WO2014108997A1 - 空気調和装置 - Google Patents

空気調和装置 Download PDF

Info

Publication number
WO2014108997A1
WO2014108997A1 PCT/JP2013/050103 JP2013050103W WO2014108997A1 WO 2014108997 A1 WO2014108997 A1 WO 2014108997A1 JP 2013050103 W JP2013050103 W JP 2013050103W WO 2014108997 A1 WO2014108997 A1 WO 2014108997A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchanger
refrigerant
flow rate
outdoor heat
cooling
Prior art date
Application number
PCT/JP2013/050103
Other languages
English (en)
French (fr)
Inventor
航祐 田中
博文 ▲高▼下
幸志 東
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2014556239A priority Critical patent/JP5897154B2/ja
Priority to PCT/JP2013/050103 priority patent/WO2014108997A1/ja
Priority to EP13870917.5A priority patent/EP2944897B1/en
Priority to CN201380069776.2A priority patent/CN104903662B/zh
Priority to US14/653,883 priority patent/US10168060B2/en
Publication of WO2014108997A1 publication Critical patent/WO2014108997A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • F24F11/84Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers using valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0007Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater cooling apparatus specially adapted for use in air-conditioning
    • F24F5/001Compression cycle type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/004Outdoor unit with water as a heat sink or heat source
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/006Compression machines, plants or systems with reversible cycle not otherwise provided for two pipes connecting the outdoor side to the indoor side with multiple indoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0231Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units with simultaneous cooling and heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0233Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units in parallel arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/025Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units
    • F25B2313/0252Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units with bypasses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02741Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using one four-way valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2501Bypass valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/006Tubular elements; Assemblies of tubular elements with variable shape, e.g. with modified tube ends, with different geometrical features

Definitions

  • the present invention relates to an air conditioner.
  • the heat exchange amount of a heat exchanger is defined as an AK value that is the product of a heat transfer area A (m 2 ) and a heat transfer rate K (W / m 2 ⁇ K). There was control to reduce the thermal conductance.
  • control has been performed to reduce the fan air volume by reducing the number of fan rotations, and as a result, to reduce the heat conductance by reducing the heat exchange amount (for example, patents) Reference 1).
  • the flow rate of the refrigerant flowing through the air-cooled heat exchanger is reduced by bypassing the refrigerant, and as a result, control is performed to reduce the thermal conductance by reducing the heat exchange amount (for example, Patent Document 3). reference).
  • a heat source unit and a load unit are provided, and by switching a three-way switching valve provided in each of a plurality of indoor heat exchangers provided in the load unit, and by switching a three-way switching valve provided in each of a plurality of indoor heat exchangers provided in the load unit, There is one in which a cooling refrigeration cycle and a heating refrigeration cycle are formed in one refrigerant circuit, and simultaneous cooling and heating operations are performed (for example, see Patent Document 4).
  • JP-A-5-184181 (paragraph [0009]) JP 2003-343936 A (paragraph [0058]) JP 2000-161808 (paragraph [0009]) Japanese Patent No. 2522361 (conventional technology)
  • Patent Document 4 in order to improve the reliability of the drive device of the compressor, it is necessary to secure the compression ratio to a predetermined value or more, for example, 2 or more.
  • a predetermined value for example, 2 or more.
  • the compression ratio is set to a predetermined value. In order to ensure a value higher than that, it is necessary to reduce the thermal conductance.
  • Patent Document 4 a case where a complete heat recovery operation is performed between indoor units is assumed when a cooling and heating simultaneous operation is performed.
  • the air conditioning load ratio between the cooling operation and the heating operation is substantially the same. Therefore, when performing a complete heat recovery operation, it is necessary to reduce the amount of heat exchange in the outdoor heat exchanger.
  • an indoor unit during cooling operation needs to have an evaporation temperature of 0 ° C. or higher to prevent freezing.
  • the indoor unit is prevented from freezing.
  • the driving equipment had to be stopped. Therefore, the start / stop of the drive device of the compressor frequently occurred.
  • the thermal conductance of the outdoor heat exchanger provided in the outdoor unit can be reduced by a necessary amount, the amount of heat exchange is reduced, so that there is no possibility of freezing.
  • the thermal conductance can be reduced to a certain value, there is a factor that cannot reduce the thermal conductance by a necessary amount.
  • the outdoor fan has to be rotated with a certain airflow or more in order to cool the electronic circuit board accommodated in the outdoor unit.
  • the cooling water has to be flowed at a certain flow rate or more in order to prevent pitting corrosion. Therefore, the conventional air conditioner (Patent Document 4) cannot reduce the thermal conductance by a necessary amount.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to provide an air conditioner that can improve indoor comfort and energy saving.
  • An air conditioner includes a compressor that compresses and discharges a refrigerant, the heat source unit-side heat exchanger that exchanges heat between the refrigerant and an inflowing heat medium, the refrigerant, A use side heat exchanger for exchanging heat with a use medium; a bypass pipe for bypassing the refrigerant flowing into the heat source machine side heat exchanger; and the heat source machine side heat exchanger provided in the bypass pipe A bypass flow rate adjustment valve that adjusts the flow rate of the refrigerant flowing into the heat source, the heat source unit side heat exchanger has a first flow path for circulating the refrigerant and a second flow path for circulating the heat medium. The first flow path is formed to circulate the refrigerant from bottom to top.
  • the air conditioner according to the present invention uses the bypass flow rate adjustment valve and the liquid head of the outdoor heat exchanger through which the refrigerant and the heat medium circulate, so that the thermal conductance of the outdoor heat exchanger is required. Can only be lowered. Therefore, the air conditioning apparatus according to the present invention has an effect that indoor comfort and energy saving can be improved.
  • FIG. 1 It is a figure which shows an example of the refrigerant circuit 1 of the air conditioning apparatus in Embodiment 1 of this invention. It is a figure which shows an example of schematic structure of the outdoor heat exchanger 35 in Embodiment 1 of this invention. It is a figure which shows an example of correlation with the Cv value of the bypass flow regulating valve 43 in Embodiment 1 of this invention, and the liquid phase ratio of the outdoor heat exchanger 35. FIG. It is a figure which shows an example of correlation with Cv value and AK value of the bypass flow control valve 43 when the compressor operating capacity in Embodiment 1 of this invention is made into a fixed value.
  • Embodiment 1 of this invention Comprising: It is a figure which shows an example of the refrigerant
  • Embodiment 1 of this invention It is a flowchart explaining the detail of the operation amount calculation process in Embodiment 1 of this invention. It is a flowchart explaining the detail of the instruction value calculation process in Embodiment 1 of this invention. It is a figure which shows an example of the refrigerant circuit 2 of the air conditioning apparatus in Embodiment 2 of this invention. It is a figure which shows an example of schematic structure of the outdoor heat exchanger 35 in Embodiment 2 of this invention. It is a figure which shows an example of schematic structure of the outdoor heat exchanger 35 in Embodiment 3 of this invention. It is a figure which shows an example of correlation with Cv value and AK value of the bypass flow control valve 43 when the compressor operating capacity in Embodiment 3 of this invention is made into a fixed value.
  • Embodiment 1 FIG.
  • the first embodiment requires the thermal conductance of the outdoor heat exchanger 35 by using the bypass flow rate adjusting valve 43 and the liquid head of the outdoor heat exchanger 35 through which each of the refrigerant and the heat medium flows. Reduce by minutes. Accordingly, a state in which the compressor drive device frequently starts and stops is avoided, and the efficiency of heat recovery between the indoor units is improved, thereby improving indoor comfort and energy saving.
  • details of the first embodiment will be described in order with reference to FIGS.
  • the shape and size of what are described in the various drawings described in the first embodiment are merely examples, and the present invention is not particularly limited thereto.
  • FIG. 1 is a diagram illustrating an example of a refrigerant circuit 1 of an air-conditioning apparatus according to Embodiment 1 of the present invention.
  • the refrigerant circuit 1 includes an outdoor unit 11, indoor units 12-1 to 12-N, and the like.
  • a first connection pipe 21, a second connection pipe 23, and a third connection pipe 25 are provided between the outdoor unit 11 and the indoor units 12-1 to 12-N, as will be described in detail later. It has been.
  • the refrigerant circuit 1 includes a control unit 13 and performs various operations described below based on commands from the control unit 13.
  • the outdoor unit 11 includes a four-way valve 33 and the like which will be described later in detail, and the indoor units 12-1 to 12-N include a three-way switching valve 51 and the like which will be described later in detail.
  • the refrigerant flow path is switched by switching the four-way valve 33 or the three-way switching valve 51 according to a command from the control unit 13, and various operations such as a cooling operation, a heating operation, a heating-based cooling / heating simultaneous operation, and a cooling-based cooling / heating simultaneous operation are performed.
  • the mode can be changed.
  • some of the indoor units 12-1 to 12-N are switched to the cooling operation side by the three-way switching valve 51, and some of the indoor units 12-1 to 12-N are switched to the three-way switching valve.
  • a cooling refrigeration cycle and a heating refrigeration cycle are formed, and a cooling / heating simultaneous operation in which the cooling operation and the heating operation are performed simultaneously is executed.
  • the indoor units 12-1 to 12-N are referred to as indoor units 12 unless otherwise distinguished.
  • the outdoor unit 11 includes a compressor 31, the four-way valve 33 described above with respect to the outline, an outdoor heat exchanger 35, and the like.
  • the outdoor unit 11 includes a bypass pipe 41 and a bypass flow rate adjustment valve 43.
  • the outdoor heat exchanger 35 corresponds to the heat source unit side heat exchanger in the present invention.
  • the compressor 31 has a discharge side and a suction side connected to two of the four ports of the four-way valve 33, respectively.
  • the compressor 31 supplies high-temperature and high-pressure refrigerant gas to the refrigerant circuit 1 by compressing and discharging the refrigerant.
  • the four-way valve 33 includes four ports, and each port is connected to the discharge side of the compressor 31, the outdoor heat exchanger 35, the suction side of the compressor 31, and the second connection pipe 23, respectively. Switch the refrigerant flow path.
  • the outdoor heat exchanger 35 is provided between the four-way valve 33 and the first connection pipe 21.
  • the outdoor heat exchanger 35 is formed of, for example, a water-cooled heat exchanger, and details thereof will be described later, but each of the refrigerant and the inflowing heat medium flows along a gravity direction 95 described later in FIG. Thus, heat exchange is performed.
  • the heat medium is, for example, cooling water such as water or brine, but is not particularly limited thereto.
  • the outdoor heat exchanger 35 is described as being formed by a water-cooled heat exchanger, but is not particularly limited thereto.
  • the outdoor heat exchanger 35 may be an air-cooled heat exchanger.
  • a fan is provided in the air-cooled heat exchanger, and the amount of heat exchange between the refrigerant inside the air-cooled heat exchanger and the heat medium around the air-cooled heat exchanger is adjusted by adjusting the rotation speed of the fan. Is adjusted.
  • the heat medium is, for example, air, but is not particularly limited thereto.
  • the bypass pipe 41 connects the inlet side and the outlet side of the refrigerant of the outdoor heat exchanger 35 in a short circuit, and bypasses a part of the refrigerant flowing into the outdoor heat exchanger 35 to the outside of the outdoor heat exchanger 35. It is piping. As the refrigerant flows through the bypass pipe 41, the refrigerant flowing through the outdoor heat exchanger 35 decreases. That is, by adjusting the flow rate of the refrigerant flowing through the bypass pipe 41, the flow rate of the refrigerant flowing through the outdoor heat exchanger 35 is adjusted.
  • the bypass flow rate adjustment valve 43 is a flow rate adjustment valve provided in the bypass pipe 41 and having a variable opening degree, and adjusts the flow rate of the refrigerant flowing through the bypass pipe 41.
  • the indoor unit 12 includes the three-way switching valve 51, the indoor heat exchanger 53, the first expansion valve 55, and the like described above for the outline.
  • FIG. 1 illustrates an example in which N indoor units 12 are provided, the specific number of units is not particularly limited, and various operation modes, for example, simultaneous cooling and heating, are set according to the construction environment. The number of indoor units 12 required for operation or the like may be provided.
  • the indoor heat exchanger 53 corresponds to the use side heat exchanger in the present invention.
  • the three-way switching valve 51 includes three ports, and each port is connected to a first connection pipe 21, a second connection pipe 23, and a refrigerant pipe provided in the indoor heat exchanger 53, respectively. Switch the flow path.
  • the indoor heat exchanger 53 is provided between the three-way switching valve 51 and the first expansion valve 55.
  • the indoor heat exchanger 53 is formed of, for example, an air-cooled heat exchanger, and heat exchange is performed between the refrigerant and the surrounding utilization medium.
  • illustration is abbreviate
  • the first expansion valve 55 is provided between the indoor heat exchanger 53 and the third connection pipe 25.
  • the first expansion valve 55 is a flow rate adjusting valve having a variable opening, a function of adjusting the flow rate of the refrigerant flowing between the indoor heat exchanger 53 and the third connection pipe 25, and a high-pressure refrigerant. It has the function of constricting and expanding the liquid to the low pressure part.
  • the first connection pipe 21 is provided between the outdoor heat exchanger 35 and the first port of the three-way switching valve 51.
  • the first connection pipe 21 is connected to the third connection pipe 25 at a branch point provided in the middle of the first connection pipe 21.
  • the second connection pipe 23 is provided between one port of the four-way valve 33 and the second port of the three-way switching valve 51.
  • the third port of the three-way switching valve 51 is connected to the refrigerant pipe provided in the indoor heat exchanger 53 as described above.
  • the third connection pipe 25 is provided between a branch point provided in the middle of the first connection pipe 21 and the first expansion valve 55.
  • a second expansion valve 61 is provided in the third connection pipe 25.
  • the second expansion valve 61 is a flow rate adjustment valve having a variable opening, a function of adjusting the flow rate of the refrigerant flowing through the third connection pipe 25, and a function of expanding and expanding the high-pressure refrigerant liquid to the low-pressure part.
  • the control unit 13 is configured mainly with a microprocessor unit, for example, and issues a command related to the control of the outdoor unit 11, the control of the indoor unit 12, and the linkage control between the outdoor unit 11 and the indoor unit 12.
  • the outdoor unit 11 and the indoor units 12-1 to 12-N are connected in parallel via the first connection pipe 21, the second connection pipe 23, and the third connection pipe 25. Yes. Due to this connection configuration, the control unit 131 can switch the indoor unit 12 for heating operation and the indoor unit 12 for cooling operation among the indoor units 12-1 to 12-N by the three-way switching valve 51. . Therefore, in the refrigerant circuit 1, a cooling refrigeration cycle and a heating refrigeration cycle are formed, and a cooling and heating simultaneous operation in which a cooling operation and a heating operation are performed simultaneously can be executed.
  • FIG. 2 is a diagram illustrating an example of a schematic configuration of the outdoor heat exchanger 35 according to Embodiment 1 of the present invention.
  • the outdoor heat exchanger 35 is formed in a shape having a longitudinal direction along the gravity direction 95.
  • the outdoor heat exchanger 35 includes a hole 37a, a hole 37b, a hole 37c, and a hole 37d.
  • the holes 37a and 37b are entrances and exits through which the refrigerant flows.
  • the hole 37c and the hole 37d are entrances and exits through which a heat medium such as cooling water flows.
  • the hole 37a and the hole 37d are formed below the outdoor heat exchanger 35 when the direction indicated by the arrow in the direction of gravity 95 is defined as the downward direction.
  • the hole 37b and the hole 37c are formed above the outdoor heat exchanger 35 when the direction indicated by the arrow in the direction of gravity 95 is defined as the downward direction. That is, the refrigerant flows along the gravity direction 95. Further, the heat medium, for example, cooling water flows along the gravity direction 95.
  • a first flow path 111 through which a refrigerant flows and a second flow path 112 through which a heat medium, for example, cooling water flows, are formed facing each other along the gravity direction 95.
  • the first flow path 111 and the second flow path 112 include a refrigerant flow path that circulates in the plate heat exchanger.
  • one end of the refrigerant pipe is directed to the bypass pipe 41 and the hole 37a in the first branch portion 101. Branches to the piping.
  • the bypass pipe 41 is provided at a position higher than the holes 37a and 37b.
  • the refrigerant piping toward the hole 37a extends downward and is connected to the hole 37a when the direction indicated by the arrow in the direction of gravity 95 is defined as the downward direction.
  • the bypass pipe 41 has a first end and a second end.
  • the bypass pipe 41 has a first end connected to the first branch portion 101 that branches the hole 37 a side and the refrigerant pipe connected to the four-way valve 33. Further, the bypass pipe 41 has a second end connected to the second branch portion 102 that branches the hole 37 b side and the first connection pipe 21.
  • a bypass flow path that bypasses the outdoor heat exchanger 35 without passing through the interior of the outdoor heat exchanger 35 is formed.
  • the hole 37 c and the hole 37 d are connected to the cooling water pipe 27.
  • the cooling water pipe 27 is connected to, for example, a pump (not shown), and the cooling water flows along with the driving of the pump. Since the bypass flow rate adjustment valve 43 is provided in the bypass pipe 41, the bypass flow rate adjustment valve 43 is also provided at a position higher than the holes 37a and 37b.
  • the first branch portion 101 and the second branch portion 102 are provided at the height of the bypass flow rate adjustment valve 43.
  • the refrigerant travels along the refrigerant traveling directions 93a, 93b, and 93c, and thereby flows from the hole 37a to the hole 37b. Further, when the operation mode is the heating operation or the heating main operation, the refrigerant flows from the hole 37b to the hole 37a by traveling in the opposite direction to the cooling operation or the cooling main operation. Note that the refrigerant traveling directions 93a, 93b, and 93c are referred to as a refrigerant traveling direction 93 unless particularly distinguished. In any of the operation modes, the cooling water flows along the cooling water traveling directions 91a and 91b and flows from the hole 37c to the hole 37d. In addition, the advancing direction demonstrated above shows an example, and it does not specifically limit it.
  • the pressure difference ⁇ Pf due to friction loss is proportional to the 1.75th power of the flow velocity, so the pressure difference ⁇ Pf due to friction loss decreases as the refrigerant flow velocity decreases.
  • the pressure difference ⁇ Pw due to the liquid head generated by the refrigerant condensate is formed along the gravity direction 95 in the first flow path 111 that is the flow path of the refrigerant that flows through the outdoor heat exchanger 4. .
  • the pressure difference ⁇ Pw caused by the liquid head generated by the refrigerant condensate increases. Further, in the outdoor heat exchanger 35, a liquid column is generated due to the condensed liquid. Further, since the first branch portion 101 is provided at the height of the bypass flow rate adjustment valve 43, the first branch portion 101 is provided at a position higher than the hole 37 b of the outdoor heat exchanger 35. Therefore, in the outdoor heat exchanger 35, the influence of the pressure difference ⁇ Pw caused by the liquid head generated by the condensate of the refrigerant can be increased.
  • the pressure difference ⁇ Pf due to friction loss is referred to as a pressure difference ⁇ Pf.
  • the pressure difference ⁇ Pw caused by the liquid head generated by the refrigerant condensate is referred to as a pressure difference ⁇ Pw.
  • the hole 37a or the hole 37b corresponds to the refrigerant inflow hole in the present invention.
  • the holes 37a to 37d are referred to as holes 37 unless otherwise distinguished.
  • the first flow path 111 and the second flow path 112 formed inside the outdoor heat exchanger 35 are shown in a modeled state in FIG. 2, and the actual shape is simple as shown in FIG. It is not necessary to form in a shape that advances in one direction.
  • FIG. 3 is a diagram showing an example of the correlation between the Cv value of the bypass flow rate adjustment valve 43 and the liquid phase ratio of the outdoor heat exchanger 35 in Embodiment 1 of the present invention.
  • the horizontal axis indicates the Cv value that is the opening change amount of the bypass flow rate adjustment valve 43, that is, the Cv value of the bypass flow rate adjustment valve 43
  • the vertical axis indicates the liquid phase ratio of the outdoor heat exchanger 35.
  • the Cv value is not used as a fixed value unique to the pipe, but is used as the flow rate of the refrigerant in the bypass pipe 41 that is changed according to the opening degree of the bypass flow rate adjustment valve 43. .
  • the liquid phase ratio of the outdoor heat exchanger 35 increases.
  • the refrigerant does not flow through the bypass pipe 41, that is, when the refrigerant does not bypass the outdoor heat exchanger 35, a state in which the degree of supercooling is ensured at the outlet of the outdoor heat exchanger 35 (for example, the liquid phase ratio
  • the liquid phase ratio of the outdoor heat exchanger 35 is defined as 20% because the COP (Coefficient of Performance) of the refrigeration cycle is the highest.
  • COP Coefficient of Performance
  • the flow rate of the refrigerant flowing through the bypass pipe 41 increases more as the flow rate of the refrigerant that bypasses the bypass pipe 41 increases, so that it becomes difficult to flow to the outdoor heat exchanger 35 with the pressure difference ⁇ Pw. .
  • FIG. 4 is a diagram illustrating an example of the correlation between the Cv value and the AK value of the bypass flow rate adjustment valve 43 when the compressor operating capacity in the first embodiment of the present invention is a fixed value.
  • the horizontal axis indicates the Cv value of the bypass flow rate adjustment valve 43
  • the vertical axis indicates the AK value.
  • heat transfer pipes that are refrigerant channels in the outdoor heat exchanger are arranged horizontally. Therefore, since the conventional outdoor heat exchanger does not have a liquid head, the decrease rate of the AK value with respect to the Cv value is small as shown in FIG.
  • the conventional outdoor heat exchanger is provided with the bypass pipe 41, the bypass pipe 41 is provided with the bypass flow rate adjustment valve 43, the opening degree of the bypass flow rate adjustment valve 43 is adjusted, and the bypass flow rate adjustment valve 43 is opened. Even so, the decrease rate of the AK value of the conventional outdoor heat exchanger without the liquid head is smaller than the decrease rate of the AK value of the outdoor heat exchanger 35 in the first embodiment with the liquid head.
  • the outdoor heat exchanger 45 does not necessarily devise about the cross-sectional area of a height direction, but shows the case where the cross-sectional area of a height direction is constant as mentioned above.
  • FIG. 5 is a diagram showing an example of the correlation between the Cv value and the AK value of the bypass flow rate adjustment valve 43 when the compressor operating capacity in the first embodiment of the present invention is a variable value.
  • the horizontal axis indicates the Cv value of the bypass flow rate adjustment valve 43
  • the vertical axis indicates the AK value.
  • the reduction in the flow rate of the refrigerant in the first flow path 111 corresponds to a reduction in the heat transfer area A (m 2 ), which is one of the parameters of the AK value.
  • the heat transfer area A (m 2 ) corresponds to the heat transfer area inside the tube.
  • the AK value decreases. That is, as the operating capacity of the compressor 31 decreases, the Cv value at which the AK value becomes zero differs. Therefore, as will be described later with reference to the flowchart, the upper limit opening degree of the bypass flow rate adjustment valve 43 is set according to the operating capacity of the compressor 31. Note that the AK value becoming zero means that the refrigerant scheduled to flow into the outdoor heat exchanger 35 is completely bypassed.
  • FIG. 6 is a diagram showing an example of a refrigerant circulation diagram for explaining an operation state in the case of only cooling or heating in Embodiment 1 of the present invention.
  • FIG. 7 is a diagram showing an example of a refrigerant circulation diagram for explaining an operation state in the case of heating and cooling simultaneous operation in Embodiment 1 of the present invention and mainly heating.
  • FIG. 8 is a diagram showing an example of a refrigerant circulation diagram for explaining an operation state in the case of cooling and heating simultaneous operation in the first embodiment of the present invention and mainly cooling.
  • the high-temperature and high-pressure refrigerant gas discharged from the compressor 31 is led from the outdoor side to the indoor side through the second connection pipe 23, and the indoor heat is passed through the three-way switching valves 51 of the indoor units 12-1 to 12-N. It flows into the exchanger 53 and is condensed and liquefied by exchanging heat (heating).
  • the refrigerant in a liquid state flows through each first expansion valve 55, flows into the third connection pipe 25, joins, and flows through the second expansion valve 61.
  • either the first expansion valve 55 or the second expansion valve 61 is depressurized to a low-pressure gas-liquid two-phase state.
  • the refrigerant whose pressure has been reduced to a low pressure flows into the outdoor heat exchanger 35 of the outdoor unit 11 through the first connection pipe 21, exchanges heat with the outdoor heat exchanger 35, becomes a gas state, and again becomes the compressor 31. Inhaled. As a result, a refrigerant circulation cycle is formed, and heating operation is performed.
  • the high-temperature and high-pressure refrigerant gas discharged from the compressor 31 exchanges heat with the outdoor heat exchanger 35 and is condensed and liquefied, and then flows in the order of the first connection pipe 21 and the third connection pipe 25. Flows into 12-1 to 12-N.
  • the refrigerant flowing into each of the indoor units 12-1 to 12-N is decompressed to a low pressure by the first expansion valve 55, flows into the indoor heat exchanger 53, and exchanges heat (cools) with the indoor air. Evaporate and gasify.
  • the refrigerant in the gas state is again sucked into the compressor 31 through the second connection pipe 23 via the three-way switching valve 51. As a result, a refrigerant circulation cycle is formed, and the cooling operation is performed.
  • the indoor unit 12-1 is in the cooling operation state and the indoor units 12-2 to 12-N are in the heating operation state.
  • the refrigerant discharged from the compressor 31 flows, for example, from the second connection pipe 23 into the indoor units 12-2 to 12-N in the heating operation state via the three-way switching valve 51, and the indoor units 12-2 to 12- Heat is exchanged (heated) in each of the indoor heat exchangers 53 in 12-N to be condensed and liquefied.
  • the condensed and liquefied refrigerant flows through the first expansion valve 55 in a substantially fully opened state and flows into the third connection pipe 25.
  • a part of the refrigerant liquid flowing into the third connection pipe 25 flows into the indoor unit 12-1 in the cooling operation state, and is decompressed by the first expansion valve 55. 12-1 flows into the indoor heat exchanger 53, heat exchanges (cools), evaporates into a gas state, and flows into the first connection pipe 21 via the three-way switching valve 51.
  • the other refrigerant liquid is depressurized to a low pressure by the second expansion valve 61, and then is transferred from the third connection pipe 25 to the first connection pipe 21.
  • the refrigerant flows in and merges with the refrigerant from the indoor unit 12-1 in the cooling operation state, exchanges heat with the outdoor heat exchanger 35, evaporates the refrigerant into a gas state, and returns to the compressor 31 again. As a result, a refrigerant circulation cycle is formed, and a heating / cooling simultaneous heating / cooling operation is performed.
  • the indoor unit 12-1 is in the heating operation state and the indoor units 12-2 to 12-N are in the cooling operation state.
  • the refrigerant discharged from the compressor 31 flows into the outdoor heat exchanger 35 and exchanges heat by an arbitrary amount in accordance with the flow rate of the heat medium such as cooling water flowing into the cooling water pipe 27, and the gas-liquid two-phase
  • the high temperature and high pressure state is established, and the first connection pipe 21 leads from the outdoor side to the indoor side.
  • a part of the refrigerant flows into the indoor unit 12-1 in the indoor unit 12-1 through the three-way switching valve 51 to the indoor unit 12-1 in the heating operation state. It is introduced into the exchanger 53, exchanges heat (heats), condenses, and flows into the third connection pipe 25 from the first expansion valve 55 in the indoor unit 12-1.
  • the other refrigerants flow through the third connection pipe 25, flow through the second expansion valve 61 in the fully opened state, and are in the heating operation state. It merges with the refrigerant from 12-1.
  • the combined refrigerant is decompressed from the third connection pipe 25 to the low pressure state by the first expansion valve 55 in each of the indoor units 12-2 to 12-N in the cooling operation state, and then the indoor unit 12- It flows into the indoor heat exchanger 53 located at 2 to 12-N, exchanges heat (cools), and evaporates into a gas state.
  • the refrigerant in a gas state flows into the second connection pipe 23 via the three-way switching valve 51 and returns to the compressor 31 again. As a result, a refrigerant circulation cycle is formed, and cooling and heating simultaneous operation mainly performed by cooling is performed.
  • FIG. 9 is a diagram showing an example of a ph diagram during the cooling main operation in the first embodiment of the present invention.
  • the outdoor heat exchanger 35 has a condenser function as described above. Therefore, the amount of heat obtained by subtracting the heating air conditioning load from the sum of the cooling air conditioning load and the input at the compressor 31 is radiated by the outdoor heat exchanger 35, and the cooling and heating simultaneous operation is performed.
  • the heat radiation amount radiated by the outdoor heat exchanger 35 can be brought close to zero, the energy saving performance can be improved.
  • the heat exchange amount of the outdoor heat exchanger 35 may be reduced.
  • the flow rate of the refrigerant flowing through the outdoor heat exchanger 35 may be reduced by opening the bypass flow rate adjustment valve 43 as described above.
  • the refrigerant circuit 1 can bring the heat exchange amount in the outdoor heat exchanger 35 closer to zero, the heat radiation amount in the outdoor heat exchanger 35 can be brought closer to zero. Therefore, energy saving can be improved.
  • the evaporation temperature Te of the indoor heat exchanger 53 in the cooling operation state is set to a constant value of 0 ° C., for example. This is because there is a possibility of freezing when the temperature is 0 ° C. or lower. Further, during the cooling main operation, the condensation temperature Tc of the indoor heat exchanger 53 in the heating operation state is set to a constant value of 50 ° C., for example.
  • FIG. 10 is a diagram showing an example of a ph diagram during heating-main operation in Embodiment 1 of the present invention.
  • the outdoor heat exchanger 35 has the function of an evaporator as described above. Therefore, the amount of heat obtained by subtracting the sum of the cooling air conditioning load and the input from the compressor 31 from the heating air conditioning load is absorbed by the outdoor heat exchanger 35, and the simultaneous cooling and heating operation is performed.
  • the energy saving performance can be improved.
  • the heat exchange amount of the outdoor heat exchanger 35 may be reduced.
  • the flow rate of the refrigerant flowing through the outdoor heat exchange 35 may be reduced by opening the bypass flow rate adjustment valve 43.
  • the refrigerant circuit 1 can bring the heat exchange amount in the outdoor heat exchanger 35 close to zero, the heat absorption amount in the outdoor heat exchanger 35 can be brought closer to zero. Therefore, energy saving can be improved.
  • steps for describing the program for performing the operation of the first embodiment are not limited to the processing performed in time series according to the described order, but are not necessarily performed in time series, either in parallel or individually. Also includes processing to be performed.
  • FIG. 11 is a flowchart illustrating a control example of the control unit 13 according to Embodiment 1 of the present invention.
  • the process for improving the comfort and energy saving in the room is mainly the operation mode determination process and the control amount setting process.
  • the control amount setting process is mainly an operation amount calculation process and an instruction value calculation process.
  • Step S11 The control unit 13 executes an operation mode determination process. The details of the operation mode determination process will be described with reference to FIG.
  • Step S12 After determining the operation mode, the control unit 13 performs an operation amount calculation process. Details of the operation amount calculation processing will be described with reference to FIG.
  • Step S13 After calculating the operation amount, the control unit 13 executes an instruction value calculation process and ends the process. Details of the instruction value calculation process will be described with reference to FIG.
  • FIG. 12 is a flowchart for explaining the details of the operation mode determination process in the first embodiment of the present invention.
  • Step S21 The control unit 13 determines whether the indoor unit 12 has requested cooling. When the indoor unit 12 has requested cooling, the control unit 13 proceeds to step S22. On the other hand, when the indoor unit 12 has not requested cooling, the control unit 13 proceeds to step S24.
  • Step S22 The control unit 13 determines whether or not the indoor unit 12 has only a cooling request. When the indoor unit 12 has only a cooling request, the control unit 13 proceeds to step S23. On the other hand, the control part 13 progresses to step S24, when the indoor unit 12 is not only a cooling request
  • Step S23 The controller 13 sets the cooling only operation flag to 1 and ends the process.
  • the state in which the cooling only operation flag is 1 means that all the indoor units 12 among the indoor units 12-1 to 12-N are in the cooling operation state.
  • Step S24 The control unit 13 determines whether or not the indoor unit 12 has requested heating. When the indoor unit 12 requests heating, the control unit 13 proceeds to step S25. On the other hand, the control part 13 complete
  • Step S25 The control unit 13 determines whether or not the cooling ratio is high. When the cooling ratio is high, the control unit 13 proceeds to step S26. On the other hand, when the cooling ratio is not high, the control unit 13 proceeds to step S27.
  • the high cooling ratio here means that among the indoor units 12-1 to 12-N, the number of indoor units 12 in the cooling operation state is larger than the number of indoor units 12 in the heating operation state.
  • Step S26 The control unit 13 sets the cooling main operation flag to 1 and ends the process.
  • the state where the cooling main operation flag is 1 here means that the cooling operation and the heating operation are performed in any of the indoor units 12-1 to 12-N, respectively. This means that the number of indoor units 12 in the cooling operation state is larger than the number of indoor units 12 in the heating operation state.
  • Step S27 The control unit 13 determines whether or not the indoor unit 12 has only a heating request. Control part 13 progresses to Step S28, when indoor unit 12 is only a heating demand. On the other hand, the control part 13 progresses to step S29, when the indoor unit 12 is not only a heating request
  • Step S28 The controller 13 sets the all heating operation flag to 1 and ends the process.
  • the state where the all heating operation flag is 1 means that all the indoor units 12 among the indoor units 12-1 to 12-N are in the heating operation state.
  • Step S29 The control unit 13 determines whether or not the heating ratio is high. When the heating ratio is high, the control unit 13 proceeds to step S30. On the other hand, the control part 13 complete
  • Step S30 The control unit 13 sets the heating main operation flag to 1 and ends the process.
  • the state where the heating main operation flag is 1 means that the cooling operation and the heating operation are performed in any of the indoor units 12-1 to 12-N, and the indoor units 12-1 to 12-N This means that the number of indoor units 12 in the heating operation state is larger than the number of indoor units 12 in the cooling operation state.
  • FIG. 13 is a flowchart for explaining the details of the operation amount calculation process in the first embodiment of the present invention.
  • the operation amount calculation process is performed differently depending on whether the operation mode is a cooling only operation or a cooling main operation and a heating only operation or a heating main operation. This is because the outdoor heat exchanger 35 is used as a condenser in the case of a cooling only operation or a cooling main operation, and the outdoor heat exchanger 35 is used as an evaporator in a heating only operation or a heating main operation. is there.
  • the opening operation amount of the bypass flow rate adjustment valve 43 is calculated based on the condensation temperature Tc of the indoor unit 12 in the heating operation state.
  • the opening operation amount of the bypass flow rate adjustment valve 43 is calculated based on the evaporation temperature Te of the indoor unit 12 in the cooling operation state.
  • Step S41 The control unit 13 determines whether or not the logical sum of the cooling only operation flag and the cooling main operation flag is 1. When the logical sum of the cooling only operation flag and the cooling main operation flag is 1, the control unit 13 proceeds to step S42. On the other hand, when the logical sum of the cooling only operation flag and the cooling main operation flag is not 1, the control unit 13 proceeds to step S48.
  • Step S42 The control unit 13 acquires the set evaporation temperature Te.
  • Te 0 ° C. as the evaporation temperature set corresponding to the evaporation temperature of the indoor unit 12 in the cooling operation state.
  • Step S43 The control unit 13 acquires the current evaporation temperature Te_now. For example, the control unit 13 acquires the current evaporation temperature Te_now of the indoor unit 12 in the cooling operation state.
  • Step S44 The control unit 13 calculates an operation amount ⁇ F (Hz) of the compressor frequency based on the set evaporation temperature Te and the current evaporation temperature Te_now. Specifically, the control unit 13 calculates the operation amount ⁇ F (Hz) of the compressor frequency so that the current evaporation temperature Te_now becomes the set evaporation temperature Te. That is, the operation amount ⁇ F (Hz) of the compressor frequency is obtained so that the deviation between the set evaporation temperature Te and the current evaporation temperature Te_now becomes zero.
  • Step S45 The control unit 13 acquires the set condensation temperature Tc.
  • Tc 50 ° C. as the condensing temperature set corresponding to the condensing temperature of the indoor unit 12 in the heating operation state.
  • Step S46 The control unit 13 acquires the current condensation temperature Tc_now. For example, the control unit 13 acquires the current condensation temperature Tc_now of the indoor unit 12 in the heating operation state.
  • Step S47 The control unit 13 calculates the opening operation amount ⁇ L (pulse) of the bypass flow rate adjustment valve 43 based on the set condensation temperature Tc and the current condensation temperature Tc_now, and ends the process. Specifically, the control unit 13 calculates the opening operation amount ⁇ L (pulse) of the bypass flow rate adjustment valve 43 so that the current condensation temperature Tc_now becomes the set condensation temperature Tc. That is, the opening operation amount ⁇ L (pulse) of the bypass flow rate adjustment valve 43 is obtained so that the deviation between the set condensation temperature Tc and the current condensation temperature Tc_now becomes zero.
  • Step S48 The control unit 13 determines whether or not the logical sum of the heating only operation flag and the heating main operation flag is 1. When the logical sum of the heating only operation flag and the heating main operation flag is 1, the control unit 13 proceeds to step S49. On the other hand, if the logical sum of the heating only operation flag and the heating main operation flag is not 1, the control unit 13 ends the process.
  • Step S49 The control unit 13 acquires the set condensation temperature Tc.
  • Tc 50 ° C. as the condensing temperature set corresponding to the condensing temperature of the indoor unit 12 in the heating operation state.
  • Step S50 The control unit 13 acquires the current condensation temperature Tc_now. For example, the control unit 13 acquires the current condensation temperature Tc_now of the indoor unit 12 in the heating operation state.
  • Step S51 The control unit 13 calculates an operation amount ⁇ F (Hz) of the compressor frequency based on the set condensation temperature Tc and the current condensation temperature Tc_now. Specifically, the control unit 13 calculates an operation amount ⁇ F (Hz) of the compressor frequency so that the current condensation temperature Tc_now becomes the set condensation temperature Tc. That is, the operation amount ⁇ F (Hz) of the compressor frequency is obtained so that the deviation between the set condensation temperature Tc and the current condensation temperature Tc_now becomes zero.
  • Step S52 The control unit 13 acquires the set evaporation temperature Te.
  • Te 0 ° C. as the evaporation temperature set corresponding to the evaporation temperature of the indoor unit 12 in the cooling operation state.
  • Step S53 The control unit 13 acquires the current evaporation temperature Te_now. For example, the control unit 13 acquires the current evaporation temperature Te_now of the indoor unit 12 in the cooling operation state.
  • Step S54 The control unit 13 calculates the opening operation amount ⁇ L (pulse) of the bypass flow rate adjustment valve 43 based on the set evaporation temperature Te and the current evaporation temperature Te_now, and ends the process. Specifically, the control unit 13 calculates the opening operation amount ⁇ L (pulse) of the bypass flow rate adjustment valve 43 so that the current evaporation temperature Te_now becomes the set evaporation temperature Te. That is, the opening operation amount ⁇ L (pulse) of the bypass flow rate adjustment valve 43 is obtained so that the deviation between the set evaporation temperature Te and the current evaporation temperature Te_now becomes zero.
  • step S41 to step S47 corresponds to the operation amount calculation processing when cooling or cooling is mainly performed
  • step S42 to step S44 corresponds to the compressor frequency operation amount calculation processing
  • Steps S45 to S47 correspond to bypass flow rate adjustment valve opening manipulated variable calculation processing.
  • step S48 to step S54 corresponds to the operation amount calculation processing when heating or heating is mainly performed
  • step S49 to step S51 corresponds to the compressor frequency operation amount calculation processing
  • steps S52 to S54 correspond to bypass flow rate adjustment valve opening manipulated variable calculation processing.
  • the process related to the evaporation temperature or the process related to the condensation temperature is described for each corresponding indoor unit 12, but actually, the same process is repeatedly executed for the corresponding number of units. .
  • an average value may be obtained and used as a representative value.
  • the method for obtaining the representative value is not particularly limited.
  • FIG. 14 is a flowchart for explaining the details of the instruction value calculation process in the first embodiment of the present invention.
  • Step S71 The control unit 13 acquires an operation amount ⁇ F of the compressor frequency.
  • Step S72 The control unit 13 acquires the current operating frequency Fnow.
  • Step S73 The control unit 13 calculates the frequency instruction value F of the compressor capacity based on the current operation frequency Fnow and the operation amount ⁇ F of the compressor frequency. For example, the control unit 13 calculates as in the following equation (1).
  • the frequency instruction value F is obtained by adding the operation amount ⁇ F of the compressor frequency to the current operating frequency Fnow.
  • ⁇ F may be positive or negative.
  • Step S74 The control unit 13 sets the maximum opening degree LMax of the bypass flow rate adjustment valve 43 according to the frequency instruction value F of the compressor capacity. For example, this setting may be obtained from the correlation between the Cv value and the AK value described with reference to FIG.
  • Step S75 The control unit 13 acquires the opening operation amount ⁇ L.
  • Step S76 The control unit 13 acquires the current opening degree Lnow.
  • Step S77 The control unit 13 calculates the opening instruction value L of the bypass flow rate adjustment valve 43 within the range of the maximum opening LMax based on the opening operation amount ⁇ L and the current opening Lnow. For example, the control unit 13 calculates as in the following equation (2).
  • the opening instruction value L is obtained by adding the opening operation amount ⁇ L to the current opening Lnow.
  • ⁇ L may be positive or negative.
  • Step S78 The control unit 13 sets the opening degree instruction value L of the bypass flow rate adjustment valve 43.
  • Step S79 The control unit 13 sets a frequency instruction value F for the compressor capacity, and ends the process.
  • step S71 to step S73 corresponds to the compressor capacity frequency instruction value calculation processing.
  • step S74 to step S77 corresponds to bypass flow rate adjustment valve opening instruction value calculation processing.
  • steps S78 and S79 correspond to the instruction value setting process.
  • the bypass flow rate adjustment valve 43 may be opened. This is because the outdoor heat exchanger 35 is formed at a position where the direction in which the refrigerant flows and the direction in which the heat medium flows are opposed to each other along the gravity direction 95. Due to this configuration, the influence of the liquid head is increased, so that the required maximum Cv value of the bypass flow rate adjustment valve 43 is reduced.
  • bypass flow rate adjustment valve 43 since the required maximum Cv value of the bypass flow rate adjustment valve 43 is reduced, a small capacity of the bypass flow rate adjustment valve 43 is sufficient. Therefore, since the bypass flow rate adjusting valve 43 itself can be made smaller than the conventional one, cost reduction can be realized.
  • bypass flow rate adjusting valve 43 has the same Cv value as the conventional one, the refrigerant circulating in the outdoor heat exchanger 35 is circulated so as to face each other, so the AK value of the outdoor heat exchanger 35 That is, the control range on the lower limit side of the thermal conductance is expanded. Therefore, in the case of the total heat recovery operation during the low capacity operation of the compressor or the simultaneous cooling and heating operation, the controllability of the refrigeration cycle is improved and the refrigeration cycle is stabilized. Therefore, the comfort and energy saving that can be provided by the air conditioner are improved.
  • bypass flow rate adjusting valve 43 is installed above the refrigerant inlet side of the outdoor heat exchanger 35, the liquid head becomes large. Therefore, the controllable range of the AK value of the outdoor heat exchanger 35, that is, the heat source apparatus side heat exchanger is expanded, and the controllability is improved.
  • the upper limit opening degree of the bypass flow rate adjusting valve 43 is set according to the compressor operating capacity, the control range where the AK value becomes zero can be reduced. Therefore, it is possible to prevent deterioration in controllability caused by excessively opening the bypass flow rate adjustment valve 43. Therefore, since the refrigeration cycle is stabilized, comfort and energy saving that can be provided by the air conditioner are improved.
  • the opening degree of the bypass flow rate adjustment valve 43 is controlled before the change in the operation capacity of the compressor 31, even if the operation frequency of the compressor 31 is lowered, the liquid in the outdoor heat exchanger 35 is It is possible to prevent a high pressure excessive increase or a discharge temperature increase accompanying a decrease in the capacity of the heat exchanger due to refrigerant clogging. Therefore, since the refrigeration cycle is stabilized, comfort and energy saving provided by the air conditioner are improved.
  • the air-cooled heat exchanger has the same effect as described above.
  • the compressor 31 that compresses and discharges the refrigerant, the outdoor heat exchanger 35 that exchanges heat between the refrigerant and the flowing heat medium, the refrigerant, and the surrounding use An indoor heat exchanger 53 that exchanges heat with the medium, a bypass pipe 41 that bypasses the refrigerant flowing into the outdoor heat exchanger 35, and a refrigerant that is provided in the bypass pipe 41 and flows into the outdoor heat exchanger 35
  • the outdoor heat exchanger 35 includes a first flow path 111 through which a refrigerant flows and a second flow path 112 through which a heat medium flows, and includes a first flow path.
  • Reference numeral 111 denotes an air conditioner that distributes the refrigerant from the bottom to the top.
  • the air conditioner uses the bypass flow rate adjustment valve 43 and the liquid head of the outdoor heat exchanger 35 through which each of the refrigerant and the heat medium flows, so that the thermal conductance of the outdoor heat exchanger 35 is obtained. Can be reduced as much as necessary. Therefore, the air conditioner has an effect of improving indoor comfort and energy saving.
  • the control range of the heat exchange amount of the outdoor heat exchanger 35 is expanded.
  • the required AK value is small during low capacity cooling operation with low outside air, the refrigeration cycle is likely to hunt and become unstable due to the influence of outside air, but the control lower limit value of the AK value is expanded. Therefore, the refrigeration cycle is stabilized.
  • the air conditioning apparatus of the first embodiment can improve indoor comfort and energy saving.
  • the outdoor heat exchanger 35 is configured as an air conditioner in which the first flow path 111 and the second flow path 112 are formed to face each other.
  • the pressure loss is improved by the difference between the liquid heads in the outdoor heat exchanger 35 and the refrigerant pipe on the inlet side connected to the hole 37a of the outdoor heat exchanger 35. Therefore, it becomes energy saving by reducing the low pressure loss. Further, in the outdoor heat exchanger 35, the cooling and the heat medium are counterflowed by cooling or heating, so that the heat exchange efficiency is increased and energy is saved.
  • a hole 37a through which the refrigerant flows into the outdoor heat exchanger 35 is formed, and the bypass flow rate adjustment valve 43 is configured as an air conditioner provided on the upper side with respect to the hole 37a. .
  • the liquid head becomes larger, the controllable range of the AK value of the outdoor heat exchanger 35 is expanded, and the controllability can be improved.
  • an air conditioner that increases the upper limit value of the Cv value of the bypass flow rate adjustment valve 43 as the operating capacity of the compressor 31 is increased is configured.
  • control part 13 is performing air-conditioning simultaneous operation, Comprising:
  • the air conditioning apparatus which sets the opening degree of the bypass flow volume adjustment valve 43, and sets the operating capacity of the compressor 31 is provided. Composed.
  • bypass flow rate adjustment valve 43 is controlled in advance of the compressor 31, it is possible to prevent a decrease in the heat exchange amount due to the clogging of the outdoor heat exchanger 35 and stabilize the refrigeration cycle. be able to.
  • Embodiment 2 The difference from the first embodiment is that a bridge circuit formed by a plurality of check valves 71a to 71d is further provided between the compressor 31 and the plurality of indoor units 12, and the outdoor heat exchanger 35 is bridged. By being provided at the midpoint of the circuit, the refrigerant flow direction is made the same during cooling and during heating.
  • the second embodiment items that are not particularly described are the same as those in the first embodiment, and the same functions and configurations are described using the same reference numerals.
  • FIG. 15 is a diagram illustrating an example of the refrigerant circuit 2 of the air-conditioning apparatus according to Embodiment 2 of the present invention.
  • FIG. 16 is a diagram illustrating an example of a schematic configuration of the outdoor heat exchanger 35 according to Embodiment 2 of the present invention.
  • the refrigerant circuit 2 includes a bridge circuit formed by a plurality of check valves 71a to 71d between the compressor 31 and the plurality of indoor units 12.
  • the outdoor heat exchanger 35 is provided at the midpoint of the bridge circuit.
  • the check valves 71a to 71d make the flow direction of the refrigerant flowing through the first flow path 111 the same in the heating main operation with a low ratio of the heating operation or the cooling operation. That is, when any one of the indoor heat exchangers 53 functions as a condenser, the two-phase refrigerant flowing into the outdoor heat exchanger 35 is caused to flow from the bottom to the top as shown in FIG.
  • the outdoor heat exchanger 35 can hold the liquid refrigerant that contributes to the evaporation of the refrigerant out of the two-phase refrigerant flowing in. Therefore, since the latent heat of vaporization can be used effectively, the heat transfer performance is improved and the energy saving performance is improved.
  • the pressure difference ⁇ Pw1 caused by the liquid head from the first branch 101 to the hole 37a and the pressure difference ⁇ Pw2 caused by the liquid head from the hole 37a to the hole 37b are the evaporator inlet refrigerant density ⁇ 1> the average in the evaporator. From the relationship of the refrigerant density ⁇ 2, the relationship of the following equation (3) is established.
  • the refrigerant and the fluid to be heat exchanged are counterflowed in both cases of cooling and heating, so that the temperature difference is reduced due to the Lorentz cycle, and the heat High exchange efficiency and energy saving.
  • an outdoor heat exchanger is further provided with a bridge circuit formed by a plurality of check valves 71 between the compressor 31 and the plurality of indoor heat exchangers 53. 35 is provided at an intermediate point of the bridge circuit, and the bridge circuit has a flow direction of the refrigerant flowing through the first flow path 111 when any of the plurality of indoor heat exchangers 53 functions as a condenser.
  • An air conditioner is configured to cause the air to face in the direction from the bottom to the top.
  • the outdoor heat exchanger 35 can hold the liquid refrigerant that contributes to evaporation of the refrigerant out of the two-phase refrigerant flowing in. Therefore, since the latent heat of vaporization can be used effectively, the heat transfer performance is improved and the energy saving performance is improved.
  • Embodiment 3 The difference from the first and second embodiments is that the flow passage cross-sectional area of the outdoor heat exchanger 36 increases as the height of the refrigerant flow passage and the cooling water flow passage formed in the outdoor heat exchanger 36 increases. It is the point formed by expanding.
  • items not particularly described are the same as those in the first and second embodiments, and the same functions and configurations are described using the same reference numerals.
  • FIG. 17 is a diagram illustrating an example of a schematic configuration of the outdoor heat exchanger 36 according to Embodiment 3 of the present invention.
  • FIG. 18 is a diagram illustrating an example of the correlation between the Cv value and the AK value of the bypass flow rate adjustment valve 43 when the compressor operating capacity in the third embodiment of the present invention is a fixed value.
  • the outdoor heat exchanger 36 is a condenser, that is, when the heating operation is performed, the outdoor heat exchanger 36 has a refrigerant flow from the hole 38b toward the hole 38a as shown in FIG.
  • a liquid phase portion is formed from the downstream side of the flow. That is, a liquid phase part is formed from the upper side to the lower side of the first flow path 121 of the outdoor heat exchanger 36.
  • the liquid phase ratio of the outdoor heat exchanger 36 increases as the cross-sectional area on the upstream side of the first flow path 121 of the outdoor heat exchanger 35 decreases.
  • the increase rate of the accompanying liquid head becomes high.
  • the bypass flow rate adjustment valve 43 is It can be downsized, saving space and reducing costs.
  • the increase rate of the liquid head accompanying the increase in the liquid phase ratio of the outdoor heat exchanger 36 is increased, so that the opening degree change amount of the bypass flow rate adjustment valve 43 is increased.
  • the present invention is not particularly limited thereto.
  • the flow passage cross-sectional area of the outdoor heat exchanger 36 increases as the height of the first flow passage 121 and the second flow passage 122 increases. It is good also as a structure formed by reducing.
  • the flow path cross-sectional area of the outdoor heat exchanger 36 may be variable, and the flow path cross-sectional area may be set in the cooling operation or the heating operation.
  • a plurality of gates may be provided inside the first channel 121, and the channel cross-sectional area may be made variable by opening and closing the gates as appropriate.
  • the configuration of the channel cross-sectional area described above is an example, and is not particularly limited.
  • the outdoor heat exchanger 35 is an air formed by increasing the cross-sectional area of the flow path as the height of the first flow path 121 and the second flow path 122 increases.
  • a harmony device is constructed.
  • Embodiments 1 to 3 may be implemented independently or in combination. In either case, the advantageous effects described above are produced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Air Conditioning Control Device (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

 冷媒を圧縮して吐出する圧縮機31と、冷媒と、流入した熱媒体との間で、熱交換する室外熱交換器35と、冷媒と、周囲の利用媒体との間で、熱交換する室内熱交換器53と、室外熱交換器35に流入する冷媒をバイパスするバイパス配管41と、バイパス配管41に設けられ、室外熱交換器35に流入する冷媒の流量を調整するバイパス流量調整弁43とを備え、室外熱交換器35は、冷媒を流通させる第1流路111と、熱媒体を流通させる第2流路112とが形成され、第1流路111は、冷媒を下から上に沿って流通させる。

Description

空気調和装置
 本発明は、空気調和装置に関する。
 従来、熱交換器の容量制御のうち、熱交換器の熱交換量として、伝熱面積A(m)と熱通過率K(W/m・K)との積であるAK値で定義される熱コンダクタンスを低下させる制御があった。
 例えば、空冷式熱交換器に対し、ファンの回転数を低減させることでファン風量を下げ、その結果、熱交換量を低下させることで熱コンダクタンスを低下させる制御が行われていた(例えば、特許文献1参照)。
 また、例えば、空冷式熱交換器を複数個に分割し、熱交換量を低下させるときには分割された空冷式熱交換器の使用個数を減らし、その結果、伝熱面積A(m)を低下させることで熱コンダクタンスを低下させる制御が行われていた(例えば、特許文献2参照)。
 また、例えば、冷媒をバイパスさせることで空冷式熱交換器に流れる冷媒流量を減らし、その結果、熱交換量を低下させることで熱コンダクタンスを低下させる制御が行われていた(例えば、特許文献3参照)。
 また、従来の空気調和装置のうち、熱源機側ユニットと負荷側ユニットとを備え、負荷側ユニットに備えられた複数の室内熱交換器の各々に設けられている三方切替弁を切り換えることで、1つの冷媒回路内に冷房用冷凍サイクルと暖房用冷凍サイクルとが形成され、冷暖房同時運転が行われるものがあった(例えば、特許文献4参照)。
特開平5-184181号公報(段落[0009]) 特開2003-343936号公報(段落[0058]) 特開2000-161808号公報(段落[0009]) 特許第2522361号公報(従来の技術)
 従来の空気調和装置(特許文献4)においては、圧縮機の駆動機器の信頼性を向上させるため、圧縮比を所定値以上、例えば、2以上に確保する必要がある。例えば、冷房運転時であって、外気温度が低い状態での空調運転の場合、又は、冷房運転時であって、圧縮機運転容量を低下させた状態での空調運転の場合、圧縮比を所定値以上に確保するため、熱コンダクタンスを低下させる必要がある。
 また、例えば、従来の空気調和装置(特許文献4)において、冷暖房同時運転が行われている場合、室内機間で完全熱回収運転が行われる場合を想定する。完全熱回収運転は、冷房運転と暖房運転との空調負荷比率がほぼ同等である。よって、完全熱回収運転を行う場合、室外熱交換器での熱交換量を低減していく必要がある。例えば、冷房主体運転中に完全熱回収運転を行うには、室外熱交換器での放熱量をゼロに近づけることで室外熱交換器での熱交換量を低減していく必要がある。また、例えば、暖房主体運転中に完全熱回収運転を行うには、室外熱交換器での吸熱量をゼロに近づけることで室外熱交換器での熱交換量を低減していく必要がある。つまり、室外熱交換器の熱コンダクタンスを必要な分だけ低下させる必要がある。
 また、例えば、冷房運転中の室内機は、凍結防止のために蒸発温度を0℃以上に確保する必要があり、低圧圧力が低下した場合には室内機の凍結を防止するため、圧縮機の駆動機器を停止させなければならなかった。よって、圧縮機の駆動機器の発停が頻繁に発生していた。ここで、室外機に設けられている室外熱交換器の熱コンダクタンスを必要な分だけ低下させることができると想定すると、熱交換量が減るため凍結に至る虞がない。
 しかしながら、ある一定値までは熱コンダクタンスを低下させることはできるが、必要な分だけ熱コンダクタンスを低下させることができない要因があった。例えば、室外熱交換器として空冷式熱交換器が設けられている場合、室外機に収納されている電子回路基板を冷却するために一定以上の風量で室外ファンを回転させなければならなかった。また、例えば、室外熱交換器として水冷式熱交換器が設けられている場合、孔食を防止するために冷却水を一定以上の流速で流さなければならなかった。よって、従来の空気調和装置(特許文献4)は、必要な分だけ熱コンダクタンスを低下させることができなかった。
 換言すれば、上記で説明したいずれの場合においても、室外熱交換器の熱コンダクタンスを必要な分だけ低下させることができないため、圧縮機の駆動機器の発停が頻繁に発生すると共に、室内機間での熱回収も効率が悪かった。したがって、室内の快適性が悪化すると共に、省エネ性が低下するという問題点があった。
 本発明は、上記のような問題点を解決するためになされたもので、室内の快適性及び省エネ性を向上させることができる空気調和装置を提供することを目的とするものである。
 本発明に係る空気調和装置は、冷媒を圧縮して吐出する圧縮機と、前記冷媒と、流入した熱媒体との間で、熱交換する熱源機側熱交換器と、前記冷媒と、周囲の利用媒体との間で、熱交換する利用側熱交換器と、前記熱源機側熱交換器に流入する前記冷媒をバイパスするバイパス配管と、前記バイパス配管に設けられ、前記熱源機側熱交換器に流入する前記冷媒の流量を調整するバイパス流量調整弁とを備え、前記熱源機側熱交換器は、前記冷媒を流通させる第1流路と、前記熱媒体を流通させる第2流路とが形成され、前記第1流路は、前記冷媒を下から上に沿って流通させるものである。
 本発明に係る空気調和装置は、バイパス流量調整弁と、冷媒と熱媒体とのそれぞれが流通する室外熱交換器の液ヘッドとを利用することで、室外熱交換器の熱コンダクタンスを必要な分だけ低下させることができる。よって、本発明に係る空気調和装置は、室内の快適性及び省エネ性を向上させることができるという効果を有する。
本発明の実施の形態1における空気調和装置の冷媒回路1の一例を示す図である。 本発明の実施の形態1における室外熱交換器35の概略構成の一例を示す図である。 本発明の実施の形態1におけるバイパス流量調整弁43のCv値と室外熱交換器35の液相比率との相関関係の一例を示す図である。 本発明の実施の形態1における圧縮機運転容量を固定値とした場合のバイパス流量調整弁43のCv値とAK値との相関関係の一例を示す図である。 本発明の実施の形態1における圧縮機運転容量を可変値とした場合のバイパス流量調整弁43のCv値とAK値との相関関係の一例を示す図である。 本発明の実施の形態1における冷房又は暖房のみの場合の運転状態を説明する冷媒循環図の一例を示す図である。 本発明の実施の形態1における冷暖房同時運転であって、暖房主体の場合の運転状態を説明する冷媒循環図の一例を示す図である。 本発明の実施の形態1における冷暖房同時運転であって、冷房主体の場合の運転状態を説明する冷媒循環図の一例を示す図である。 本発明の実施の形態1における冷房主体運転時のp-h線図の一例を示す図である。 本発明の実施の形態1における暖房主体運転時のp-h線図の一例を示す図である。 本発明の実施の形態1における制御部13の制御例を説明するフローチャートである。 本発明の実施の形態1における運転モード判定処理の詳細を説明するフローチャートである。 本発明の実施の形態1における操作量演算処理の詳細を説明するフローチャートである。 本発明の実施の形態1における指示値演算処理の詳細を説明するフローチャートである。 本発明の実施の形態2における空気調和装置の冷媒回路2の一例を示す図である。 本発明の実施の形態2における室外熱交換器35の概略構成の一例を示す図である。 本発明の実施の形態3における室外熱交換器35の概略構成の一例を示す図である。 本発明の実施の形態3における圧縮機運転容量を固定値とした場合のバイパス流量調整弁43のCv値とAK値との相関関係の一例を示す図である。
 以下、本発明の実施の形態について、図面を用いて詳細に説明する。
実施の形態1.
 本実施の形態1は、バイパス流量調整弁43と、冷媒と熱媒体とのそれぞれが流通する室外熱交換器35の液ヘッドとを利用することで、室外熱交換器35の熱コンダクタンスを必要な分だけ低下させる。よって、圧縮機の駆動機器の発停が頻繁に発生する状態が回避され、室内機間の熱回収の効率も向上するため、室内の快適性及び省エネ性を向上させる。以下、本実施の形態1の詳細について図1~11を用いて順に説明する。なお、本実施の形態1で説明する各種図面に記載されたものの形状及び大きさは一例を示すだけであり、特にこれに限定しない。
 図1は、本発明の実施の形態1における空気調和装置の冷媒回路1の一例を示す図である。図1に示すように、冷媒回路1は、室外機11及び室内機12-1~12-N等を備える。室外機11と、室内機12-1~12-Nとの間には、詳細については後述するが、第1の接続配管21、第2の接続配管23、及び第3の接続配管25が設けられている。また、冷媒回路1は、制御部13を備え、制御部13からの指令に基づいて後述する各種動作が行われる。室外機11は詳細については後述する四方弁33等を備え、室内機12-1~12-Nは詳細については後述する三方切替弁51等を備える。四方弁33又は三方切替弁51が制御部13の指令で切り替えられることで冷媒流路が切り替えられ、冷房運転、暖房運転、暖房主体の冷暖房同時運転、及び冷房主体の冷暖房同時運転等の各種運転モードに変更可能となっている。
 例えば、詳細については後述するが、室内機12-1~12-Nの一部が三方切替弁51で冷房運転側に切り替えられ、室内機12-1~12-Nの一部が三方切替弁51で暖房運転側に切り替えられることで、冷房用冷凍サイクルと、暖房用冷凍サイクルとが形成され、冷房運転と暖房運転とが同時に実行される冷暖房同時運転が実行される。なお、室内機12-1~12-Nを特に区別しない場合、室内機12と称する。
 室外機11は、圧縮機31、概略について上述した四方弁33、及び室外熱交換器35等を備える。また、室外機11は、バイパス配管41及びバイパス流量調整弁43を備える。なお、室外熱交換器35は、本発明における熱源機側熱交換器に相当する。
 圧縮機31は、吐出側と吸入側とが四方弁33の4つのポートのうちの2つのポートにそれぞれ接続されている。圧縮機31は、冷媒を圧縮して吐出することで高温高圧の冷媒ガスを冷媒回路1に供給する。
 四方弁33は、4つのポートを備え、各ポートは、圧縮機31の吐出側と、室外熱交換器35と、圧縮機31の吸入側と、第2の接続配管23とにそれぞれ接続され、冷媒の流路を切り替える。
 室外熱交換器35は、四方弁33と、第1の接続配管21との間に設けられている。室外熱交換器35は、例えば、水冷式熱交換器で形成され、詳細については後述するが、冷媒と、流入した熱媒体とのそれぞれが、図2で後述する重力方向95に沿って流通することで、熱交換が行われる。なお、熱媒体は、例えば、水又はブライン等の冷却水であるが、特にこれらに限定しない。
 なお、以降の説明において、室外熱交換器35が水冷式熱交換器で形成されたものとして説明するが、特にこれに限定しない。例えば、室外熱交換器35は空冷式熱交換器であってもよい。この場合には、空冷式熱交換器にファンが設けられ、ファンの回転数を調整することで、空冷式熱交換器内部の冷媒と、空冷式熱交換器周囲の熱媒体との熱交換量が調整される。また、この場合には、熱媒体は、例えば、空気であるが、特にこれに限定しない。
 バイパス配管41は、室外熱交換器35の冷媒の入口側と出口側とを短絡状に接続し、室外熱交換器35へ流入する冷媒の一部を室外熱交換器35の外側へ迂回させる冷媒配管である。冷媒がバイパス配管41を流通することで、室外熱交換器35に流通する冷媒は減少する。つまり、バイパス配管41を流通する冷媒の流量を調整することで、室外熱交換器35に流通する冷媒の流量が調整される。
 バイパス流量調整弁43は、バイパス配管41に設けられ、開度が可変な流量調整弁であり、バイパス配管41を流通する冷媒の流量を調整する。
 室内機12は、概略について上述した三方切替弁51、室内熱交換器53、及び第1の膨張弁55等を備える。なお、図1においては、室内機12がN台設けられた一例について説明しているが、その具体的な台数については特に限定せず、施工環境に応じて、各種運転モード、例えば、冷暖房同時運転等に必要な台数の室内機12が設けられていればよい。なお、室内熱交換器53は、本発明における利用側熱交換器に相当する。
 三方切替弁51は、3つのポートを備え、各ポートは、第1の接続配管21と、第2の接続配管23と、室内熱交換器53に設けられた冷媒配管とにそれぞれ接続され、冷媒の流路を切り替える。
 室内熱交換器53は、三方切替弁51と、第1の膨張弁55との間に設けられている。室内熱交換器53は、例えば、空冷式熱交換器で形成され、冷媒と、周囲の利用媒体との間で、熱交換が行われる。なお、図示は省略するが、室内熱交換器53に設けられたファンの回転数が制御されることで、室内熱交換器53周囲の利用媒体、例えば、空気の流量は変化し、室内熱交換器53での熱交換量が調整される。
 第1の膨張弁55は、室内熱交換器53と、第3の接続配管25との間に設けられる。第1の膨張弁55は、開度が可変な流量調整弁であり、室内熱交換器53と、第3の接続配管25との間を流通する冷媒の流量を調整する機能と、高圧の冷媒液を低圧部に絞り膨張させる機能とを有する。
 第1の接続配管21は、室外熱交換器35と、三方切替弁51のうちの1つ目のポートとの間に設けられる。また、第1の接続配管21は、その第1の接続配管21の途中に設けられた分岐点で、第3の接続配管25に接続されている。第2の接続配管23は、四方弁33のうちの1つのポートと、三方切替弁51のうちの2つ目のポートとの間に設けられる。なお、三方切替弁51のうちの3つ目のポートは、上述したように、室内熱交換器53に設けられた冷媒配管に接続されている。第3の接続配管25は、第1の接続配管21の途中に設けられた分岐点と、第1の膨張弁55との間に設けられる。第3の接続配管25には、第2の膨張弁61が設けられている。第2の膨張弁61は、開度が可変な流量調整弁であり、第3の接続配管25を流通する冷媒の流量を調整する機能と、高圧の冷媒液を低圧部に絞り膨張させる機能とを有する。
 制御部13は、例えば、マイクロプロセッサユニットを主体として構成され、室外機11の制御、室内機12の制御、及び室外機11と室内機12との連係制御に関する指令等を出す。
 換言すれば、室外機11と、室内機12-1~12-Nとは、第1の接続配管21、第2の接続配管23、及び第3の接続配管25を介して並列に接続されている。この接続構成のため、制御部131は、室内機12-1~12-Nのうち、暖房運転用の室内機12と、冷房運転用の室内機12とを三方切替弁51で切り替えることができる。よって、冷媒回路1は、冷房用冷凍サイクルと、暖房用冷凍サイクルとが形成され、冷房運転と暖房運転とが同時に実行される冷暖房同時運転が実行可能となっている。
 次に、上記の冷媒回路1の構成を前提として、室外熱交換器35の詳細について説明する。図2は、本発明の実施の形態1における室外熱交換器35の概略構成の一例を示す図である。室外熱交換器35は、重力方向95に沿って長手方向を有する形状で形成されている。室外熱交換器35は、孔37a、孔37b、孔37c、及び孔37dを備える。孔37a及び孔37bは、冷媒が流通する出入口である。孔37c及び孔37dは、熱媒体、例えば、冷却水が流通する出入口である。
 孔37a及び孔37dは、重力方向95の矢印が指す向きを下方と定義した場合、室外熱交換器35の下方に形成されている。孔37b及び孔37cは、重力方向95の矢印が指す向きを下方と定義した場合、室外熱交換器35の上方に形成されている。つまり、冷媒は、重力方向95に沿って流通する。また、熱媒体、例えば、冷却水は、重力方向95に沿って流通する。
 室外熱交換器35の内部では、冷媒を流通させる第1流路111と、熱媒体、例えば、冷却水を流通させる第2流路112とが、重力方向95に沿って対向して形成されている。例えば、室外熱交換器35がプレート式熱交換器で形成された場合、第1流路111及び第2流路112は、そのプレート式熱交換器内を流通する冷媒の流路を含む。
 図1に示す四方弁33の4つのポートのうちの1つのポートに接続されている冷媒配管は、その一方の端部が、第1分岐部101において、バイパス配管41と、孔37aへ向かう冷媒配管とに分岐している。バイパス配管41は、孔37a及び孔37bよりも高い位置に設けられている。一方、孔37aへ向かう冷媒配管は、重力方向95の矢印が指す向きを下方と定義した場合、下方に延長され、孔37aに接続されている。
 すなわち、バイパス配管41は、第1の端部と、第2の端部とを有する。バイパス配管41は、第1の端部が、孔37a側と、四方弁33に接続されている冷媒配管とを分岐する第1分岐部101に接続されている。また、バイパス配管41は、第2の端部が、孔37b側と、第1の接続配管21とを分岐する第2分岐部102に接続されている。
 上記で説明した接続構成で、室外熱交換器35の内部を流通せず、室外熱交換器35を迂回するバイパス流路が形成されている。一方、孔37c及び孔37dは、冷却水配管27に接続されている。冷却水配管27は、例えば、図示しないポンプ等に接続され、そのポンプ等の駆動に伴い冷却水が流通する。なお、バイパス配管41にバイパス流量調整弁43が設けられているため、バイパス流量調整弁43も孔37a及び孔37bよりも高い位置に設けられている。また、第1分岐部101及び第2分岐部102は、バイパス流量調整弁43の高さに設けられている。
 運転モードが冷房運転時又は冷房主体運転時、冷媒は、冷媒進行方向93a、93b、及び93cに沿って進行することで、孔37aから孔37bへ流通する。また、運転モードが暖房運転時又は暖房主体運転時、冷媒は、冷房運転時又は冷房主体運転時とは逆方向に進行することで、孔37bから孔37aへ流通する。なお、冷媒進行方向93a、93b、及び93cを特に区別しない場合、冷媒進行方向93と称する。また、いずれの運転モードにおいても、冷却水は、冷却水進行方向91a及び91bに沿って進行することで、孔37cから孔37dへ流通する。なお、上記で説明した進行方向は一例を示し、特にこれに限定しない。
 室外熱交換器35の内部を冷媒が流通することで生じる現象について説明する。冷房運転時、孔37aと孔37bとの間に形成される第1流路111では、冷媒は孔37aから孔37bに向かって流通する。よって、第1流路111では、摩擦損失が起因の圧力差ΔPfが生じ、冷媒の凝縮液で生じる液ヘッドが起因の圧力差ΔPwが生じる。ここで、バイパス流量調整弁43の開度が調整され、バイパス流量調整弁43が開いたと想定する。つまり、バイパス配管41内の流量係数Cv値が大きくなったと想定する。このとき、バイパス配管41内の流路抵抗が小さくなり、バイパス配管41内の冷媒の流量は増加する。
 よって、室外熱交換器35を迂回する冷媒の流量は増加するため、室外熱交換器35に流通する冷媒の流量は低下し、室外熱交換器35に流通する冷媒の流速が低下する。一般的に、摩擦損失が起因の圧力差ΔPfは流速の1.75乗に比例するため、冷媒の流速が低下するにつれ、摩擦損失が起因の圧力差ΔPfは小さくなる。
 一方、冷媒の凝縮液で生じる液ヘッドが起因の圧力差ΔPwは、室外熱交換器4内を流通する冷媒の流路である第1流路111が、重力方向95に沿って形成されている。
 よって、室外熱交換器35の液柱高さが増加するにつれ、冷媒の凝縮液で生じる液ヘッドが起因の圧力差ΔPwは増加する。また、室外熱交換器35内では、凝縮液が起因の液柱が生じている。また、第1分岐部101がバイパス流量調整弁43の高さに設けられているため、第1分岐部101は室外熱交換器35の孔37bよりも高い位置に設けられている。したがって、室外熱交換器35内では、冷媒の凝縮液で生じる液ヘッドが起因の圧力差ΔPwの影響を大きくすることができる。なお、以後の説明において、摩擦損失が起因の圧力差ΔPfを圧力差ΔPfと称する。また、冷媒の凝縮液で生じる液ヘッドが起因の圧力差ΔPwを圧力差ΔPwと称する。
 なお、孔37a又は孔37bは、本発明における冷媒流入孔に相当する。また、孔37a~37dを特に区別しない場合、孔37と称する。また、室外熱交換器35の内部に形成される第1流路111及び第2流路112はモデル化した状態を図2で図示したものであり、実際の形状が図2に示すように単純な一方向に向かって進む形状で形成される必要はない。
 次に、上記で説明した冷媒回路1の各構成を前提として、本実施の形態1の要部である室外熱交換器35内部の液ヘッドの影響について図3~5を用いて説明する。
 図3は、本発明の実施の形態1におけるバイパス流量調整弁43のCv値と室外熱交換器35の液相比率との相関関係の一例を示す図である。図3において、横軸は、バイパス流量調整弁43の開度変更量であるCv値、つまり、バイパス流量調整弁43のCv値を示し、縦軸は室外熱交換器35の液相比率を示す。図2を用いて上述したように、バイパス配管41を流通する冷媒の流量が大きくなるにつれ、室外熱交換器35を流通する冷媒の流速は低下する。つまり、バイパス流量調整弁43のCv値が大きくなるにつれ、室外熱交換器35を流通する冷媒の流速は低下する。室外熱交換器35を流通する冷媒の流速が低下するにつれ、冷媒と冷却水との熱交換効率が上がるため、室外熱交換器35の液相比率は上がる。
 なお、上記で説明したように、本明細書においては、Cv値を管固有の固定値としてではなく、バイパス流量調整弁43の開度に応じて変更されるバイパス配管41の冷媒の流量として用いる。
 よって、図3に示すように、バイパス流量調整弁43のCv値が大きくなるにつれ、室外熱交換器35の液相比率は上がる。なお、冷媒がバイパス配管41を流通しない場合、すなわち、冷媒が室外熱交換器35の外を迂回しない場合、室外熱交換器35の出口において過冷却度が確保される状態(例えば、液相比率20%程度)が、冷凍サイクルのCOP(Coefficient Of Performance)が最も高くなるため、バイパス流量調整弁43のCv値が0のときを室外熱交換器35の液相比率20%と定義しているが、特にこれに限定しない。
 要するに、バイパス配管41を流通する冷媒の流量が増加すれば、室外熱交換器35の液相比率は上がるため、圧力差ΔPwも増加する。別の観点から言えば、室外熱交換器35には冷媒が流通する第1流路111が形成されているため、室外熱交換器35には元々圧力差ΔPwは存在している。そして、室外熱交換器35内の第1流路111を流通する冷媒の流速が低下すれば圧力差ΔPwは増加する。よって、バイパス配管41を流通する冷媒の流量は、バイパス配管41を迂回する冷媒の流量が増えれば増えるほど、室外熱交換器35へは圧力差ΔPwで流れにくくなるため、ますます増加していく。
 この結果、バイパス配管41を流通する冷媒が増加すれば、室外熱交換器35を流通する冷媒は時間の経過と共に減少し、ほとんど流通しなくなる。よって、室外熱交換器35の熱交換量として、伝熱面積A(m)と熱通過率K(W/m・K)との積であるAK値で定義される熱コンダクタンスのパラメータの1つである熱通過率K(W/m・K)の値は、ゼロに近づいていく。したがって、室外熱交換器35において、冷媒と冷却水とが熱交換を行わない状態で空調運転を継続できる。
 次に、液ヘッドの影響がある場合とない場合とを図4を用いて比較する。図4は、本発明の実施の形態1における圧縮機運転容量を固定値とした場合のバイパス流量調整弁43のCv値とAK値との相関関係の一例を示す図である。図4において、横軸はバイパス流量調整弁43のCv値を示し、縦軸はAK値を示す。従来の室外熱交換器においては、室外熱交換器内の冷媒流路である伝熱配管は水平に配置されている。よって、従来の室外熱交換器は液ヘッドがないため、図4に示すように、Cv値に対するAK値の減少率は小さい。
 換言すれば、従来の室外熱交換器にバイパス配管41を設け、バイパス配管41にバイパス流量調整弁43を設け、バイパス流量調整弁43の開度を調整し、バイパス流量調整弁43を開いていったとしても、液ヘッドがない従来の室外熱交換器のAK値の減少率は、液ヘッドがある本実施の形態1における室外熱交換器35のAK値の減少率に比べて小さくなる。なお、図4においては、室外熱交換器45は、上述したように、高さ方向の断面積については特別の工夫をしているわけではなく、高さ方向断面積一定の場合を示す。
 次に、液ヘッドの影響がある室外熱交換器45を使用することを前提として、圧縮機31の運転容量を変更していったときのCv値とAK値との変化について図5を用いて説明する。図5は、本発明の実施の形態1における圧縮機運転容量を可変値とした場合のバイパス流量調整弁43のCv値とAK値との相関関係の一例を示す図である。図5において、横軸はバイパス流量調整弁43のCv値を示し、縦軸はAK値を示す。圧縮機31の運転容量が低下するにつれ、室外熱交換器45内の第1流路111を流通する冷媒の流速は低下する。第1流路111内の冷媒の流速の低減は、AK値のパラメータの1つである伝熱面積A(m)が小さくなることに相当する。なお、伝熱面積A(m)は、この場合においては管内側伝熱面積が該当する。
 よって、図5に示すように、圧縮機31の運転容量が小さくなるにつれ、AK値は小さくなる。つまり、圧縮機31の運転容量が小さくなるにつれ、AK値がゼロとなるCv値が異なる。したがって、フローチャートを用いて後述するように、圧縮機31の運転容量に応じてバイパス流量調整弁43の上限開度が設定される。なお、AK値がゼロになることは室外熱交換器35に流入する予定の冷媒が完全に迂回された状態を意味する。
 次に、以上の説明を前提として、各種運転モードの場合の運転状態を図6~8を用いて説明する。
 図6は、本発明の実施の形態1における冷房又は暖房のみの場合の運転状態を説明する冷媒循環図の一例を示す図である。図7は、本発明の実施の形態1における冷暖房同時運転であって、暖房主体の場合の運転状態を説明する冷媒循環図の一例を示す図である。図8は、本発明の実施の形態1における冷暖房同時運転であって、冷房主体の場合の運転状態を説明する冷媒循環図の一例を示す図である。
 まず、図6を用いて暖房運転のみの場合について説明する。圧縮機31から吐出された高温高圧冷媒ガスは、第2の接続配管23で室外側から室内側に導かれ、室内機12-1~12-Nのそれぞれの三方切替弁51を介して室内熱交換器53に流入し、熱交換(暖房)することで凝縮液化される。次に、液状態となった冷媒は、それぞれの第1の膨張弁55を流通し、第3の接続配管25に流入して合流し、第2の膨張弁61を流通する。このとき、第1の膨張弁55又は第2の膨張弁61の何れか一方で低圧の気液二相状態まで減圧される。次に、低圧まで減圧された冷媒は第1の接続配管21を経て、室外機11の室外熱交換器35に流入し、室外熱交換器35で熱交換してガス状態となり、再び圧縮機31に吸入される。この結果、冷媒の循環サイクルが形成され、暖房運転が行われる。
 次に、図6を用いて冷房運転のみの場合について説明する。圧縮機31から吐出されて高温高圧冷媒ガスは、室外熱交換器35で熱交換して凝縮液化された後、第1の接続配管21、第3の接続配管25の順に流通し、各室内機12-1~12-Nに流入する。次に、各室内機12-1~12-Nに流入した冷媒は、第1の膨張弁55で低圧まで減圧され、室内熱交換器53に流入し、室内空気と熱交換(冷房)して蒸発し、ガス化される。次に、ガス状態となった冷媒は三方切替弁51を介して第2の接続配管23を経て、再び圧縮機31に吸入される。この結果、冷媒の循環サイクルが形成され、冷房運転が行われる。
 次に、図7を用いて暖房主体の冷暖房同時運転について説明する。ここで、室内機12-1が冷房運転状態であって、室内機12-2~12-Nが暖房運転状態であると想定する。圧縮機31から吐出された冷媒は、例えば、第2の接続配管23から暖房運転状態にある室内機12-2~12-Nに三方切替弁51を介して流入し、室内機12-2~12-Nにあるそれぞれの室内熱交換器53で熱交換(暖房)し、凝縮液化する。次に、凝縮液化された冷媒は、ほぼ全開状態の第1の膨張弁55を流通し、第3の接続配管25に流入する。
 第3の接続配管25に流入した冷媒液のうち、その一部の冷媒液は、冷房運転状態にある室内機12-1に流入し、第1の膨張弁55で減圧された後、室内機12-1の室内熱交換器53に流入し、熱交換(冷房)し、蒸発してガス状態となり、三方切替弁51を介して第1の接続配管21に流入する。一方、第3の接続配管25に流入した冷媒液のうち、その他の冷媒液は、第2の膨張弁61で低圧まで減圧された後、第3の接続配管25から第1の接続配管21に流入し、冷房運転状態にある室内機12-1からの冷媒と合流し、室外熱交換器35で熱交換し、冷媒は蒸発してガス状態となり、再び圧縮機31に戻る。この結果、冷媒の循環サイクルが形成され、暖房主体の冷暖房同時運転が行われる。
 次に、図8を用いて冷房主体の冷暖房同時運転について説明する。ここで、室内機12-1が暖房運転状態であって、室内機12-2~12-Nが冷房運転状態であると想定する。圧縮機31から吐出された冷媒は、室外熱交換器35に流入し、冷却水配管27内を流入する冷却水等の熱媒体の流量に応じて任意の量だけ熱交換し、気液二相の高温高圧状態となり、第1の接続配管21で室外側から室内側に導かれる。
 次に、第1の接続配管21を流通する冷媒のうち、その一部の冷媒は、暖房運転状態にある室内機12-1に三方切替弁51を介して室内機12-1にある室内熱交換器53に導入され、熱交換(暖房)して凝縮液化し、室内機12-1にある第1の膨張弁55から第3の接続配管25に流入する。一方、第1の接続配管21を流通する冷媒のうち、その他の冷媒は、第3の接続配管25を流通し、全開状態の第2の膨張弁61を流通し、暖房運転状態にある室内機12-1からの冷媒と合流する。
 次に、合流した冷媒は、第3の接続配管25から冷房運転状態にあるそれぞれの室内機12-2~12-Nにある第1の膨張弁55で低圧状態まで減圧後、室内機12-2~12-Nにある室内熱交換器53に流入し、熱交換(冷房)し、蒸発してガス状態となる。次に、ガス状態となった冷媒は、三方切替弁51を介して第2の接続配管23に流入し、再び圧縮機31に戻る。この結果、冷媒の循環サイクルが形成され、冷房主体の冷暖房同時運転が行われる。
 次に、上記で説明した各種運転モードのうち、冷房主体運転時の熱回収運転について図9を用いて説明し、暖房主体運転時の熱回収運転について図10を用いて説明する。
 図9は、本発明の実施の形態1における冷房主体運転時のp-h線図の一例を示す図である。冷房主体運転においては、室外熱交換器35は、上記で説明したように、凝縮器の機能を有することとなる。よって、冷房空調負荷と、圧縮機31での入力との合計から、暖房空調負荷を差し引いた熱量が、室外熱交換器35で放熱され、冷暖房同時運転が実施される。
 よって、室外熱交換器35で放熱される放熱量をゼロに近づけていくことができれば、省エネ性を向上させることができる。室外熱交換器35で放熱される放熱量をゼロに近づけていくには、室外熱交換器35の熱交換量を小さくすればよい。室外熱交換器35の熱交換量を小さくするには、上記で説明したように、バイパス流量調整弁43を開くことで、室外熱交換器35を流通する冷媒の流量が低下すればよい。
 換言すれば、冷媒回路1は、室外熱交換器35での熱交換量をゼロに近づけていくことができるため、室外熱交換器35での放熱量をゼロに近づけていくことができる。よって、省エネ性を向上させることができる。
 なお、冷房主体運転時において、冷房運転状態の室内熱交換器53の蒸発温度Teは、例えば、0℃の一定値に設定される。これは、0℃以下であると凍結する虞があるためである。また、冷房主体運転時において、暖房運転状態の室内熱交換器53の凝縮温度Tcは、例えば、50℃の一定値に設定される。
 図10は、本発明の実施の形態1における暖房主体運転時のp-h線図の一例を示す図である。暖房主体運転においては、室外熱交換器35は、上記で説明したように、蒸発器の機能を有することとなる。よって、暖房空調負荷から、冷房空調負荷と、圧縮機31での入力との合計を差し引いた熱量が、室外熱交換器35で吸熱され、冷暖房同時運転が実施される。
 よって、室外熱交換器35で吸熱される吸熱量をゼロに近づけていくことができれば、省エネ性を向上させることができる。室外熱交換器35で吸熱される吸熱量をゼロに近づけていくには、室外熱交換器35の熱交換量を小さくすればよい。室外熱交換器35の熱交換量を小さくするには、上記で説明したように、バイパス流量調整弁43を開くことで、室外熱交換に35を流通する冷媒の流量が低下すればよい。
 換言すれば、冷媒回路1は、室外熱交換器35での熱交換量をゼロに近づけていくことができるた、室外熱交換器35での吸熱量をゼロに近づけていくことができる。よって、省エネ性を向上させることができる。
 次に、上記で説明した本実施の形態1の要部及び構成を前提とした動作例について図11~14を用いて説明する。
 なお、本実施の形態1の動作を行うプログラムを記述するステップは、記載された順序に沿って時系列的に行われる処理はもちろん、必ずしも時系列的に処理されなくとも、並列的又は個別に実行される処理をも含む。
 図11は、本発明の実施の形態1における制御部13の制御例を説明するフローチャートである。図11に示すように、室内の快適性及び省エネ性を向上させる処理は、運転モード判定処理及び制御量設定処理が主な処理となる。また、制御量設定処理は、操作量演算処理及び指示値演算処理が主な処理となる。
(ステップS11)
 制御部13は、運転モード判定処理を実行する。なお、運転モード判定処理の詳細については図12を用いて説明する。
(ステップS12)
 制御部13は、運転モード判定後、操作量演算処理を実行する。なお、操作量演算処理の詳細については図13を用いて説明する。
(ステップS13)
 制御部13は、操作量演算後、指示値演算処理を実行し、処理を終了する。なお、指示値演算処理の詳細については図14を用いて説明する。
 図12は、本発明の実施の形態1における運転モード判定処理の詳細を説明するフローチャートである。
(ステップS21)
 制御部13は、室内機12が冷房要求しているか否かを判定する。制御部13は、室内機12が冷房要求している場合、ステップS22へ進む。一方、制御部13は、室内機12が冷房要求していない場合、ステップS24へ進む。
(ステップS22)
 制御部13は、室内機12が冷房要求のみであるか否かを判定する。制御部13は、室内機12が冷房要求のみである場合、ステップS23へ進む。一方、制御部13は、室内機12が冷房要求のみでない場合、ステップS24へ進む。
(ステップS23)
 制御部13は、全冷房運転フラグを1にして、処理を終了する。ここでいう全冷房運転フラグが1の状態とは、室内機12-1~12-Nのうち、全ての室内機12が冷房運転状態であることを意味する。
(ステップS24)
 制御部13は、室内機12が暖房要求しているか否かを判定する。制御部13は、室内機12が暖房要求している場合、ステップS25へ進む。一方、制御部13は、室内機12が暖房要求していない場合、処理を終了する。
(ステップS25)
 制御部13は、冷房比率が高いか否かを判定する。制御部13は、冷房比率が高い場合、ステップS26へ進む。一方、制御部13は、冷房比率が高くない場合、ステップS27へ進む。ここでいう冷房比率が高いとは、室内機12-1~12-Nのうち、冷房運転状態の室内機12の台数が、暖房運転状態の室内機12の台数よりも多いことを意味する。
(ステップS26)
 制御部13は、冷房主体運転フラグを1にして、処理を終了する。ここでいう冷房主体運転フラグが1の状態とは、室内機12-1~12-Nのうちの何れかで冷房運転と暖房運転とがそれぞれ実施され、室内機12-1~12-Nのうち、冷房運転状態の室内機12の台数が、暖房運転状態の室内機12の台数よりも多いことを意味する。
(ステップS27)
 制御部13は、室内機12が暖房要求のみであるか否かを判定する。制御部13は、室内機12が暖房要求のみの場合、ステップS28へ進む。一方、制御部13は、室内機12が暖房要求のみでない場合、ステップS29へ進む。
(ステップS28)
 制御部13は、全暖房運転フラグを1にして、処理を終了する。ここでいう全暖房運転フラグが1の状態とは、室内機12-1~12-Nのうち、全ての室内機12が暖房運転状態であることを意味する。
(ステップS29)
 制御部13は、暖房比率が高いか否かを判定する。制御部13は、暖房比率が高い場合、ステップS30へ進む。一方、制御部13は、暖房比率が高くない場合、処理を終了する。
(ステップS30)
 制御部13は、暖房主体運転フラグを1にして、処理を終了する。ここでいう暖房主体運転フラグが1の状態とは、室内機12-1~12-Nのうちの何れかで冷房運転と暖房運転とがそれぞれ実施され、室内機12-1~12-Nのうち、暖房運転状態の室内機12の台数が、冷房運転状態の室内機12の台数よりも多いことを意味する。
 なお、上記で説明した運転モード判定処理は一例を示すだけであり、特にこれに限定しない。また、上記で説明した各種フラグ及びその設定値は一例を示すだけであり、特にこれに限定しない。
 以上の処理で、運転モードが判定される。次に、判定された運転モード毎に対応する操作量演算処理を図13を用いて説明する。図13は、本発明の実施の形態1における操作量演算処理の詳細を説明するフローチャートである。
 操作量演算処理は、運転モードが、全冷房運転又は冷房主体運転の場合と、全暖房運転又は暖房主体運転の場合とで異なる処理が実行される。その理由は、全冷房運転又は冷房主体運転の場合、室外熱交換器35は凝縮器として利用され、全暖房運転又は暖房主体運転の場合、室外熱交換器35は蒸発器として利用されるためである。
 室外熱交換器35が凝縮器として利用される場合、暖房運転状態の室内機12の凝縮温度Tcに基づいて、バイパス流量調整弁43の開度操作量が演算される。一方、室外熱交換器35が蒸発器として利用される場合、冷房運転状態の室内機12の蒸発温度Teに基づいて、バイパス流量調整弁43の開度操作量が演算される。
(ステップS41)
 制御部13は、全冷房運転フラグと冷房主体運転フラグとの論理和が1であるか否かを判定する。制御部13は、全冷房運転フラグと冷房主体運転フラグとの論理和が1である場合、ステップS42へ進む。一方、制御部13は、全冷房運転フラグと冷房主体運転フラグとの論理和が1でない場合、ステップS48へ進む。
(ステップS42)
 制御部13は、設定された蒸発温度Teを取得する。制御部13は、例えば、冷房運転状態の室内機12の蒸発温度に対応して設定された蒸発温度としてTe=0℃を取得する。
(ステップS43)
 制御部13は、現在の蒸発温度Te_nowを取得する。制御部13は、例えば、冷房運転状態の室内機12の現在の蒸発温度Te_nowを取得する。
(ステップS44)
 制御部13は、設定された蒸発温度Teと現在の蒸発温度Te_nowとに基づいて圧縮機周波数の操作量ΔF(Hz)を演算する。具体的には、制御部13は、現在の蒸発温度Te_nowが、設定された蒸発温度Teとなるように圧縮機周波数の操作量ΔF(Hz)を演算する。つまり、設定された蒸発温度Teと現在の蒸発温度Te_nowとの偏差がゼロになるように圧縮機周波数の操作量ΔF(Hz)を求める。
(ステップS45)
 制御部13は、設定された凝縮温度Tcを取得する。制御部13は、例えば、暖房運転状態の室内機12の凝縮温度に対応して設定された凝縮温度としてTc=50℃を取得する。
(ステップS46)
 制御部13は、現在の凝縮温度Tc_nowを取得する。制御部13は、例えば、暖房運転状態の室内機12の現在の凝縮温度Tc_nowを取得する。
(ステップS47)
 制御部13は、設定された凝縮温度Tcと現在の凝縮温度Tc_nowとに基づいてバイパス流量調整弁43の開度操作量ΔL(pulse)を演算し、処理を終了する。具体的には、制御部13は、現在の凝縮温度Tc_nowが、設定された凝縮温度Tcとなるようにバイパス流量調整弁43の開度操作量ΔL(pulse)を演算する。つまり、設定された凝縮温度Tcと現在の凝縮温度Tc_nowとの偏差がゼロになるようにバイパス流量調整弁43の開度操作量ΔL(pulse)を求める。
(ステップS48)
 制御部13は、全暖房運転フラグと暖房主体運転フラグとの論理和が1であるか否かを判定する。制御部13は、全暖房運転フラグと暖房主体運転フラグとの論理和が1である場合、ステップS49へ進む。一方、制御部13は、全暖房運転フラグと暖房主体運転フラグとの論理和が1でない場合、処理を終了する。
(ステップS49)
 制御部13は、設定された凝縮温度Tcを取得する。制御部13は、例えば、暖房運転状態の室内機12の凝縮温度に対応して設定された凝縮温度としてTc=50℃を取得する。
(ステップS50)
 制御部13は、現在の凝縮温度Tc_nowを取得する。制御部13は、例えば、暖房運転状態の室内機12の現在の凝縮温度Tc_nowを取得する。
(ステップS51)
 制御部13は、設定された凝縮温度Tcと現在の凝縮温度Tc_nowとに基づいて圧縮機周波数の操作量ΔF(Hz)を演算する。具体的には、制御部13は、現在の凝縮温度Tc_nowが、設定された凝縮温度Tcとなるように圧縮機周波数の操作量ΔF(Hz)を演算する。つまり、設定された凝縮温度Tcと現在の凝縮温度Tc_nowとの偏差がゼロになるように圧縮機周波数の操作量ΔF(Hz)を求める。
(ステップS52)
 制御部13は、設定された蒸発温度Teを取得する。制御部13は、例えば、冷房運転状態の室内機12の蒸発温度に対応して設定された蒸発温度としてTe=0℃を取得する。
(ステップS53)
 制御部13は、現在の蒸発温度Te_nowを取得する。制御部13は、例えば、冷房運転状態の室内機12の現在の蒸発温度Te_nowを取得する。
(ステップS54)
 制御部13は、設定された蒸発温度Teと現在の蒸発温度Te_nowとに基づいてバイパス流量調整弁43の開度操作量ΔL(pulse)を演算し、処理を終了する。具体的には、制御部13は、現在の蒸発温度Te_nowが、設定された蒸発温度Teとなるようにバイパス流量調整弁43の開度操作量ΔL(pulse)を演算する。つまり、設定された蒸発温度Teと現在の蒸発温度Te_nowとの偏差がゼロになるようにバイパス流量調整弁43の開度操作量ΔL(pulse)を求める。
 なお、ステップS41~ステップS47の処理が全冷房又は冷房主体時の操作量演算処理に対応し、ステップS42~ステップS44の処理が圧縮機周波数操作量演算処理に対応する。ステップS45~ステップS47の処理がバイパス流量調整弁開度操作量演算処理に対応する。
 また、ステップS48~ステップS54の処理が全暖房又は暖房主体時の操作量演算処理に対応し、ステップS49~ステップS51の処理が圧縮機周波数操作量演算処理に対応する。ステップS52~ステップS54の処理がバイパス流量調整弁開度操作量演算処理に対応する。
 なお、上記の説明では蒸発温度に関する処理又は凝縮温度に関する処理は対応する1台ずつの室内機12での説明であったが、実際には、該当する台数分、同様の処理が繰り返し実行される。この場合、複数の演算結果が得られるので、例えば、平均値を求めて代表値としてもよい。なお、代表値の求め方は特に限定しない。
 次に、上記で演算した圧縮機周波数の操作量ΔF及びバイパス流量調整弁43の開度操作量ΔLに基づいてバイパス流量調整弁43の開度指示及び圧縮機容量の周波数指示値を求める。図14は、本発明の実施の形態1における指示値演算処理の詳細を説明するフローチャートである。
(ステップS71)
 制御部13は、圧縮機周波数の操作量ΔFを取得する。
(ステップS72)
 制御部13は、現在の運転周波数Fnowを取得する。
(ステップS73)
 制御部13は、現在の運転周波数Fnowと圧縮機周波数の操作量ΔFとに基づいて圧縮機容量の周波数指示値Fを演算する。例えば、制御部13は、次式(1)のように演算する。
  (数1)
F=Fnow+ΔF   (1)
 つまり、現在の運転周波数Fnowに圧縮機周波数の操作量ΔFを加算することで周波数指示値Fを求める。なお、ΔFは正の場合もあり、負の場合もある。
(ステップS74)
 制御部13は、圧縮機容量の周波数指示値Fに応じてバイパス流量調整弁43の最大開度LMaxを設定する。この設定は、例えば、図5を用いて説明したCv値とAK値との相関関係から求めればよい。
(ステップS75)
 制御部13は、開度操作量ΔLを取得する。
(ステップS76)
 制御部13は、現在の開度Lnowを取得する。
(ステップS77)
 制御部13は、開度操作量ΔLと現在の開度Lnowとに基づいてバイパス流量調整弁43の開度指示値Lを最大開度LMaxの範囲内で演算する。例えば、制御部13は、次式(2)のように演算する。
  (数2)
L=Lnow+ΔL  (ただし、L≦LMaxとする)   (2)
 つまり、現在の開度Lnowに開度操作量ΔLを加算することで開度指示値Lを求める。なお、ΔLは正の場合もあり、負の場合もある。
(ステップS78)
 制御部13は、バイパス流量調整弁43の開度指示値Lを設定する。
(ステップS79)
 制御部13は、圧縮機容量の周波数指示値Fを設定し、処理を終了する。
 なお、開度指示値Lを設定後、周波数指示値Fが設定されるものとする。
 なお、ステップS71~ステップS73の処理は、圧縮機容量周波数指示値演算処理に対応する。また、ステップS74~ステップS77の処理は、バイパス流量調整弁開度指示値演算処理に対応する。また、ステップS78及びステップS79の処理は、指示値設定処理に対応する。
 以上の説明から、全熱回収運転のように、室外熱交換器35での熱交換量であるAK値、すなわち、熱コンダクタンスを低下させたい場合、バイパス流量調整弁43を開ければよい。それは、室外熱交換器35は、冷媒の流れる向きと、熱媒体の流れる向きとが重力方向95に沿って対向する位置に形成されているからである。この構成のため、液ヘッドの影響が大きくなるので、バイパス流量調整弁43の必要最大Cv値が減少する。
 また、バイパス流量調整弁43の必要最大Cv値が減少するため、バイパス流量調整弁43の容量は小さいもので十分となる。よって、バイパス流量調整弁43そのものを従来のものよりも小型化が可能となるため、低コスト化が実現できる。
 また、バイパス流量調整弁43が従来のものと同一のCv値であれば、室外熱交換器35内を流通する冷媒が対向するように流通する構成であるため、室外熱交換器35のAK値、すなわち、熱コンダクタンスの下限側の制御範囲が拡大する。よって、圧縮機の低容量運転時又は冷暖房同時運転時での全熱回収運転の場合、冷凍サイクルの制御性は向上し、冷凍サイクルが安定化する。したがって、空気調和装置が提供できる快適性及び省エネ性は向上する。
 また、バイパス流量調整弁43が室外熱交換器35の冷媒入口側よりも上側に設置されているため、液ヘッドが大きくなる。よって、室外熱交換器35、すなわち、熱源機側熱交換器のAK値の制御可能範囲が拡大し、制御性が向上する。
 また、圧縮機運転容量に応じて、バイパス流量調整弁43の上限開度が設定されるため、AK値がゼロとなる制御域を縮小することができる。よって、過度にバイパス流量調整弁43を開きすぎることで生じる制御性悪化を防止することができる。したがって、冷凍サイクルが安定化するため、空気調和装置が提供できる快適性及び省エネ性は向上する。
 また、圧縮機31の運転容量の変化よりも前にバイパス流量調整弁43の開度を制御するため、圧縮機31の運転周波数が低下した場合であっても、室外熱交換器35内の液冷媒詰まりが起因の熱交換器容量の低下に伴う高圧過昇又は吐出温度上昇を防止することができる。したがって、冷凍サイクルが安定化するため、空気調和装置が提供する快適性及び省エネ性は向上する。
 また、室外熱交換器35内の冷媒の流路と熱媒体の流路とが対向する構成であるため、空冷式熱交換器であっても、上記で説明したものと同様の効果を奏する。
 以上、本実施の形態1においては、冷媒を圧縮して吐出する圧縮機31と、冷媒と、流入した熱媒体との間で、熱交換する室外熱交換器35と、冷媒と、周囲の利用媒体との間で、熱交換する室内熱交換器53と、室外熱交換器35に流入する冷媒をバイパスするバイパス配管41と、バイパス配管41に設けられ、室外熱交換器35に流入する冷媒の流量を調整するバイパス流量調整弁43とを備え、室外熱交換器35は、冷媒を流通させる第1流路111と、熱媒体を流通させる第2流路112とが形成され、第1流路111は、冷媒を下から上に沿って流通させる空気調和装置が構成される。
 上記の構成で、空気調和装置は、バイパス流量調整弁43と、冷媒と熱媒体とのそれぞれが流通する室外熱交換器35の液ヘッドとを利用することで、室外熱交換器35の熱コンダクタンスを必要な分だけ低下させることができる。よって、空気調和装置は、室内の快適性及び省エネ性を向上させることができるという効果を有する。
 また、AK値の低下量が増加するため、AK値の下限値が低下する。よって、室外熱交換器35の熱交換量の制御範囲が拡大する。一般的に、低外気であって、低容量の冷房運転時、必要なAK値は小さいため、外風の影響で冷凍サイクルがハンチングし、不安定化しやすいが、AK値の制御下限値が拡大されるため、冷凍サイクルは安定化する。
 したがって、本実施の形態1の空気調和装置は、室内の快適性及び省エネ性を向上させることできる。
 また、本実施の形態1においては、室外熱交換器35は、第1流路111と、第2流路112とが対向して形成された空気調和装置が構成される。
 したがって、例えば、暖房運転時、室外熱交換器35内と、室外熱交換器35の孔37aに接続された入口側の冷媒配管との液ヘッドの差分だけ圧損は改善される。よって、低圧損化で省エネとなる。また、室外熱交換器35において、冷房又は暖房で、冷房と、熱媒体とが対向流化されるため、熱交換効率が高くなり、省エネとなる。
 また、本実施の形態1においては、室外熱交換器35に冷媒が流入する孔37aが形成され、バイパス流量調整弁43は、孔37aに対して上側に設けられた空気調和装置が構成される。
 よって、液ヘッドが大きくなり、室外熱交換器35のAK値の制御可能範囲が拡大し、制御性を向上させることができる。
 また、本実施の形態1においては、圧縮機31の運転容量を増加させるにつれ、バイパス流量調整弁43のCv値の上限値を上げる空気調和装置が構成される。
 したがって、予め、完全バイパスされた場合のCv値が把握されるため、室外熱交換器35のAK値の制御性を向上させることができる。
 また、本実施の形態1においては、制御部13は、冷暖房同時運転の実行中であって、バイパス流量調整弁43の開度を設定し、圧縮機31の運転容量を設定する空気調和装置が構成される。
 したがって、圧縮機31よりも事前にバイパス流量調整弁43が制御されるため、室外熱交換器35の液詰まりが起因する熱交換量の低下を防止することが可能となり、冷凍サイクルを安定化させることができる。
実施の形態2.
 実施の形態1との相違点は、圧縮機31と、複数の室内機12との間に、複数の逆止弁71a~71dで形成されたブリッジ回路をさらに備え、室外熱交換器35がブリッジ回路の中間点に設けられることで、冷房時と暖房時とで冷媒の流通方向を同一にさせる点である。なお、本実施の形態2において、特に記述しない項目については実施の形態1と同様とし、同一の機能や構成については同一の符号を用いて述べることとする。
 図15は、本発明の実施の形態2における空気調和装置の冷媒回路2の一例を示す図である。図16は、本発明の実施の形態2における室外熱交換器35の概略構成の一例を示す図である。
 図15に示すように、冷媒回路2は、圧縮機31と、複数の室内機12との間に、複数の逆止弁71a~71dで形成されたブリッジ回路を備えている。室外熱交換器35は、ブリッジ回路の中間点に設けられている。そして、逆止弁71a~71dは、暖房運転又は冷房運転の比率の低い暖房主体運転の場合に、第1流路111を流通する冷媒の流通方向を同一にさせる。つまり、室内熱交換器53の何れかが凝縮器として機能している場合に、図16に示すように、室外熱交換器35に流入する二相冷媒を下から上に流す。
 この構成で、暖房運転時は、室外熱交換器35にて、流入する二相冷媒のうち、冷媒の蒸発に寄与する液冷媒を下側に保持することができる。よって、蒸発潜熱を有効に利用することができるため、伝熱性能が向上し、省エネ性は向上する。
 また、第1分岐部101から孔37aでの液ヘッドが起因の圧力差ΔPw1と、孔37aから孔37bの液ヘッドが起因の圧力差ΔPw2とは、蒸発器入口冷媒密度ρ1>蒸発器内平均冷媒密度ρ2の関係から、次式(3)の関係が成り立つ。
  (数3)
ΔPw1>ΔPw2   (3)
 よって、液ヘッドの差分だけ室外熱交換器35の圧力損失が低減するため、省エネとなる。
 また、室外熱交換器35において、冷房又は暖房の何れの場合であっても、冷媒と熱交換対象の流体とが対向流化されるため、ローレンツサイクル化が起因で温度差が小さくなり、熱交換効率が高く、省エネとなる。
 以上の説明で、本実施の形態2においては、圧縮機31と、複数の室内熱交換器53との間に、複数の逆止弁71で形成されたブリッジ回路をさらに備え、室外熱交換器35は、ブリッジ回路の中間点に設けられ、ブリッジ回路は、複数の室内熱交換器53のうちのいずれかが凝縮器として機能している場合、第1流路111を流通する冷媒の流通方向を下から上に沿った向きにさせる空気調和装置が構成される。
 上記の構成で、暖房運転時は、室外熱交換器35にて、流入する二相冷媒のうち、冷媒の蒸発に寄与する液冷媒を下側に保持することができる。よって、蒸発潜熱を有効に利用することができるため、伝熱性能が向上し、省エネ性は向上する。
実施の形態3.
 実施の形態1、2との相違点は、室外熱交換器36内に形成された冷媒の流路及び冷却水の流路の高さが増すにつれ、室外熱交換器36の流路断面積が拡大して形成された点である。なお、本実施の形態3において、特に記述しない項目については実施の形態1、2と同様とし、同一の機能や構成については同一の符号を用いて述べることとする。
 図17は、本発明の実施の形態3における室外熱交換器36の概略構成の一例を示す図である。図18は、本発明の実施の形態3における圧縮機運転容量を固定値とした場合のバイパス流量調整弁43のCv値とAK値との相関関係の一例を示す図である。
 図17に示すように、第1流路121及び第2流路122の高さが増すにつれ、室外熱交換器36の流路断面積は拡大して形成されている。
 この構成で、バイパス流量調整弁43の開度を開くことでバイパス流量を増加させた場合、室外熱交換器36の第1流路121内の液相比率は増加する。そして、室外熱交換器36が凝縮器の場合、つまり、暖房運転が実施されている場合、室外熱交換器36には、図17に示すように、孔38bから孔38aへ向かって、冷媒の流れの下流側から液相部が形成されていく。つまり、室外熱交換器36の第1流路121の上側から下側へ向かって液相部が形成されていく。
 よって、上記で説明した構成では、暖房運転が実施されている場合、室外熱交換器35の第1流路121の上流側の断面積が小さいほど、室外熱交換器36の液相比率増加に伴う液ヘッドの増加率が高くなる。
 したがって、液相比率が高いほど、液ヘッドが高くなるような室外熱交換器36の流路構成としたことで、バイパス流量調整弁43の必要Cv値は小さくなるため、バイパス流量調整弁43を小型化でき、省スペース、低コスト化が図れる。
 室外熱交換器36の流路方向の断面積の変化率を調整したことで、バイパス流量調整弁43の開度変更量であるCv値と、AK値との関係が、比例関係となった。よって、図18に示すように、AK値に対応するバイパス流量調整弁43のCv値の変更量が比例式で算出できるため、制御ゲインが一定となり、制御設計を容易とすることができる。
 なお、上記の説明では、暖房運転が実施された場合に、室外熱交換器36の液相比率増加に伴う液ヘッドの増加率を高くすることで、バイパス流量調整弁43の開度変更量であるCv値と、AK値との関係が、比例関係となった一例について説明したが、特にこれに限定しない。例えば、冷房運転が実施された場合に、同様の効果を得るようにするため、第1流路121及び第2流路122の高さが増すにつれ、室外熱交換器36の流路断面積は縮小して形成されている構成としてもよい。
 また、室外熱交換器36の流路断面積を可変にできる構成とし、冷房運転時又は暖房運転時において、それぞれ該当する流路断面積となる構成にしてもよい。その場合には、例えば、第1流路121内部において、複数のゲートを設けておき、適宜それを開閉することで、流路断面積を可変にする構成としてもよい。なお、上記で説明した流路断面積の構成は一例を示し、特に限定しない。
 以上の説明で、本実施の形態3においては、室外熱交換器35は、第1流路121及び第2流路122の高さが増すにつれ、流路断面積は拡大して形成された空気調和装置が構成される。
 上記の構成で、液相比率が高いほど、液ヘッドが高くなるような室外熱交換器36の流路構成としたので、バイパス流量調整弁43の必要Cv値は小さくなるため、バイパス流量調整弁43を小型化でき、省スペース、低コスト化が図れる。
 なお、本実施の形態1~3は、単独で実施されてもよく、組み合わせて実施されてもよい。いずれの場合においても、上記で説明した有利な効果を奏することとなる。
 1、2 冷媒回路、11 室外機、12、12-1~12-N 室内機、13 制御部、21 第1の接続配管、23 第2の接続配管、25 第3の接続配管、27 冷却水配管、31 圧縮機、33 四方弁、35、36 室外熱交換器、37、37a、37b、37c、37d、38、38a、38b、38c、38d 孔、41 バイパス配管、43 バイパス流量調整弁、51 三方切替弁、53 室内熱交換器、55 第1の膨張弁、61 第2の膨張弁、71、71a、71b、71c、71d 逆止弁、91、91a、91b 冷却水進行方向、93、93a、93b、93c 冷媒進行方向、95 重力方向、101 第1分岐部、102 第2分岐部、111、121 第1流路、112、122 第2流路。

Claims (8)

  1.  冷媒を圧縮して吐出する圧縮機と、
     前記冷媒と、流入した熱媒体との間で、熱交換する熱源機側熱交換器と、
     前記冷媒と、周囲の利用媒体との間で、熱交換する利用側熱交換器と、
     前記熱源機側熱交換器に流入する前記冷媒をバイパスするバイパス配管と、
     前記バイパス配管に設けられ、前記熱源機側熱交換器に流入する前記冷媒の流量を調整するバイパス流量調整弁と
    を備え、
     前記熱源機側熱交換器は、
     前記冷媒を流通させる第1流路と、前記熱媒体を流通させる第2流路とが形成され、
     前記第1流路は、
     前記冷媒を下から上に沿って流通させる
    ことを特徴とする空気調和装置。
  2.  前記熱源機側熱交換器は、
     前記第1流路と、前記第2流路とが対向して形成された
    ことを特徴とする請求項1に記載の空気調和装置。
  3.  前記熱源機側熱交換器に前記冷媒が流入する冷媒流入孔が形成され、
     前記バイパス流量調整弁は、前記冷媒流入孔に対して上側に設けられた
    ことを特徴とする請求項2に記載の空気調和装置。
  4.  前記バイパス流量調整弁の開度を制御する制御部をさらに備え、
     前記バイパス流量調整弁は、該バイパス流量調整弁のCv値を、前記開度が制御されることで、調整するものであって、
     前記制御部は、
     前記圧縮機の運転容量を増加させるにつれ、前記バイパス流量調整弁のCv値の上限値を上げる
    ことを特徴とする請求項3に記載の空気調和装置。
  5.  前記利用側熱交換器を複数設けることで複数の利用側熱交換器を備え、
     前記制御部は、
     前記複数の利用側熱交換器のうちの一部を冷房運転側に切り替え、前記複数の利用側熱交換器のうちの一部を暖房運転側に切り替えることで冷房運転と暖房運転とが同時に実行される冷暖房同時運転を行わせる
    ことを特徴とする請求項4に記載の空気調和装置。
  6.  前記制御部は、
     前記冷暖房同時運転の実行中であって、前記バイパス流量調整弁の開度を設定し、前記圧縮機の運転容量を設定する
    ことを特徴とする請求項5に記載の空気調和装置。
  7.  前記圧縮機と、前記複数の利用側熱交換器との間に、複数の逆止弁で形成されたブリッジ回路をさらに備え、
     前記熱源機側熱交換器は、前記ブリッジ回路の中間点に設けられ、
     前記ブリッジ回路は、
     前記複数の利用側熱交換器のうちのいずれかが凝縮器として機能している場合、前記第1流路を流通する前記冷媒の流通方向を下から上に沿った向きにさせる
    ことを特徴とする請求項5又は請求項6に記載の空気調和装置。
  8.  前記熱源機側熱交換器は、
     前記第1流路及び前記第2流路の高さが増すにつれ、流路断面積は拡大して形成された
    ことを特徴とする請求項3~5の何れか一項に記載の空気調和装置。
PCT/JP2013/050103 2013-01-08 2013-01-08 空気調和装置 WO2014108997A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2014556239A JP5897154B2 (ja) 2013-01-08 2013-01-08 空気調和装置
PCT/JP2013/050103 WO2014108997A1 (ja) 2013-01-08 2013-01-08 空気調和装置
EP13870917.5A EP2944897B1 (en) 2013-01-08 2013-01-08 Air conditioning device
CN201380069776.2A CN104903662B (zh) 2013-01-08 2013-01-08 空调装置
US14/653,883 US10168060B2 (en) 2013-01-08 2013-01-08 Air-conditioning apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/050103 WO2014108997A1 (ja) 2013-01-08 2013-01-08 空気調和装置

Publications (1)

Publication Number Publication Date
WO2014108997A1 true WO2014108997A1 (ja) 2014-07-17

Family

ID=51166674

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/050103 WO2014108997A1 (ja) 2013-01-08 2013-01-08 空気調和装置

Country Status (5)

Country Link
US (1) US10168060B2 (ja)
EP (1) EP2944897B1 (ja)
JP (1) JP5897154B2 (ja)
CN (1) CN104903662B (ja)
WO (1) WO2014108997A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6742200B2 (ja) * 2016-08-31 2020-08-19 日立ジョンソンコントロールズ空調株式会社 空調給湯システム
KR20210121437A (ko) 2020-03-30 2021-10-08 엘지전자 주식회사 공기 조화기
CN114061112B (zh) * 2021-11-26 2023-01-13 珠海格力电器股份有限公司 空调系统及其控制方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05184181A (ja) 1992-01-07 1993-07-23 Mitsubishi Electric Corp 空気調和機の制御装置
JP2522361B2 (ja) 1988-10-12 1996-08-07 三菱電機株式会社 空気調和装置
JP2000161808A (ja) 1998-11-24 2000-06-16 Mitsubishi Electric Corp 冷凍サイクル装置及び逆止弁ユニット
JP2003343936A (ja) 2002-05-28 2003-12-03 Mitsubishi Electric Corp 冷凍サイクル装置
JP2004020191A (ja) * 2002-06-12 2004-01-22 Lg Electronics Inc マルチ空気調和機及びその制御方法
WO2006003925A1 (ja) * 2004-07-01 2006-01-12 Daikin Industries, Ltd. 冷凍装置及び空気調和装置
JP2007024320A (ja) * 2005-07-12 2007-02-01 Hitachi Ltd 冷凍装置
JP2011089690A (ja) * 2009-10-22 2011-05-06 Hitachi Appliances Inc 空気調和機

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2872165A (en) * 1954-09-04 1959-02-03 Separator Ab Plate type heat exchanger
JPH1137517A (ja) * 1997-07-14 1999-02-12 Daikin Ind Ltd 冷凍装置
KR100569554B1 (ko) 2002-03-29 2006-04-10 다이킨 고교 가부시키가이샤 공기 조화 장치의 열원 유닛 및 공기 조화 장치
CN101438109A (zh) * 2005-12-21 2009-05-20 开利公司 可变容量多回路空调系统
JP5197576B2 (ja) * 2007-03-27 2013-05-15 三菱電機株式会社 ヒートポンプ装置
CN102597660B (zh) * 2009-10-28 2015-05-06 三菱电机株式会社 空调装置
US20110259574A1 (en) * 2010-04-23 2011-10-27 Alstom Technology Ltd Adjustable heat exchanger
KR101147268B1 (ko) 2010-08-09 2012-05-18 주식회사 삼영 냉난방 및 급탕용 히트펌프시스템 및 그 제어방법
CN102538100B (zh) * 2012-02-17 2014-01-15 合肥工业大学 机房用热管复合型空调机组及其控制方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2522361B2 (ja) 1988-10-12 1996-08-07 三菱電機株式会社 空気調和装置
JPH05184181A (ja) 1992-01-07 1993-07-23 Mitsubishi Electric Corp 空気調和機の制御装置
JP2000161808A (ja) 1998-11-24 2000-06-16 Mitsubishi Electric Corp 冷凍サイクル装置及び逆止弁ユニット
JP2003343936A (ja) 2002-05-28 2003-12-03 Mitsubishi Electric Corp 冷凍サイクル装置
JP2004020191A (ja) * 2002-06-12 2004-01-22 Lg Electronics Inc マルチ空気調和機及びその制御方法
WO2006003925A1 (ja) * 2004-07-01 2006-01-12 Daikin Industries, Ltd. 冷凍装置及び空気調和装置
JP2007024320A (ja) * 2005-07-12 2007-02-01 Hitachi Ltd 冷凍装置
JP2011089690A (ja) * 2009-10-22 2011-05-06 Hitachi Appliances Inc 空気調和機

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2944897A4

Also Published As

Publication number Publication date
EP2944897A1 (en) 2015-11-18
CN104903662A (zh) 2015-09-09
JP5897154B2 (ja) 2016-03-30
US20150330655A1 (en) 2015-11-19
EP2944897B1 (en) 2020-12-23
CN104903662B (zh) 2017-06-06
JPWO2014108997A1 (ja) 2017-01-19
US10168060B2 (en) 2019-01-01
EP2944897A4 (en) 2016-09-21

Similar Documents

Publication Publication Date Title
US9534807B2 (en) Air conditioning apparatus with primary and secondary heat exchange cycles
JP6644154B2 (ja) 空気調和装置
WO2013111177A1 (ja) 空気調和装置
US9557083B2 (en) Air-conditioning apparatus with multiple operational modes
WO2013145006A1 (ja) 空気調和装置
US11384965B2 (en) Refrigeration cycle apparatus performing a refrigerant circulation operation using a liquid pump
JP4375171B2 (ja) 冷凍装置
JP6119141B2 (ja) 空調システム
JP2008232508A (ja) 給湯器
JP6120943B2 (ja) 空気調和装置
KR101754685B1 (ko) 히트펌프식 급탕장치
JP2016106211A (ja) 空気調和装置
JP6436196B1 (ja) 冷凍装置
JP4966601B2 (ja) 空気調和装置
JP5897154B2 (ja) 空気調和装置
JP2018025381A (ja) 冷凍装置の熱源ユニット
JP2009014208A (ja) 冷凍装置
JP6672619B2 (ja) 空調システム
JP6589946B2 (ja) 冷凍装置
JP5537906B2 (ja) 空気調和装置
JP6391832B2 (ja) 空気調和装置及び熱源機
JP7394876B2 (ja) 空気調和装置
JP2019020089A (ja) 冷凍装置
JP2010038408A (ja) 室外熱交換器及びこれを搭載した冷凍サイクル装置
JP7306582B2 (ja) 冷凍サイクル装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13870917

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014556239

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14653883

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2013870917

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE