WO2014108989A1 - 操舵制御装置 - Google Patents
操舵制御装置 Download PDFInfo
- Publication number
- WO2014108989A1 WO2014108989A1 PCT/JP2013/007705 JP2013007705W WO2014108989A1 WO 2014108989 A1 WO2014108989 A1 WO 2014108989A1 JP 2013007705 W JP2013007705 W JP 2013007705W WO 2014108989 A1 WO2014108989 A1 WO 2014108989A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- axial force
- steering
- angular velocity
- absolute value
- unit
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B62—LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
- B62D—MOTOR VEHICLES; TRAILERS
- B62D6/00—Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits
- B62D6/008—Control of feed-back to the steering input member, e.g. simulating road feel in steer-by-wire applications
Definitions
- the present invention relates to a steer-by-wire steering control device in which a steering wheel and a steered wheel are mechanically separated.
- Patent Document 1 Conventionally, as a technique of a steering control device, for example, there is a conventional technique described in Patent Document 1.
- the reaction force motor is controlled in accordance with the steering angle and steering angular velocity of the steering wheel. Thereby, in this prior art, a steering reaction force is applied.
- the damping component included in the steering reaction force is saturated as the steering angular velocity increases.
- the saturation of the damping component is not taken into consideration, there is a possibility that the steering reaction force continues to increase as the steering angular velocity increases.
- the driver's steering feeling may become uncomfortable due to excessive damping components.
- the present invention pays attention to the above points, and makes it a subject to be able to give a more appropriate steering feeling.
- a steering reaction force is applied based on the feedforward axial force.
- the absolute value of the damping component of the feedforward axial force is reduced as the absolute value of the steering angular velocity increases.
- FIG. 2 is a conceptual diagram illustrating a configuration of a vehicle A.
- FIG. 3 is a block diagram illustrating a configuration of a control calculation unit 11.
- FIG. It is a block diagram showing the structure of the target reaction force electric current calculating part 11B.
- It is a block diagram showing the structure of feedforward axial force calculation part 11Ba.
- It is a figure for demonstrating the coefficient of the calculation formula of pinion axial force Th.
- It is a graph showing control map M1.
- It is a graph showing control map M2.
- 3 is a graph showing a relationship between a steering angle ⁇ and a steering reaction force.
- It is a block diagram showing the structure of feedback axial force calculation part 11Bb.
- the vehicle A according to this embodiment is a vehicle including a steer-by-wire steering control device in which a steering wheel 1 and a front wheel (hereinafter also referred to as a steering wheel) 2 are mechanically separated.
- FIG. 1 is a conceptual diagram illustrating a configuration of a vehicle A according to the present embodiment. As shown in FIG. 1, the vehicle A includes a steering angle sensor 3, a turning angle sensor 4, a vehicle speed sensor 5, a lateral G sensor 6, and a yaw rate sensor 7.
- the steering angle sensor 3 detects the steering angle ⁇ of the steering wheel 1.
- the steering angle sensor 3 outputs a signal representing the detection result (hereinafter also referred to as a detection signal) to the control calculation unit 11 described later.
- the turning angle sensor 4 detects the turning angle ⁇ of the steered wheel 2.
- a method of detecting the turning angle ⁇ for example, a method of calculating based on the amount of movement of the steering rack can be employed. Then, the turning angle sensor 4 outputs a detection signal to the control calculation unit 11.
- the vehicle speed sensor 5 detects the vehicle speed V of the vehicle A.
- the vehicle speed sensor 5 outputs a detection signal to the control calculation unit 11.
- the lateral G sensor 6 detects a lateral acceleration Gy acting on the vehicle A (a state quantity of the vehicle A varying with the tire lateral force Fd acting on the steered wheel 2). Then, the lateral G sensor 6 outputs a detection signal to the control calculation unit 11.
- the yaw rate sensor 7 detects the yaw rate ⁇ of the vehicle A (the state quantity of the vehicle A that varies with the tire lateral force Fd acting on the steered wheel 2). Then, the yaw rate sensor 7 outputs a detection signal to the control calculation unit 11.
- the lateral G sensor 6 and the yaw rate sensor 7 are arranged on the spring (vehicle body).
- the vehicle A includes a steering control unit 8 and a reaction force control unit 9.
- the steered control unit 8 includes a steered motor 8A, a steered current detecting unit 8B, and a steered motor driving unit 8C.
- the steered motor 8A is connected to the pinion shaft 10 via a speed reducer.
- the steered motor 8 ⁇ / b> A is driven by the steered motor driving unit 8 ⁇ / b> C and moves the steering rack to the left and right via the pinion shaft 10. Thereby, the steered motor 8A steers the steered wheel 2.
- a method for driving the steered motor 8A for example, a method of controlling a current flowing in the steered motor 8A (hereinafter also referred to as steered current) can be employed.
- the steered current detection unit 8B detects the steered current (the state quantity of the vehicle A that varies with the tire lateral force Fd acting on the steered wheel 2). Then, the steering current detection unit 8B outputs a detection signal to the steering motor drive unit 8C and the control calculation unit 11. Based on the target turning current calculated by the control calculation unit 11, the turning motor drive unit 8C turns the turning motor 8A so that the turning current detected by the turning current detection unit 8B matches the target turning current. Controls the steering current. Thereby, the steered motor driving unit 8C drives the steered motor 8A.
- the target turning current is a target value of the current flowing in the turning motor 8A.
- the reaction force control unit 9 includes a reaction force motor 9A, a reaction force current detection unit 9B, and a reaction force motor drive unit 9C.
- the reaction force motor 9A is connected to the steering shaft via a reduction gear. Then, the reaction force motor 9A is driven by the reaction force motor drive unit 9C and applies rotational torque to the steering wheel 1 via the steering shaft. Thereby, the reaction force motor 9A generates a steering reaction force.
- a driving method of the reaction force motor 9A for example, a method of controlling a current flowing in the reaction force motor 9A (hereinafter also referred to as reaction force current) can be adopted.
- the reaction force current detection unit 9B detects a reaction force current.
- the reaction force current detection unit 9B outputs a detection signal to the reaction force motor drive unit 9C and the control calculation unit 11.
- the reaction force motor drive unit 9C is based on the target reaction force current calculated by the control calculation unit 11 so that the reaction force current detected by the reaction force current detection unit 9B matches the target reaction force current. Controls the reaction force current. Thereby, the reaction force motor drive unit 9C drives the reaction force motor 9A.
- the target reaction force current is a target value of the current flowing through the reaction force motor 9A.
- FIG. 2 is a block diagram illustrating the configuration of the control calculation unit 11.
- the control calculation unit 11 includes a target turning angle calculation unit 11A, a target reaction force current calculation unit 11B, and a target turning current calculation unit 11C.
- the target turning angle calculation unit 11A is a target that is a target value of the turning angle ⁇ (the rotation angle of the pinion shaft 10) based on the steering angle ⁇ detected by the steering angle sensor 3 and the vehicle speed V detected by the vehicle speed sensor 5. Calculate the turning angle ⁇ *.
- the target turning angle calculation unit 11A outputs the calculation result to the target reaction force current calculation unit 11B.
- the target reaction force current calculation unit 11B is based on the target turning angle ⁇ * calculated by the target turning angle calculation unit 11A, the vehicle speed V detected by the vehicle speed sensor 5, and the turning current detected by the turning current detection unit 8B. To calculate the target reaction force current. Then, the target reaction force current calculation unit 11B outputs the calculation result to the reaction force control unit 9 (reaction force motor drive unit 9C).
- reaction force control unit 9 reaction force motor drive unit 9C
- the target reaction force current calculation unit 11B includes a feedforward axial force calculation unit 11Ba, a feedback axial force calculation unit 11Bb, a final axial force calculation unit 11Bc, an axial force-steering reaction force conversion unit 11Bd, and a target.
- a reaction force current calculation unit 11Be is provided.
- FIG. 4 is a block diagram illustrating the configuration of the feedforward axial force calculation unit 11Ba. As shown in FIG. 4, the feedforward axial force calculation unit 11 ⁇ / b> Ba is based on the steering angle ⁇ detected by the steering angle sensor 3 and the vehicle speed V detected by the vehicle speed sensor 5, according to the formula (5) described later, TFF is calculated. And feedforward axial force calculation part 11Ba outputs a calculation result to final axial force calculation part 11Bc (refer FIG. 2).
- FIG. 5 is a diagram for explaining the coefficients of the calculation formula for the pinion axial force Th.
- the relational expression between the steered pinion angle ⁇ and the pinion axial force Th is based on the equation of motion of a vehicle including a steering mechanism in which the steering wheel 1 and the steering wheel 2 are mechanically connected (1 ) Expression.
- the steered pinion angle ⁇ for example, there is a rotation angle of the pinion shaft 10.
- the turning pinion angle ⁇ has a multiplication value of the steering angle ⁇ and the variable gear ratio between the steering angle ⁇ and the turning angle ⁇ .
- the pinion axial force Th for example, there is a steering reaction force applied to the steering wheel 1.
- the first term on the right side of the following equation (1) is a damping term representing a component based on the steered pinion angular velocity d ⁇ / dt among the components constituting the pinion axial force Th.
- the second term on the right side is an inertia term representing a component based on the steered pinion angular acceleration d 2 ⁇ / dt 2 among the components constituting the pinion axial force Th.
- the third term on the right side is a proportional term representing a component based on the tire lateral force Fd (steering pinion angle ⁇ ) among the components constituting the pinion axial force Th.
- Th Ks (Jrs 2 + Cr ⁇ s) / (Jr ⁇ s 2 + (Cr + Cs) s + Ks) ⁇ ⁇ + Cs (Jrs 3 + Cr ⁇ s 2 ) / (Jr ⁇ s 2 + (Cr + Cs) s + Ks) ⁇ ⁇ + (Ks + Cs ⁇ s) ) / (Jr ⁇ s 2 + (Cr + Cs) s + Ks) ⁇ Fd (1)
- Ks is pinion rigidity
- Cs is pinion viscosity
- Jr rack inertia
- Cr rack viscosity.
- the second term on the right side that is, the inertia term, contains a lot of noise components, and is preferably excluded because it induces vibration in the calculation result of the pinion axial force Th.
- f (V) for example, there is a function that changes according to the vehicle speed V. Therefore, the above equation (1) can be expressed as the following equation (2).
- FIG. 6 is a graph showing the control map M1.
- a method of setting the variable f (V) for example, a method of reading the variable f (V) corresponding to the absolute value of the vehicle speed V from the control map M1 can be adopted.
- An example of the control map M1 is a map in which a variable f (V) corresponding to the absolute value of the vehicle speed V is registered. Specifically, as shown in FIG. 6, when the absolute value of the vehicle speed V is 0, the control map M1 sets the variable f (V) to a first set value (for example, 0.0). Further, in the range where the absolute value of the vehicle speed V is equal to or higher than the first set vehicle speed V 1 (> 0), the variable f (V) is set to the second set value (> first set value. 1.0).
- control map M1 linearly increases the variable f (V) in accordance with the absolute value of the turning angular velocity d ⁇ / dt in the range where the absolute value of the vehicle speed V is 0 or more and less than the first set vehicle speed V 1.
- the control map M1 follows a linear function representing the relationship between the absolute value of the vehicle speed V and the variable f (V) when the absolute value of the vehicle speed V is greater than or equal to 0 and less than the first set vehicle speed V 1.
- the linear function sets the variable f (V) to the first set value (0.0) when the absolute value of the vehicle speed V is 0, and the variable f (V) when the absolute value of the vehicle speed V is the first set vehicle speed V1.
- feedforward axial force calculating unit 11Ba the absolute value of the vehicle speed V is in the case of the first less than the set vehicle speed V 1 decreases the absolute value of the more proportional component having a small absolute value of the vehicle speed V (reduced ). Further, the feedforward axial force calculating unit 11Ba, when the absolute value of the vehicle speed V is first set vehicle speed V 1 or more, regardless of the size of the vehicle speed V, is not performed to reduce the absolute value of the proportional component.
- the pinion axial force Th that is, the steering reaction force generated in the steering wheel 1 can be expressed by the following equation (4) based on the above equation (3).
- Th P (s + 2 ⁇ ⁇ ⁇ ⁇ ⁇ n) / (s 2 + 2 ⁇ ⁇ ⁇ ⁇ n ⁇ s + ⁇ n 2 ) d ⁇ / dt + I ⁇ (s + 2 ⁇ ⁇ ⁇ ⁇ n) / (s 2 + 2 ⁇ ⁇ ⁇ ⁇ n ⁇ s + ⁇ n 2 ) ⁇ f ( V) ⁇ ⁇ .
- Equation (4) that is, based on a formula of the pinion shaft force Th, as a method of calculating the feedforward axial force T FF of the present embodiment employs the following equation (5).
- T FF P ⁇ P 1 ⁇ P 2 (s + 2 ⁇ ⁇ ⁇ ⁇ n) / (s 2 + 2 ⁇ ⁇ ⁇ ⁇ n ⁇ s + ⁇ n 2 ) d ⁇ / dt + I ⁇ (s + 2 ⁇ ⁇ ⁇ ⁇ n) / (s 2 + 2 ⁇ ⁇ ⁇ n ⁇ S + ⁇ n 2 ) ⁇ f (V) ⁇ ⁇ +
- Correction damping component Damping component ⁇ P 1 ⁇ P 2 + Proportional component + Correction damping component (5)
- the damping component is P (s + 2 ⁇ ⁇ ⁇ ⁇ n) / (s 2 + 2 ⁇ ⁇ ⁇ ⁇ n ⁇ s + ⁇ n 2 ) d ⁇ / dt
- the correction damping component is a damping component based on the steering angular velocity d ⁇ / dt, and generates a steering reaction force in a direction opposite to the steering angular velocity d ⁇ / dt.
- FIG. 7 is a graph showing the control map M2.
- a method of setting the gain P 1 for example, a method of reading the gain P 1 corresponding to the absolute value of the steering angular velocity d ⁇ / dt from the control map M2 can be adopted.
- the control map M2 for example, there is a map that has registered the gain P 1 corresponding to the absolute value of the steering angular velocity d? / Dt. Specifically, as shown in FIG. 7, when the steering angular velocity d ⁇ / dt is 0, the control map M2 sets the gain P 1 to a third set value (for example, 1.0).
- the gain P 1 is set to the fourth set value ( ⁇ The third set value is set to 0.5, for example. Further, in the control map M2, in the range where the absolute value of the steering angular velocity d ⁇ / dt is not less than 0 and less than the first set steering angular velocity d ⁇ 1 / dt, the gain P 1 is linearly changed according to the absolute value of the steering angular velocity d ⁇ / dt. Decrease.
- control map M2 indicates that the absolute value of the steering angular velocity d ⁇ / dt and the gain P 1 are in the range where the absolute value of the steering angular velocity d ⁇ / dt is not less than 0 and less than the first set steering angular velocity d ⁇ 1 / dt.
- the gain P 1 is set in accordance with a linear function representing the relationship. In the linear function, when the steering angular velocity d ⁇ / dt is 0, the gain P 1 is set to the third set value (1.0), and the absolute value of the steering angular velocity d ⁇ / dt is the first set steering angular velocity d ⁇ 1 / dt.
- the gain P 1 is set to the fourth set value (0.5).
- the feedforward axial force calculation unit 11Ba increases the damping component as the absolute value of the steering angular velocity d ⁇ / dt increases. Decrease the absolute value of (correct).
- the feedforward axial force calculation unit 11Ba gains P regardless of the magnitude of the steering angular velocity d ⁇ / dt. The absolute value of the damping component based on 1 is not corrected.
- FIG. 8 is a graph showing the relationship between the steering angle ⁇ and the steering reaction force.
- This graph shows each steering control device (a mechanical steering control device in which the steering wheel 1 and the steering wheel 2 are mechanically coupled) and a steering-by-wire method that does not consider the saturation of the damping component.
- the damping component included in the steering reaction force is saturated as the steering angular velocity d ⁇ / dt increases. Therefore, in the mechanical steering control device, as shown in FIG. 8, when the damping component is saturated, the Lissajous figure composed of the steering angle ⁇ and the steering reaction force regardless of the magnitude of the steering angular velocity d ⁇ / dt.
- the shape of is constant.
- FIG. 9 is a graph showing the control map M3.
- the control map M3 is the gain P 2 fifth set value when the absolute value of the vehicle speed V is zero (e.g., 0.5) is set to. Further, in the range where the absolute value of the vehicle speed V is equal to or higher than the second set vehicle speed V 2 (> 0), the gain P 2 is set to the sixth set value (> 5th set value, for example, 1. Set to 0).
- control map M3 linearly increases the gain P 2 according to the absolute value of the vehicle speed V in the range where the absolute value of the vehicle speed V is 0 or more and less than the second set vehicle speed V 2 .
- the control map M3 is the absolute value and the second predetermined vehicle speed V 2 less than the range from 0 or more of the vehicle speed V, the gain P according to a linear function representing the relationship between the absolute value and the gain P 2 of the vehicle speed V Set 2 Linear function, when the absolute value of the vehicle speed V is zero the gain P 2 fifth set value and (0.5), when the absolute value of the vehicle speed V is a second set speed V 2 of the gain P 2
- the sixth set value (1.0) is assumed.
- feedforward axial force calculating unit 11Ba the absolute value of the vehicle speed V is in the case of the second lower than the set vehicle speed V 2, the smaller the absolute value of the more damping component having a small absolute value of the vehicle speed V (corrected ). Further, when the absolute value of the vehicle speed V is equal to or higher than the second set vehicle speed V 2 , the feedforward axial force calculation unit 11Ba calculates the absolute value of the damping component based on the gain P 2 regardless of the magnitude of the vehicle speed V. Do not make corrections.
- the control calculation unit 11 of the present embodiment decreases the absolute value of the damping component as the absolute value of the vehicle speed V decreases.
- the control calculation part 11 of this embodiment can reduce a steering reaction force by making the absolute value of a damping component small, so that the absolute value of the vehicle speed V is small.
- the control calculating part 11 of this embodiment can provide a more suitable steering feeling.
- FIG. 10 is a graph showing the control map M4.
- a method of setting the correction damping component for example, a method of reading the correction damping component corresponding to the absolute value of the steering angular velocity d ⁇ / dt from the control map M4 can be employed.
- the control map M2 for example, there is a map in which a correction damping component corresponding to the absolute value of the steering angular velocity d ⁇ / dt is registered. Specifically, as shown in FIG. 10, the control map M4 is set for each vehicle speed V. Each control map M4 sets the correction damping component to the seventh set value (for example, 0.0) when the steering angular velocity d ⁇ / dt is zero.
- control map M4 indicates that the correction damping component is used regardless of the magnitude of the steering angular velocity d ⁇ / dt in the range where the absolute value of the steering angular velocity d ⁇ / dt is equal to or larger than the second set steering angular velocity d ⁇ 2 / dt (> 0).
- the steering angular velocity d ⁇ / dt is 0.0 or more
- the absolute value of the steering angular velocity d ⁇ / dt is a third set steering angular velocity d ⁇ 3 / dt (0 ⁇ d ⁇ 3 / dt ⁇ d ⁇ 2 / dt).
- each control map M4 has an absolute value of the steering angular velocity d ⁇ / dt and a correction damping in a range where the absolute value of the steering angular velocity d ⁇ / dt is not less than 0 and less than the third set steering angular velocity d ⁇ 3 / dt.
- a correction damping component is set according to a linear function representing the relationship with the component.
- the correction damping component when the absolute value of the steering angular velocity d ⁇ / dt is 0, the correction damping component is set to the seventh set value (0.0), and the absolute value of the steering angular velocity d ⁇ / dt is the third set steering angular velocity d ⁇ 3.
- the correction damping component is set to the ninth set value (0 ⁇ 9th set value ⁇ 8th set value).
- Each control map M4 indicates that the absolute value of the steering angular velocity d ⁇ / dt is within a range where the absolute value of the steering angular velocity d ⁇ / dt is not less than the third setting steering angular velocity d ⁇ 3 / dt and less than the second setting steering angular velocity d ⁇ 2 / dt.
- the correction damping component is linearly increased according to the value.
- the control map M4 indicates that the absolute value of the vehicle speed V is within a range where the absolute value of the steering angular velocity d ⁇ / dt is greater than or equal to the third set steering angular velocity d ⁇ 3 / dt and less than the second set steering angular velocity d ⁇ 2 / dt.
- the correction damping component is set according to a linear function representing the relationship between the correction damping component and the correction damping component.
- the linear function is that when the absolute value of the steering angular velocity d ⁇ / dt is the third set steering angular velocity d ⁇ 3 / dt, the correction damping component is the ninth set value, and the absolute value of the steering angular velocity d ⁇ / dt is the second set steering.
- the correction damping component is set to the eighth set value.
- the feedforward axial force calculation unit 11Ba corrects the larger the absolute value of the steering angular velocity d ⁇ / dt when the absolute value of the steering angular velocity d ⁇ / dt is less than the second set steering angular velocity d ⁇ 2 / dt. Increase the absolute value of the damping component. Further, the feedforward axial force calculating unit 11Ba, when the absolute value of the steering angular velocity d? / Dt is the second set steering angular velocity d? 2 / dt or more, regardless of the magnitude of the steering angular velocity d? / Dt, correction The absolute value of the damping component is set to a predetermined constant value.
- control arithmetic unit 11 of the present embodiment adds the correction damping component absolute value larger the absolute value of the steering angular velocity d? / Dt increases feedforward axial force T FF. Therefore, when the absolute value of the steering angular velocity d ⁇ / dt increases at the start of turning the steering wheel 1, the control calculation unit 11 of the present embodiment can increase the rising of the steering reaction force. Thereby, the control calculating part 11 of this embodiment can provide a more suitable steering feeling.
- the control calculation unit 11 of the present embodiment uses a predetermined constant value as a correction damping component. Therefore, when the driver turns the steering wheel 1 and the absolute value of the steering angular velocity d ⁇ / dt becomes equal to or higher than the second set steering angular velocity d ⁇ 2 / dt, fluctuations in the correction damping component can be suppressed. . Therefore, the control calculation unit 11 of the present embodiment does not sense a change in the steering reaction force due to the variation in the correction damping component, and can prevent the driver from feeling uncomfortable with the steering feeling.
- FIG. 11 is a block diagram illustrating a configuration of the feedback axial force calculation unit 11Bb.
- the feedback axial force calculation unit 11Bb includes a current axial force calculation unit 11Bba, a blend axial force calculation unit 11Bbb, a steering angular velocity detection unit 11Bbc, a steering determination unit 11Bbd, and a feedback axial force calculation execution unit 11Bbe.
- the current axial force calculation unit 11Bba calculates a steering rack axial force (an axial force of the steering rack; hereinafter also referred to as a current axial force) based on the steering current detected by the steering current detection unit 8B. To do.
- the steering current varies when the steering wheel 1 is steered, the target turning angle ⁇ * varies, and a difference occurs between the target turning angle ⁇ * and the actual turning angle ⁇ .
- the steered current is also generated when the steered wheel 2 is steered, the tire lateral force Fd acts on the steered wheel 2, and a difference occurs between the target steered angle ⁇ * and the actual steered angle ⁇ . fluctuate.
- the steering current is caused by a road surface disturbance acting on the steered wheel 2 due to road surface unevenness or the like, and a tire lateral force Fd acting on the steered wheel 2 to obtain a target steered angle ⁇ * and an actual steered angle ⁇ . It also fluctuates due to differences.
- the feedback axial force calculation unit 11Bb can calculate the steering rack axial force (current axial force) reflecting the influence of the tire lateral force Fd acting on the steered wheels 2 based on the steering current.
- the current axial force is generated when a difference occurs between the target turning angle ⁇ * and the actual turning angle ⁇ . Therefore, the phase of the current axial force advances as compared with the actual steering rack axial force and lateral G axial force, as shown in FIG.
- the blend axial force calculating unit 11Bbb calculates a steering rack axial force (hereinafter also referred to as a lateral G-axis force) according to the following equation (7).
- a steering rack axial force hereinafter also referred to as a lateral G-axis force
- the front wheel load and the lateral acceleration Gy are multiplied, and the multiplication result is calculated as an axial force (axial force) applied to the steered wheel 2.
- the calculated axial force applied to the steered wheel 2 is multiplied by a constant (hereinafter also referred to as a link ratio) according to the link angle and suspension, and the multiplication result is represented by the horizontal G axis. Calculated as force.
- Lateral G-axis force Axial force applied to steering wheel 2 x Link ratio (7)
- Axial force applied to steering wheel 2 front wheel load x lateral acceleration Gy
- the lateral acceleration Gy is generated when the steered wheel 2 is steered, the tire lateral force Fd acts on the steered wheel 2, and the vehicle A turns. Therefore, the blend axial force calculation unit 11Bbb can calculate the steering rack axial force (lateral G axial force) reflecting the influence of the tire lateral force Fd acting on the steered wheels 2 based on the lateral acceleration Gy.
- the lateral G sensor 6 is disposed on the spring (vehicle body), detection of the lateral acceleration Gy is delayed. Therefore, the lateral G-axis force is delayed in phase as compared with the actual steering rack axial force, as shown in FIG.
- the lateral acceleration Gy detected by the lateral G sensor 6 is used when calculating the lateral G-axis force
- the yaw rate ⁇ detected by the yaw rate sensor 7 may be multiplied by the vehicle speed V detected by the vehicle speed sensor 5, and the multiplication result ⁇ ⁇ V may be used instead of the lateral acceleration Gy.
- the blend axial force calculation unit 11Bbb is based on the vehicle speed V detected by the vehicle speed sensor 5 and the yaw rate ⁇ detected by the yaw rate sensor 7, and the steering rack axial force (hereinafter also referred to as yaw rate axial force) according to the following equation (8). Is calculated.
- the blend axial force calculation unit 11Bbb can calculate the steering rack axial force (yaw rate axial force) reflecting the influence of the tire lateral force Fd acting on the steered wheels 2 based on the yaw rate ⁇ .
- the yaw rate sensor 7 is disposed on the spring (vehicle body), the detection of the yaw rate ⁇ is delayed. For this reason, the phase of the yaw rate axial force is delayed compared to the actual steering rack axial force, as shown in FIG.
- the blend axial force calculation unit 11Bbb reads the current axial force from the current axial force calculation unit 11Bba. Subsequently, the blend axial force calculation unit 11Bbb calculates the steering rack axial force (hereinafter referred to as “blend axial force”) according to the following equation (9) based on the read current axial force and the calculated lateral G axial force and yaw rate axial force. TBR is calculated. In the following equation (9), the lateral G-axis force is multiplied by the distribution ratio K1, the current axial force is multiplied by the distribution ratio K2, the yaw rate axial force is multiplied by the distribution ratio K3, and the sum of these multiplication results is the blend axis.
- the blend axial force T BR is calculated based on a value obtained by multiplying the lateral G axial force by the distribution ratio K1, a value obtained by multiplying the current axial force by the distribution ratio K2, and a value obtained by multiplying the yaw rate axial force by the distribution ratio K3. .
- the blend axial force calculation unit 11Bbb outputs the calculation result to the steering determination unit 11Bbd and the feedback axial force calculation execution unit 11Bbe.
- the blend axial force T BR has a positive value for the axial force that directs the steered wheel 2 in the right direction and a negative value for an axial force that directs the steered wheel 2 in the left direction.
- T BR Lateral G Axial Force x K1 + Current Axial Force x K2 + Yaw Rate Axial Force x K3 (9)
- the distribution ratios K1, K2, and K3 are distribution ratios of the lateral G-axis force, current axial force, and yaw rate axial force.
- the magnitude relationship between the distribution ratios K1, K2, and K3 is K1>K2> K3. That is, the distribution ratio is set to a large value in the order of the lateral G axial force, the current axial force, and the yaw rate axial force.
- blending axial force calculating unit 11Bbb as a blend axial force T BR, calculates a steering rack axial force that reflects the influence of the tire lateral force Fd acting on the steering wheel 2.
- FIG. 13 is a graph showing the blend axial force T BR and the actual steering rack axial force.
- the blend axial force calculation unit 11Bbb of the present embodiment calculates the blend axial force T BR based on the value obtained by multiplying the current axial force by the distribution ratio K2 and the value obtained by multiplying the lateral G axial force by the distribution ratio K1. calculate.
- the phase of the lateral G-axis force is delayed compared to the actual steering rack axial force.
- the phase of the current axial force advances compared to the actual steering rack axial force. Therefore, the blend axial force calculation unit 11Bbb of the present embodiment can compensate for the phase lag due to the lateral G-axis force as shown in FIG.
- the blend axial force T BR can be calculated. Therefore, the control calculation unit 11 of the present embodiment can apply a more appropriate steering reaction force by driving the reaction force motor 9A based on the blend axial force TBR .
- the blend axial force calculation unit 11Bbb of the present embodiment calculates the blend axial force T BR based on a value obtained by multiplying the current axial force by the distribution ratio K2 and a value obtained by multiplying the lateral G axial force by the distribution ratio K1. .
- the vehicle A has a target turning angle ⁇ * and an actual turning angle ⁇ . There will be a difference.
- blends axial force calculating unit 11Bbb of this embodiment by adding the current axial force to the lateral G axial force, it can reflect the influence of the road surface disturbance acting on the steering wheel 2 to the blend axial force T BR, more An appropriate blend axial force T BR can be calculated. Therefore, the control calculation unit 11 of the present embodiment can apply a more appropriate steering reaction force by driving the reaction force motor 9A based on the blend axial force TBR .
- the blend axial force calculation unit 11Bbb of the present embodiment increases the lateral G axial force distribution ratio K1 to a current axial force distribution ratio K2. Therefore, the blend axial force calculation unit 11Bbb of the present embodiment can reduce the distribution ratio of the current axial force. For example, even if the estimation accuracy of the current axial force is reduced due to the inertia of the steered motor 8A or the influence of friction, A decrease in the estimation accuracy of the blend axial force T BR can be suppressed. Therefore, the control calculation unit 11 of the present embodiment can apply a more appropriate steering reaction force by driving the reaction force motor 9A based on the blend axial force TBR .
- the blend axial force calculation unit 11Bbb of the present embodiment has a value obtained by multiplying the current axial force by the distribution ratio K2, a value obtained by multiplying the lateral G axial force by the distribution ratio K1, and a value obtained by multiplying the yaw rate axial force by the distribution ratio K3.
- the feedback axial force T FB is calculated.
- the steering current and the lateral acceleration Gy increase, so that the detection result of the lateral G sensor 6 and the detection result of the steering current detection unit 8B are both maximum. Value (saturated value).
- the yaw rate ⁇ also increases, but the increase amount of the yaw rate ⁇ is relatively small compared to the increase amounts of the steering current and the lateral acceleration Gy, so that the detection result of the yaw rate sensor 7 reaches the maximum value (saturated value). Not reach. Therefore, the detection result of the yaw rate sensor 7 varies depending on the degree of spin state of the vehicle A. Therefore, the blend axial force T BR can be changed according to the degree of the spin state of the vehicle A. As a result, the control calculation unit 11 of the present embodiment can apply a more appropriate steering reaction force by driving the reaction force motor 9A based on the blend axial force TBR .
- the steering angular velocity detector 11Bbc calculates the steering angular velocity d ⁇ / dt of the steering wheel 1 based on the steering angle ⁇ detected by the steering angle sensor 3. And steering angular velocity detection part 11Bbc outputs a calculation result to blend axial force calculation part 11Bbb and steering determination part 11Bbd.
- the steering angular velocity d ⁇ / dt has a positive value when the steering wheel 1 rotates clockwise, and a negative value when the steering wheel 1 rotates counterclockwise.
- Steering determining unit 11Bbd based on the steering angular velocity d? / Dt which blends axial force blends axial force calculating unit 11Bbb calculated T BR and steering angular velocity detection unit 11Bbc detects the driver of the steering wheel 1 additional steering operation and cut It is determined which of the return operations is being performed.
- the rounding-up operation is, for example, a steering operation in a direction in which the steering wheel 1 (steering angle ⁇ ) is away from the neutral position.
- the return operation for example, there is a steering operation in a direction in which the steering wheel 1 (steering angle ⁇ ) approaches the neutral position.
- the steering determination unit 11Bbd determines that the blend axial force T BR is a positive value and the steering angular velocity d ⁇ / dt is a positive value, or the blend axial force T BR is a negative value and the steering angular velocity d ⁇ / If dt is a negative value, it is determined that the steering wheel 1 is being increased, and the variable K4 is set to 1.0.
- the variable K4 is a flag that indicates whether the steering wheel 1 is being turned on or turned off.
- the variable K4 is set to 1.0 when the steering wheel 1 is turned up and is set to 0.0 when the switchback operation is performed.
- the steering determination unit 11Bbd determines that the blend axial force T BR is a positive value and the steering angular velocity d ⁇ / dt is a negative value, or the blend axial force T BR is a negative value and the steering angular velocity d ⁇ / dt is positive. If the value is a value, it is determined that the steering wheel 1 is not being increased, and the variable K4 is set to zero. Then, the steering determination unit 11Bbd outputs the set variable K4 to the feedback axial force calculation execution unit 11Bbe.
- the feedback axial force calculation execution unit 11Bbe receives the current axial force, blend axial force T BR , steering angular velocity d ⁇ / dt, and current axial force calculation unit 11Bba, blend axial force calculation unit 11Bbb, steering angular velocity detection unit 11Bbc, and steering determination unit 11Bbd. Read variable K4. Subsequently, the feedback axial force calculation execution unit 11Bbe performs steering rack axial force (hereinafter referred to as feedback shaft) according to the following equation (10) based on the read current axial force, blend axial force T BR , steering angular velocity d ⁇ / dt, and variable K4. Force T FB ).
- feedback shaft steering rack axial force
- the feedback axial force calculation execution unit 11Bbe outputs the calculation result to the final axial force calculation unit 11Bc.
- Feedback axial force T FB Current axial force ⁇ GB + Blend axial force T BR ⁇ (1-GB) (10)
- GB is a numerical value (hereinafter referred to as a distribution ratio) representing a distribution ratio GB of the current axial force and a distribution ratio (1-GB) of the blend axial force TBR .
- the feedback axial force calculation execution unit 11Bbe adds the current axial force and the blend axial force T BR at a ratio of GB: (1-GB) based on the distribution ratio GB, thereby obtaining the feedback axial force T FB . calculate.
- a method of setting the distribution ratio GB for example, a method of setting the distribution ratio GB by the distribution ratio setting unit 11Bbf based on the determination result output by the steering determination unit 11Bbd can be adopted.
- the distribution ratio setting unit 11Bbf reads the steering angular velocity d ⁇ / dt and the variable K4 from the steering determination unit 11Bbd. Subsequently, the distribution ratio setting unit 11Bbf calculates the distribution ratio GB according to the following equation (11) based on the read steering angular velocity d ⁇ / dt and the variable K4.
- GB K4 ⁇ K5 (11)
- K5 is a numerical value that represents the distribution ratio GB of the current axial force and the distribution ratio (1-GB) of the blend axial force TBR when K4 is 1.0, that is, when the steering wheel 1 is increased. is there.
- the feedback axial force calculation execution unit 11Bbe adds the current axial force and the blend axial force T BR at a ratio of K5: (1-K5) based on the variable K5 when the steering wheel 1 is increased.
- the feedback axial force T FB is calculated. Note that when K4 is 0.0, i.e., at the time of switching back operation of the steering wheel 1, regardless of the variable K5, the blend axial force T BR feedback axial force T FB.
- a method for setting the variable K5 for example, a method of reading the variable K5 corresponding to the steering angular velocity d ⁇ / dt from the control map M5 can be adopted.
- An example of the control map M5 is a map in which a variable K5 corresponding to the steering angular velocity d ⁇ / dt is registered.
- FIG. 14 is a graph showing the control map M5.
- the control map M5 shows that the steering angular velocity d ⁇ / dt is large in the range where the absolute value of the steering angular velocity d ⁇ / dt is not less than 0 and less than the fourth set steering angular velocity d ⁇ 4 / dt (> 0).
- the variable K5 is set to the tenth set value (for example, 1.0).
- control map M5 has a variable K5 in the range where the absolute value of the steering angular velocity d ⁇ / dt is not less than the fifth set steering angular velocity d ⁇ 5 / dt (> d ⁇ 4 / dt) regardless of the magnitude of the steering angular velocity d ⁇ / dt. Is set to an eleventh set value ( ⁇ tenth set value, for example, 0.0).
- control map M5 indicates that the absolute value of the steering angular velocity d ⁇ / dt is within a range where the absolute value of the steering angular velocity d ⁇ / dt is not less than the fourth set steering angular velocity d ⁇ 4 / dt and less than the fifth set steering angular velocity d ⁇ 5 / dt. Accordingly, the variable K5 is decreased linearly.
- control map M5 indicates that the steering angular velocity d ⁇ / dt is in a range where the absolute value of the steering angular velocity d ⁇ / dt is not less than the fourth set steering angular velocity d ⁇ 4 / dt and less than the fifth set steering angular velocity d ⁇ 5 / dt.
- the variable K5 is set according to a linear function that represents the relationship between the absolute value of and the variable K5.
- variable K5 is set to the tenth set value (1.0), and the absolute value of the steering angular velocity d ⁇ / dt is the first value.
- the variable K5 is set to the eleventh set value (0.0) when the 5-set steering angular velocity is d ⁇ 5 / dt.
- the distribution ratio setting unit 11Bbf has the variable K4 of 1.0 (during the addition operation), and the absolute value of the steering angular velocity d ⁇ / dt is less than the fourth set steering angular velocity d ⁇ 4 / dt (during low-speed steering). ),
- the distribution ratio GB is set to 1.0.
- the feedback axial force calculating execution unit 11Bbe is a feedback axial force T FB current axial force.
- the variable K4 is 1.0 (during the addition operation), and the absolute value of the steering angular velocity d ⁇ / dt is equal to or greater than the fifth setting steering angular velocity d ⁇ 5 / dt (during high-speed steering).
- the distribution ratio GB is set to 0.0.
- the feedback axial force calculating execution unit 11Bbe is a blend axial force T BR feedback axial force T FB.
- the distribution ratio setting unit 11Bbf has a variable K4 of 1.0 (at the time of rounding operation), the absolute value of the steering angular velocity d ⁇ / dt is equal to or higher than the fourth setting steering angular velocity d ⁇ 4 / dt, and is set to the fifth setting.
- the variable K5 is set as the distribution ratio GB.
- the feedback axial force calculating execution unit 11Bbe includes a feedback axial force T FB what the sum of the value obtained by multiplying the (1-K5) to the value blended axial force T BR multiplied by variable K5 current axial force To do.
- the distribution ratio setting unit 11Bbf sets 0.0 as the distribution ratio GB regardless of the steering angular velocity d ⁇ / dt when the variable K4 is 0.0 (during the switching operation). Then, the feedback axial force calculating execution unit 11Bbe is a blend axial force T BR feedback axial force T FB.
- the feedback axial force calculation execution unit 11Bbe of the present embodiment has an absolute value of the steering angular velocity d ⁇ / dt that is less than the fourth set steering angular velocity d ⁇ 4 / dt when the steering wheel 1 is increased.
- the current axial force is set as the feedback axial force TFB .
- the tire lateral force Fd accompanying the steering of the steered wheels 2 when the steering wheel 1 is increased.
- the friction generate a steering reaction force that returns the steering wheel 1 to the neutral position.
- the control calculation part 11 of this embodiment can give the steering reaction force which returns the steering wheel 1 to a neutral position similarly to a mechanical steering control apparatus by setting the current axial force to the feedback axial force TFB. .
- the control calculation part 11 of this embodiment can provide a more appropriate steering reaction force at the time of the steering wheel 1 turning operation.
- the blend axial force T BR does not include an element of friction accompanying steering of the steered wheel 2. Therefore, for example, in the method of using the blend axial force T BR as the feedback axial force T FB when the steering wheel 1 is increased, there is a possibility that the steering feeling may be uncomfortable.
- the feedback axial force calculation execution unit 11Bbe of the present embodiment performs the current axial force and the lateral G axial force regardless of the absolute value of the steering angular velocity d ⁇ / dt.
- blend axial force T BR that is distributed at a preset distribution ratio is defined as feedback axial force T FB .
- the tire lateral force Fd accompanying the steering of the steered wheels 2 when the steering wheel 1 is switched back.
- a steering reaction force that returns the steering wheel 1 to the neutral position is generated.
- the driver when the steering wheel 1 is switched back, the driver reduces the holding force of the steering wheel 1 and slides the steering wheel 1 with the palm of the hand, thereby making the steering wheel 1 neutral.
- the steering wheel 2 was returned to the neutral position.
- the blending axial force T BR is set to the feedback axial force T FB so that even if the steering current is reduced and the current axial force is reduced, steering is performed. It can suppress that the steering reaction force which returns the wheel 1 to a neutral position reduces.
- the feedback axial force calculation execution unit 11Bbe is similar to the mechanical steering control device in that the driver reduces the holding force of the steering wheel 1 and slides the steering wheel 1 with the palm of the steering wheel. The wheel 1 can be returned to the neutral position. Thereby, the control calculating part 11 of this embodiment can provide a more appropriate steering reaction force when the steering wheel 1 is switched back.
- the feedback axial force calculation execution unit 11Bbe of the present embodiment determines that the steering wheel 1 is being increased, and the absolute value of the steering angular velocity d ⁇ / dt is the fourth set steering angular velocity d ⁇ 4 / dt. If it is determined as above, the current axial force and the blend axial force T BR are distributed to set the feedback axial force T FB, and the current axial force is distributed as the absolute value of the steering angular velocity d ⁇ / dt decreases. Increase the ratio. Therefore, the feedback axial force calculation execution unit 11Bbe of the present embodiment performs, for example, the steering wheel ⁇ straddling the neutral position during the steering wheel 1 switching operation, and the steering wheel 1 is continuously increased in the same direction.
- the control calculating part 11 of this embodiment can provide a more appropriate steering reaction force.
- the final axial force calculation unit 11Bc includes the steering angle ⁇ , the vehicle speed V, the lateral force from the steering angle sensor 3, the vehicle speed sensor 5, the lateral G sensor 6, the feedforward axial force calculation unit 11Ba, and the feedback axial force calculation unit 11Bb.
- the final axial force calculator 11Bc calculates the steering angular velocity d ⁇ / dt of the steering wheel 1 based on the read steering angle ⁇ .
- the final axial force calculating unit 11Bc based on the read steering angle [delta], the vehicle speed V, the lateral acceleration Gy, feedforward axial force T FF and the feedback axial force T FB, calculated steering angular velocity d? / Dt, the following (
- the steering rack axial force (hereinafter referred to as final axial force) is calculated according to the equation (12).
- the final axial force calculation unit 11Bc outputs the calculation result to the axial force-steering reaction force conversion unit 11Bd.
- Final axial force Feed forward axial force T FF ⁇ GF + Feedback axial force T FB ⁇ (1-GF) (12)
- GF is a numerical value representing a distribution ratio of the distribution ratio GF and the feedback axial force T FB feedforward axial force T FF (1-GF) (hereinafter, referred to as distribution ratio) is.
- distribution ratio the feedback axial force
- the final axial force calculating unit 11Bc based on the distribution ratio GF, the feedforward axial force T FF and the feedback axial force T FB GF: by combined at a ratio of (1-GF), the final axial force calculate.
- the final axial force calculating unit 11Bc of the present embodiment calculates the final axial force based on the feedback axial force T FB and feedforward axial force T FF.
- the feedback axial force T FB changes according to a change in the road surface state or a change in the vehicle state in order to reflect the influence of the tire lateral force Fd acting on the steering wheel 2.
- the feedforward axial force T FF since not reflect the influence of tire lateral force Fd, smoothly changes regardless of the change or the like of the road surface condition. Therefore, the final axial force calculating unit 11Bc, in addition to the feedback axial force T FB, it calculates the final axial force on the basis of the feedforward axial force T FF, it can be calculated more appropriate final axial force.
- the final axial force calculation unit 11Bc includes a distribution ratio calculation unit 11Bca.
- the distribution ratio calculation unit 11Bca has a distribution ratio GF 1 based on the axial force difference, a distribution ratio GF 2 based on the lateral acceleration Gy, a distribution ratio GF 3 based on the vehicle speed V and the steering angle ⁇ , and a distribution based on the steering angular speed d ⁇ / dt. based on the ratio GF 4, it sets the distribution ratio GF.
- the axial force difference for example, the difference between the feedforward axial force TFF and the feedback axial force TFB can be employed. Specifically, the axial force difference, a subtraction result obtained by subtracting the feedback axial force T FB from the feedforward axial force T FF.
- a method of setting the distribution ratio GF is, for example, and any smaller value of the distribution ratio GF 2 based on the distribution ratio GF 1 and lateral acceleration Gy based on the axial force difference, based on the vehicle speed V and steering angle ⁇
- a method of multiplying the distribution ratio GF 3 by the distribution ratio GF 4 based on the steering angular velocity d ⁇ / dt and setting the multiplication result as the distribution ratio GF can be adopted.
- FIG. 15 is a graph showing the control map M6.
- Method for setting distribution ratio GF 1 for example, can be employed a method of reading the distribution ratio GF 1 which corresponds to the absolute value of the axial force difference from the control map M6.
- the control map M6 for example, there is a map that has registered the distribution ratio GF 1 which corresponds to the absolute value of the axial force difference.
- the control map M6 has a large axial force difference in a range where the absolute value of the axial force difference is 0 or more and less than the first set axial force difference Z 1 (> 0).
- the distribution ratio GF 1 is set to the twelfth set value (for example, 1.0).
- the first set axial force difference Z 1 for example, can be employed an axial force difference estimation accuracy of the feedforward axial force T FF starts lowering. Further, in the control map M6, in the range where the absolute value of the axial force difference is equal to or larger than the second set axial force difference Z 2 (> Z 1 ), the distribution ratio GF 1 is set to the thirteenth set value regardless of the magnitude of the axial force difference. ( ⁇ Twelfth set value. For example, 0.0). As the second set axial force difference Z 2, for example, can be employed an axial force difference estimation accuracy of the feedforward axial force T FF is lower than the estimation accuracy of the feedback axial force T FB.
- the distribution ratio GF is determined according to the absolute value of the axial force difference. Decrease 1 linearly.
- the control map M6 is in and a second set axial force difference Z 2 than the range in absolute value first set axial force difference Z 1 or more axial force difference, distribution and the absolute value of the axial force difference ratio setting the distribution ratio GF 1 according to the primary function representing the relationship between the GF 1.
- the primary function 12 set value distribution ratio GF 1 when the absolute value of the axial force difference is first set axial force difference Z 1 (1.0) and then, the absolute value of the axial force difference is the second setting axis When the force difference is Z 2 , the distribution ratio GF 1 is set to the thirteenth set value (0.0).
- the final axial force calculating unit 11Bc of the present embodiment when the absolute value of the axial force difference is first set axial force difference Z 1 or more, the absolute value of the first setting the axial force of the axial force difference
- the distribution ratio GF 1 (the distribution ratio GF of the feedforward axial force TFF) is made smaller than when the difference is less than Z 1 . Therefore, the final axial force calculating unit 11Bc of the present embodiment, for example, reduces the road surface mu, the estimation accuracy of the feedforward axial force T FF is decreased, when the axial force difference is increased, the feedback axial force T FB distribution ratio (1-GF) can be increased. Therefore, the final axial force calculation unit 11Bc of the present embodiment can apply a more appropriate steering reaction force.
- FIG. 16 is a graph showing the control map M7.
- the control map M7 for example, there is a map that has registered the distribution ratio GF 2 corresponding to the absolute value of the lateral acceleration Gy. Specifically, as shown in FIG. 16, the control map M7 has a lateral acceleration Gy in a range where the absolute value of the lateral acceleration Gy is 0 or more and less than the first set lateral acceleration Gy 1 (> 0).
- the distribution ratio GF 2 is set to the fourteenth set value (for example, 1.0) regardless of the size of.
- the control map M7 is lateral acceleration in the range absolute value of the second set lateral acceleration Gy 2 (> Gy 1) more Gy, the lateral acceleration distribution ratio GF 2 regardless of the size of the Gy 15 Set to a set value ( ⁇ 14th set value, eg, 0.0).
- the second set lateral acceleration Gy 2 for example, can be adopted lateral acceleration Gy estimation accuracy of the feedforward axial force T FF is lower than the estimation accuracy of the feedback axial force T FB.
- control map M7 is distributed according to the absolute value of the lateral acceleration Gy in a range where the absolute value of the lateral acceleration Gy is not less than the first set lateral acceleration Gy 1 and less than the second set lateral acceleration Gy 2. linearly decreasing the ratio GF 2.
- the control map M7 is a lateral acceleration and a second set lateral acceleration Gy 2 below the range in absolute value first set lateral acceleration Gy 1 or more Gy, and the absolute value of the lateral acceleration Gy
- the distribution ratio GF 2 is set according to a linear function representing the relationship with the distribution ratio GF 2 .
- the distribution ratio GF3 is set to the 14th set value (1.0), and the absolute value of the lateral acceleration Gy is the second set.
- the final axial force calculating unit 11Bc of the present embodiment when the absolute value of the lateral acceleration Gy is first set lateral acceleration Gy 1 or more, the absolute value of the first set of lateral acceleration Gy
- the distribution ratio GF 2 (the distribution ratio GF of the feedforward axial force TFF) is made smaller than when the lateral acceleration Gy is less than 1 . Therefore, the final axial force calculating unit 11Bc of the present embodiment, for example, lateral acceleration Gy increases, when the estimation accuracy of the feedforward axial force T FF is decreased, the distribution ratio (1 feedback axial force T FB -GF) can be increased. Therefore, the final axial force calculation unit 11Bc of the present embodiment can apply a more appropriate steering reaction force.
- FIG. 17 is a graph showing the control maps M8a and M8b.
- the control GF 3b map M8a As a method of setting the distribution ratio GF 3, for example, the distribution ratio GF 3a corresponding to the absolute value of the absolute value and the steering angle ⁇ of the vehicle speed V, the control GF 3b map M8a, read from M8b, read allocation ratio A method of multiplying GF 3a and GF 3b and making the multiplication result the distribution ratio GF 3 can be adopted.
- the control map M8a for example, there is a map that has registered the distribution ratio GF 3 corresponding to the absolute value of the vehicle speed V. Specifically, as shown in FIG.
- the control map M8a is the absolute value range and less than the third set speed V 3 0 or more vehicle speed V is allocated regardless of the size of the vehicle speed V
- the ratio GF 3a is set to the 16th set value (for example, 0.5).
- the third set vehicle speed V 3 for example, non-linearity of tire characteristics (non-linearity of the tire lateral force Fd with respect to the tire slip angle) due to the low vehicle speed V appears, and the estimation accuracy of the feedforward axial force TFF decreases.
- the starting vehicle speed V can be adopted.
- control map M8a to the extent the absolute value of the fourth set speed V 4 (> V 3) or more of the vehicle speed V, regardless of the magnitude of the vehicle speed V distribution ratio GF 3a seventeenth setting value (> first 16 Set value, for example, 1.0).
- the fourth set vehicle speed V 4 for example, a vehicle speed V at which the estimation accuracy of the feedforward axial force T FF is higher than the estimation accuracy of the feedback axial force T FB can be employed.
- the control map M8a the absolute value of the vehicle speed V is in a range and a fourth smaller than the set vehicle speed V 4 at the third set speed V 3 or more, linearly increasing the distribution ratio GF 3a in accordance with the absolute value of the vehicle speed V
- the control map M8a to the extent and in the fourth less than the set vehicle speed V 4 in absolute value the third set speed V 3 or more of the vehicle speed V is a linear function representing the relationship between the distribution ratio GF 3a and the vehicle speed V Then, the distribution ratio GF 3a is set.
- the linear function is assigned when the absolute value of the vehicle speed V is the third set vehicle speed V 3 and the allocation ratio GF 3a is the 16th set value (0.5), and when the vehicle speed V is the fourth set vehicle speed V 4.
- the ratio GF 3a is set to the seventeenth set value (1.0).
- the final axial force calculating unit 11Bc of the present embodiment when the absolute value of the vehicle speed V is the fourth less than the set vehicle speed V 4, the absolute value of the vehicle speed V is in the fourth set speed V 4 or more Compared to the case, the distribution ratio GF 3a (the distribution ratio GF of the feedforward axial force TFF) is reduced. Therefore, the final axial force calculating unit 11Bc of the present embodiment, for example, the vehicle speed V is reduced, when the estimation accuracy of the feedforward axial force T FF is decreased, the distribution ratio (1-GF feedback axial force T FB ) Can be increased. Therefore, the final axial force calculation unit 11Bc of the present embodiment can apply a more appropriate steering reaction force.
- the distribution ratio GF 3a the distribution ratio GF of the feedforward axial force TFF
- control map M8b for example, there is a map in which a distribution ratio GF 3b corresponding to the absolute value of the steering angle ⁇ is registered. Specifically, as shown in FIG. 17B, the control map M8b indicates that the steering angle ⁇ is within a range where the absolute value of the steering angle ⁇ is 0 or more and less than the first set steering angle ⁇ 1 (> 0). , regardless of the size of the distribution ratio GF 3b 18th set value (e.g., 1.0) is set to.
- the first set steering angle ⁇ 1 for example, a steering angle ⁇ at which the estimation accuracy of the feedforward axial force TFF starts to decrease can be employed.
- control map M8b in the range absolute value of the second set steering angle [delta] 2 (> [delta] 1) more steering angle [delta], the distribution ratio GF 3b regardless of the size of the steering angle [delta] 19 set value ( ⁇ 18th set value, for example, set to 0.5).
- the second set steering angle ⁇ 2 for example, a steering angle ⁇ at which the estimation accuracy of the feedforward axial force T FF is lower than the estimation accuracy of the feedback axial force T FB can be employed.
- the distribution ratio GF 3b is set according to the absolute value of the steering angle ⁇ . Decrease linearly. Specifically, the control map M8b indicates that the absolute value of the steering angle ⁇ and the distribution ratio GF 3b are within a range where the absolute value of the steering angle ⁇ is equal to or larger than the first set steering angle ⁇ 1 and less than the second set steering angle ⁇ 2.
- the distribution ratio GF 3b is set according to a linear function representing the relationship between In the linear function, when the absolute value of the steering angle ⁇ is the first set steering angle ⁇ 1 , the distribution ratio GF 3b is set to the 18th set value (1.0), and the absolute value of the steering angle ⁇ is the second set steering angle. 19 set value distribution ratio GF3 when a [delta] 2 and (0.5).
- the final axial force calculating unit 11Bc of the present embodiment when the absolute value of the steering angle [delta] is first set steering angle [delta] 1 or more, the absolute value of the first set steering angle of the steering angle [delta] [delta]
- the distribution ratio GF 3b (the distribution ratio GF of the feedforward axial force TFF) is made smaller than when it is less than 1 . Therefore, the final axial force calculating unit 11Bc of the present embodiment, for example, steering angle ⁇ is increased, when the estimation accuracy of the feedforward axial force T FF is decreased, the distribution ratio of the feedback axial force T FB (1- GF) can be increased. Therefore, the final axial force calculation unit 11Bc of the present embodiment can apply a more appropriate steering reaction force.
- FIG. 18 is a graph showing the control map M9.
- the control map M9 for example, there is a map that has registered the distribution ratio GF 4 corresponding to the absolute value of the steering angular velocity d? / Dt.
- the control map M9 indicates that the steering angular velocity is in the range where the absolute value of the steering angular velocity d ⁇ / dt is 0 or more and less than the fourth set steering angular velocity d ⁇ 4 / dt (> 0).
- the distribution ratio GF 4 is set to the 20th set value (for example, 1.0).
- the fourth set steering angular velocity d? 4 / dt for example, can be adopted steering angular velocity d? / Dt of estimation accuracy of the feedforward axial force T FF starts lowering.
- the control map M9 shows that the distribution ratio is within the range where the absolute value of the steering angular velocity d ⁇ / dt is not less than the fifth set steering angular velocity d 5 / dt (> d ⁇ 4 / dt) regardless of the magnitude of the steering angular velocity d ⁇ / dt.
- the GF 4 21 set value ( ⁇ 20th set value.
- the fifth set steering angular velocity d? 5 / dt for example, can be adopted steering angular velocity d? / Dt of estimation accuracy of the feedforward axial force T FF is lower than the estimation accuracy of the feedback axial force T FB.
- the control map M9 indicates that the absolute value of the steering angular velocity d ⁇ / dt is within a range where the absolute value of the steering angular velocity d ⁇ / dt is equal to or larger than the fourth set steering angular velocity d ⁇ 4 / dt and less than the fifth set steering angular velocity d ⁇ 5 / dt. linearly decreasing the distribution ratio GF 4 in accordance with the.
- control map M9 indicates that the steering angular velocity d ⁇ / dt is within a range where the absolute value of the steering angular velocity d ⁇ / dt is not less than the fourth set steering angular velocity d ⁇ 4 / dt and less than the fifth set steering angular velocity d 5 / dt.
- the distribution ratio GF 4 is set according to a linear function that represents the relationship between the absolute value of the distribution ratio GF 4 and the distribution ratio GF 4 .
- the linear function sets the distribution ratio GF 4 to the twentieth set value (1.0) and the absolute value of the steering angular velocity d ⁇ / dt.
- the distribution ratio GF 4 is set to the twenty-first set value (0.0).
- the final axial force calculation unit 11Bc of the present embodiment calculates the absolute value of the steering angular velocity d ⁇ / dt when the absolute value of the steering angular velocity d ⁇ / dt is equal to or greater than the fourth set steering angular velocity d ⁇ 4 / dt.
- the distribution ratio GF 4 (the distribution ratio GF of the feedforward axial force TFF) is made smaller than in the case where it is less than the fourth set steering angular velocity d ⁇ 4 / dt.
- the final axial force calculation unit 11Bc of the present embodiment for example, when the steering angular velocity d ⁇ / dt increases and the estimation accuracy of the feedforward axial force T FF decreases, the distribution ratio of the feedback axial force T FB ( 1-GF) can be increased. Therefore, the final axial force calculation unit 11Bc of the present embodiment can apply a more appropriate steering reaction force.
- the final axial force calculating unit 11Bc the absolute value of the first set axial force difference Z less than 1 axial force difference, the absolute value of the first set lateral acceleration Gy less than 1 lateral acceleration Gy, an absolute vehicle speed V
- the absolute value of the steering angle ⁇ is less than the first set steering angle ⁇ 1
- the absolute value of the steering angular velocity d ⁇ / dt is less than the fourth set steering angular velocity d ⁇ 4 / dt.
- the final axial force calculating unit 11Bc the absolute value of the axial force difference is the second set axial force difference Z 2 or more, the absolute value of the lateral acceleration Gy and the second set lateral acceleration Gy 2 or more, and the steering angular velocity d? /
- the absolute value of dt is at least one of the fifth set steering angular velocity d ⁇ 5 / dt or more
- the feedback axial force T FB is set as the final axial force.
- the final axial force calculation unit 11Bc has an absolute value of the axial force difference that is greater than or equal to the first set axial force difference Z 1 and less than the second set axial force difference Z 2
- the absolute value of the lateral acceleration Gy is the first set lateral force.
- Direction acceleration Gy 1 or more and less than second set lateral acceleration Gy 2 vehicle speed V absolute value is less than fourth set vehicle speed V 4
- steering angle ⁇ absolute value is first set steering angle ⁇ 1 or more
- steering angular velocity When the absolute value of d ⁇ / dt is equal to or greater than the fourth set steering angular velocity d ⁇ 4 / dt, a value obtained by multiplying the feedforward axial force T FF by the distribution ratio GF and the feedback axial force T FB are allocated (1-GF ) Multiplied by the sum is taken as the final axial force.
- the final axial force calculation unit 11Bc determines that the vehicle A has a high road surface ⁇ (dry road surface), a high vehicle speed V, a small steering angle ⁇ , and a small steering angular velocity d ⁇ / dt (hereinafter, a specific situation).
- the feedforward axial force TFF is set as the final axial force.
- the feedforward axial force T FF since not reflect the influence of tire lateral force Fd, smoothly changes regardless of the change or the like of the road surface condition. Therefore, the final axial force calculation unit 11Bc can realize a stable steering feeling when the vehicle A is in a specific situation.
- the final axial force calculation unit 11Bc and the feedback axial force T FB or the feed forward axial force T FF are fed back.
- the sum of the axial force T FB is the final axial force.
- the feedback axial force T FB changes according to a change in the road surface state or a change in the vehicle state in order to reflect the influence of the tire lateral force Fd acting on the steering wheel 2. Therefore, when the vehicle A is in a normal situation, the final axial force calculation unit 11Bc has a steering feeling similar to that of a mechanical steering control device in which the steering wheel 1 and the steering wheel 2 are mechanically coupled. And a natural steering feeling can be realized.
- the axial force-steering reaction force conversion unit 11Bd calculates a target steering reaction force based on the final axial force calculated by the final axial force calculation unit 11Bc.
- the target steering reaction force is a target value of the steering reaction force.
- a method for calculating the target steering reaction force for example, a method of reading the target steering reaction force corresponding to the vehicle speed V and the final axial force from the control map M10 can be employed.
- the control map M10 is a map in which a target steering reaction force corresponding to the final axial force is registered for each vehicle speed V.
- FIG. 19 is a graph showing the control map M10. As shown in FIG. 19, the control map M10 is set for each vehicle speed V.
- the control map M10 sets the target steering reaction force to a larger value as the final axial force is larger.
- the target reaction force current calculation unit 11Be calculates a target reaction force current according to the following equation (13) based on the target steering reaction force calculated by the axial force-steering reaction force conversion unit 11Bd. Then, the target reaction force current calculation unit 11Be outputs the calculation result to the reaction force motor drive unit 9C.
- Target reaction force current Target steering reaction force ⁇ Gain (13)
- the target reaction force current calculation unit 11Be calculates the target reaction force current based on the target steering reaction force calculated by the axial force-steering reaction force conversion unit 11Bd.
- a configuration can also be adopted.
- the target reaction force current calculation unit 11Be corrects the target steering reaction force by adding a correction reaction force, an end contact reaction force, or the like to the target steering reaction force calculated by the axial force-steering reaction force conversion unit 11Bd,
- the target reaction force current may be calculated based on the corrected target steering reaction force.
- the corrective reaction force for example, there is a steering reaction force applied when the target steering reaction force is corrected.
- the end contact reaction force for example, there is a steering reaction force applied when the turning angle ⁇ reaches the maximum value.
- the control calculation unit 11 calculates the target turning angle ⁇ * based on the steering angle ⁇ and the vehicle speed V (target turning angle calculation unit 11A in FIG. 2). Subsequently, the control calculation unit 11 calculates a target turning current based on a subtraction result obtained by subtracting the actual turning angle ⁇ from the calculated target turning angle ⁇ * (target turning current calculation unit 11C in FIG. 2). . Thereby, the steering control unit 8 steers the steered wheels 2 according to the operation amount of the steering wheel 1.
- the control calculation unit 11 calculates a proportional component included in the feedforward axial force T FF based on the steering angle ⁇ and the vehicle speed V (feedforward axial force calculating unit 11Ba of FIG. 4).
- the absolute value of the vehicle speed V is in the case of the first less than the set vehicle speed V 1 decreases the absolute value of the more proportional component having a small absolute value of the vehicle speed V.
- the control arithmetic unit 11 the steering angular velocity d? / Dt and calculates the damping components contained in the feedforward axial force T FF based on the vehicle speed V (feedforward axial force calculating unit 11Ba of FIG. 4).
- control calculation unit 11 calculates a correction damping component based on the steering angular velocity d ⁇ / dt (feed forward axial force calculation unit 11Ba in FIG. 4).
- the absolute value of the steering angular velocity d ⁇ / dt is less than the second set steering angular velocity d ⁇ 2 / dt, the larger the absolute value of the steering angular velocity d ⁇ / dt, the more the correction is made. Increase the absolute value of the damping component.
- the control calculation unit 11 a proportional component, by adding the damping component and the correction damping component, the feedforward axial force T FF (feedforward axial force calculating unit 11Ba of FIG. 4). Subsequently, the control calculation unit 11 calculates a current axial force based on the steering current (current axial force calculation unit 11Bba in FIG. 11). Subsequently, the control calculation unit 11 calculates a lateral G-axis force based on the lateral acceleration Gy (blend axial force calculation unit 11Bbb in FIG. 11).
- the control calculation unit 11 calculates the yaw rate axial force based on the yaw rate ⁇ and the vehicle speed V (blend axial force calculation unit 11Bbb in FIG. 11). Subsequently, based on the value obtained by multiplying the calculated current axial force by the distribution ratio K2, the value obtained by multiplying the lateral G-axis force by the distribution ratio K1, and the value obtained by multiplying the yaw rate axial force by the distribution ratio K3. Then, the blend axial force T BR is calculated (blend axial force calculating unit 11Bbb in FIG. 11).
- the distribution ratios K1, K2, and K3 of the lateral G axial force, current axial force, and yaw rate axial force are set to 0.6: 0.3: 0.1.
- the control calculation unit 11 distributes the calculated current axial force and blend axial force T BR by GB: (1-GB) to obtain a feedback axial force T FB (feedback axial force calculating unit 11Bb in FIG. 3).
- the control calculation unit 11 distributes the calculated feedforward axial force TFF and the feedback axial force TFB by GF: (1-GF) to calculate the final axial force (the final axial force in FIG. 3).
- Calculation unit 11Bc The distribution ratios K1, K2, and K3 of the lateral G axial force, current axial force, and yaw rate axial force are set to 0.6: 0.3: 0.1.
- the control calculation unit 11 calculates a target steering reaction force based on the calculated final axial force (axial force-steering reaction force conversion unit 11Bd in FIG. 3). Subsequently, the control calculation unit 11 calculates a target reaction force current based on the calculated target steering reaction force (target reaction force current calculation unit 11Be in FIG. 3). Subsequently, the control calculation unit 11 drives the reaction force motor 9A based on the calculated target reaction force current (reaction force motor drive unit 9C in FIG. 2). As a result, the reaction force control unit 9 applies a steering reaction force to the steering wheel 1.
- the control calculation unit 11 of the present embodiment decreases the absolute value of the damping component as the absolute value of the steering angular velocity d ⁇ / dt increases. Therefore, the control calculation unit 11 of the present embodiment can suppress an increase in the absolute value of the damping component when the steering angular velocity d ⁇ / dt is large. Therefore, the control calculation unit 11 of the present embodiment can suppress the damping component from becoming excessive. Thereby, the control calculating part 11 of this embodiment can provide a more suitable steering feeling.
- the control calculation part 11 of this embodiment makes the absolute value of a damping component small, so that the absolute value of the vehicle speed V is small.
- the control calculation unit 11 of the present embodiment can reduce the steering reaction force by reducing the damping component.
- the control calculating part 11 of this embodiment can provide a more suitable steering feeling.
- the control arithmetic unit 11 of the present embodiment adds the correction damping component absolute value larger the absolute value of the steering angular velocity d?
- the control calculation unit 11 of the present embodiment can increase the rising of the steering reaction force. Thereby, the control calculating part 11 of this embodiment can provide a more suitable steering feeling.
- the control calculation unit 11 of the present embodiment uses the eighth set value as a correction damping component. Therefore, when the driver turns the steering wheel 1 and the absolute value of the steering angular velocity d ⁇ / dt becomes equal to or higher than the second set steering angular velocity d ⁇ 2 / dt, fluctuations in the correction damping component can be suppressed. . Therefore, the control calculation unit 11 of the present embodiment does not sense a change in the steering reaction force due to the variation in the correction damping component, and can prevent the driver from feeling uncomfortable with the steering feeling.
- the steering wheel 1 in FIG. 1 constitutes a steering wheel.
- the steered motor 8A in FIG. 1 and the steered motor drive unit 8C in FIG. 1 constitute a steered actuator.
- the steering angle sensor 3 of FIG. 1 comprises a steering angle detection part.
- the feedforward axial force calculation unit 11Ba of FIG. 1 constitutes a feedforward axial force calculation unit and a feedforward axial force correction unit.
- the reaction force motor 9A, the reaction force motor drive unit 9C in FIG. 1, the target reaction force current calculation unit 11B in FIG. 2, and the final axial force calculation unit 11Bc in FIG. 3 constitute a reaction force application unit.
- the vehicle speed sensor 5 of FIG. 1 constitutes a vehicle speed detection unit.
- the lateral G sensor 6, the yaw rate sensor 7, and the turning current detection unit 8 ⁇ / b> B of FIG. 1 constitute a state quantity detection unit.
- the feedback axial force calculation unit 11Bb in FIG. 3 and the feedback axial force calculation execution unit 11Bbe in FIG. 11 constitute a feedback axial force calculation unit.
- the final axial force calculation unit 11Bc in FIG. 3 constitutes a final axial force setting unit.
- the reaction force motor 9A, the reaction force motor drive unit 9C in FIG. 1, and the target reaction force current calculation unit 11B in FIG. 2 constitute a reaction force actuator.
- the control calculation part 11 provides a steering reaction force based on the feedforward axial force TFF .
- the control arithmetic unit 11 to reduce the absolute value of the damping component of the steering angular velocity d? / Absolute feedforward axial force higher value is greater T FF of dt. According to such a configuration, an increase in the absolute value of the damping component can be suppressed when the steering angular velocity d ⁇ / dt is large. Therefore, it can be suppressed that the damping component becomes excessive. Thereby, a more appropriate steering feeling can be provided.
- the control calculation unit 11 decreases the absolute value of the damping component as the absolute value of the vehicle speed V decreases. According to such a configuration, the smaller the absolute value of the vehicle speed V, the smaller the absolute value of the damping component.
- the steering reaction force can be reduced by reducing the damping component. Thereby, a more appropriate steering feeling can be provided.
- control calculation unit 11 adds the correction damping component absolute value larger the absolute value of the steering angular velocity d? / Dt increases feedforward axial force T FF.
- the absolute value of the steering angular velocity d ⁇ / dt increases at the start of turning of the steering wheel 1, the rising of the steering reaction force can be increased. Thereby, a more appropriate steering feeling can be imparted at the start of turning of the steering wheel 1.
- the control calculation unit 11 uses a predetermined constant value (eighth set value) as a correction damping component.
- the control calculation unit 11 distributes the feedforward axial force TFF and the feedback axial force TFB to set the final axial force, and applies the steering reaction force based on the set final axial force.
- TFF feedforward axial force
- TFB feedback axial force
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Steering Control In Accordance With Driving Conditions (AREA)
Abstract
制御演算部(11)が、フィードフォワード軸力(TFF)に基づいて操舵反力を付与する。その際、制御演算部(11)が、操舵角速度(dδ/dt)の絶対値が大きいほどフィードフォワード軸力(TFF)のダンピング成分の絶対値を小さくする。
Description
本発明は、ステアリングホイールと操向輪とが機械的に分離したステア・バイ・ワイヤ方式の操舵制御装置に関するものである。
従来、操舵制御装置の技術としては、例えば、特許文献1に記載の従来技術がある。
この従来技術では、ステアリングホイールの操舵角および操舵角速度に応じて反力モータを制御する。これにより、この従来技術では、操舵反力を付与している。
この従来技術では、ステアリングホイールの操舵角および操舵角速度に応じて反力モータを制御する。これにより、この従来技術では、操舵反力を付与している。
ここで、ステアリングホイールと操向輪とが機械的に結合している機械式の操舵制御装置では、操舵角速度の増大に伴い、操舵反力に含まれるダンピング成分が飽和する。しかしながら、上記従来技術では、ダンピング成分の飽和を考慮していないため、操舵角速度の増大に応じて操舵反力が増大し続ける可能性があった。そのため、上記従来技術では、ダンピング成分が過剰となることで、運転者の操舵感に違和感を与える可能性があった。
本発明は、上記のような点に着目し、より適切な操舵感を付与可能とすることを課題とする。
本発明は、上記のような点に着目し、より適切な操舵感を付与可能とすることを課題とする。
上記課題を解決するため、本発明の一態様では、フィードフォワード軸力に基づいて操舵反力を付与する。その際、本発明の一態様では、操舵角速度の絶対値が大きいほどフィードフォワード軸力のダンピング成分の絶対値を小さくする。
本発明の一態様では、操舵角速度の絶対値が大きい場合に、ダンピング成分の絶対値の増大を抑制できる。それゆえ、本発明の一態様では、ダンピング成分が過剰となることを抑制できる。そのため、本発明の一態様では、より適切な操舵感を付与できる。
次に、本発明に係る実施形態について図面を参照して説明する。
(構成)
本実施形態の車両Aは、ステアリングホイール1と前輪(以下、操向輪とも呼ぶ)2とが機械的に分離したステア・バイ・ワイヤ方式の操舵制御装置を備える車両である。
図1は、本実施形態の車両Aの構成を表す概念図である。
図1に示すように、車両Aは、操舵角センサ3、転舵角センサ4、車速センサ5、横Gセンサ6、およびヨーレートセンサ7を備える。
操舵角センサ3は、ステアリングホイール1の操舵角δを検出する。操舵角δの検出方法としては、例えば、ステアリングシャフトの回転量を基に算出する方法を採用できる。そして、操舵角センサ3は、検出結果を表す信号(以下、検出信号とも呼ぶ)を後述する制御演算部11に出力する。
(構成)
本実施形態の車両Aは、ステアリングホイール1と前輪(以下、操向輪とも呼ぶ)2とが機械的に分離したステア・バイ・ワイヤ方式の操舵制御装置を備える車両である。
図1は、本実施形態の車両Aの構成を表す概念図である。
図1に示すように、車両Aは、操舵角センサ3、転舵角センサ4、車速センサ5、横Gセンサ6、およびヨーレートセンサ7を備える。
操舵角センサ3は、ステアリングホイール1の操舵角δを検出する。操舵角δの検出方法としては、例えば、ステアリングシャフトの回転量を基に算出する方法を採用できる。そして、操舵角センサ3は、検出結果を表す信号(以下、検出信号とも呼ぶ)を後述する制御演算部11に出力する。
転舵角センサ4は、操向輪2の転舵角θを検出する。転舵角θの検出方法としては、例えば、ステアリングラックのラック移動量を基に算出する方法を採用できる。そして、転舵角センサ4は、検出信号を制御演算部11に出力する。
車速センサ5は、車両Aの車速Vを検出する。そして、車速センサ5は、検出信号を制御演算部11に出力する。
横Gセンサ6は、車両Aに作用する横方向加速度Gy(操向輪2に作用するタイヤ横力Fdで変動する車両Aの状態量)を検出する。そして、横Gセンサ6は、検出信号を制御演算部11に出力する。
ヨーレートセンサ7は、車両Aのヨーレートγ(操向輪2に作用するタイヤ横力Fdで変動する車両Aの状態量)を検出する。そして、ヨーレートセンサ7は、検出信号を制御演算部11に出力する。
なお、横Gセンサ6およびヨーレートセンサ7は、バネ上(車体)に配置する。
車速センサ5は、車両Aの車速Vを検出する。そして、車速センサ5は、検出信号を制御演算部11に出力する。
横Gセンサ6は、車両Aに作用する横方向加速度Gy(操向輪2に作用するタイヤ横力Fdで変動する車両Aの状態量)を検出する。そして、横Gセンサ6は、検出信号を制御演算部11に出力する。
ヨーレートセンサ7は、車両Aのヨーレートγ(操向輪2に作用するタイヤ横力Fdで変動する車両Aの状態量)を検出する。そして、ヨーレートセンサ7は、検出信号を制御演算部11に出力する。
なお、横Gセンサ6およびヨーレートセンサ7は、バネ上(車体)に配置する。
また、車両Aは、転舵制御部8、および反力制御部9を備える。
転舵制御部8は、転舵モータ8A、転舵電流検出部8B、および転舵モータ駆動部8Cを備える。
転舵モータ8Aは、減速機を介してピニオンシャフト10と連結される。そして、転舵モータ8Aは、転舵モータ駆動部8Cによって駆動され、ピニオンシャフト10を介してステアリングラックを左右に移動させる。これにより、転舵モータ8Aは、操向輪2を転舵する。転舵モータ8Aの駆動方法としては、例えば、転舵モータ8Aに流れている電流(以下、転舵電流とも呼ぶ)を制御する方法を採用できる。
転舵制御部8は、転舵モータ8A、転舵電流検出部8B、および転舵モータ駆動部8Cを備える。
転舵モータ8Aは、減速機を介してピニオンシャフト10と連結される。そして、転舵モータ8Aは、転舵モータ駆動部8Cによって駆動され、ピニオンシャフト10を介してステアリングラックを左右に移動させる。これにより、転舵モータ8Aは、操向輪2を転舵する。転舵モータ8Aの駆動方法としては、例えば、転舵モータ8Aに流れている電流(以下、転舵電流とも呼ぶ)を制御する方法を採用できる。
転舵電流検出部8Bは、転舵電流(操向輪2に作用するタイヤ横力Fdで変動する車両Aの状態量)を検出する。そして、転舵電流検出部8Bは、検出信号を転舵モータ駆動部8Cおよび制御演算部11に出力する。
転舵モータ駆動部8Cは、制御演算部11が算出する目標転舵電流に基づいて、転舵電流検出部8Bが検出する転舵電流が当該目標転舵電流と一致するように転舵モータ8Aの転舵電流を制御する。これにより、転舵モータ駆動部8Cは、転舵モータ8Aを駆動する。目標転舵電流とは、転舵モータ8Aに流れている電流の目標値である。
転舵モータ駆動部8Cは、制御演算部11が算出する目標転舵電流に基づいて、転舵電流検出部8Bが検出する転舵電流が当該目標転舵電流と一致するように転舵モータ8Aの転舵電流を制御する。これにより、転舵モータ駆動部8Cは、転舵モータ8Aを駆動する。目標転舵電流とは、転舵モータ8Aに流れている電流の目標値である。
反力制御部9は、反力モータ9A、反力電流検出部9B、および反力モータ駆動部9Cを備える。
反力モータ9Aは、減速機を介してステアリングシャフトと連結される。そして、反力モータ9Aは、反力モータ駆動部9Cによって駆動され、ステアリングシャフトを介してステアリングホイール1に回転トルクを付与する。これにより、反力モータ9Aは、操舵反力を発生する。反力モータ9Aの駆動方法としては、例えば、反力モータ9Aに流れている電流(以下、反力電流とも呼ぶ)を制御する方法を採用できる。
反力モータ9Aは、減速機を介してステアリングシャフトと連結される。そして、反力モータ9Aは、反力モータ駆動部9Cによって駆動され、ステアリングシャフトを介してステアリングホイール1に回転トルクを付与する。これにより、反力モータ9Aは、操舵反力を発生する。反力モータ9Aの駆動方法としては、例えば、反力モータ9Aに流れている電流(以下、反力電流とも呼ぶ)を制御する方法を採用できる。
反力電流検出部9Bは、反力電流を検出する。そして、反力電流検出部9Bは、検出信号を反力モータ駆動部9Cおよび制御演算部11に出力する。
反力モータ駆動部9Cは、制御演算部11が算出する目標反力電流に基づいて、反力電流検出部9Bが検出する反力電流が当該目標反力電流と一致するように反力モータ9Aの反力電流を制御する。これにより、反力モータ駆動部9Cは、反力モータ9Aを駆動する。目標反力電流とは、反力モータ9Aに流れている電流の目標値である。
反力モータ駆動部9Cは、制御演算部11が算出する目標反力電流に基づいて、反力電流検出部9Bが検出する反力電流が当該目標反力電流と一致するように反力モータ9Aの反力電流を制御する。これにより、反力モータ駆動部9Cは、反力モータ9Aを駆動する。目標反力電流とは、反力モータ9Aに流れている電流の目標値である。
また、車両Aは、制御演算部11を備える。
図2は、制御演算部11の構成を表すブロック図である。
図2に示すように、制御演算部11は、目標転舵角演算部11A、目標反力電流演算部11B、および目標転舵電流演算部11Cを備える。
目標転舵角演算部11Aは、操舵角センサ3が検出した操舵角δおよび車速センサ5が検出した車速Vに基づいて、転舵角θ(ピニオンシャフト10の回転角)の目標値である目標転舵角θ*を算出する。目標転舵角θ*の算出方法としては、例えば、操舵角δと、操舵角δおよび転舵角θの可変ギア比との乗算値を採用する方法がある。そして、目標転舵角演算部11Aは、算出結果を目標反力電流演算部11Bに出力する。
図2は、制御演算部11の構成を表すブロック図である。
図2に示すように、制御演算部11は、目標転舵角演算部11A、目標反力電流演算部11B、および目標転舵電流演算部11Cを備える。
目標転舵角演算部11Aは、操舵角センサ3が検出した操舵角δおよび車速センサ5が検出した車速Vに基づいて、転舵角θ(ピニオンシャフト10の回転角)の目標値である目標転舵角θ*を算出する。目標転舵角θ*の算出方法としては、例えば、操舵角δと、操舵角δおよび転舵角θの可変ギア比との乗算値を採用する方法がある。そして、目標転舵角演算部11Aは、算出結果を目標反力電流演算部11Bに出力する。
目標反力電流演算部11Bは、目標転舵角演算部11Aが算出した目標転舵角θ*、車速センサ5が検出した車速V、および転舵電流検出部8Bが検出した転舵電流に基づいて目標反力電流を算出する。そして、目標反力電流演算部11Bは、算出結果を反力制御部9(反力モータ駆動部9C)に出力する。
ここで、目標反力電流演算部11Bの構成を説明する。
図3は、目標反力電流演算部11Bの構成を表すブロック図である。
図3に示すように、目標反力電流演算部11Bは、フィードフォワード軸力算出部11Ba、フィードバック軸力算出部11Bb、最終軸力算出部11Bc、軸力-操舵反力変換部11Bd、および目標反力電流演算部11Beを備える。
図4は、フィードフォワード軸力算出部11Baの構成を表すブロック図である。
図4に示すように、フィードフォワード軸力算出部11Baは、操舵角センサ3が検出した操舵角δ、および車速センサ5が検出した車速Vに基づき、後述する(5)式に従ってフィードフォワード軸力TFFを算出する。そして、フィードフォワード軸力算出部11Baは、算出結果を最終軸力算出部11Bc(図2参照)に出力する。
図5は、ピニオン軸力Thの算出式の係数を説明するための図である。
ここで、目標反力電流演算部11Bの構成を説明する。
図3は、目標反力電流演算部11Bの構成を表すブロック図である。
図3に示すように、目標反力電流演算部11Bは、フィードフォワード軸力算出部11Ba、フィードバック軸力算出部11Bb、最終軸力算出部11Bc、軸力-操舵反力変換部11Bd、および目標反力電流演算部11Beを備える。
図4は、フィードフォワード軸力算出部11Baの構成を表すブロック図である。
図4に示すように、フィードフォワード軸力算出部11Baは、操舵角センサ3が検出した操舵角δ、および車速センサ5が検出した車速Vに基づき、後述する(5)式に従ってフィードフォワード軸力TFFを算出する。そして、フィードフォワード軸力算出部11Baは、算出結果を最終軸力算出部11Bc(図2参照)に出力する。
図5は、ピニオン軸力Thの算出式の係数を説明するための図である。
ここで、転舵ピニオン角Θとピニオン軸力Thとの関係式は、ステアリングホイール1と操向輪2とが機械的に接続している操舵機構を備える車両の運動方程式を基に下記(1)式で表される。転舵ピニオン角Θとしては、例えば、ピニオンシャフト10の回転角がある。ピニオンシャフト10の回転角としては、例えば、転舵ピニオン角Θは、操舵角δと、操舵角δおよび転舵角θとの間の可変ギア比との乗算値がある。また、ピニオン軸力Thとしては、例えば、ステアリングホイール1に付与される操舵反力がある。下記(1)式の右辺第1項は、ピニオン軸力Thを構成する成分のうち、転舵ピニオン角速度dΘ/dtに基づく成分を表すダンピング項である。また、右辺第2項は、ピニオン軸力Thを構成する成分のうち、転舵ピニオン角加速度d2Θ/dt2に基づく成分を表す慣性項である。さらに、右辺第3項は、ピニオン軸力Thを構成する成分のうち、タイヤ横力Fd(転舵ピニオン角Θ)に基づく成分を表す比例項である。
Th=Ks(Jrs2+Cr・s)/(Jr・s2+(Cr+Cs)s+Ks)・Θ+Cs(Jrs3+Cr・s2)/(Jr・s2+(Cr+Cs)s+Ks)・Θ+(Ks+Cs・s)/(Jr・s2+(Cr+Cs)s+Ks)・Fd ………(1)
ただし、図5に示すように、Ksはピニオン剛性、Csはピニオン粘性、Jrはラック慣性、Crはラック粘性である。
Th=Ks(Jrs2+Cr・s)/(Jr・s2+(Cr+Cs)s+Ks)・Θ+Cs(Jrs3+Cr・s2)/(Jr・s2+(Cr+Cs)s+Ks)・Θ+(Ks+Cs・s)/(Jr・s2+(Cr+Cs)s+Ks)・Fd ………(1)
ただし、図5に示すように、Ksはピニオン剛性、Csはピニオン粘性、Jrはラック慣性、Crはラック粘性である。
また、上記(1)式では、右辺第2項、つまり、慣性項は、ノイズ成分を多く含み、ピニオン軸力Thの算出結果に振動を誘発するため除くのが好ましい。さらに、タイヤ横力Fdは、転舵ピニオン角Θおよび車速Vに依存するものとして、Fd=f(V)・Θと表すことができる。f(V)としては、例えば、車速Vに応じて変化する関数がある。それゆえ、上記(1)式は、下記(2)式のように表すことができる。
Th=Ks(Jrs2+Cr・s)/(Jr・s2+(Cr+Cs)s+Ks)・Θ+(Ks+Cs・s)/(Jr・s2+(Cr+Cs)s+Ks)・f(V)・Θ ………(2)
図6は、制御マップM1を表すグラフである。
Th=Ks(Jrs2+Cr・s)/(Jr・s2+(Cr+Cs)s+Ks)・Θ+(Ks+Cs・s)/(Jr・s2+(Cr+Cs)s+Ks)・f(V)・Θ ………(2)
図6は、制御マップM1を表すグラフである。
ここで、変数f(V)の設定方法としては、例えば、車速Vの絶対値に対応した変数f(V)を制御マップM1から読み出す方法を採用できる。制御マップM1としては、例えば、車速Vの絶対値に対応した変数f(V)を登録したマップがある。具体的には、図6に示すように、制御マップM1は、車速Vの絶対値が0である場合に変数f(V)を第1設定値(例えば、0.0)に設定する。また、車速Vの絶対値が第1設定車速V1(>0)以上の範囲では、車速Vの大きさにかかわらず変数f(V)を第2設定値(>第1設定値。例えば、1.0)に設定する。さらに、制御マップM1は、車速Vの絶対値が0以上で且つ第1設定車速V1未満の範囲では、転舵角速度dθ/dtの絶対値に応じて変数f(V)を直線的に増加させる。具体的には、制御マップM1は、車速Vの絶対値が0以上で且つ第1設定車速V1未満の範囲では、車速Vの絶対値と変数f(V)との関係を表す一次関数に従って変数f(V)を設定する。一次関数は、車速Vの絶対値が0である場合に変数f(V)を第1設定値(0.0)とし、車速Vの絶対値が第1設定車速V1である場合に変数f(V)を第2設定値(1.0)とする。これにより、フィードフォワード軸力算出部11Baは、車速Vの絶対値が第1設定車速V1未満である場合には、車速Vの絶対値が小さいほど比例成分の絶対値を小さくする(低減する)。また、フィードフォワード軸力算出部11Baは、車速Vの絶対値が第1設定車速V1以上である場合には、車速Vの大きさにかかわらず、比例成分の絶対値の低減を行わない。
また、上記(2)式は、等価的に、下記(3)式のように表すことができる。
Th=P(s+2・ζ・ωn)s/(s2+2・ζ・ωn・s+ωn2)δ+I・(s+2・ζ・ωn)/(s2+2・ζ・ωn・s+ωn2)・f(V)・δ
=P(s+2・ζ・ωn)/(s2+2・ζ・ωn・s+ωn2)dδ/dt+I・(s+2・ζ・ωn)/(s2+2・ζ・ωn・s+ωn2)・f(V)・δ ………(3)
ただし、P、Iは制御定数、ζは減衰係数、ωnは固有振動数である。ζ、ωnの設定方法としては、例えば、設計値とする方法や、実験結果から同定する方法を採用できる。
そのため、ピニオン軸力Th、つまり、ステアリングホイール1に発生する操舵反力は、上記(3)式を基に下記(4)式で表すことができる。
Th=P(s+2・ζ・ωn)/(s2+2・ζ・ωn・s+ωn2)dδ/dt+I・(s+2・ζ・ωn)/(s2+2・ζ・ωn・s+ωn2)・f(V)・δ ………(4)
Th=P(s+2・ζ・ωn)s/(s2+2・ζ・ωn・s+ωn2)δ+I・(s+2・ζ・ωn)/(s2+2・ζ・ωn・s+ωn2)・f(V)・δ
=P(s+2・ζ・ωn)/(s2+2・ζ・ωn・s+ωn2)dδ/dt+I・(s+2・ζ・ωn)/(s2+2・ζ・ωn・s+ωn2)・f(V)・δ ………(3)
ただし、P、Iは制御定数、ζは減衰係数、ωnは固有振動数である。ζ、ωnの設定方法としては、例えば、設計値とする方法や、実験結果から同定する方法を採用できる。
そのため、ピニオン軸力Th、つまり、ステアリングホイール1に発生する操舵反力は、上記(3)式を基に下記(4)式で表すことができる。
Th=P(s+2・ζ・ωn)/(s2+2・ζ・ωn・s+ωn2)dδ/dt+I・(s+2・ζ・ωn)/(s2+2・ζ・ωn・s+ωn2)・f(V)・δ ………(4)
そして、上記(4)式、つまり、ピニオン軸力Thの数式を基に、本実施形態のフィードフォワード軸力TFFの算出方法としては、下記(5)式を採用する。
TFF=P・P1・P2(s+2・ζ・ωn)/(s2+2・ζ・ωn・s+ωn2)dδ/dt+I・(s+2・ζ・ωn)/(s2+2・ζ・ωn・s+ωn2)・f(V)・δ+補正用ダンピング成分
=ダンピング成分・P1・P2+比例成分+補正用ダンピング成分 ………(5)
ただし、ダンピング成分はP(s+2・ζ・ωn)/(s2+2・ζ・ωn・s+ωn2)dδ/dt、比例成分はI・(s+2・ζ・ωn)/(s2+2・ζ・ωn・s+ωn2)・f(V)・δである。また、補正用ダンピング成分は、操舵角速度dδ/dtに基づくダンピング成分であり、操舵角速度dδ/dtと反対方向に操舵反力を発生させるものである。
図7は、制御マップM2を表すグラフである。
TFF=P・P1・P2(s+2・ζ・ωn)/(s2+2・ζ・ωn・s+ωn2)dδ/dt+I・(s+2・ζ・ωn)/(s2+2・ζ・ωn・s+ωn2)・f(V)・δ+補正用ダンピング成分
=ダンピング成分・P1・P2+比例成分+補正用ダンピング成分 ………(5)
ただし、ダンピング成分はP(s+2・ζ・ωn)/(s2+2・ζ・ωn・s+ωn2)dδ/dt、比例成分はI・(s+2・ζ・ωn)/(s2+2・ζ・ωn・s+ωn2)・f(V)・δである。また、補正用ダンピング成分は、操舵角速度dδ/dtに基づくダンピング成分であり、操舵角速度dδ/dtと反対方向に操舵反力を発生させるものである。
図7は、制御マップM2を表すグラフである。
ここで、ゲインP1の設定方法としては、例えば、操舵角速度dδ/dtの絶対値に対応したゲインP1を制御マップM2から読み出す方法を採用できる。制御マップM2としては、例えば、操舵角速度dδ/dtの絶対値に対応したゲインP1を登録したマップがある。具体的には、図7に示すように、制御マップM2は、操舵角速度dδ/dtが0である場合にゲインP1を第3設定値(例えば、1.0)に設定する。また、操舵角速度dδ/dtの絶対値が第1設定操舵角速度dδ1/dt(>0)以上の範囲では、操舵角速度dδ/dtの大きさにかかわらずゲインP1を第4設定値(<第3設定値。例えば、0.5)に設定する。さらに、制御マップM2は、操舵角速度dδ/dtの絶対値が0以上で且つ第1設定操舵角速度dδ1/dt未満の範囲では、操舵角速度dδ/dtの絶対値に応じてゲインP1を直線的に低下させる。具体的には、制御マップM2は、操舵角速度dδ/dtの絶対値が0以上で且つ第1設定操舵角速度dδ1/dt未満の範囲では、操舵角速度dδ/dtの絶対値とゲインP1との関係を表す一次関数に従ってゲインP1を設定する。一次関数は、操舵角速度dδ/dtが0である場合にゲインP1を第3設定値(1.0)とし、操舵角速度dδ/dtの絶対値が第1設定操舵角速度dδ1/dtである場合にゲインP1を第4設定値(0.5)とする。これにより、フィードフォワード軸力算出部11Baは、操舵角速度dδ/dtの絶対値が第1設定操舵角速度dδ1/dt未満である場合には、操舵角速度dδ/dtの絶対値が大きいほどダンピング成分の絶対値を小さくする(補正する)。また、フィードフォワード軸力算出部11Baは、操舵角速度dδ/dtの絶対値が第1設定操舵角速度dδ1/dt以上である場合には、操舵角速度dδ/dtの大きさにかかわらず、ゲインP1に基づくダンピング成分の絶対値の補正を行わない。
図8は、操舵角δと操舵反力との関係を表すグラフである。このグラフは、操舵制御装置毎(ステアリングホイール1と操向輪2とが機械的に結合している機械式の操舵制御装置、およびダンピング成分の飽和を考慮していないステアリング・バイ・ワイヤ方式の操舵制御装置毎)に示されている。機械式の操舵制御装置では、操舵角速度dδ/dtの増大に伴い、操舵反力に含まれるダンピング成分が飽和する。それゆえ、機械式の操舵制御装置では、図8に示すように、ダンピング成分が飽和することで、操舵角速度dδ/dtの大きさにかかわらず、操舵角δと操舵反力とからなるリサジュー図形の形状が一定となる。しかしながら、操舵反力に含まれるダンピング成分の飽和を考慮していないステア・バイ・ワイヤ方式の操舵制御装置では、操舵角速度dδ/dtの増大に応じて操舵反力が増大し続ける。これに対し、本実施形態の制御演算部11は、操舵角速度dδ/dtの絶対値が大きいほどダンピング成分の絶対値を小さくする。それゆえ、本実施形態の制御演算部11は、操舵角速度dδ/dtが大きい場合に、ダンピング成分の絶対値の増大を抑制できる。そのため、本実施形態の制御演算部11は、ダンピング成分が過剰となることを抑制できる。これにより、本実施形態の制御演算部11は、より適切な操舵感を付与できる。
図9は、制御マップM3を表すグラフである。
図9は、制御マップM3を表すグラフである。
また、ゲインP2の設定方法としては、例えば、車速Vの絶対値に対応したゲインP2を制御マップM3から読み出す方法を採用できる。制御マップM3としては、例えば、車速Vの絶対値に対応したゲインP2を登録したマップがある。具体的には、図9に示すように、制御マップM3は、車速Vの絶対値が0である場合にゲインP2を第5設定値(例えば、0.5)に設定する。また、車速Vの絶対値が第2設定車速V2(>0)以上の範囲では、車速Vの大きさにかかわらずゲインP2を第6設定値(>第5設定値。例えば、1.0)に設定する。さらに、制御マップM3は、車速Vの絶対値が0以上で且つ第2設定車速V2未満の範囲では、車速Vの絶対値に応じてゲインP2を直線的に増加させる。具体的には、制御マップM3は、車速Vの絶対値が0以上で且つ第2設定車速V2未満の範囲では、車速Vの絶対値とゲインP2との関係を表す一次関数に従ってゲインP2を設定する。一次関数は、車速Vの絶対値が0である場合にゲインP2を第5設定値(0.5)とし、車速Vの絶対値が第2設定車速V2である場合にゲインP2を第6設定値(1.0)とする。これにより、フィードフォワード軸力算出部11Baは、車速Vの絶対値が第2設定車速V2未満である場合には、車速Vの絶対値が小さいほどダンピング成分の絶対値を小さくする(補正する)。また、フィードフォワード軸力算出部11Baは、車速Vの絶対値が第2設定車速V2以上である場合には、車速Vの大きさにかかわらず、ゲインP2に基づくダンピング成分の絶対値の補正を行わない。
このように、本実施形態の制御演算部11は、車速Vの絶対値が小さいほどダンピング成分の絶対値を小さくする。ここで、ステアリングホイール1と操向輪2とが機械的に結合している機械式の操舵制御装置では、車速Vが低減すると、操向輪2のタイヤ横力Fdが低減し、操舵反力が低減する。これに対し、本実施形態の制御演算部11は、車速Vの絶対値が小さいほどダンピング成分の絶対値を小さくすることで、操舵反力を低減できる。これにより、本実施形態の制御演算部11は、より適切な操舵感を付与できる。
図10は、制御マップM4を表すグラフである。
図10は、制御マップM4を表すグラフである。
さらに、補正用ダンピング成分の設定方法としては、例えば、操舵角速度dδ/dtの絶対値に対応した補正用ダンピング成分を制御マップM4から読み出す方法を採用できる。制御マップM2としては、例えば、操舵角速度dδ/dtの絶対値に対応した補正用ダンピング成分を登録したマップがある。具体的には、図10に示すように、制御マップM4は、車速V毎に設定される。各制御マップM4は、操舵角速度dδ/dtが0である場合に補正用ダンピング成分を第7設定値(例えば、0.0)に設定する。また、制御マップM4は、操舵角速度dδ/dtの絶対値が第2設定操舵角速度dδ2/dt(>0)以上の範囲では、操舵角速度dδ/dtの大きさにかかわらず補正用ダンピング成分を第8設定値(一定値)に設定する。さらに、制御マップM4は、操舵角速度dδ/dtが0.0以上で且つ操舵角速度dδ/dtの絶対値が第3設定操舵角速度dδ3/dt(0<dδ3/dt<dδ2/dt)未満の範囲では、操舵角速度dδ/dtの絶対値に応じて補正用ダンピング成分を直線的に増加させる。具体的には、各制御マップM4は、操舵角速度dδ/dtの絶対値が0以上で且つ第3設定操舵角速度dδ3/dt未満の範囲では、操舵角速度dδ/dtの絶対値と補正用ダンピング成分との関係を表す一次関数に従って補正用ダンピング成分を設定する。一次関数は、操舵角速度dδ/dtの絶対値が0である場合に補正用ダンピング成分を第7設定値(0.0)とし、操舵角速度dδ/dtの絶対値が第3設定操舵角速度dδ3/dtである場合に補正用ダンピング成分を第9設定値(0<第9設定値<第8設定値)に設定する。また、各制御マップM4は、操舵角速度dδ/dtの絶対値が第3設定操舵角速度dδ3/dt以上で且つ第2設定操舵角速度dδ2/dt未満の範囲では、操舵角速度dδ/dtの絶対値に応じて補正用ダンピング成分を直線的に増加させる。具体的には、制御マップM4は、操舵角速度dδ/dtの絶対値が第3設定操舵角速度dδ3/dt以上で且つ第2設定操舵角速度dδ2/dt未満の範囲では、車速Vの絶対値と補正用ダンピング成分との関係を表す一次関数に従って補正用ダンピング成分を設定する。一次関数は、操舵角速度dδ/dtの絶対値が第3設定操舵角速度dδ3/dtである場合に補正用ダンピング成分を第9設定値とし、操舵角速度dδ/dtの絶対値が第2設定操舵角速度dδ2/dtである場合に補正用ダンピング成分を第8設定値とする。これにより、フィードフォワード軸力算出部11Baは、操舵角速度dδ/dtの絶対値が第2設定操舵角速度dδ2/dt未満である場合には、操舵角速度dδ/dtの絶対値が大きいほど補正用ダンピング成分の絶対値を大きくする。また、フィードフォワード軸力算出部11Baは、操舵角速度dδ/dtの絶対値が第2設定操舵角速度dδ2/dt以上である場合には、操舵角速度dδ/dtの大きさにかかわらず、補正用ダンピング成分の絶対値を予め定めた一定値とする。
このように、本実施形態の制御演算部11は、操舵角速度dδ/dtの絶対値が大きいほど絶対値が大きくなる補正用ダンピング成分をフィードフォワード軸力TFFに加算する。それゆえ、本実施形態の制御演算部11は、ステアリングホイール1の切り始めに、操舵角速度dδ/dtの絶対値が増大した場合に、操舵反力の立ち上がりを増大できる。これにより、本実施形態の制御演算部11は、より適切な操舵感を付与できる。
また、本実施形態の制御演算部11は、操舵角速度dδ/dtの絶対値が第2設定操舵角速度dδ2/dt以上である場合には、予め定めた一定値を補正用ダンピング成分とする。それゆえ、運転者がステアリングホイール1を切ったことで、操舵角速度dδ/dtの絶対値が第2設定操舵角速度dδ2/dt以上となった場合には、補正用ダンピング成分の変動を抑制できる。そのため、本実施形態の制御演算部11は、補正用ダンピング成分の変動による操舵反力の変化が感知されず、運転者に操舵感の違和感を与えることを防止できる。
図11は、フィードバック軸力算出部11Bbの構成を表すブロック図である。
図11に示すように、フィードバック軸力算出部11Bbは、電流軸力算出部11Bba、ブレンド軸力算出部11Bbb、操舵角速度検出部11Bbc、操舵判定部11Bbd、およびフィードバック軸力算出実行部11Bbeを備える。
電流軸力算出部11Bbaは、転舵電流検出部8Bが検出した転舵電流に基づき、下記(6)式に従ってステアリングラック軸力(ステアリングラックの軸力。以下、電流軸力とも呼ぶ)を算出する。下記(6)式では、まず、転舵電流と、転舵電流を基に転舵モータ8Aの出力トルクを算出するためのトルク定数[Nm/A]と、転舵モータ8Aのモータトルクを伝達するためのモータギア比とを乗算する。続いて、下記(6)式では、乗算結果を転舵モータ8Aのピニオンギアのピニオン半径[m]で除算し、除算結果に、転舵モータ8Aの出力トルクが伝達される際の効率を乗算し、乗算結果を電流軸力として算出する。そして、電流軸力算出部11Bbaは、算出結果をブレンド軸力算出部11Bbbおよびフィードバック軸力算出実行部11Bbeに出力する。
電流軸力=(転舵電流×モータギア比×トルク定数[Nm/A]/ピニオン半径[m])×効率 ………(6)
図11に示すように、フィードバック軸力算出部11Bbは、電流軸力算出部11Bba、ブレンド軸力算出部11Bbb、操舵角速度検出部11Bbc、操舵判定部11Bbd、およびフィードバック軸力算出実行部11Bbeを備える。
電流軸力算出部11Bbaは、転舵電流検出部8Bが検出した転舵電流に基づき、下記(6)式に従ってステアリングラック軸力(ステアリングラックの軸力。以下、電流軸力とも呼ぶ)を算出する。下記(6)式では、まず、転舵電流と、転舵電流を基に転舵モータ8Aの出力トルクを算出するためのトルク定数[Nm/A]と、転舵モータ8Aのモータトルクを伝達するためのモータギア比とを乗算する。続いて、下記(6)式では、乗算結果を転舵モータ8Aのピニオンギアのピニオン半径[m]で除算し、除算結果に、転舵モータ8Aの出力トルクが伝達される際の効率を乗算し、乗算結果を電流軸力として算出する。そして、電流軸力算出部11Bbaは、算出結果をブレンド軸力算出部11Bbbおよびフィードバック軸力算出実行部11Bbeに出力する。
電流軸力=(転舵電流×モータギア比×トルク定数[Nm/A]/ピニオン半径[m])×効率 ………(6)
ここで、転舵電流は、ステアリングホイール1が操舵され、目標転舵角θ*が変動し、目標転舵角θ*と実際の転舵角θとに差が生じることによって変動する。また、転舵電流は、操向輪2が転舵され、操向輪2にタイヤ横力Fdが作用し、目標転舵角θ*と実際の転舵角θとに差が生じることによっても変動する。さらに、転舵電流は、路面凹凸等によって操向輪2に路面外乱が作用し、操向輪2にタイヤ横力Fdが作用し、目標転舵角θ*と実際の転舵角θとに差が生じることによっても変動する。それゆえ、フィードバック軸力算出部11Bbは、転舵電流に基づくことで、操向輪2に作用するタイヤ横力Fdの影響を反映したステアリングラック軸力(電流軸力)を算出できる。ここで、電流軸力は、目標転舵角θ*と実際の転舵角θとに差が生じた時点で発生する。そのため、電流軸力は、図12に示すように、実際のステアリングラック軸力や横G軸力に比べ、位相が進む。
ブレンド軸力算出部11Bbbは、横Gセンサ6が検出した横方向加速度Gyに基づき、下記(7)式に従ってステアリングラック軸力(以下、横G軸力とも呼ぶ)を算出する。下記(7)式では、まず、前輪荷重と横方向加速度Gyとを乗算し、乗算結果を操向輪2にかかる軸力(軸方向の力)として算出する。続いて、下記(7)式では、算出した操向輪2にかかる軸力と、リンクの角度やサスペンションに応じた定数(以下、リンク比とも呼ぶ)とを乗算し、乗算結果を横G軸力として算出する。
横G軸力=操向輪2にかかる軸力×リンク比 ………(7)
操向輪2にかかる軸力=前輪荷重×横方向加速度Gy
ここで、横方向加速度Gyは、操向輪2が転舵され、操向輪2にタイヤ横力Fdが作用し、車両Aが旋回することによって発生する。それゆえ、ブレンド軸力算出部11Bbbは、横方向加速度Gyに基づくことで、操向輪2に作用するタイヤ横力Fdの影響を反映したステアリングラック軸力(横G軸力)を算出できる。ここで、横Gセンサ6は、バネ上(車体)に配置したため、横方向加速度Gyの検出が遅れる。そのため、横G軸力は、図12に示すように、実際のステアリングラック軸力に比べ、位相が遅れる。
横G軸力=操向輪2にかかる軸力×リンク比 ………(7)
操向輪2にかかる軸力=前輪荷重×横方向加速度Gy
ここで、横方向加速度Gyは、操向輪2が転舵され、操向輪2にタイヤ横力Fdが作用し、車両Aが旋回することによって発生する。それゆえ、ブレンド軸力算出部11Bbbは、横方向加速度Gyに基づくことで、操向輪2に作用するタイヤ横力Fdの影響を反映したステアリングラック軸力(横G軸力)を算出できる。ここで、横Gセンサ6は、バネ上(車体)に配置したため、横方向加速度Gyの検出が遅れる。そのため、横G軸力は、図12に示すように、実際のステアリングラック軸力に比べ、位相が遅れる。
なお、本実施形態では、横G軸力を算出する際に、横Gセンサ6で検出した横方向加速度Gyを用いる例を示したが、他の構成を採用してもよい。例えば、ヨーレートセンサ7が検出したヨーレートγに車速センサ5が検出した車速Vを乗算し、乗算結果γ×Vを横方向加速度Gyに代えて用いる構成としてもよい。
また、ブレンド軸力算出部11Bbbは、車速センサ5が検出した車速V、およびヨーレートセンサ7が検出したヨーレートγに基づき、下記(8)式に従ってステアリングラック軸力(以下、ヨーレート軸力とも呼ぶ)を算出する。下記(8)式では、まず、前輪荷重と車速Vとヨーレートγとを乗算し、乗算結果を操向輪2にかかる軸力として算出する。続いて、下記(8)式では、算出した操向輪2にかかる軸力とリンク比とを乗算し、乗算結果をヨーレート軸力として算出する。
ヨーレート軸力=操向輪2にかかる軸力×リンク比 ………(8)
操向輪2にかかる軸力=前輪荷重×車速V×ヨーレートγ
また、ブレンド軸力算出部11Bbbは、車速センサ5が検出した車速V、およびヨーレートセンサ7が検出したヨーレートγに基づき、下記(8)式に従ってステアリングラック軸力(以下、ヨーレート軸力とも呼ぶ)を算出する。下記(8)式では、まず、前輪荷重と車速Vとヨーレートγとを乗算し、乗算結果を操向輪2にかかる軸力として算出する。続いて、下記(8)式では、算出した操向輪2にかかる軸力とリンク比とを乗算し、乗算結果をヨーレート軸力として算出する。
ヨーレート軸力=操向輪2にかかる軸力×リンク比 ………(8)
操向輪2にかかる軸力=前輪荷重×車速V×ヨーレートγ
ここで、ヨーレートγは、操向輪2が転舵され、操向輪2にタイヤ横力Fdが作用し、車両Aが旋回することによって発生する。それゆえ、ブレンド軸力算出部11Bbbは、ヨーレートγに基づくことで、操向輪2に作用するタイヤ横力Fdの影響を反映したステアリングラック軸力(ヨーレート軸力)を算出できる。ここで、ヨーレートセンサ7は、バネ上(車体)に配置したため、ヨーレートγの検出が遅れる。そのため、ヨーレート軸力は、図12に示すように、実際のステアリングラック軸力に比べ、位相が遅れる。
さらに、ブレンド軸力算出部11Bbbは、電流軸力算出部11Bbaから電流軸力を読み込む。続いて、ブレンド軸力算出部11Bbbは、読み込んだ電流軸力、および算出した横G軸力、ヨーレート軸力に基づき、下記(9)式に従ってステアリングラック軸力(以下、「ブレンド軸力」とも呼ぶ)TBRを算出する。下記(9)式では、横G軸力に配分比率K1を乗算し、電流軸力に配分比率K2を乗算し、ヨーレート軸力に配分比率K3を乗算し、これらの乗算結果の和をブレンド軸力TBRとして算出する。すなわち、横G軸力に配分比率K1を乗算した値、電流軸力に配分比率K2を乗算した値およびヨーレート軸力に配分比率K3を乗算した値に基づいて、ブレンド軸力TBRを算出する。そして、ブレンド軸力算出部11Bbbは、算出結果を操舵判定部11Bbdおよびフィードバック軸力算出実行部11Bbeに出力する。ここで、ブレンド軸力TBRは、操向輪2を右方向に向ける軸力を正値とし、操向輪2を左方向に向ける軸力を負値とする。
TBR=横G軸力×K1+電流軸力×K2+ヨーレート軸力×K3 ……(9)
TBR=横G軸力×K1+電流軸力×K2+ヨーレート軸力×K3 ……(9)
ここで、配分比率K1、K2、K3は横G軸力、電流軸力、ヨーレート軸力の配分比率である。配分比率K1、K2、K3の大小関係は、K1>K2>K3とする。すなわち、横G軸力、電流軸力、ヨーレート軸力の順に配分比率を大きい値とする。例えば、配分比率K1、K2、K3のそれぞれは、K1=0.6、K2=0.3、K3=0.1に設定する。これにより、ブレンド軸力算出部11Bbbは、ブレンド軸力TBRとして、操向輪2に作用するタイヤ横力Fdの影響を反映したステアリングラック軸力を算出する。
図13は、ブレンド軸力TBR、および実際のステアリングラック軸力を表すグラフである。
図13は、ブレンド軸力TBR、および実際のステアリングラック軸力を表すグラフである。
このように、本実施形態のブレンド軸力算出部11Bbbは、電流軸力に配分比率K2を乗算した値と横G軸力に配分比率K1を乗算した値とに基づいてブレンド軸力TBRを算出する。ここで、図12に示すように、横G軸力は、実際のステアリングラック軸力に比べ、位相が遅れる。また、電流軸力は、実際のステアリングラック軸力に比べ、位相が進む。それゆえ、本実施形態のブレンド軸力算出部11Bbbは、横G軸力に電流軸力を加えることで、図13に示すように、横G軸力による位相の遅れを補償でき、より適切なブレンド軸力TBRを算出できる。そのため、本実施形態の制御演算部11は、ブレンド軸力TBRに基づいて反力モータ9Aを駆動することで、より適切な操舵反力を付与できる。
また、本実施形態のブレンド軸力算出部11Bbbは、電流軸力に配分比率K2を乗算した値と横G軸力に配分比率K1を乗算した値とに基づいてブレンド軸力TBRを算出する。ここで、車両Aは、路面凹凸等によって操向輪2に路面外乱が作用し、操向輪2にタイヤ横力Fdが作用した場合、目標転舵角θ*と実際の転舵角θとに差が生じる。それゆえ、本実施形態のブレンド軸力算出部11Bbbは、横G軸力に電流軸力を加えることで、操向輪2に作用する路面外乱の影響をブレンド軸力TBRに反映でき、より適切なブレンド軸力TBRを算出できる。そのため、本実施形態の制御演算部11は、ブレンド軸力TBRに基づいて反力モータ9Aを駆動することで、より適切な操舵反力を付与できる。
さらに、本実施形態のブレンド軸力算出部11Bbbは、電流軸力の配分比率K2よりも横G軸力の配分比率K1を大きくする。それゆえ、本実施形態のブレンド軸力算出部11Bbbは、電流軸力の配分比率を低減でき、例えば、電流軸力の推定精度が転舵モータ8Aの慣性やフリクションの影響によって低下したとしても、ブレンド軸力TBRの推定精度の低下を抑制できる。そのため、本実施形態の制御演算部11は、ブレンド軸力TBRに基づいて反力モータ9Aを駆動することで、より適切な操舵反力を付与できる。
また、本実施形態のブレンド軸力算出部11Bbbは、電流軸力に配分比率K2を乗算した値と横G軸力に配分比率K1を乗算した値とヨーレート軸力に配分比率K3を乗算した値とに基づいてフィードバック軸力TFBを算出する。ここで、例えば、車両Aがスピン状態になった場合に、転舵電流および横方向加速度Gyが増大するため、横Gセンサ6の検出結果および転舵電流検出部8Bの検出結果はいずれも最大値(飽和値)となる。これに対し、ヨーレートγも増大するが、ヨーレートγの増大量は転舵電流および横方向加速度Gyの増加量に比べて比較的小さいので、ヨーレートセンサ7の検出結果は最大値(飽和値)に到達しない。そのため、車両Aのスピン状態の度合いに応じてヨーレートセンサ7の検出結果は変動する。それゆえ、車両Aのスピン状態の度合いに応じてブレンド軸力TBRを変動できる。その結果、本実施形態の制御演算部11は、ブレンド軸力TBRに基づいて反力モータ9Aを駆動することで、より適切な操舵反力を付与できる。
操舵角速度検出部11Bbcは、操舵角センサ3が検出した操舵角δに基づいて、ステアリングホイール1の操舵角速度dδ/dtを算出する。そして、操舵角速度検出部11Bbcは、算出結果をブレンド軸力算出部11Bbbおよび操舵判定部11Bbdに出力する。ここで、操舵角速度dδ/dtは、ステアリングホイール1が時計回りに回転する場合の角速度を正値とし、反時計回りに回転する場合の角速度を負値とする。
操舵判定部11Bbdは、ブレンド軸力算出部11Bbbが算出したブレンド軸力TBRおよび操舵角速度検出部11Bbcが検出した操舵角速度dδ/dtに基づいて、運転者がステアリングホイール1の切り増し操作および切り戻し操作のいずれを行っているかを判定する。切り増し操作としては、例えば、ステアリングホイール1(操舵角δ)が中立位置から離れる方向への操舵操作である。また、切り戻し操作としては、例えば、ステアリングホイール1(操舵角δ)が中立位置に近づく方向への操舵操作がある。具体的には、操舵判定部11Bbdは、ブレンド軸力TBRが正値であり且つ操舵角速度dδ/dtが正値である場合、またはブレンド軸力TBRが負値であり且つ操舵角速度dδ/dtが負値である場合には、ステアリングホイール1の切り増し操作を行っていると判定し、変数K4を1.0とする。変数K4は、ステアリングホイール1の切り増し操作および切り戻し操作のいずれを行なっているかを表すフラグである。変数K4は、ステアリングホイール1の切り増し操作を行なっている場合に1.0とし、切り戻し操作を行なっている場合に0.0とする。さらに、操舵判定部11Bbdは、ブレンド軸力TBRが正値であり且つ操舵角速度dδ/dtが負値である場合、またはブレンド軸力TBRが負値であり且つ操舵角速度dδ/dtが正値である場合には、ステアリングホイール1の切り増し操作を行っていないと判定し、変数K4を0とする。そして、操舵判定部11Bbdは、設定した変数K4をフィードバック軸力算出実行部11Bbeに出力する。
フィードバック軸力算出実行部11Bbeは、電流軸力算出部11Bba、ブレンド軸力算出部11Bbb、操舵角速度検出部11Bbcおよび操舵判定部11Bbdから電流軸力、ブレンド軸力TBR、操舵角速度dδ/dtおよび変数K4を読み込む。続いて、フィードバック軸力算出実行部11Bbeは、読み込んだ電流軸力、ブレンド軸力TBR、操舵角速度dδ/dtおよび変数K4に基づき、下記(10)式に従ってステアリングラック軸力(以下、フィードバック軸力TFB)を算出する。そして、フィードバック軸力算出実行部11Bbeは、算出結果を最終軸力算出部11Bcに出力する。
フィードバック軸力TFB=電流軸力×GB+ブレンド軸力TBR×(1-GB) ………(10)
ただし、GBは、電流軸力の配分比率GBとブレンド軸力TBRの配分比率(1-GB)を表す数値(以下、配分比率と呼ぶ)である。これにより、フィードバック軸力算出実行部11Bbeは、配分比率GBに基づいて、電流軸力とブレンド軸力TBRとをGB:(1-GB)の割合で合算させて、フィードバック軸力TFBを算出する。
フィードバック軸力TFB=電流軸力×GB+ブレンド軸力TBR×(1-GB) ………(10)
ただし、GBは、電流軸力の配分比率GBとブレンド軸力TBRの配分比率(1-GB)を表す数値(以下、配分比率と呼ぶ)である。これにより、フィードバック軸力算出実行部11Bbeは、配分比率GBに基づいて、電流軸力とブレンド軸力TBRとをGB:(1-GB)の割合で合算させて、フィードバック軸力TFBを算出する。
ここで、配分比率GBの設定方法としては、例えば、操舵判定部11Bbdが出力した判定結果を基に配分比率設定部11Bbfで配分比率GBを設定する方法を採用できる。配分比率設定部11Bbfは、操舵判定部11Bbdから操舵角速度dδ/dtおよび変数K4を読み込む。続いて、配分比率設定部11Bbfは、読み込んだ操舵角速度dδ/dtおよび変数K4に基づき、下記(11)式に従って配分比率GBを算出する。
GB=K4×K5 ………(11)
GB=K4×K5 ………(11)
ただし、K5は、K4が1.0のとき、つまり、ステアリングホイール1の切り増し操作時における、電流軸力の配分比率GBとブレンド軸力TBRの配分比率(1-GB)を表す数値である。これにより、フィードバック軸力算出実行部11Bbeは、ステアリングホイール1の切り増し操作時には、変数K5に基づいて電流軸力とブレンド軸力TBRとをK5:(1-K5)の割合で合算させて、フィードバック軸力TFBを算出する。なお、K4が0.0のとき、つまり、ステアリングホイール1の切り戻し操作時には、変数K5にかかわらず、ブレンド軸力TBRをフィードバック軸力TFBとする。
ここで、変数K5の設定方法としては、例えば、操舵角速度dδ/dtに対応した変数K5を制御マップM5から読み出す方法を採用できる。制御マップM5としては、例えば、操舵角速度dδ/dtに対応した変数K5を登録したマップがある。
ここで、変数K5の設定方法としては、例えば、操舵角速度dδ/dtに対応した変数K5を制御マップM5から読み出す方法を採用できる。制御マップM5としては、例えば、操舵角速度dδ/dtに対応した変数K5を登録したマップがある。
図14は、制御マップM5を表すグラフである。
図14に示すように、制御マップM5は、操舵角速度dδ/dtの絶対値が0以上で且つ第4設定操舵角速度dδ4/dt(>0)未満の範囲では、操舵角速度dδ/dtの大きさにかかわらず変数K5を第10設定値(例えば、1.0)に設定する。また、制御マップM5は、操舵角速度dδ/dtの絶対値が第5設定操舵角速度dδ5/dt(>dδ4/dt)以上の範囲では、操舵角速度dδ/dtの大きさにかかわらず変数K5を第11設定値(<第10設定値。例えば、0.0)に設定する。さらに、制御マップM5は、操舵角速度dδ/dtの絶対値が第4設定操舵角速度dδ4/dt以上で且つ第5設定操舵角速度dδ5/dt未満の範囲では、操舵角速度dδ/dtの絶対値に応じて変数K5を直線的に低下させる。具体的には、制御マップM5は、操舵角速度dδ/dtの絶対値が第4設定操舵角速度dδ4/dt以上で且つ第5設定操舵角速度dδ5/dt未満の範囲では、操舵角速度dδ/dtの絶対値と変数K5との関係を表す一次関数に従って変数K5を設定する。一次関数は、操舵角速度dδ/dtの絶対値が第4設定操舵角速度dδ4/dtである場合に変数K5を第10設定値(1.0)とし、操舵角速度dδ/dtの絶対値が第5設定操舵角速度dδ5/dtである場合に変数K5を第11設定値(0.0)とする。これにより、配分比率設定部11Bbfは、変数K4が1.0(切り増し操作時)であり、且つ、操舵角速度dδ/dtの絶対値が第4設定操舵角速度dδ4/dt未満(低速操舵時)である場合には、配分比率GBを1.0とする。そして、フィードバック軸力算出実行部11Bbeは、電流軸力をフィードバック軸力TFBとする。また、配分比率設定部11Bbfは、変数K4が1.0(切り増し操作時)であり、且つ、操舵角速度dδ/dtの絶対値が第5設定操舵角速度dδ5/dt以上(高速操舵時)である場合には、配分比率GBを0.0とする。これにより、フィードバック軸力算出実行部11Bbeは、ブレンド軸力TBRをフィードバック軸力TFBとする。また、配分比率設定部11Bbfは、変数K4が1.0(切り増し操作時)であり、且つ、操舵角速度dδ/dtの絶対値が第4設定操舵角速度dδ4/dt以上で且つ第5設定操舵角速度dδ5/dt未満(中速操舵時)である場合には、変数K5を配分比率GBとする。これにより、フィードバック軸力算出実行部11Bbeは、電流軸力に変数K5を乗算した値とブレンド軸力TBRに(1-K5)を乗算した値とを合算したものをフィードバック軸力TFBとする。一方、配分比率設定部11Bbfは、変数K4が0.0(切り戻し操作時)である場合には、操舵角速度dδ/dtにかかわらず、0.0を配分比率GBとする。そして、フィードバック軸力算出実行部11Bbeは、ブレンド軸力TBRをフィードバック軸力TFBとする。
図14に示すように、制御マップM5は、操舵角速度dδ/dtの絶対値が0以上で且つ第4設定操舵角速度dδ4/dt(>0)未満の範囲では、操舵角速度dδ/dtの大きさにかかわらず変数K5を第10設定値(例えば、1.0)に設定する。また、制御マップM5は、操舵角速度dδ/dtの絶対値が第5設定操舵角速度dδ5/dt(>dδ4/dt)以上の範囲では、操舵角速度dδ/dtの大きさにかかわらず変数K5を第11設定値(<第10設定値。例えば、0.0)に設定する。さらに、制御マップM5は、操舵角速度dδ/dtの絶対値が第4設定操舵角速度dδ4/dt以上で且つ第5設定操舵角速度dδ5/dt未満の範囲では、操舵角速度dδ/dtの絶対値に応じて変数K5を直線的に低下させる。具体的には、制御マップM5は、操舵角速度dδ/dtの絶対値が第4設定操舵角速度dδ4/dt以上で且つ第5設定操舵角速度dδ5/dt未満の範囲では、操舵角速度dδ/dtの絶対値と変数K5との関係を表す一次関数に従って変数K5を設定する。一次関数は、操舵角速度dδ/dtの絶対値が第4設定操舵角速度dδ4/dtである場合に変数K5を第10設定値(1.0)とし、操舵角速度dδ/dtの絶対値が第5設定操舵角速度dδ5/dtである場合に変数K5を第11設定値(0.0)とする。これにより、配分比率設定部11Bbfは、変数K4が1.0(切り増し操作時)であり、且つ、操舵角速度dδ/dtの絶対値が第4設定操舵角速度dδ4/dt未満(低速操舵時)である場合には、配分比率GBを1.0とする。そして、フィードバック軸力算出実行部11Bbeは、電流軸力をフィードバック軸力TFBとする。また、配分比率設定部11Bbfは、変数K4が1.0(切り増し操作時)であり、且つ、操舵角速度dδ/dtの絶対値が第5設定操舵角速度dδ5/dt以上(高速操舵時)である場合には、配分比率GBを0.0とする。これにより、フィードバック軸力算出実行部11Bbeは、ブレンド軸力TBRをフィードバック軸力TFBとする。また、配分比率設定部11Bbfは、変数K4が1.0(切り増し操作時)であり、且つ、操舵角速度dδ/dtの絶対値が第4設定操舵角速度dδ4/dt以上で且つ第5設定操舵角速度dδ5/dt未満(中速操舵時)である場合には、変数K5を配分比率GBとする。これにより、フィードバック軸力算出実行部11Bbeは、電流軸力に変数K5を乗算した値とブレンド軸力TBRに(1-K5)を乗算した値とを合算したものをフィードバック軸力TFBとする。一方、配分比率設定部11Bbfは、変数K4が0.0(切り戻し操作時)である場合には、操舵角速度dδ/dtにかかわらず、0.0を配分比率GBとする。そして、フィードバック軸力算出実行部11Bbeは、ブレンド軸力TBRをフィードバック軸力TFBとする。
このように、本実施形態のフィードバック軸力算出実行部11Bbeは、ステアリングホイール1の切り増し操作が行われると、操舵角速度dδ/dtの絶対値が第4設定操舵角速度dδ4/dt未満である場合には、電流軸力をフィードバック軸力TFBとする。ここで、ステアリングホイール1と操向輪2とが機械的に結合している機械式の操舵制御装置では、ステアリングホイール1の切り増し操作時には、操向輪2の転舵に伴うタイヤ横力Fdとフリクションとにより、ステアリングホイール1を中立位置に戻す操舵反力が発生する。また、本実施形態のフィードバック軸力算出実行部11Bbeでは、ステアリングホイール1の切り増し操作時には、電流軸力は、タイヤ横力Fdとフリクションとの合算値と等しくなる。そのため、本実施形態の制御演算部11は、電流軸力をフィードバック軸力TFBとすることで、機械式の操舵制御装置と同様に、ステアリングホイール1を中立位置に戻す操舵反力を付与できる。これにより、本実施形態の制御演算部11は、ステアリングホイール1の切り増し操作時に、より適切な操舵反力を付与できる。
ちなみに、ブレンド軸力TBRは、操向輪2の転舵に伴うフリクションの要素が含まれていない。それゆえ、例えば、ステアリングホイール1の切り増し操作時に、ブレンド軸力TBRをフィードバック軸力TFBとする方法では、操舵感に違和感を与える可能性がある。
ちなみに、ブレンド軸力TBRは、操向輪2の転舵に伴うフリクションの要素が含まれていない。それゆえ、例えば、ステアリングホイール1の切り増し操作時に、ブレンド軸力TBRをフィードバック軸力TFBとする方法では、操舵感に違和感を与える可能性がある。
また、本実施形態のフィードバック軸力算出実行部11Bbeは、ステアリングホイール1の切り戻し操作が行われると、操舵角速度dδ/dtの絶対値の大きさにかかわらず、電流軸力と横G軸力とを予め設定された配分比率で配分したブレンド軸力TBRをフィードバック軸力TFBとする。ここで、ステアリングホイール1と操向輪2とが機械的に結合している機械式の操舵制御装置では、ステアリングホイール1の切り戻し操作時には、操向輪2の転舵に伴うタイヤ横力Fdにより、ステアリングホイール1を中立位置に戻す操舵反力が発生する。それゆえ、機械式の操舵制御装置では、ステアリングホイール1の切り戻し操作時には、運転者は、ステアリングホイール1の保持力を低減し、ステアリングホイール1を手の平で滑らせることで、ステアリングホイール1を中立位置に戻し、操向輪2を中立位置に戻していた。これに対し、本実施形態のフィードバック軸力算出実行部11Bbeでは、ブレンド軸力TBRをフィードバック軸力TFBとすることで、転舵電流が低減し、電流軸力が低減したとしても、ステアリングホイール1を中立位置に戻す操舵反力が低減することを抑制できる。そのため、本実施形態のフィードバック軸力算出実行部11Bbeは、機械式の操舵制御装置と同様に、運転者がステアリングホイール1の保持力を低減し、ステアリングホイール1を手の平で滑らせることで、ステアリングホイール1を中立位置に戻すことができる。これにより、本実施形態の制御演算部11は、ステアリングホイール1の切り戻し操作時に、より適切な操舵反力を付与できる。
さらに、本実施形態のフィードバック軸力算出実行部11Bbeは、ステアリングホイール1の切り増し操作を行っていると判定し、且つ、操舵角速度dδ/dtの絶対値が第4設定操舵角速度dδ4/dt以上であると判定した場合には、電流軸力とブレンド軸力TBRとを配分してフィードバック軸力TFBを設定するとともに、操舵角速度dδ/dtの絶対値が小さくなるほど電流軸力の配分比率を大きくする。それゆえ、本実施形態のフィードバック軸力算出実行部11Bbeは、例えば、ステアリングホイール1の切り戻し操作中に、操舵角δが中立位置を跨ぎ、引き続き同方向へステアリングホイール1の切り増し操作が行われた場合、切り増し操作中に操舵角速度dδ/dtの絶対値が徐々に低減するにつれ、ブレンド軸力TBRから電流軸力へとフィードバック軸力TFBを徐々に移行できる。これにより、本実施形態の制御演算部11は、より適切な操舵反力を付与できる。
図3に戻り、最終軸力算出部11Bcは、操舵角センサ3、車速センサ5、横Gセンサ6、フィードフォワード軸力算出部11Baおよびフィードバック軸力算出部11Bbから操舵角δ、車速V、横方向加速度Gy、フィードフォワード軸力TFFおよびフィードバック軸力TFBを読み込む。続いて、最終軸力算出部11Bcは、読み込んだ操舵角δに基づいて、ステアリングホイール1の操舵角速度dδ/dtを算出する。続いて、最終軸力算出部11Bcは、読み込んだ操舵角δ、車速V、横方向加速度Gy、フィードフォワード軸力TFFおよびフィードバック軸力TFB、算出した操舵角速度dδ/dtに基づき、下記(12)式に従ってステアリングラック軸力(以下、最終軸力)を算出する。そして、最終軸力算出部11Bcは、算出結果を軸力-操舵反力変換部11Bdに出力する。
最終軸力=フィードフォワード軸力TFF×GF+フィードバック軸力TFB×(1-GF) ………(12)
最終軸力=フィードフォワード軸力TFF×GF+フィードバック軸力TFB×(1-GF) ………(12)
ここで、GFは、フィードフォワード軸力TFFの配分比率GFとフィードバック軸力TFBの配分比率(1-GF)を表す数値(以下、配分比率と呼ぶ)である。これにより、最終軸力算出部11Bcは、配分比率GFに基づいて、フィードフォワード軸力TFFとフィードバック軸力TFBとをGF:(1-GF)の割合で合算させて、最終軸力を算出する。
このように、本実施形態の最終軸力算出部11Bcは、フィードバック軸力TFBおよびフィードフォワード軸力TFFに基づいて最終軸力を算出する。ここで、フィードバック軸力TFBは、操向輪2に作用するタイヤ横力Fdの影響を反映するため、路面状態の変化や車両状態の変化に応じて変化する。これに対し、フィードフォワード軸力TFFは、タイヤ横力Fdの影響を反映しないため、路面状態の変化等にかかわらず滑らかに変化する。それゆえ、最終軸力算出部11Bcは、フィードバック軸力TFBに加え、フィードフォワード軸力TFFに基づいて最終軸力を算出することで、より適切な最終軸力を算出できる。
このように、本実施形態の最終軸力算出部11Bcは、フィードバック軸力TFBおよびフィードフォワード軸力TFFに基づいて最終軸力を算出する。ここで、フィードバック軸力TFBは、操向輪2に作用するタイヤ横力Fdの影響を反映するため、路面状態の変化や車両状態の変化に応じて変化する。これに対し、フィードフォワード軸力TFFは、タイヤ横力Fdの影響を反映しないため、路面状態の変化等にかかわらず滑らかに変化する。それゆえ、最終軸力算出部11Bcは、フィードバック軸力TFBに加え、フィードフォワード軸力TFFに基づいて最終軸力を算出することで、より適切な最終軸力を算出できる。
最終軸力算出部11Bcは、配分比率算出部11Bcaを備える。配分比率算出部11Bcaは、軸力差分に基づく配分比率GF1、横方向加速度Gyに基づく配分比率GF2、車速Vおよび操舵角δに基づく配分比率GF3、および操舵角速度dδ/dtに基づく配分比率GF4に基づいて、配分比率GFを設定する。軸力差分としては、例えば、フィードフォワード軸力TFFとフィードバック軸力TFBとの差を採用できる。具体的には、軸力差分は、フィードフォワード軸力TFFからフィードバック軸力TFBを減算した減算結果とする。また、配分比率GFの設定方法としては、例えば、軸力差分に基づく配分比率GF1と横方向加速度Gyに基づく配分比率GF2とのうちいずれか小さい値と、車速Vおよび操舵角δに基づく配分比率GF3と、操舵角速度dδ/dtに基づく配分比率GF4とを乗算し、乗算結果を配分比率GFとする方法を採用できる。
図15は、制御マップM6を表すグラフである。
配分比率GF1の設定方法としては、例えば、軸力差分の絶対値に対応した配分比率GF1を制御マップM6から読み出す方法を採用できる。制御マップM6としては、例えば、軸力差分の絶対値に対応した配分比率GF1を登録したマップがある。具体的には、図15に示すように、制御マップM6は、軸力差分の絶対値が0以上で且つ第1設定軸力差分Z1(>0)未満の範囲では、軸力差分の大きさにかかわらず配分比率GF1を第12設定値(例えば、1.0)に設定する。第1設定軸力差分Z1としては、例えば、フィードフォワード軸力TFFの推定精度が低下を開始する軸力差分を採用できる。また、制御マップM6は、軸力差分の絶対値が第2設定軸力差分Z2(>Z1)以上の範囲では、軸力差分の大きさにかかわらず配分比率GF1を第13設定値(<第12設定値。例えば、0.0)に設定する。第2設定軸力差分Z2としては、例えば、フィードフォワード軸力TFFの推定精度がフィードバック軸力TFBの推定精度よりも低下する軸力差分を採用できる。さらに、制御マップM6は、軸力差分の絶対値が第1設定軸力差分Z1以上で且つ第2設定軸力差分Z2未満の範囲では、軸力差分の絶対値に応じて配分比率GF1を直線的に低下させる。具体的には、制御マップM6は、軸力差分の絶対値が第1設定軸力差分Z1以上で且つ第2設定軸力差分Z2未満の範囲では、軸力差分の絶対値と配分比率GF1との関係を表す一次関数に従って配分比率GF1を設定する。一次関数は、軸力差分の絶対値が第1設定軸力差分Z1である場合に配分比率GF1を第12設定値(1.0)とし、軸力差分の絶対値が第2設定軸力差分Z2である場合に配分比率GF1を第13設定値(0.0)とする。
配分比率GF1の設定方法としては、例えば、軸力差分の絶対値に対応した配分比率GF1を制御マップM6から読み出す方法を採用できる。制御マップM6としては、例えば、軸力差分の絶対値に対応した配分比率GF1を登録したマップがある。具体的には、図15に示すように、制御マップM6は、軸力差分の絶対値が0以上で且つ第1設定軸力差分Z1(>0)未満の範囲では、軸力差分の大きさにかかわらず配分比率GF1を第12設定値(例えば、1.0)に設定する。第1設定軸力差分Z1としては、例えば、フィードフォワード軸力TFFの推定精度が低下を開始する軸力差分を採用できる。また、制御マップM6は、軸力差分の絶対値が第2設定軸力差分Z2(>Z1)以上の範囲では、軸力差分の大きさにかかわらず配分比率GF1を第13設定値(<第12設定値。例えば、0.0)に設定する。第2設定軸力差分Z2としては、例えば、フィードフォワード軸力TFFの推定精度がフィードバック軸力TFBの推定精度よりも低下する軸力差分を採用できる。さらに、制御マップM6は、軸力差分の絶対値が第1設定軸力差分Z1以上で且つ第2設定軸力差分Z2未満の範囲では、軸力差分の絶対値に応じて配分比率GF1を直線的に低下させる。具体的には、制御マップM6は、軸力差分の絶対値が第1設定軸力差分Z1以上で且つ第2設定軸力差分Z2未満の範囲では、軸力差分の絶対値と配分比率GF1との関係を表す一次関数に従って配分比率GF1を設定する。一次関数は、軸力差分の絶対値が第1設定軸力差分Z1である場合に配分比率GF1を第12設定値(1.0)とし、軸力差分の絶対値が第2設定軸力差分Z2である場合に配分比率GF1を第13設定値(0.0)とする。
このように、本実施形態の最終軸力算出部11Bcは、軸力差分の絶対値が第1設定軸力差分Z1以上である場合には、軸力差分の絶対値が第1設定軸力差分Z1未満である場合に比べ、配分比率GF1(フィードフォワード軸力TFFの配分比率GF)を小さくする。それゆえ、本実施形態の最終軸力算出部11Bcは、例えば、路面μが低減し、フィードフォワード軸力TFFの推定精度が低下して、軸力差分が増大した場合に、フィードバック軸力TFBの配分比率(1-GF)を増大できる。そのため、本実施形態の最終軸力算出部11Bcは、より適切な操舵反力を付与することができる。
図16は、制御マップM7を表すグラフである。
図16は、制御マップM7を表すグラフである。
ここで、配分比率GF2の設定方法としては、例えば、横方向加速度Gyの絶対値に対応した配分比率GF2を制御マップM7から読み出す方法を採用できる。制御マップM7としては、例えば、横方向加速度Gyの絶対値に対応した配分比率GF2を登録したマップがある。具体的には、図16に示すように、制御マップM7は、横方向加速度Gyの絶対値が0以上で且つ第1設定横方向加速度Gy1(>0)未満の範囲では、横方向加速度Gyの大きさにかかわらず配分比率GF2を第14設定値(例えば、1.0)に設定する。第1設定横方向加速度Gy1としては、例えば、フィードフォワード軸力TFFの推定精度が低下を開始する横方向加速度Gyを採用できる。また、制御マップM7は、横方向加速度Gyの絶対値が第2設定横方向加速度Gy2(>Gy1)以上の範囲では、横方向加速度Gyの大きさにかかわらず配分比率GF2を第15設定値(<第14設定値。例えば、0.0)に設定する。第2設定横方向加速度Gy2としては、例えば、フィードフォワード軸力TFFの推定精度がフィードバック軸力TFBの推定精度よりも低下する横方向加速度Gyを採用できる。さらに、制御マップM7は、横方向加速度Gyの絶対値が第1設定横方向加速度Gy1以上で且つ第2設定横方向加速度Gy2未満の範囲では、横方向加速度Gyの絶対値に応じて配分比率GF2を直線的に低下させる。具体的には、制御マップM7は、横方向加速度Gyの絶対値が第1設定横方向加速度Gy1以上で且つ第2設定横方向加速度Gy2未満の範囲では、横方向加速度Gyの絶対値と配分比率GF2との関係を表す一次関数に従って配分比率GF2を設定する。一次関数は、横方向加速度Gyの絶対値が第1設定横方向加速度Gy1である場合に配分比率GF3を第14設定値(1.0)とし、横方向加速度Gyの絶対値が第2設定横方向加速度Gy2である場合に配分比率GF3を第15設定値(0.0)とする。
このように、本実施形態の最終軸力算出部11Bcは、横方向加速度Gyの絶対値が第1設定横方向加速度Gy1以上である場合には、横方向加速度Gyの絶対値が第1設定横方向加速度Gy1未満である場合に比べ、配分比率GF2(フィードフォワード軸力TFFの配分比率GF)を小さくする。それゆえ、本実施形態の最終軸力算出部11Bcは、例えば、横方向加速度Gyが増大し、フィードフォワード軸力TFFの推定精度が低下した場合に、フィードバック軸力TFBの配分比率(1-GF)を増大できる。そのため、本実施形態の最終軸力算出部11Bcは、より適切な操舵反力を付与することができる。
図17は、制御マップM8a、M8bを表すグラフである。
図17は、制御マップM8a、M8bを表すグラフである。
ここで、配分比率GF3の設定方法としては、例えば、車速Vの絶対値および操舵角δの絶対値に対応した配分比率GF3a、GF3bを制御マップM8a、M8bから読み出し、読み出した配分比率GF3a、GF3bを乗算し、乗算結果を配分比率GF3とする方法を採用できる。制御マップM8aとしては、例えば、車速Vの絶対値に対応した配分比率GF3を登録したマップがある。具体的には、図17(a)に示すように、制御マップM8aは、車速Vの絶対値が0以上で且つ第3設定車速V3未満の範囲では、車速Vの大きさにかかわらず配分比率GF3aを第16設定値(例えば、0.5)に設定する。第3設定車速V3としては、例えば、車速Vが低いことによるタイヤ特性の非線形性(タイヤすべり角に対するタイヤ横力Fdの非線形性)が現れ、フィードフォワード軸力TFFの推定精度が低下を開始する車速Vを採用できる。また、制御マップM8aは、車速Vの絶対値が第4設定車速V4(>V3)以上の範囲では、車速Vの大きさにかかわらず配分比率GF3aを第17設定値(>第16設定値。例えば、1.0)に設定する。第4設定車速V4としては、例えば、フィードフォワード軸力TFFの推定精度がフィードバック軸力TFBの推定精度よりも向上する車速Vを採用できる。さらに、制御マップM8aは、車速Vの絶対値が第3設定車速V3以上で且つ第4設定車速V4未満の範囲では、車速Vの絶対値に応じて配分比率GF3aを直線的に増加させる。具体的には、制御マップM8aは、車速Vの絶対値が第3設定車速V3以上で且つ第4設定車速V4未満の範囲では、車速Vと配分比率GF3aとの関係を表す一次関数に従って配分比率GF3aを設定する。一次関数は、車速Vの絶対値が第3設定車速V3である場合に配分比率GF3aを第16設定値(0.5)とし、車速Vが第4設定車速V4である場合に配分比率GF3aを第17設定値(1.0)とする。
このように、本実施形態の最終軸力算出部11Bcは、車速Vの絶対値が第4設定車速V4未満である場合には、車速Vの絶対値が第4設定車速V4以上である場合に比べ、配分比率GF3a(フィードフォワード軸力TFFの配分比率GF)を小さくする。それゆえ、本実施形態の最終軸力算出部11Bcは、例えば、車速Vが低減し、フィードフォワード軸力TFFの推定精度が低下した場合に、フィードバック軸力TFBの配分比率(1-GF)を増大できる。そのため、本実施形態の最終軸力算出部11Bcは、より適切な操舵反力を付与することができる。
また、制御マップM8bとしては、例えば、操舵角δの絶対値に対応した配分比率GF3bを登録したマップがある。具体的には、図17(b)に示すように、制御マップM8bは、操舵角δの絶対値が0以上で且つ第1設定操舵角δ1(>0)未満の範囲では、操舵角δの大きさにかかわらず配分比率GF3bを第18設定値(例えば、1.0)に設定する。第1設定操舵角δ1としては、例えば、フィードフォワード軸力TFFの推定精度が低下を開始する操舵角δを採用できる。また、制御マップM8bは、操舵角δの絶対値が第2設定操舵角δ2(>δ1)以上の範囲では、操舵角δの大きさにかかわらず配分比率GF3bを第19設定値(<第18設定値。例えば、0.5)に設定する。第2設定操舵角δ2としては、例えば、フィードフォワード軸力TFFの推定精度がフィードバック軸力TFBの推定精度よりも低下する操舵角δを採用できる。さらに、制御マップM8bは、操舵角δの絶対値が第1設定操舵角δ1以上で且つ第2設定操舵角δ2未満の範囲では、操舵角δの絶対値に応じて配分比率GF3bを直線的に低下させる。具体的には、制御マップM8bは、操舵角δの絶対値が第1設定操舵角δ1以上で且つ第2設定操舵角δ2未満の範囲では、操舵角δの絶対値と配分比率GF3bとの関係を表す一次関数に従って配分比率GF3bを設定する。一次関数は、操舵角δの絶対値が第1設定操舵角δ1である場合に配分比率GF3bを第18設定値(1.0)とし、操舵角δの絶対値が第2設定操舵角δ2である場合に配分比率GF3を第19設定値(0.5)とする。
このように、本実施形態の最終軸力算出部11Bcは、操舵角δの絶対値が第1設定操舵角δ1以上である場合には、操舵角δの絶対値が第1設定操舵角δ1未満である場合に比べ、配分比率GF3b(フィードフォワード軸力TFFの配分比率GF)を小さくする。それゆえ、本実施形態の最終軸力算出部11Bcは、例えば、操舵角δが増大し、フィードフォワード軸力TFFの推定精度が低下した場合に、フィードバック軸力TFBの配分比率(1-GF)を増大できる。そのため、本実施形態の最終軸力算出部11Bcは、より適切な操舵反力を付与することができる。
図18は、制御マップM9を表すグラフである。
図18は、制御マップM9を表すグラフである。
ここで、配分比率GF4の設定方法としては、例えば、操舵角速度dδ/dtの絶対値に対応した配分比率GF4を制御マップM9から読み出す方法を採用できる。制御マップM9としては、例えば、操舵角速度dδ/dtの絶対値に対応した配分比率GF4を登録したマップがある。具体的には、図18に示すように、制御マップM9は、操舵角速度dδ/dtの絶対値が0以上で且つ第4設定操舵角速度dδ4/dt(>0)未満の範囲では、操舵角速度dδ/dtの大きさにかかわらず配分比率GF4を第20設定値(例えば、1.0)に設定する。第4設定操舵角速度dδ4/dtとしては、例えば、フィードフォワード軸力TFFの推定精度が低下を開始する操舵角速度dδ/dtを採用できる。また、制御マップM9は、操舵角速度dδ/dtの絶対値が第5設定操舵角速度d5/dt(>dδ4/dt)以上の範囲では、操舵角速度dδ/dtの大きさにかかわらず配分比率GF4を第21設定値(<第20設定値。例えば、0.0)に設定する。第5設定操舵角速度dδ5/dtとしては、例えば、フィードフォワード軸力TFFの推定精度がフィードバック軸力TFBの推定精度よりも低下する操舵角速度dδ/dtを採用できる。さらに、制御マップM9は、操舵角速度dδ/dtの絶対値が第4設定操舵角速度dδ4/dt以上で且つ第5設定操舵角速度dδ5/dt未満の範囲では、操舵角速度dδ/dtの絶対値に応じて配分比率GF4を直線的に低下させる。具体的には、制御マップM9は、操舵角速度dδ/dtの絶対値が第4設定操舵角速度dδ4/dt以上で且つ第5設定操舵角速度d5/dt未満の範囲では、操舵角速度dδ/dtの絶対値と配分比率GF4との関係を表す一次関数に従って配分比率GF4を設定する。一次関数は、操舵角速度dδ/dtの絶対値が第4設定操舵角速度dδ4/dtである場合に配分比率GF4を第20設定値(1.0)とし、操舵角速度dδ/dtの絶対値が第5設定操舵角速度dδ5/dtである場合に配分比率GF4を第21設定値(0.0)とする。
このように、本実施形態の最終軸力算出部11Bcは、操舵角速度dδ/dtの絶対値が第4設定操舵角速度dδ4/dt以上である場合には、操舵角速度dδ/dtの絶対値が第4設定操舵角速度dδ4/dt未満である場合に比べ、配分比率GF4(フィードフォワード軸力TFFの配分比率GF)を小さくする。それゆえ、本実施形態の最終軸力算出部11Bcは、例えば、操舵角速度dδ/dtが増大し、フィードフォワード軸力TFFの推定精度が低下した場合に、フィードバック軸力TFBの配分比率(1-GF)を増大できる。そのため、本実施形態の最終軸力算出部11Bcは、より適切な操舵反力を付与することができる。
これにより、最終軸力算出部11Bcは、軸力差分の絶対値が第1設定軸力差分Z1未満、横方向加速度Gyの絶対値が第1設定横方向加速度Gy1未満、車速Vの絶対値が第4設定車速V4以上、操舵角δの絶対値が第1設定操舵角δ1未満、および操舵角速度dδ/dtの絶対値が第4設定操舵角速度dδ4/dt未満である場合には、フィードフォワード軸力TFFを最終軸力とする。また、最終軸力算出部11Bcは、軸力差分の絶対値が第2設定軸力差分Z2以上、横方向加速度Gyの絶対値が第2設定横方向加速度Gy2以上、および操舵角速度dδ/dtの絶対値が第5設定操舵角速度dδ5/dt以上の少なくともいずれかである場合には、フィードバック軸力TFBを最終軸力とする。さらに、最終軸力算出部11Bcは、軸力差分の絶対値が第1設定軸力差分Z1以上で且つ第2設定軸力差分Z2未満、横方向加速度Gyの絶対値が第1設定横方向加速度Gy1以上で且つ第2設定横方向加速度Gy2未満、車速Vの絶対値が第4設定車速V4未満、操舵角δの絶対値が第1設定操舵角δ1以上、および操舵角速度dδ/dtの絶対値が第4設定操舵角速度dδ4/dt以上である場合には、フィードフォワード軸力TFFに配分比率GFを乗算した値とフィードバック軸力TFBに配分比率(1-GF)を乗算した値とを合算したものを最終軸力とする。
それゆえ、最終軸力算出部11Bcは、車両Aが、道路の路面μが高く(ドライ路面)、車速Vが高く、操舵角δが小さく、操舵角速度dδ/dtが小さい状況(以下、特定状況とも呼ぶ)にある場合には、フィードフォワード軸力TFFを最終軸力とする。ここで、フィードフォワード軸力TFFは、タイヤ横力Fdの影響を反映しないため、路面状態の変化等にかかわらず滑らかに変化する。それゆえ、最終軸力算出部11Bcは、車両Aが特定状況にある場合には、安定した操舵感を実現することができる。これに対し、最終軸力算出部11Bcは、車両Aが、特定状況以外の状況(以下、通常状況とも呼ぶ)にある場合には、フィードバック軸力TFB、またはフィードフォワード軸力TFFとフィードバック軸力TFBとを合算したものを最終軸力とする。ここで、フィードバック軸力TFBは、操向輪2に作用するタイヤ横力Fdの影響を反映するため、路面状態の変化や車両状態の変化に応じて変化する。それゆえ、最終軸力算出部11Bcは、車両Aが通常状況にある場合には、ステアリングホイール1と操向輪2とが機械的に結合している機械式の操舵制御装置と同様の操舵感を付与でき、自然な操舵感を実現することができる。
図3に戻り、軸力-操舵反力変換部11Bdは、最終軸力算出部11Bcが算出した最終軸力に基づいて目標操舵反力を算出する。目標操舵反力とは、操舵反力の目標値である。目標操舵反力の算出方法としては、例えば、車速Vおよび最終軸力に対応した目標操舵反力を制御マップM10から読み出す方法を採用できる。制御マップM10とは、車速V毎に、最終軸力に対応した目標操舵反力を登録したマップである。
図19は、制御マップM10を表すグラフである。
図19に示すように、制御マップM10は、車速V毎に設定される。また、制御マップM10は、最終軸力が大きいほど目標操舵反力を大きい値とする。
図3に戻り、目標反力電流演算部11Beは、軸力-操舵反力変換部11Bdが算出した目標操舵反力に基づき、下記(13)式に従って目標反力電流を算出する。そして、目標反力電流演算部11Beは、算出結果を反力モータ駆動部9Cに出力する。
目標反力電流=目標操舵反力×ゲイン ………(13)
図19は、制御マップM10を表すグラフである。
図19に示すように、制御マップM10は、車速V毎に設定される。また、制御マップM10は、最終軸力が大きいほど目標操舵反力を大きい値とする。
図3に戻り、目標反力電流演算部11Beは、軸力-操舵反力変換部11Bdが算出した目標操舵反力に基づき、下記(13)式に従って目標反力電流を算出する。そして、目標反力電流演算部11Beは、算出結果を反力モータ駆動部9Cに出力する。
目標反力電流=目標操舵反力×ゲイン ………(13)
なお、本実施形態では、目標反力電流演算部11Beが、軸力-操舵反力変換部11Bdが算出した目標操舵反力を基に目標反力電流を算出する例を示したが、他の構成を採用することもできる。例えば、目標反力電流演算部11Beが、軸力-操舵反力変換部11Bdが算出した目標操舵反力に補正的反力や端当て反力等を加算して目標操舵反力を補正し、補正後の目標操舵反力を基に目標反力電流を算出する構成としてもよい。補正的反力としては、例えば、目標操舵反力を補正する場合に付与する操舵反力がある。また、端当て反力としては、例えば、転舵角θが最大値となった場合に付与する操舵反力がある。
(動作その他)
次に、車両Aの操舵制御装置の動作について説明する。
車両Aの走行中、運転者がステアリングホイール1を操作したとする。すると、制御演算部11が、操舵角δおよび車速Vに基づき目標転舵角θ*を算出する(図2の目標転舵角演算部11A)。続いて、制御演算部11が、算出した目標転舵角θ*から実際の転舵角θを減じた減算結果に基づき目標転舵電流を算出する(図2の目標転舵電流演算部11C)。これにより、転舵制御部8が、ステアリングホイール1の操作量に応じて操向輪2を転舵する。
次に、車両Aの操舵制御装置の動作について説明する。
車両Aの走行中、運転者がステアリングホイール1を操作したとする。すると、制御演算部11が、操舵角δおよび車速Vに基づき目標転舵角θ*を算出する(図2の目標転舵角演算部11A)。続いて、制御演算部11が、算出した目標転舵角θ*から実際の転舵角θを減じた減算結果に基づき目標転舵電流を算出する(図2の目標転舵電流演算部11C)。これにより、転舵制御部8が、ステアリングホイール1の操作量に応じて操向輪2を転舵する。
同時に、制御演算部11が、操舵角δおよび車速Vに基づきフィードフォワード軸力TFFに含まれる比例成分を算出する(図4のフィードフォワード軸力算出部11Ba)。その際、図6の制御マップM1を参照し、車速Vの絶対値が第1設定車速V1未満である場合には、車速Vの絶対値が小さいほど比例成分の絶対値を小さくする。続いて、制御演算部11が、操舵角速度dδ/dtおよび車速Vに基づきフィードフォワード軸力TFFに含まれるダンピング成分を算出する(図4のフィードフォワード軸力算出部11Ba)。その際、図7の制御マップM2を参照し、操舵角速度dδ/dtの絶対値が第1設定操舵角速度dδ1/dt未満である場合には、操舵角速度dδ/dtの絶対値が大きいほどダンピング成分の絶対値を小さくする。また、図9の制御マップM3を参照し、車速Vの絶対値が第2設定車速V2未満である場合には、車速Vの絶対値が小さいほどダンピング成分の絶対値を小さくする。さらに、制御演算部11が、操舵角速度dδ/dtに基づき補正用ダンピング成分を算出する(図4のフィードフォワード軸力算出部11Ba)。その際、図10の制御マップM4を参照し、操舵角速度dδ/dtの絶対値が第2設定操舵角速度dδ2/dt未満である場合には、操舵角速度dδ/dtの絶対値が大きいほど補正用ダンピング成分の絶対値を大きくする。続いて、制御演算部11が、比例成分、ダンピング成分および補正用ダンピング成分を加算して、フィードフォワード軸力TFFとする(図4のフィードフォワード軸力算出部11Ba)。続いて、制御演算部11が、転舵電流に基づき電流軸力を算出する(図11の電流軸力算出部11Bba)。続いて、制御演算部11が、横方向加速度Gyに基づき横G軸力を算出する(図11のブレンド軸力算出部11Bbb)。続いて、制御演算部11が、ヨーレートγおよび車速Vに基づきヨーレート軸力を算出する(図11のブレンド軸力算出部11Bbb)。続いて、制御演算部11が、算出した電流軸力に配分比率K2を乗算した値と横G軸力に配分比率K1を乗算した値とヨーレート軸力に配分比率K3を乗算した値とに基づき、ブレンド軸力TBRを算出する(図11のブレンド軸力算出部11Bbb)。横G軸力、電流軸力、ヨーレート軸力の配分比率K1、K2、K3は、0.6:0.3:0.1とする。そして、制御演算部11が、算出した電流軸力とブレンド軸力TBRとをGB:(1-GB)で配分して、フィードバック軸力TFBとする(図3のフィードバック軸力算出部11Bb)。続いて、制御演算部11が、算出したフィードフォワード軸力TFFとフィードバック軸力TFBとをGF:(1-GF)で配分して、最終軸力を算出する(図3の最終軸力算出部11Bc)。続いて、制御演算部11が、算出した最終軸力に基づき目標操舵反力を算出する(図3の軸力-操舵反力変換部11Bd)。続いて、制御演算部11が、算出した目標操舵反力に基づき目標反力電流を算出する(図3の目標反力電流演算部11Be)。続いて、制御演算部11が、算出した目標反力電流に基づき反力モータ9Aを駆動する(図2の反力モータ駆動部9C)。これにより、反力制御部9が、ステアリングホイール1に操舵反力を付与する。
このように、本実施形態の制御演算部11は、操舵角速度dδ/dtの絶対値が大きいほどダンピング成分の絶対値を小さくする。それゆえ、本実施形態の制御演算部11は、操舵角速度dδ/dtが大きい場合に、ダンピング成分の絶対値の増大を抑制できる。それゆえ、本実施形態の制御演算部11は、ダンピング成分が過剰となることを抑制できる。これにより、本実施形態の制御演算部11は、より適切な操舵感を付与できる。
また、本実施形態の制御演算部11は、車速Vの絶対値が小さいほどダンピング成分の絶対値を小さくする。ここで、ステアリングホイール1と操向輪2とが機械的に結合している機械式の操舵制御装置では、車速Vが低減すると、操向輪2のタイヤ横力Fdが低減し、操舵反力が低減する。これに対し、本実施形態の制御演算部11は、ダンピング成分を小さくすることで、操舵反力を低減できる。これにより、本実施形態の制御演算部11は、より適切な操舵感を付与できる。
さらに、本実施形態の制御演算部11は、操舵角速度dδ/dtの絶対値が大きいほど絶対値が大きくなる補正用ダンピング成分をフィードフォワード軸力TFFに加算する。それゆえ、本実施形態の制御演算部11は、ステアリングホイール1の切り始めに、操舵角速度dδ/dtの絶対値が増大した場合に、操舵反力の立ち上がりを増大できる。これにより、本実施形態の制御演算部11は、より適切な操舵感を付与できる。
さらに、本実施形態の制御演算部11は、操舵角速度dδ/dtの絶対値が大きいほど絶対値が大きくなる補正用ダンピング成分をフィードフォワード軸力TFFに加算する。それゆえ、本実施形態の制御演算部11は、ステアリングホイール1の切り始めに、操舵角速度dδ/dtの絶対値が増大した場合に、操舵反力の立ち上がりを増大できる。これにより、本実施形態の制御演算部11は、より適切な操舵感を付与できる。
また、本実施形態の制御演算部11は、操舵角速度dδ/dtの絶対値が第2設定操舵角速度dδ2/dt以上である場合には、第8設定値を補正用ダンピング成分とする。それゆえ、運転者がステアリングホイール1を切ったことで、操舵角速度dδ/dtの絶対値が第2設定操舵角速度dδ2/dt以上となった場合には、補正用ダンピング成分の変動を抑制できる。そのため、本実施形態の制御演算部11は、補正用ダンピング成分の変動による操舵反力の変化が感知されず、運転者に操舵感の違和感を与えることを防止できる。
本実施形態では、図1のステアリングホイール1がステアリングホイールを構成する。以下同様に、図1の転舵モータ8A、図1の転舵モータ駆動部8Cが転舵アクチュエータを構成する。また、図1の操舵角センサ3が操舵角検出部を構成する。さらに、図1のフィードフォワード軸力算出部11Baがフィードフォワード軸力算出部、フィードフォワード軸力補正部を構成する。さらに、図1の反力モータ9A、反力モータ駆動部9C、図2の目標反力電流演算部11B、図3の最終軸力算出部11Bcが反力付与部を構成する。また、図4のフィードフォワード軸力算出部11Baが操舵角速度検出部を構成する。さらに、図1の車速センサ5が車速検出部を構成する。また、図1の横Gセンサ6、ヨーレートセンサ7、転舵電流検出部8Bが状態量検出部を構成する。さらに、図3のフィードバック軸力算出部11Bb、図11のフィードバック軸力算出実行部11Bbeがフィードバック軸力算出部を構成する。また、図3の最終軸力算出部11Bcが最終軸力設定部を構成する。さらに、図1の反力モータ9A、反力モータ駆動部9C、図2の目標反力電流演算部11Bが反力アクチュエータを構成する。
(本実施形態の効果)
本実施形態は、次のような効果を奏する。
(1)制御演算部11が、フィードフォワード軸力TFFに基づいて操舵反力を付与する。その際、制御演算部11が、操舵角速度dδ/dtの絶対値が大きいほどフィードフォワード軸力TFFのダンピング成分の絶対値を小さくする。
このような構成によれば、操舵角速度dδ/dtが大きい場合に、ダンピング成分の絶対値の増大を抑制できる。それゆえ、ダンピング成分が過剰となることを抑制できる。これにより、より適切な操舵感を付与できる。
本実施形態は、次のような効果を奏する。
(1)制御演算部11が、フィードフォワード軸力TFFに基づいて操舵反力を付与する。その際、制御演算部11が、操舵角速度dδ/dtの絶対値が大きいほどフィードフォワード軸力TFFのダンピング成分の絶対値を小さくする。
このような構成によれば、操舵角速度dδ/dtが大きい場合に、ダンピング成分の絶対値の増大を抑制できる。それゆえ、ダンピング成分が過剰となることを抑制できる。これにより、より適切な操舵感を付与できる。
(2)制御演算部11が、車速Vの絶対値が小さいほどダンピング成分の絶対値を小さくする。
このような構成によれば、車速Vの絶対値が小さいほどダンピング成分の絶対値を小さくする。ここで、ステアリングホイール1と操向輪2とが機械的に結合している機械式の操舵制御装置では、車速Vが低減すると、操向輪2のタイヤ横力Fdが低減し、操舵反力が低減する。これに対し、このような構成によれば、ダンピング成分を小さくすることで、操舵反力を低減できる。これにより、より適切な操舵感を付与できる。
このような構成によれば、車速Vの絶対値が小さいほどダンピング成分の絶対値を小さくする。ここで、ステアリングホイール1と操向輪2とが機械的に結合している機械式の操舵制御装置では、車速Vが低減すると、操向輪2のタイヤ横力Fdが低減し、操舵反力が低減する。これに対し、このような構成によれば、ダンピング成分を小さくすることで、操舵反力を低減できる。これにより、より適切な操舵感を付与できる。
(3)制御演算部11が、操舵角速度dδ/dtの絶対値が大きいほど絶対値が大きくなる補正用ダンピング成分をフィードフォワード軸力TFFに加算する。
このような構成によれば、ステアリングホイール1の切り始めに、操舵角速度dδ/dtの絶対値が増大した場合に、操舵反力の立ち上がりを増大できる。これにより、ステアリングホイール1の切り始めに、より適切な操舵感を付与できる。
(4)制御演算部11が、操舵角速度dδ/dtの絶対値が第2設定操舵角速度dδ2/dt以上である場合には、予め定めた一定値(第8設定値)を補正用ダンピング成分とする。
このような構成によれば、運転者がステアリングホイール1を切ったことで、操舵角速度dδ/dtの絶対値が第2設定操舵角速度dδ2/dt以上となった場合には、補正用ダンピング成分の変動を抑制できる。それゆえ、補正用ダンピング成分の変動による操舵反力の変化が感知されず、運転者に操舵感の違和感を与えることを防止できる。
このような構成によれば、ステアリングホイール1の切り始めに、操舵角速度dδ/dtの絶対値が増大した場合に、操舵反力の立ち上がりを増大できる。これにより、ステアリングホイール1の切り始めに、より適切な操舵感を付与できる。
(4)制御演算部11が、操舵角速度dδ/dtの絶対値が第2設定操舵角速度dδ2/dt以上である場合には、予め定めた一定値(第8設定値)を補正用ダンピング成分とする。
このような構成によれば、運転者がステアリングホイール1を切ったことで、操舵角速度dδ/dtの絶対値が第2設定操舵角速度dδ2/dt以上となった場合には、補正用ダンピング成分の変動を抑制できる。それゆえ、補正用ダンピング成分の変動による操舵反力の変化が感知されず、運転者に操舵感の違和感を与えることを防止できる。
(5)制御演算部11が、フィードフォワード軸力TFFとフィードバック軸力TFBとを配分して最終軸力を設定し、設定した最終軸力に基づいて操舵反力を付与する。
このような構成によれば、フィードフォワード軸力TFFに加え、路面状態の変化や車両状態の変化に応じて変化するフィードバック軸力TFBに基づいて最終軸力を算出する。それゆえ、より適切な最終軸力を算出でき、より適切な操舵反力を付与できる。
以上、本願が優先権を主張する日本国特許出願2013-3875(2013年1月11日出願)、および日本国特許出願2013-3876(2013年1月11日出願)の全内容は、参照により本開示の一部をなす。
ここでは、限られた数の実施形態を参照しながら説明したが、権利範囲はそれらに限定されるものではなく、上記の開示に基づく各実施形態の改変は当業者にとって自明なことである。
このような構成によれば、フィードフォワード軸力TFFに加え、路面状態の変化や車両状態の変化に応じて変化するフィードバック軸力TFBに基づいて最終軸力を算出する。それゆえ、より適切な最終軸力を算出でき、より適切な操舵反力を付与できる。
以上、本願が優先権を主張する日本国特許出願2013-3875(2013年1月11日出願)、および日本国特許出願2013-3876(2013年1月11日出願)の全内容は、参照により本開示の一部をなす。
ここでは、限られた数の実施形態を参照しながら説明したが、権利範囲はそれらに限定されるものではなく、上記の開示に基づく各実施形態の改変は当業者にとって自明なことである。
1 ステアリングホイール(ステアリングホイール)
3 操舵角センサ(操舵角検出部)
5 車速センサ(車速検出部)
6 横Gセンサ(状態量検出部)
7 ヨーレートセンサ7(状態量検出部)
8A 転舵モータ(転舵アクチュエータ)
8B 転舵電流検出部(状態量検出部)
8C 転舵モータ駆動部(転舵アクチュエータ)
9A 反力モータ(反力付与部、反力アクチュエータ)
9C 反力モータ駆動部(反力付与部、反力アクチュエータ)
11B 目標反力電流演算部(反力付与部、反力アクチュエータ)
11Ba フィードフォワード軸力算出部(フィードフォワード軸力算出部、フィードフォワード軸力補正部、操舵角速度検出部)
11Bb フィードバック軸力算出部(フィードバック軸力算出部)
11Bbe フィードバック軸力算出実行部(フィードバック軸力算出部)
11Bc 最終軸力算出部(反力付与部、最終軸力設定部)
3 操舵角センサ(操舵角検出部)
5 車速センサ(車速検出部)
6 横Gセンサ(状態量検出部)
7 ヨーレートセンサ7(状態量検出部)
8A 転舵モータ(転舵アクチュエータ)
8B 転舵電流検出部(状態量検出部)
8C 転舵モータ駆動部(転舵アクチュエータ)
9A 反力モータ(反力付与部、反力アクチュエータ)
9C 反力モータ駆動部(反力付与部、反力アクチュエータ)
11B 目標反力電流演算部(反力付与部、反力アクチュエータ)
11Ba フィードフォワード軸力算出部(フィードフォワード軸力算出部、フィードフォワード軸力補正部、操舵角速度検出部)
11Bb フィードバック軸力算出部(フィードバック軸力算出部)
11Bbe フィードバック軸力算出実行部(フィードバック軸力算出部)
11Bc 最終軸力算出部(反力付与部、最終軸力設定部)
Claims (5)
- 操向輪と機械的に分離したステアリングホイールと、
前記ステアリングホイールの操作量に応じて操向輪を転舵する転舵アクチュエータと、
前記ステアリングホイールの操舵角を検出する操舵角検出部と、
前記操舵角検出部が検出した前記操舵角に基づいて、フィードフォワード軸力を算出するフィードフォワード軸力算出部と、
前記フィードフォワード軸力算出部が算出した前記フィードフォワード軸力が含んでいる操舵角速度に基づくダンピング成分を補正するフィードフォワード軸力補正部と、
前記フィードフォワード軸力補正部が前記ダンピング成分を補正した前記フィードフォワード軸力に基づいて、操舵反力を付与する反力付与部と、
前記ステアリングホイールの操舵速度を検出する操舵角速度検出部と、を備え、
前記フィードフォワード軸力補正部は、前記操舵角速度検出部が検出した前記操舵角速度の絶対値が大きいほど前記ダンピング成分の絶対値を小さくすることを特徴とする操舵制御装置。 - 車速を検出する車速検出部を備え、
前記フィードフォワード軸力補正部は、前記車速検出部が検出した前記車速が小さいほど前記ダンピング成分の絶対値を小さくすることを特徴とする請求項1に記載の操舵制御装置。 - 前記フィードフォワード軸力補正部は、前記操舵角速度検出部が検出した前記操舵角速度の絶対値が大きいほど絶対値が大きくなる補正用ダンピング成分を前記フィードフォワード軸力に加算することを特徴とする請求項1または2に記載の操舵制御装置。
- 前記フィードフォワード軸力補正部は、前記操舵角速度検出部が検出した前記操舵角速度の絶対値が設定閾値以上である場合には、予め定めた設定値を前記補正用ダンピング成分とすることを特徴とする請求項3に記載の操舵制御装置。
- 前記操向輪に作用するタイヤ横力で変動する車両の状態量を検出する状態量検出部と、
前記状態量検出部が検出した前記車両の状態量に基づいて、フィードバック軸力を算出するフィードバック軸力算出部と、を備え、
前記反力付与部は、
前記フィードフォワード軸力補正部が前記ダンピング成分を補正した前記フィードフォワード軸力と前記フィードバック軸力算出部が算出した前記フィードバック軸力とを配分して、最終軸力を設定する最終軸力設定部と、
前記最終軸力設定部が設定した前記最終軸力に基づいて、操舵反力を付与する反力アクチュエータと、を備えることを特徴とする請求項1から4のいずれか1項に記載の操舵制御装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014556231A JP5949950B2 (ja) | 2013-01-11 | 2013-12-27 | 操舵制御装置 |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013-003875 | 2013-01-11 | ||
JP2013-003876 | 2013-01-11 | ||
JP2013003876 | 2013-01-11 | ||
JP2013003875 | 2013-01-11 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014108989A1 true WO2014108989A1 (ja) | 2014-07-17 |
Family
ID=51166666
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/007705 WO2014108989A1 (ja) | 2013-01-11 | 2013-12-27 | 操舵制御装置 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP5949950B2 (ja) |
WO (1) | WO2014108989A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106794859A (zh) * | 2014-10-14 | 2017-05-31 | 标致·雪铁龙汽车公司 | 具有受操控转向系统的机动车辆的转向系统控制装置 |
JP2019059393A (ja) * | 2017-09-27 | 2019-04-18 | 株式会社ジェイテクト | 車両用制御装置 |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004189119A (ja) * | 2002-12-12 | 2004-07-08 | Mitsubishi Electric Corp | 車両用操舵装置 |
JP2006123776A (ja) * | 2004-10-29 | 2006-05-18 | Honda Motor Co Ltd | 電動ステアリング装置 |
JP2006137215A (ja) * | 2004-11-10 | 2006-06-01 | Toyota Motor Corp | ステアバイワイヤ式ステアリング装置の操舵反力制御装置 |
JP2006182058A (ja) * | 2004-12-24 | 2006-07-13 | Nissan Motor Co Ltd | 車両用操舵制御装置 |
JP2006218888A (ja) * | 2005-02-08 | 2006-08-24 | Jtekt Corp | 車両用操舵装置 |
JP2007050743A (ja) * | 2005-08-17 | 2007-03-01 | Toyota Motor Corp | 車輪横力推定装置及び操舵反力制御装置 |
JP2008201205A (ja) * | 2007-02-19 | 2008-09-04 | Honda Motor Co Ltd | 車両用操舵装置 |
JP2010149540A (ja) * | 2008-12-24 | 2010-07-08 | Nissan Motor Co Ltd | 車両用操舵装置 |
JP2012240456A (ja) * | 2011-05-16 | 2012-12-10 | Nissan Motor Co Ltd | 車両用操舵装置および操舵制御方法 |
-
2013
- 2013-12-27 WO PCT/JP2013/007705 patent/WO2014108989A1/ja active Application Filing
- 2013-12-27 JP JP2014556231A patent/JP5949950B2/ja active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004189119A (ja) * | 2002-12-12 | 2004-07-08 | Mitsubishi Electric Corp | 車両用操舵装置 |
JP2006123776A (ja) * | 2004-10-29 | 2006-05-18 | Honda Motor Co Ltd | 電動ステアリング装置 |
JP2006137215A (ja) * | 2004-11-10 | 2006-06-01 | Toyota Motor Corp | ステアバイワイヤ式ステアリング装置の操舵反力制御装置 |
JP2006182058A (ja) * | 2004-12-24 | 2006-07-13 | Nissan Motor Co Ltd | 車両用操舵制御装置 |
JP2006218888A (ja) * | 2005-02-08 | 2006-08-24 | Jtekt Corp | 車両用操舵装置 |
JP2007050743A (ja) * | 2005-08-17 | 2007-03-01 | Toyota Motor Corp | 車輪横力推定装置及び操舵反力制御装置 |
JP2008201205A (ja) * | 2007-02-19 | 2008-09-04 | Honda Motor Co Ltd | 車両用操舵装置 |
JP2010149540A (ja) * | 2008-12-24 | 2010-07-08 | Nissan Motor Co Ltd | 車両用操舵装置 |
JP2012240456A (ja) * | 2011-05-16 | 2012-12-10 | Nissan Motor Co Ltd | 車両用操舵装置および操舵制御方法 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106794859A (zh) * | 2014-10-14 | 2017-05-31 | 标致·雪铁龙汽车公司 | 具有受操控转向系统的机动车辆的转向系统控制装置 |
EP3206935A1 (fr) * | 2014-10-14 | 2017-08-23 | Peugeot Citroën Automobiles S.A. | Dispositif de controle de la direction d'un vehicule automobile a direction pilotee |
JP2019059393A (ja) * | 2017-09-27 | 2019-04-18 | 株式会社ジェイテクト | 車両用制御装置 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2014108989A1 (ja) | 2017-01-19 |
JP5949950B2 (ja) | 2016-07-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5949948B2 (ja) | 操舵制御装置 | |
JP6020597B2 (ja) | 操舵制御装置 | |
JP6183205B2 (ja) | 操舵制御装置 | |
JP5751338B2 (ja) | 操舵制御装置 | |
JP5626480B2 (ja) | 操舵制御装置 | |
JP5126357B2 (ja) | 車両の操舵装置 | |
JP7264058B2 (ja) | 操舵制御装置 | |
US10144446B2 (en) | Vehicle and method for controlling vehicle | |
JP5994868B2 (ja) | 操舵制御装置 | |
JP5949949B2 (ja) | 操舵制御装置 | |
JP5664794B2 (ja) | 操舵制御装置、および操舵制御方法 | |
JP2020029194A (ja) | 操舵制御装置 | |
JP5949950B2 (ja) | 操舵制御装置 | |
JP7314636B2 (ja) | 転舵制御装置 | |
JP4814905B2 (ja) | 車両用操舵制御装置 | |
JP6004011B2 (ja) | 操舵制御装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13870921 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2014556231 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13870921 Country of ref document: EP Kind code of ref document: A1 |