as As (arsenic), P (phosphorus), Sb (antimony) is used for the Si substrate.
  • a first semiconductor layer 10n to be a common n-type Si layer, and the first semiconductor layer 10n is doped with impurities to form a second semiconductor layer (p-type semiconductor layer). 10p is patterned.
  • Si is an indirect transition type semiconductor and has low light emission efficiency, and it is not possible to obtain useful light emission by simply forming a pn junction, but the Si substrate is annealed in a light-assisted state to obtain pn High-efficiency, high-output pn-junction light-emitting or pn-junction light-receiving function by generating dressed photons near the junction and changing Si, which is an indirect transition semiconductor, as if it were a direct transition semiconductor Is obtained.
  • the second semiconductor layer (p-type semiconductor layer) 10p is formed by highly doping an impurity selected from B (boron), Al (aluminum), and Ga (gallium).
  • the insulating film 5 surrounding the second semiconductor layer 10p is formed, a forward voltage Va is applied to the electrode connected to the second semiconductor layer 10p, and a current is caused to flow through the pn junction 10pn.
  • An annealing process is performed on the semiconductor layer 10p.
  • the pn junction 10pn is irradiated with light having a specific wavelength ⁇ .
  • Dressed photons can be generated in the vicinity of the pn junction 10 pn by light irradiation in the annealing process.
  • the pn junction 10pn in which the dressed photon is generated in this manner emits light having a wavelength equivalent to the wavelength ⁇ of the light irradiated in the annealing process.
  • the pn junction portion 10pn functions as a light receiving portion having peak sensitivity with respect to light having a wavelength ⁇ .
  • an example of doping conditions when B (boron) is selected as the impurity of the group 13 element is a dose density of 5 ⁇ 10 13 / cm 2 and an acceleration energy at the time of implantation: 700 keV.
  • the wavelength of light irradiated in the annealing process described above is set. Set to the same wavelength ⁇ .
  • the light emission wavelength of the light emitting element 2 and the light reception wavelength of the light receiving element 3 are specified as ⁇ according to the wavelength of light irradiated in the annealing process.
  • the wavelength ⁇ selected here is the wavelength of light that can be transmitted through the semiconductor substrate 10.
  • the semiconductor substrate 10 is a Si substrate, long-wavelength light of near infrared or higher is selected.
  • the light emitting element 2 functioning as the light receiving element 3 can be made to function as the light receiving element 3, and vice versa.
  • This switching can be arbitrarily switched by the peripheral circuit of the optical interconnection device 1, and the optical signal transmission path can be arbitrarily changed by this switching.
  • FIG. 5 is an explanatory view showing a specific example of the light emitting element or the light receiving element in the optical interconnection device according to the embodiment of the present invention.
  • (A) has shown the cross-sectional structure
  • (b) has shown the plane structure.
  • Each of the light emitting element 2 and the light receiving element 3 includes an insulating element isolation layer 20 surrounding the pn junction 10 pn on the semiconductor substrate 10, and a p-layer electrode and an inner side of the element isolation layer 20 on one surface side of the semiconductor substrate 10.
  • a first electrode 21 that is one of the n-layer electrodes is disposed, and a second electrode 22 that is the other of the p-layer electrode and the n-layer electrode is disposed outside the element isolation layer 20.
  • the first electrode 21 is a light-transmitting p-layer electrode 21 p
  • the second electrode 22 is a metal n-layer electrode 22 n
  • the second electrode 22 is disposed on the outer periphery of the element isolation layer 20.
  • the n + diffusion layer 23 is provided.
  • Lead wires 21 a and 22 a are connected to the first electrode 21 and the second electrode 22, respectively, and electrical insulation between the first electrode 21 and the second electrode 22 is ensured including the lead wires 21 a and 22 a.
  • the first interlayer insulating film 24 and the second interlayer insulating film 25 are stacked (the first interlayer insulating film 24 and the second interlayer insulating film 25 are not shown in (b)).
  • the light emitting part 2S or the light receiving part 3S is formed on the first electrode 21, and the other surface side of the semiconductor substrate 10 in the light emitting part 2S or the light receiving part 3S (first The light transmitting portion 10S is formed on the side where the electrode 21 is not formed. Thereby, light emission or light reception via the light transmission part 10S in the semiconductor substrate 10 becomes possible.
  • the flow of current from the first electrode 21 to the second electrode 22 forms a flow path along the n + diffusion layer 23 formed in the outer peripheral portion of the element isolation layer 20 surrounding the pn junction 10pn.
  • a relatively uniform light emission or light reception characteristic can be obtained in the light emitting unit 2S or the light receiving unit 3S.
  • FIG. 6 is an explanatory view showing a specific method of forming a light emitting element or a light receiving element of the optical interconnection device according to the embodiment of the present invention.
  • the semiconductor substrate 10 Si substrate
  • the groove part 20e for forming the element isolation layer 20 is formed.
  • the groove 20e can be formed by anisotropic etching or the like, for example, and is formed so as to surround the light emitting part or the light receiving part.
  • the n + diffusion layer 23 is formed by ion implantation of n-type impurities.
  • a channel diffusion layer 23 a is formed on the bottom and outside of the groove 20 e, and a contact diffusion layer 23 b for connecting to the second electrode 22 is formed on the surface of the semiconductor substrate 10.
  • an isolation layer 20 is formed by embedding an insulating film such as an oxide film in the groove 20e.
  • a first interlayer insulating film 24 is formed, a contact opening to the n + diffusion layer 23 is formed, and then a pattern of the second electrode 22 is formed.
  • a second interlayer insulating film 25 is formed, and the inside of the element isolation layer 20 that becomes a light emitting portion or a light receiving portion is opened, and a group 13 element, for example, B (boron), Al (aluminum), Ga (gallium)
  • An pn junction 10 pn is formed inside the element isolation layer 20 by implanting an impurity selected from the following.
  • a transparent conductive film such as ITO is formed on the semiconductor substrate 10 and patterned, thereby forming the first electrode 21 and further forming other circuit configurations.
  • a forward voltage Va is applied between the first electrode 21 and the second electrode 22 to cause a current to flow through the pn junction 10pn, and a group 13 element implanted into the semiconductor substrate 10 by an annealing process with Joule heat due to the current,
  • the pn junction 10pn is irradiated with light having a specific wavelength ⁇ , and light irradiation in such an annealing process is performed.
  • dressed photons are generated in the vicinity of the pn junction 10pn.
  • FIG. 7 to 10 are explanatory diagrams showing examples of the optical interconnection device according to the embodiment of the present invention. 7, 8, and 9 can transmit / receive optical signals between three or more semiconductor substrates 10 (10-A, 10-B, 10-C).
  • the form shown in FIG. 5 is provided with a lens portion 4A as the light condensing means 4 as in the example shown in FIG.
  • the lens portion 4A is formed on the other surface side of the semiconductor substrate 10 on which the light emitting element 2 or the light receiving element 3 is formed on one surface side.
  • the embodiment shown in FIG. 8 includes a single lens 4B or a lens array 4M as the light condensing means 4, and a semiconductor substrate 10 (10-A, 10-B) on which the single lens 4B or the lens array 4M is stacked. , 10-C).
  • FIG. 9 The form shown in FIG. 9 is provided with a diffractive optical element such as a Fresnel zone plate 4C as the light condensing means 4, and the light emitting element 2 or the light receiving element 3 is provided on one side as in the example shown in FIG.
  • a diffractive optical element such as a Fresnel zone plate 4 ⁇ / b> C is formed on the other surface side of the formed semiconductor substrate 10.
  • a plurality of light emitting elements 2 and a plurality of light receiving elements 3 are formed on each of a plurality of semiconductor substrates 10 (10-A, 10-B, 10-C).
  • the semiconductor substrate 10-B sandwiched between the semiconductor substrate 10-A and the semiconductor substrate 10-C has a light receiving element 3 (3) that receives an optical signal transmitted from the light emitting element 2 (2-3) of the semiconductor substrate 10-A. 3) and a light emitting element 2 (2-4) for transmitting the received signal to the light receiving element 3 (3-4) of the semiconductor substrate 10-C.
  • the semiconductor substrate 10-B functions as a relay substrate.
  • the semiconductor substrate 10-B sandwiched between the semiconductor substrate 10-A and the semiconductor substrate 10-C includes the light emitting element 2 (2-5) of the semiconductor substrate 10-A and the light emitting element 2 (2 of the semiconductor substrate 10-C).
  • the semiconductor substrate 10-B functions as a signal aggregation or signal transmission source.
  • a plurality of light emitting elements 2 are formed on one of a pair of semiconductor substrates 10 (10-X, 10-Y), and a plurality of light receiving elements 3 are formed on the other.
  • the relationship between the arrangement position of the plurality of light emitting elements 2 on the semiconductor substrate 10-X and the arrangement position of the plurality of light receiving elements 3 on the semiconductor substrate 10-Y is conjugated with respect to the lens portion 4A. Images of the plurality of light emitting elements 2 in X are formed on the plurality of light receiving elements 3 on the semiconductor substrate 10-Y.
  • the pair of light-emitting elements 2 and light-receiving elements 3 that transmit and receive optical signals are in conjugate positions, and the optical signals emitted from the light-emitting elements 2-A, 2-B, 2-C, and 2-D are paired.
  • the light receiving elements 3-D, 3-C, 3-B, and 3-A at the angular positions respectively receive light.
  • a plurality of light emitting elements 2 or light receiving elements 3 includes a pn junction portion 10 pn having the semiconductor substrate 10 as a common semiconductor layer. Since it is fabricated using a lithography technique, the alignment accuracy of the light emitting element 2 or the light receiving element 3 on the semiconductor substrate 10 can be increased with a relatively simple manufacturing process. In addition, since the pair of light emitting element 2 and light receiving element 3 that transmit and receive optical signals between different semiconductor substrates 10 respectively emit and receive light at a common wavelength, signal transmission crosstalk between semiconductor substrates 10 (between chips). Can be suppressed.
  • the light emitting element 2 or the light receiving element 3 formed on the semiconductor substrate 10 may be formed on one surface side of the semiconductor substrate 10, as compared with the case where the light emitting element or the light receiving element is formed on both surfaces of the semiconductor substrate 10. It becomes possible to form easily.
  • the semiconductor substrate Signal transmission crosstalk between 10 (chips) can be suppressed.
  • optical signals are transmitted and received between one semiconductor substrate 10 (10-B) and the semiconductor substrates 10 (10-A, 10-C) arranged on both sides thereof. Even in this case, since the optical signal can be transmitted and received through the semiconductor substrate 10, the light emitting element 2 or the light receiving element 3 may be arranged only on one surface side in one semiconductor substrate 10. This makes it possible to manufacture relatively easily including the alignment of the above.
  • Optical interconnection device 2: light emitting element, 2S: light emitting part, 3: light receiving element, 3S: light receiving part, 4: Condensing means, 5: Insulating film, 6: Electrode, 7: Drive circuit, 10: Semiconductor substrate, 10n: first semiconductor layer (n-type Si layer), 10p: second semiconductor layer (p-type semiconductor layer), 10 pn: pn junction, 20: element isolation layer, 21: first electrode, 22: second electrode, 23: n + diffusion layer, 24: first interlayer insulating film, 25: second interlayer insulating film

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Photo Coupler, Interrupter, Optical-To-Optical Conversion Devices (AREA)
  • Light Receiving Elements (AREA)
  • Led Device Packages (AREA)
  • Led Devices (AREA)
  • Optical Communication System (AREA)
  • Manufacturing & Machinery (AREA)

Abstract

 基板上における発光素子又は受光素子のアライメント精度を高め、一つの基板を中継して光信号の送受信を行う場合にも比較的簡易な製造工程で形成することができ、発光素子又は受光素子を高密度に配置した場合であっても基板間信号伝送のクロストークを抑制する。積層配置された複数の半導体基板10間で光信号の送受信を行う光インターコネクション装置1であって、一つの半導体基板10に配置された発光素子2又は受光素子3は、半導体基板10を共通の半導体層とするpn接合部10pnを備え、且つ半導体基板10の一面側に形成され、異なる半導体基板10間で光信号の送受信を行う一対の発光素子2と受光素子3は、当該発光素子2で発光した光が半導体基板10を透過して当該受光素子3で受光される。

Description

光インターコネクション装置
 本発明は、基板間光インターコネクションを実現することができる光インターコネクション装置に関するものである。
 光インターコネクションは、光ファイバーを用いた長距離信号伝送の分野では、高速・大容量伝送、優れた耐ノイズ性、ケーブル細径化などの特徴を生かして、現在広く普及している。一方、情報処理装置内での情報処理速度の高速化を更に進めるためには、ボード間、チップ間、或いはチップ内といった極短距離での光インターコネクションが不可欠であり、このための技術開発が現在進められている。
 近年、半導体基板の高密度実装を図るために半導体基板を積層配置した3次元実装技術が提案されている。基板間光インターコネクションは、この積層配置された半導体基板間の信号伝送を導電線による接続や光ファイバーを用いた接続を行うこと無く実現する技術として注目されている。下記特許文献1に記載された従来技術には、光伝送基板を複数積層配置して、一つの基板に設けた発光素子と他の基板に設けた受光素子との間で光信号の送受信を行うことが示されている。
特開2000-277794号公報
 基板を複数積層配置して、一つの基板に設けた発光素子と他の基板に設けた受光素子との間で光信号の送受信を行う場合、送受信を行う発光素子と受光素子の位置を異なる基板上で精度よく位置合わせする必要があり、発光素子又は受光素子の基板上でのアライメント精度が問題になる。特に、基板上に発光素子又は受光素子を実装する場合には、精度の高い位置合わせを行った後に基板上に発光素子又は受光素子を実装することが必要になり、製造工程が煩雑になる問題がある。
 複数基板を積層配置した光インターコネクションにおいて、特に、一つの基板を中継して一方の基板から送られてきた光信号を受信し他方の基板に送信する場合には、一つの基板の一面側に受光素子を配置し他面側に発光素子を配置することが必要になり、基板の両側に発光素子又は受光素子を形成する必要があるので、製造工程が更に煩雑になる問題があった。
 また、基板上に高密度で発光素子又は受光素子を配置した場合には、異なる基板間で高精度に位置合わせされた一対の発光素子と受光素子間で光信号の送受信を行う場合であっても、発光素子と受光素子の指向性が弱い場合があり、一つの発光素子から発せられた光信号を本来受信すべきでない受光素子が受信するといった信号の誤伝送(クロストーク)が発生する問題があった。
 本発明は、このような問題に対処することを課題の一例とするものである。すなわち、比較的簡易な製造工程で、基板上における発光素子又は受光素子のアライメント精度を高めることができること、一つの基板を中継して光信号の送受信を行う場合にも比較的簡易な製造工程で形成することができること、発光素子又は受光素子を高密度に配置した場合であっても基板間信号伝送のクロストークを抑制することができること、などが本発明の目的である。
 このような目的を達成するために、本発明による光インターコネクション装置は、以下の構成を少なくとも具備するものである。
 積層配置された複数の半導体基板間で光信号の送受信を行う光インターコネクション装置であって、一つの前記半導体基板に配置された発光素子又は受光素子は、前記半導体基板を共通の半導体層とするpn接合部を備え、且つ前記半導体基板の一面側に形成され、異なる前記半導体基板間で光信号の送受信を行う一対の前記発光素子と前記受光素子は、当該発光素子で発光した光が前記半導体基板を透過して当該受光素子で受光されることを特徴とする光インターコネクション装置。
 このような特徴を有する光インターコネクション装置によると、複数の発光素子又は受光素子が半導体基板を共通の半導体層とするpn接合部を備え、一つの半導体基板に半導体リソグラフィ技術を用いて作り込まれるので、比較的簡易な製造工程で発光素子又は受光素子の半導体基板におけるアライメント精度を高めることができる。
 異なる半導体基板間で光信号の送受信を行う一対の発光素子と受光素子は、当該発光素子で発光した光が半導体基板を透過して当該受光素子で受光されるので、半導体基板の一面側のみに発光素子又は受光素子を配置して中継基板を形成することができる。これによっても、比較的簡易な製造工程で発光素子又は受光素子を備えた中継基板を形成することができる。
 異なる半導体基板間で光信号の送受信を行う一対の発光素子と受光素子が共通波長での発光と受光をそれぞれ行うことで、発光素子又は受光素子を高密度配置した場合にも基板間(チップ間)信号伝送のクロストークを抑制することが可能になる。
 異なる半導体基板間で光信号の送受信を行う一対の発光素子と受光素子は、当該発光素子で発光した光が集光手段を介して当該受光素子で受光されることで、発光素子又は受光素子を高密度配置した場合にも基板間(チップ間)信号伝送のクロストークを抑制することが可能になる。
本発明の実施形態に係る光インターコネクション装置を示した説明図である。 本発明の実施形態に係る光インターコネクション装置を示した説明図である。 本発明の実施形態に係る光インターコネクション装置における発光素子又は受光素子の構成例を示した説明図である。 本発明の実施形態に係る光インターコネクション装置の発光素子又は受光素子を形成する方法を示した説明図である。 本発明の実施形態に係る光インターコネクション装置における発光素子又は受光素子の具体例を示した説明図である((a)が断面構成を示しており、(b)が平面構成を示している)。 本発明の実施形態に係る光インターコネクション装置の発光素子又は受光素子を形成する具体的な方法を示した説明図である((a),(b),(c),(d)は各工程を示している)。 本発明の実施形態に係る光インターコネクション装置の形態例を示した説明図である。 本発明の実施形態に係る光インターコネクション装置の形態例を示した説明図である。 本発明の実施形態に係る光インターコネクション装置の形態例を示した説明図である。 本発明の実施形態に係る光インターコネクション装置の形態例を示した説明図である。
 以下、図面を参照しながら本発明の実施形態を説明する。図1及び図2は、本発明の実施形態に係る光インターコネクション装置を示した説明図である。光インターコネクション装置1は、積層配置された複数の半導体基板10(10-1,10-2)を備えており、複数の半導体基板10(10-1,10-2)間で光信号の送受信を行うものである。図示の例では、半導体基板10を2枚積層配置しているが、これに限らず2枚以上の半導体基板10を積層配置したものであればよい。
 一つの半導体基板10には、発光素子2又は受光素子3が配置されている。発光素子2又は受光素子3は複数であっても単数であってもよい。発光素子2又は受光素子3が複数配置される場合の配置形態は、特に限定されるものではなく、ドットマトリクス状の配列、ストライプ状の配列、直線状の配列など任意の配列が含まれる。また、一つの半導体基板10に発光素子2のみを配置し、他の半導体基板10に受光素子3のみを配置したものであってもよい。各半導体基板10には、発光素子2と受光素子3以外に、発光素子2や受光素子3を駆動するための駆動回路、発光素子2の駆動回路に信号を出力する演算処理回路(集積回路)、受光素子3の駆動回路からの信号が入力される演算処理回路(集積回路)などを形成又は実装することができる。
 光インターコネクション装置1においては、一つの半導体基板10に配置された発光素子2又は受光素子3は、半導体基板10を共通の半導体層とするpn接合部10pnを備えている。加えて、一つの半導体基板10に配置された発光素子2又は受光素子3は、半導体基板10の一面側に形成されている。
 異なる半導体基板10(半導体基板10-1と半導体基板10-2)間で光信号の送受信を行う一対の発光素子2と受光素子3は、発光素子2で発光した光が半導体基板10を透過して受光素子3で受光される。発光素子2と受光素子3によって2つの形態の送受信部11(11a,11b)を形成することができる。送受信部11aにおいては、発光素子2で発光した光はこの発光素子2が形成されている半導体基板10を透過して他の半導体基板10に形成されている受光素子3によって受光される。また、送受信部11bにおいては、発光素子2で発光した光は他の半導体基板10を透過してその半導体基板10に形成されている受光素子3によって受光される。
 図2に示した光インターコネクション装置1においては、異なる半導体基板10(10-1,10-2)間で光信号の送受信を行う一対の発光素子2(2-1,2-2)と受光素子3(3-1,3-2)は、共通波長での発光と受光をそれぞれ行う。詳しくは、半導体基板10-1における一つの発光素子2-1と半導体基板10-2における一つの受光素子3-1とが光信号の送受信を行うものである場合、発光素子2-1は波長λ1の光を出射し、受光素子3-1は波長λ1の光のみを受光する機能を有する。ここでいう波長λ1の光とは中心波長がλ1近傍の波長帯域を有する光を含んでいる。
 また、一つの半導体基板10-1に隣接配置された発光素子2-1,2-2は、異なる波長での発光を行い、一つの半導体基板10-2に隣接配置された受光素子3-1,3-2は、異なる波長での受光を行う。すなわち、半導体基板10-1において発光素子2-1,2-2が隣接配置されており、半導体基板10-2において発光素子2-1,2-2に対応した受光素子3-1,3-2が隣接配置されている場合には、発光素子2-1は波長λ1で発光して受光素子3-1は波長λ1の光のみを受光し、発光素子2-2は波長λ2で発光して受光素子3-2は波長λ2の光のみを受光する。
 ここでは波長λ1,λ2は、半導体基板10を透過することができる波長であることが要件となる。例えば、半導体基板10がSi基板である場合には、波長λ1,λ2の光は、近赤外以上の長波長光である。
 図2に示した光インターコネクション装置1においては、異なる半導体基板10(10-1,10-2)間で光信号の送受信を行う一対の発光素子2と受光素子3は、発光素子2で発光した光が集光手段4を介して受光素子3で受光される。図示の例では、集光手段4はレンズ部4Aによって構成されており、一面側に発光素子2又は受光素子3が形成されている半導体基板10の他面側にレンズ部4Aが形成されている。このレンズ部4Aは半導体基板10の表面をエッチング等で加工することによって形成することができる。
 図3は、本発明の実施形態に係る光インターコネクション装置における発光素子又は受光素子の構成例を示した説明図である。光インターコネクション装置1においては、半導体基板10に配置された発光素子2又は受光素子3は、半導体基板10を共通の半導体層とするpn接合部10pnを備えている。詳しくは、半導体基板10には共通の半導体層である第1半導体層10nと第2半導体層10pが形成されており、第1半導体層10nと第2半導体層10pとの境界付近にpn接合部10pnが形成されている。
 具体例を挙げると、半導体基板10はSi(シリコン)基板(単結晶基板)であり、第1半導体層10nは半導体基板10に15族元素、例えば、As(ヒ素),P(リン),Sb(アンチモン)から選択される不純物をドープしたn型Si層であり、第2半導体層10pは、第1半導体層10nに13族元素、例えば、B(ボロン),Al(アルミニウム),Ga(ガリウム)から選択される不純物をドープしたp型半導体層である。
 発光素子2又は受光素子3は、個々の発光素子2又は受光素子3毎にアイソレーションされた第2半導体層10pの周囲が絶縁膜5で区画されており、第2半導体層10pには電極6が接続されている。発光素子2においては、pn接合部10pnに順方向電圧を印加して発光素子2を駆動する駆動回路7が電極6に接続されている。受光素子3においては、pn接合部10pnに光が入射することによって発生する電圧を検出して受光素子3を駆動する駆動回路7が電極6に接続されている。第1半導体層10nは図示の例ではアースされている。
 図4は、本発明の実施形態に係る光インターコネクション装置の発光素子又は受光素子を形成する方法を示した説明図である。半導体基板10に形成される発光素子2又は受光素子3は、半導体基板10としてSi(シリコン)基板を用い、Si基板に15族元素、例えば、As(ヒ素),P(リン),Sb(アンチモン)から選択される不純物をドープして共通のn型Si層となる第1半導体層10nを形成し、この第1半導体層10nに不純物をドープすることで第2半導体層(p型半導体層)10pをパターン形成する。
 シリコン(Si)は、間接遷移型の半導体であって発光効率が低く、単にpn接合部を形成しただけでは有用な発光は得られないが、Si基板に光アシスト状態でアニールを施して、pn接合部近傍にドレスト光子を発生させ、間接遷移型半導体であるSiをあたかも直接遷移型半導体であるかのように変化させることで、高効率・高出力なpn接合型発光或いはpn接合型受光機能が得られる。
 より具体的には、15族元素、例えば、As(ヒ素),P(リン),Sb(アンチモン)から選択される不純物をドープしたn型Si層(第1半導体層10n)に13族元素、例えば、B(ボロン),Al(アルミニウム),Ga(ガリウム)から選択される不純物を高濃度ドープして第2半導体層(p型半導体層)10pを形成する。その後、第2半導体層10pを囲む絶縁膜5を形成し、第2半導体層10pに接続した電極に順方向電圧Vaを印加してpn接合部10pnに電流を流し、その電流によるジュール熱で第2半導体層10pにアニール処理を施す。
 アニール処理で13族元素、例えば、B(ボロン),Al(アルミニウム),Ga(ガリウム)から選択される不純物を拡散させる過程で、pn接合部10pnに特定波長λの光を照射する。アニール過程での光照射によってpn接合部10pn近傍にドレスト光子を発生させることができる。このようにドレスト光子が発生したpn接合部10pnは、pn接合部10pnに順方向電圧を印加すると、アニール過程で照射した光の波長λと同等の波長の光を放出する。また、pn接合部10pnは波長λの光にピーク感度を有する受光部として機能する。この際、13族元素の不純物としてB(ボロン)を選択した場合のドープ条件の一例は、ドーズ密度:5×1013/cm2、打ち込み時の加速エネルギー:700keVとする。
 異なる半導体基板10(10-1,10-2)間で光信号の送受信を行う一対の発光素子2と受光素子3をそれぞれ形成する際には、前述したアニール処理過程で照射する光の波長を同じ波長λにする。これによって、アニール処理で照射される光の波長によって発光素子2の発光波長と受光素子3の受光波長がλに特定されることになる。ここで選択される波長λは半導体基板10を透過することができる光の波長であり、半導体基板10がSi基板の場合には近赤外以上の長波長光が選択される。
 ここで、発光素子2と受光素子3は同一構成を備えることから、発光素子2として機能していたものを受光素子3として機能させることができ、その逆に、受光素子3として機能していたものを発光素子2として機能させることができる。この切り替えは、光インターコネクション装置1の周辺回路によって任意に切り換えることができ、この切り替えによって光信号の伝送経路を任意に変更することが可能になる。
 図5は、本発明の実施形態に係る光インターコネクション装置における発光素子又は受光素子の具体例を示した説明図である。(a)が断面構成を示しており、(b)が平面構成を示している。発光素子2又は受光素子3のそれぞれは、半導体基板10にpn接合部10pnを囲む絶縁性の素子分離層20を備え、半導体基板10の一面側において、素子分離層20の内側にp層電極とn層電極の一方になる第1電極21を配置すると共に、素子分離層20の外側にp層電極とn層電極の他方になる第2電極22を配置している。
 より具体的には、第1電極21は光透過性のp層電極21pであり、第2電極22は金属製のn層電極22nであって、素子分離層20の外周部に第2電極22に接続されるn+拡散層23を備えている。第1電極21と第2電極22にはそれぞれ引き出し配線21a,22aが接続されており、この引き出し配線21a,22aを含めて第1電極21と第2電極22間の電気的な絶縁を確保するために、第1層間絶縁膜24と第2層間絶縁膜25が積層配備されている((b)においては第1層間絶縁膜24と第2層間絶縁膜25は図示省略している)。
 このような構成を備える発光素子2又は受光素子3は、第1電極21上に発光部2S又は受光部3Sが形成され、発光部2S又は受光部3Sにおける半導体基板10の他面側(第1電極21が形成されていない側)に光透過部10Sが形成されている。これによって、半導体基板10における光透過部10Sを経由した発光又は受光が可能になる。ここで、第1電極21から第2電極22に向かう電流の流れは、pn接合部10pnを囲む素子分離層20の外周部に形成されるn+拡散層23に沿った流路が形成されるので、発光部2S又は受光部3S内で比較的均一な発光又は受光特性を得ることができる。
 図6は、本発明の実施形態に係る光インターコネクション装置の発光素子又は受光素子を形成する具体的な方法を示した説明図である。先ず、(a)に示すように、半導体基板10(Si基板)を加工して素子分離層20を形成するための溝部20eを形成する。この溝部20eは例えば異方性エッチングなどによって形成することができ、発光部又は受光部を囲むように形成される。溝部20eの形成後には、n+拡散層23をn型不純物のイオン注入などによって形成する。n+拡散層23は、溝部20eの底部及び外側にチャネル拡散層23aを形成し、更に半導体基板10の表面に第2電極22との接続を取るためのコンタクト拡散層23bを形成する。
 次に、(b)に示すように、溝部20eに酸化膜などの絶縁膜を埋め込んで素子分離層20を形成する。そして、(c)に示すように、第1層間絶縁膜24を形成し、n+拡散層23へのコンタクト開口を形成した後、第2電極22のパターンを形成する。その後、第2層間絶縁膜25を形成して、発光部又は受光部となる素子分離層20の内側を開口し、13族元素、例えば、B(ボロン),Al(アルミニウム),Ga(ガリウム)から選択される不純物を注入して素子分離層20の内側にpn接合部10pnを形成する。
 その後、半導体基板10上にITOなどの透明導電膜を成膜してパターニングすることで第1電極21を形成し、更にその他の回路構成を形成する。そして、第1電極21と第2電極22間に順方向電圧Vaを印加してpn接合部10pnに電流を流し、その電流によるジュール熱でのアニール処理で半導体基板10に注入した13族元素、例えば、B(ボロン),Al(アルミニウム),Ga(ガリウム)から選択される不純物を拡散させる過程で、pn接合部10pnに特定波長λの光を照射し、このようなアニール過程での光照射によってpn接合部10pn近傍にドレスト光子を発生させる。
 図7~図10は、本発明の実施形態に係る光インターコネクション装置の形態例を示した説明図である。図7,図8,図9は、3つ以上の複数の半導体基板10(10-A,10-B,10-C)間で光信号の送受信を行うことができるものである。図5に示した形態は、集光手段4として図2に示した例と同様にレンズ部4Aを備えたものである。レンズ部4Aは、一面側に発光素子2又は受光素子3が形成された半導体基板10の他面側に形成されている。図8に示した形態は、集光手段4として単レンズ4B又はレンズアレイ4Mを備えたものであり、単レンズ4B又はレンズアレイ4Mが積層配置された半導体基板10(10-A,10-B,10-C)の間に配置されたものである。図9に示した形態は、集光手段4としてフレネルゾーンプレート4Cなどの回折光学素子を備えたものであり、図7に示した例と同様に、一面側に発光素子2又は受光素子3が形成された半導体基板10の他面側にフレネルゾーンプレート4Cなどの回折光学素子が形成されている。
 図7~図9に示した例は、複数の半導体基板10(10-A,10-B,10-C)のそれぞれに複数の発光素子2と複数の受光素子3が形成されている。半導体基板10-Aと半導体基板10-Cに挟まれた半導体基板10-Bは、半導体基板10-Aの発光素子2(2-3)から送信された光信号を受信する受光素子3(3-3)を備えると共に、この受信した信号を半導体基板10-Cの受光素子3(3-4)に送信するための発光素子2(2-4)を備えている。この場合は、半導体基板10-Bは中継基板としての機能を有する。
 また、半導体基板10-Aと半導体基板10-Cに挟まれた半導体基板10-Bは、半導体基板10-Aの発光素子2(2-5)及び半導体基板10-Cの発光素子2(2-6)から送信された光信号を共に受信する受光素子3(3-5)を備えると共に、半導体基板10-Aの受光素子3(3-6)と半導体基板10-Cの受光素子3(3-7)の両方に光信号を送信する発光素子2(2-7)を備えている。この場合は、半導体基板10-Bは信号集約又は信号発信源としての機能を有する。
 図10に示した例は、一対の半導体基板10(10-X,10-Y)の一方に複数の発光素子2が形成され、他方に複数の受光素子3が形成されている。半導体基板10-Xにおける複数の発光素子2の配列位置と半導体基板10-Yにおける複数の受光素子3の配列位置の関係はレンズ部4Aに関して共役な関係にあり、レンズ部4Aによって半導体基板10-Xにおける複数の発光素子2の像を半導体基板10-Y上の複数の受光素子3の上に形成している。この場合、光信号の送受信を行う一対の発光素子2と受光素子3は共役な位置にあり、発光素子2-A,2-B,2-C,2-Dから発せられた光信号は対角位置にある受光素子3-D,3-C,3-B,3-Aがそれぞれ受光することになる。
 以上説明した本発明の実施形態に係る光インターコネクション装置は、複数の発光素子2又は受光素子3が半導体基板10を共通の半導体層とするpn接合部10pnを備え、一つの半導体基板10に半導体リソグラフィ技術を用いて作り込まれるので、比較的簡易な製造工程で発光素子2又は受光素子3の半導体基板10におけるアライメント精度を高めることができる。また、異なる半導体基板10間で光信号の送受信を行う一対の発光素子2と受光素子3が共通波長での発光と受光をそれぞれ行うので、半導体基板10間(チップ間)での信号伝送クロストークを抑制することが可能になる。
 また、半導体基板10に形成される発光素子2又は受光素子3は、半導体基板10の一面側に形成すればよいので、半導体基板10の両面に発光素子又は受光素子を形成するものと比較して、簡易に形成することが可能になる。
 また、集光手段4を介して発光素子2で発光した光を受光素子3に受光させることにより、発光素子2又は受光素子3を半導体基板10に高密度で配置した場合であっても半導体基板10間(チップ間)での信号伝送クロストークを抑制することが可能になる。
 特に、図7~図9に示すように、一つの半導体基板10(10-B)とその両面側に配置された半導体基板10(10-A,10-C)間で光信号の送受信を行う場合であっても、半導体基板10を透過して光信号の送受信を行うことができるので、一つの半導体基板10では一面側のみに発光素子2又は受光素子3を配置した形態でよく、素子間のアライメント等を含めて比較的簡易な製造が可能になる。
 以上、本発明の実施の形態について図面を参照して詳述してきたが、具体的な構成はこれらの実施の形態に限られるものではなく、本発明の要旨を逸脱しない範囲の設計の変更等があっても本発明に含まれる。また、上述の各実施の形態は、その目的及び構成等に特に矛盾や問題がない限り、互いの技術を流用して組み合わせることが可能である。
1:光インターコネクション装置,
2:発光素子,2S:発光部,3:受光素子,3S:受光部,
4:集光手段,5:絶縁膜,6:電極,
7:駆動回路,
10:半導体基板,
10n:第1半導体層(n型Si層),
10p:第2半導体層(p型半導体層),
10pn:pn接合部,
20:素子分離層,21:第1電極,22:第2電極,23:n+拡散層,
24:第1層間絶縁膜,25:第2層間絶縁膜

Claims (11)

  1.  積層配置された複数の半導体基板間で光信号の送受信を行う光インターコネクション装置であって、
     一つの前記半導体基板に配置された発光素子又は受光素子は、前記半導体基板を共通の半導体層とするpn接合部を備え、且つ前記半導体基板の一面側に形成され、
     異なる前記半導体基板間で光信号の送受信を行う一対の前記発光素子と前記受光素子は、当該発光素子で発光した光が前記半導体基板を透過して当該受光素子で受光されることを特徴とする光インターコネクション装置。
  2.  異なる前記半導体基板間で光信号の送受信を行う一対の前記発光素子と前記受光素子は、共通波長での発光と受光をそれぞれ行うことを特徴とする請求項1記載の光インターコネクション装置。
  3.  異なる前記半導体基板間で光信号の送受信を行う一対の前記発光素子と前記受光素子は、当該発光素子で発光した光が集光手段を介して当該受光素子で受光されることを特徴とする請求項1又は2記載の光インターコネクション装置。
  4.  前記集光手段は前記半導体基板の他面側に形成されていることを特徴とする請求項3記載の光インターコネクション装置。
  5.  前記集光手段は一対の前記半導体基板の間に配置されることを特徴とする請求項3記載の光インターコネクション装置。
  6.  前記集光手段はレンズであることを特徴とする請求項3記載の光インターコネクション装置。
  7.  前記集光手段は回折光学素子であることを特徴とする請求項3記載の光インターコネクション装置。
  8.  前記pn接合部は、前記共通の半導体層である第1半導体層に不純物を高濃度ドープして得られる第2半導体層に光を照射しながらアニール処理を施すことで得られ、
     前記発光素子又は前記受光素子のそれぞれは、前記アニール処理で照射される光の波長によって発光波長又は受光波長が特定されることを特徴とする請求項1~7のいずれかに記載された光インターコネクション装置。
  9.  前記半導体基板はSi基板であり、
     前記第1半導体層は、前記半導体基板に15族元素をドープしたn型半導体層であり、
     前記第2半導体層は、前記不純物として13族元素をドープしたp型半導体層であることを特徴とする請求項8記載の光インターコネクション装置。
  10.  前記発光素子又は前記受光素子のそれぞれは、前記半導体基板に前記pn接合部を囲む絶縁性の素子分離層を備え、
     前記半導体基板の一面側において、前記素子分離層の内側にp層電極とn層電極の一方になる第1電極を配置すると共に前記素子分離層の外側にp層電極とn層電極の他方になる第2電極を配置したことを特徴とする請求項1~9のいずれか1項に記載の光インターコネクション装置。
  11.  前記第1電極は光透過性のp層電極であり、
     前記第2電極は金属製のn層電極であり、
     前記素子分離層の外周部に前記第2電極に接続されるn+拡散層を備えることを特徴とする請求項10記載の光インターコネクション装置。
PCT/JP2013/083033 2013-01-11 2013-12-10 光インターコネクション装置 WO2014109158A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/760,378 US20160006518A1 (en) 2013-01-11 2013-12-10 Optical interconnection device
KR1020157016255A KR20150105309A (ko) 2013-01-11 2013-12-10 광 인터커넥션 장치
CN201380070056.8A CN104919731A (zh) 2013-01-11 2013-12-10 光互联装置

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013004015 2013-01-11
JP2013-004015 2013-01-11
JP2013-214230 2013-10-11
JP2013214230A JP2014150520A (ja) 2013-01-11 2013-10-11 光インターコネクション装置

Publications (1)

Publication Number Publication Date
WO2014109158A1 true WO2014109158A1 (ja) 2014-07-17

Family

ID=51166820

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/083033 WO2014109158A1 (ja) 2013-01-11 2013-12-10 光インターコネクション装置

Country Status (6)

Country Link
US (1) US20160006518A1 (ja)
JP (1) JP2014150520A (ja)
KR (1) KR20150105309A (ja)
CN (1) CN104919731A (ja)
TW (1) TW201432333A (ja)
WO (1) WO2014109158A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190190237A1 (en) * 2016-09-29 2019-06-20 Intel Corporation Optical free air bus interconnect
JP6661594B2 (ja) * 2017-12-12 2020-03-11 ファナック株式会社 モジュール及び電子機器
KR102059968B1 (ko) * 2018-04-05 2019-12-27 한국과학기술연구원 중적외선을 이용한 반도체 칩간 광통신 기술

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55151377A (en) * 1979-05-16 1980-11-25 Fujitsu Ltd Photo semiconductor device
JPS6430277A (en) * 1987-07-27 1989-02-01 Hitachi Ltd Light convergent type light-emitting device
JPH0231153U (ja) * 1988-08-20 1990-02-27
JPH02262357A (ja) * 1989-04-03 1990-10-25 Nippon Telegr & Teleph Corp <Ntt> 積層半導体装置における信号授受方法
JPH02286358A (ja) * 1989-04-28 1990-11-26 Canon Inc 発光装置
JPH0323671A (ja) * 1989-06-21 1991-01-31 Nippon Sheet Glass Co Ltd 集積化機能デバイス及びその製造方法並びにこのデバイスを用いた機能モジュール
JPH0777632A (ja) * 1993-07-12 1995-03-20 Ricoh Co Ltd 受光モジュール
JPH1048403A (ja) * 1996-07-30 1998-02-20 Nec Corp モノリシックレンズの製造方法
JP2004022901A (ja) * 2002-06-18 2004-01-22 Seiko Epson Corp 光インターコネクション集積回路、光インターコネクション集積回路の製造方法、電気光学装置および電子機器
JP2005045073A (ja) * 2003-07-23 2005-02-17 Hamamatsu Photonics Kk 裏面入射型光検出素子
JP2010530670A (ja) * 2007-06-11 2010-09-09 ヒューレット−パッカード デベロップメント カンパニー エル.ピー. 光配線

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4031384B2 (ja) * 2003-03-19 2008-01-09 日本電信電話株式会社 シリコン光集積回路
US8687664B2 (en) * 2006-03-08 2014-04-01 Agere Systems Llc Laser assembly with integrated photodiode
JP2008241465A (ja) * 2007-03-27 2008-10-09 Toshiba Corp 固体撮像装置およびその駆動方法
KR101240558B1 (ko) * 2007-11-05 2013-03-06 삼성전자주식회사 광 연결 수단을 구비한 멀티칩
JP2014096684A (ja) * 2012-11-08 2014-05-22 V Technology Co Ltd 光インターコネクション装置

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55151377A (en) * 1979-05-16 1980-11-25 Fujitsu Ltd Photo semiconductor device
JPS6430277A (en) * 1987-07-27 1989-02-01 Hitachi Ltd Light convergent type light-emitting device
JPH0231153U (ja) * 1988-08-20 1990-02-27
JPH02262357A (ja) * 1989-04-03 1990-10-25 Nippon Telegr & Teleph Corp <Ntt> 積層半導体装置における信号授受方法
JPH02286358A (ja) * 1989-04-28 1990-11-26 Canon Inc 発光装置
JPH0323671A (ja) * 1989-06-21 1991-01-31 Nippon Sheet Glass Co Ltd 集積化機能デバイス及びその製造方法並びにこのデバイスを用いた機能モジュール
JPH0777632A (ja) * 1993-07-12 1995-03-20 Ricoh Co Ltd 受光モジュール
JPH1048403A (ja) * 1996-07-30 1998-02-20 Nec Corp モノリシックレンズの製造方法
JP2004022901A (ja) * 2002-06-18 2004-01-22 Seiko Epson Corp 光インターコネクション集積回路、光インターコネクション集積回路の製造方法、電気光学装置および電子機器
JP2005045073A (ja) * 2003-07-23 2005-02-17 Hamamatsu Photonics Kk 裏面入射型光検出素子
JP2010530670A (ja) * 2007-06-11 2010-09-09 ヒューレット−パッカード デベロップメント カンパニー エル.ピー. 光配線

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
T. KAWAZOE ET AL.: "Highly efficient and broadband Si homojunction structured near-infrared light emitting diodes based on the photon-assisted optical near-field process", APPLIED PHYSICS B, vol. 104, 16 June 2011 (2011-06-16), pages 747 - 754 *

Also Published As

Publication number Publication date
TW201432333A (zh) 2014-08-16
CN104919731A (zh) 2015-09-16
JP2014150520A (ja) 2014-08-21
KR20150105309A (ko) 2015-09-16
US20160006518A1 (en) 2016-01-07

Similar Documents

Publication Publication Date Title
TWI744196B (zh) 製造影像感測陣列之方法
WO2014073297A1 (ja) 光インターコネクション装置
KR101240558B1 (ko) 광 연결 수단을 구비한 멀티칩
JP2017112169A (ja) イメージセンサ、撮像システム及びイメージセンサの製造方法
KR102514047B1 (ko) 복수의 기능이 통합된 이미지 센서 및 이를 포함하는 이미지 센서 모듈
JP2008091889A (ja) 有機発光素子および無機光検出器を備える集積光結合器
US7732886B2 (en) Pin photodiode structure
US20090032896A1 (en) Optical semiconductor device
WO2014109158A1 (ja) 光インターコネクション装置
WO2010047058A1 (ja) 光半導体装置
JP5137563B2 (ja) 横型構成電気光学デバイス
JP2009260160A (ja) 光半導体装置
WO2014103692A1 (ja) 半導体光集積回路
WO2022011694A1 (zh) 一种单光子雪崩二极管及其制造方法、光检测器件及系统
KR20150055663A (ko) 이미지센서 및 그의 제조 방법
US11887999B2 (en) Photodetector
WO2015141424A1 (ja) 光インターコネクション装置
Liou et al. Monolithically GaN-based Optocoupler with Chip Scaling
KR20170074579A (ko) 크로스톡 방지 구조를 가지는 실리콘 광전자 증배센서
KR100459897B1 (ko) 복합소자 및 이를 채용한 광전송모듈
KR20230032808A (ko) 단일 광자 검출 소자, 단일 광자 검출기, 및 단일 광자 검출기 어레이
KR101481171B1 (ko) 이중 게이트로 조절되는 다이오드 구조를 포함하는 반도체 장치
WO2014073296A1 (ja) 光インターコネクション装置
CN104201219A (zh) 光电二极管以及光电二极管阵列

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13870429

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20157016255

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14760378

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13870429

Country of ref document: EP

Kind code of ref document: A1