WO2014108949A1 - 有機elデバイス - Google Patents
有機elデバイス Download PDFInfo
- Publication number
- WO2014108949A1 WO2014108949A1 PCT/JP2013/006672 JP2013006672W WO2014108949A1 WO 2014108949 A1 WO2014108949 A1 WO 2014108949A1 JP 2013006672 W JP2013006672 W JP 2013006672W WO 2014108949 A1 WO2014108949 A1 WO 2014108949A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- electron transport
- transport layer
- layer
- organic
- cathode
- Prior art date
Links
- 239000010410 layer Substances 0.000 claims abstract description 249
- 239000000463 material Substances 0.000 claims abstract description 59
- 239000000758 substrate Substances 0.000 claims abstract description 22
- 239000002346 layers by function Substances 0.000 claims abstract description 12
- 150000002894 organic compounds Chemical class 0.000 claims abstract description 11
- 238000005259 measurement Methods 0.000 claims description 19
- 238000000034 method Methods 0.000 claims description 18
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 12
- 239000001301 oxygen Substances 0.000 claims description 12
- 229910052760 oxygen Inorganic materials 0.000 claims description 12
- 229910052738 indium Inorganic materials 0.000 claims description 11
- 229910052782 aluminium Inorganic materials 0.000 claims description 6
- 229910052718 tin Inorganic materials 0.000 claims description 5
- 229910052719 titanium Inorganic materials 0.000 claims description 5
- 229910052725 zinc Inorganic materials 0.000 claims description 5
- 229910052733 gallium Inorganic materials 0.000 claims description 4
- 238000001755 magnetron sputter deposition Methods 0.000 claims description 3
- 238000005401 electroluminescence Methods 0.000 description 39
- 239000000470 constituent Substances 0.000 description 23
- 238000011156 evaluation Methods 0.000 description 13
- 238000002347 injection Methods 0.000 description 13
- 239000007924 injection Substances 0.000 description 13
- 230000005525 hole transport Effects 0.000 description 10
- 238000004544 sputter deposition Methods 0.000 description 10
- 239000010409 thin film Substances 0.000 description 10
- -1 aromatic tertiary amine compound Chemical class 0.000 description 9
- 239000010408 film Substances 0.000 description 8
- 230000015572 biosynthetic process Effects 0.000 description 7
- 150000001875 compounds Chemical class 0.000 description 7
- 238000007740 vapor deposition Methods 0.000 description 7
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 6
- 229910052751 metal Inorganic materials 0.000 description 6
- 239000002184 metal Substances 0.000 description 6
- 238000012795 verification Methods 0.000 description 6
- 239000002131 composite material Substances 0.000 description 5
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- 239000004020 conductor Substances 0.000 description 4
- 239000002019 doping agent Substances 0.000 description 4
- 238000002474 experimental method Methods 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 239000011521 glass Substances 0.000 description 4
- 230000035515 penetration Effects 0.000 description 4
- 239000011701 zinc Substances 0.000 description 4
- 239000011651 chromium Substances 0.000 description 3
- 238000000605 extraction Methods 0.000 description 3
- YZZNJYQZJKSEER-UHFFFAOYSA-N gallium tin Chemical compound [Ga].[Sn] YZZNJYQZJKSEER-UHFFFAOYSA-N 0.000 description 3
- 229910044991 metal oxide Inorganic materials 0.000 description 3
- 150000004706 metal oxides Chemical class 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 239000011347 resin Substances 0.000 description 3
- 229920005989 resin Polymers 0.000 description 3
- 238000007789 sealing Methods 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 229910001887 tin oxide Inorganic materials 0.000 description 3
- 238000001771 vacuum deposition Methods 0.000 description 3
- YVTHLONGBIQYBO-UHFFFAOYSA-N zinc indium(3+) oxygen(2-) Chemical compound [O--].[Zn++].[In+3] YVTHLONGBIQYBO-UHFFFAOYSA-N 0.000 description 3
- KAKZBPTYRLMSJV-UHFFFAOYSA-N Butadiene Chemical class C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 description 2
- 229910000599 Cr alloy Inorganic materials 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- 239000002585 base Substances 0.000 description 2
- 239000003990 capacitor Substances 0.000 description 2
- 239000000788 chromium alloy Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 230000005684 electric field Effects 0.000 description 2
- KWIUHFFTVRNATP-UHFFFAOYSA-N glycine betaine Chemical compound C[N+](C)(C)CC([O-])=O KWIUHFFTVRNATP-UHFFFAOYSA-N 0.000 description 2
- 229940083761 high-ceiling diuretics pyrazolone derivative Drugs 0.000 description 2
- 150000007857 hydrazones Chemical class 0.000 description 2
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 2
- 239000011810 insulating material Substances 0.000 description 2
- 239000012212 insulator Substances 0.000 description 2
- YTVNOVQHSGMMOV-UHFFFAOYSA-N naphthalenetetracarboxylic dianhydride Chemical compound C1=CC(C(=O)OC2=O)=C3C2=CC=C2C(=O)OC(=O)C1=C32 YTVNOVQHSGMMOV-UHFFFAOYSA-N 0.000 description 2
- 150000004866 oxadiazoles Chemical class 0.000 description 2
- JEXVQSWXXUJEMA-UHFFFAOYSA-N pyrazol-3-one Chemical class O=C1C=CN=N1 JEXVQSWXXUJEMA-UHFFFAOYSA-N 0.000 description 2
- 150000003219 pyrazolines Chemical class 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- PJANXHGTPQOBST-UHFFFAOYSA-N stilbene Chemical class C=1C=CC=CC=1C=CC1=CC=CC=C1 PJANXHGTPQOBST-UHFFFAOYSA-N 0.000 description 2
- QGKMIGUHVLGJBR-UHFFFAOYSA-M (4z)-1-(3-methylbutyl)-4-[[1-(3-methylbutyl)quinolin-1-ium-4-yl]methylidene]quinoline;iodide Chemical class [I-].C12=CC=CC=C2N(CCC(C)C)C=CC1=CC1=CC=[N+](CCC(C)C)C2=CC=CC=C12 QGKMIGUHVLGJBR-UHFFFAOYSA-M 0.000 description 1
- BIXMBBKKPTYJEK-UHFFFAOYSA-N 1,3-benzoxazin-2-one Chemical class C1=CC=C2OC(=O)N=CC2=C1 BIXMBBKKPTYJEK-UHFFFAOYSA-N 0.000 description 1
- VERMWGQSKPXSPZ-BUHFOSPRSA-N 1-[(e)-2-phenylethenyl]anthracene Chemical class C=1C=CC2=CC3=CC=CC=C3C=C2C=1\C=C\C1=CC=CC=C1 VERMWGQSKPXSPZ-BUHFOSPRSA-N 0.000 description 1
- DRGAZIDRYFYHIJ-UHFFFAOYSA-N 2,2':6',2''-terpyridine Chemical compound N1=CC=CC=C1C1=CC=CC(C=2N=CC=CC=2)=N1 DRGAZIDRYFYHIJ-UHFFFAOYSA-N 0.000 description 1
- MVWPVABZQQJTPL-UHFFFAOYSA-N 2,3-diphenylcyclohexa-2,5-diene-1,4-dione Chemical class O=C1C=CC(=O)C(C=2C=CC=CC=2)=C1C1=CC=CC=C1 MVWPVABZQQJTPL-UHFFFAOYSA-N 0.000 description 1
- KYGSXEYUWRFVNY-UHFFFAOYSA-N 2-pyran-2-ylidenepropanedinitrile Chemical class N#CC(C#N)=C1OC=CC=C1 KYGSXEYUWRFVNY-UHFFFAOYSA-N 0.000 description 1
- LGDCSNDMFFFSHY-UHFFFAOYSA-N 4-butyl-n,n-diphenylaniline Chemical compound C1=CC(CCCC)=CC=C1N(C=1C=CC=CC=1)C1=CC=CC=C1 LGDCSNDMFFFSHY-UHFFFAOYSA-N 0.000 description 1
- 150000004325 8-hydroxyquinolines Chemical class 0.000 description 1
- 239000004925 Acrylic resin Substances 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- 229910001020 Au alloy Inorganic materials 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 229910000881 Cu alloy Inorganic materials 0.000 description 1
- 229910001182 Mo alloy Inorganic materials 0.000 description 1
- 229910015202 MoCr Inorganic materials 0.000 description 1
- 229910015711 MoOx Inorganic materials 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 229910000990 Ni alloy Inorganic materials 0.000 description 1
- 229920000285 Polydioctylfluorene Polymers 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004793 Polystyrene Chemical class 0.000 description 1
- 239000012327 Ruthenium complex Substances 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 1
- 239000007983 Tris buffer Substances 0.000 description 1
- 125000000641 acridinyl group Chemical class C1(=CC=CC2=NC3=CC=CC=C3C=C12)* 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 150000001342 alkaline earth metals Chemical class 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 150000001454 anthracenes Chemical class 0.000 description 1
- 150000004982 aromatic amines Chemical class 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 229960003237 betaine Drugs 0.000 description 1
- 239000005385 borate glass Substances 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- VNNRSPGTAMTISX-UHFFFAOYSA-N chromium nickel Chemical compound [Cr].[Ni] VNNRSPGTAMTISX-UHFFFAOYSA-N 0.000 description 1
- 150000001846 chrysenes Chemical class 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 150000001882 coronenes Chemical class 0.000 description 1
- 125000000332 coumarinyl group Chemical class O1C(=O)C(=CC2=CC=CC=C12)* 0.000 description 1
- ZSWFCLXCOIISFI-UHFFFAOYSA-N cyclopentadiene Chemical class C1C=CC=C1 ZSWFCLXCOIISFI-UHFFFAOYSA-N 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 150000002219 fluoranthenes Chemical class 0.000 description 1
- 150000002220 fluorenes Chemical class 0.000 description 1
- 150000008376 fluorenones Chemical class 0.000 description 1
- 239000003353 gold alloy Substances 0.000 description 1
- 238000004770 highest occupied molecular orbital Methods 0.000 description 1
- 150000002460 imidazoles Chemical class 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 229940079865 intestinal antiinfectives imidazole derivative Drugs 0.000 description 1
- 238000004768 lowest unoccupied molecular orbital Methods 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 229910000476 molybdenum oxide Inorganic materials 0.000 description 1
- AWOORJZBKBDNCP-UHFFFAOYSA-N molybdenum;oxotungsten Chemical compound [Mo].[W]=O AWOORJZBKBDNCP-UHFFFAOYSA-N 0.000 description 1
- 150000002790 naphthalenes Chemical class 0.000 description 1
- 229910001120 nichrome Inorganic materials 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- FYWSTUCDSVYLPV-UHFFFAOYSA-N nitrooxythallium Chemical compound [Tl+].[O-][N+]([O-])=O FYWSTUCDSVYLPV-UHFFFAOYSA-N 0.000 description 1
- QGLKJKCYBOYXKC-UHFFFAOYSA-N nonaoxidotritungsten Chemical compound O=[W]1(=O)O[W](=O)(=O)O[W](=O)(=O)O1 QGLKJKCYBOYXKC-UHFFFAOYSA-N 0.000 description 1
- 238000001579 optical reflectometry Methods 0.000 description 1
- 229920000620 organic polymer Polymers 0.000 description 1
- 150000007978 oxazole derivatives Chemical class 0.000 description 1
- 150000002916 oxazoles Chemical class 0.000 description 1
- PQQKPALAQIIWST-UHFFFAOYSA-N oxomolybdenum Chemical compound [Mo]=O PQQKPALAQIIWST-UHFFFAOYSA-N 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- DGBWPZSGHAXYGK-UHFFFAOYSA-N perinone Chemical class C12=NC3=CC=CC=C3N2C(=O)C2=CC=C3C4=C2C1=CC=C4C(=O)N1C2=CC=CC=C2N=C13 DGBWPZSGHAXYGK-UHFFFAOYSA-N 0.000 description 1
- 125000002080 perylenyl group Chemical group C1(=CC=C2C=CC=C3C4=CC=CC5=CC=CC(C1=C23)=C45)* 0.000 description 1
- 150000002987 phenanthrenes Chemical class 0.000 description 1
- 239000005365 phosphate glass Substances 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 229920005668 polycarbonate resin Polymers 0.000 description 1
- 239000004431 polycarbonate resin Substances 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 229920002223 polystyrene Chemical class 0.000 description 1
- 150000003220 pyrenes Chemical class 0.000 description 1
- JUJWROOIHBZHMG-UHFFFAOYSA-O pyridinium Chemical compound C1=CC=[NH+]C=C1 JUJWROOIHBZHMG-UHFFFAOYSA-O 0.000 description 1
- RQGPLDBZHMVWCH-UHFFFAOYSA-N pyrrolo[3,2-b]pyrrole Chemical class C1=NC2=CC=NC2=C1 RQGPLDBZHMVWCH-UHFFFAOYSA-N 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 150000007660 quinolones Chemical class 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 150000002910 rare earth metals Chemical class 0.000 description 1
- 238000005546 reactive sputtering Methods 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- PYWVYCXTNDRMGF-UHFFFAOYSA-N rhodamine B Chemical class [Cl-].C=12C=CC(=[N+](CC)CC)C=C2OC2=CC(N(CC)CC)=CC=C2C=1C1=CC=CC=C1C(O)=O PYWVYCXTNDRMGF-UHFFFAOYSA-N 0.000 description 1
- 229910052701 rubidium Inorganic materials 0.000 description 1
- IGLNJRXAVVLDKE-UHFFFAOYSA-N rubidium atom Chemical compound [Rb] IGLNJRXAVVLDKE-UHFFFAOYSA-N 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000001004 secondary ion mass spectrometry Methods 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 125000005504 styryl group Chemical group 0.000 description 1
- 150000003518 tetracenes Chemical class 0.000 description 1
- 150000005075 thioxanthenes Chemical class 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
- TVIVIEFSHFOWTE-UHFFFAOYSA-K tri(quinolin-8-yloxy)alumane Chemical compound [Al+3].C1=CN=C2C([O-])=CC=CC2=C1.C1=CN=C2C([O-])=CC=CC2=C1.C1=CN=C2C([O-])=CC=CC2=C1 TVIVIEFSHFOWTE-UHFFFAOYSA-K 0.000 description 1
- 150000004961 triphenylmethanes Chemical class 0.000 description 1
- 229910001930 tungsten oxide Inorganic materials 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/10—OLEDs or polymer light-emitting diodes [PLED]
- H10K50/14—Carrier transporting layers
- H10K50/16—Electron transporting layers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/80—Constructional details
- H10K50/805—Electrodes
- H10K50/82—Cathodes
- H10K50/828—Transparent cathodes, e.g. comprising thin metal layers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K2101/00—Properties of the organic materials covered by group H10K85/00
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K2102/00—Constructional details relating to the organic devices covered by this subclass
- H10K2102/301—Details of OLEDs
- H10K2102/302—Details of OLEDs of OLED structures
- H10K2102/3023—Direction of light emission
- H10K2102/3026—Top emission
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K2102/00—Constructional details relating to the organic devices covered by this subclass
- H10K2102/301—Details of OLEDs
- H10K2102/351—Thickness
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/30—Coordination compounds
- H10K85/341—Transition metal complexes, e.g. Ru(II)polypyridine complexes
Definitions
- the present invention relates to an organic EL device, and more particularly, to an improvement in an electron transport layer that guarantees electron injectability from a cathode to a light emitting layer.
- an anode In an organic EL (Electro Luminescence) device, an anode, a functional layer including a light emitting layer (here, for example, a hole injection layer, a hole transport layer, and a light emitting layer) and a cathode are stacked in the same order on the substrate. Some devices extract light from the cathode side.
- a light emitting layer here, for example, a hole injection layer, a hole transport layer, and a light emitting layer
- a cathode Some devices extract light from the cathode side.
- an electron transport layer made of a material containing an organic compound is arranged between the functional layer and the cathode to improve the electron injection property to the light emitting layer.
- the cathode is usually formed on the electron transport layer using a thin film method such as vapor deposition or sputtering.
- the electron transport layer is made of a material containing an organic compound
- the surface components are easily thermally dissociated and easily deteriorated.
- This altered layer can be a factor that degrades the device performance, such as a decrease in electron injection into the light emitting layer and an increase in the light emission starting voltage.
- the present invention has been made in view of the above problems, and an object thereof is to provide a high-performance organic EL device by appropriately realizing the purpose of the electron transport layer.
- an organic EL device includes a substrate, an anode disposed on the substrate, a functional layer including a light emitting layer disposed on the anode, and the function.
- An organic EL comprising: an electron transport layer made of a material containing an organic compound disposed on the layer; and a light-transmitting cathode disposed on the electron transport layer in contact with the electron transport layer. It is a device, Comprising: The said electron carrying layer is adjusted so that the relative dielectric constant may become 2 or more and 10 or less on the measurement conditions which apply the alternating voltage of 1 MHz or more and 1 GHz or less.
- the alteration formed in the electron transport layer at the time of forming the cathode by adjusting the relative permittivity of the electron transport layer to 2 or more and 10 or less. It becomes possible to realize a high-performance device in which the influence of layers is suppressed.
- FIG. 1 It is a typical sectional view showing organic EL device 1 concerning an embodiment of the invention.
- A is typical sectional drawing which shows the structure of the electron carrying layer 60 which concerns on embodiment of this invention
- (b) is a schematic which shows the structure of the evaluation element 100 which concerns on embodiment of this invention.
- C is an equivalent circuit diagram of the evaluation element 100 shown in (b).
- (A) is a figure which shows the relationship between the synthetic dielectric constant of an electron carrying layer, and an electronic current
- (b) is a figure which shows the relationship between the synthetic dielectric constant of an electron carrying layer, and a lifetime. It is a figure which shows the relationship between the synthetic dielectric constant of an electron carrying layer, and the frequency of the alternating voltage concerning a relative dielectric constant measurement. It is a figure which shows the relationship between the synthetic dielectric constant of an electron carrying layer, and the layer thickness of an electron carrying layer.
- the inventor of the present application prepared an organic EL device in which a cathode made of ITO was formed on an electron transport layer under various conditions using a thin film method.
- the cathode surface of these organic EL devices was observed by SEM (Scanning Electron Microscope). As a result of observation, it was confirmed that the surface state of the cathode differs depending on the film forming conditions.
- BS-SIMS Back Side Secondary Ion Mass Spectrometry
- the penetration degree means the film thickness of the electron transport layer from the position where indium In or oxygen O is detected to the cathode. From these results, the inventor of the present application speculated that the interface layer with the cathode in the electron transport layer was altered to form a deteriorated layer.
- the inventors of the present application attempted to extract physical variables that favorably indicate the correlation between the altered layer and the device performance for the electron transport layer.
- the evaluation was performed using an evaluation element made of the same material as that of the actual device and in which only the anode, the electron transport layer, and the cathode were laminated in the same order.
- the inventor of the present application measured physical variables such as sheet resistance, work function, transmittance, and reflectance. However, a result that satisfactorily reflects the physical state of the deteriorated layer could not be obtained. The reason was estimated that the physical state of the altered layer was not sensitively captured because the thickness of the electron transport layer was nano-order as described above.
- the electron transport layer can be basically regarded as an insulator, so it is possible to approximate the electron transport layer as a dielectric. did.
- the impedance resistance measuring device for example, manufactured by Toyo Technica: dielectric measurement system 126096W type
- the impedance resistance measuring device can measure a high resistance sample of
- the impedance resistance measuring device can measure a high resistance sample of
- > 100 M ⁇ from mHz to GHz.
- the relative dielectric constant of the electron transport layer specifically, the synthetic dielectric constant of the altered layer and the remaining main body layer was measured.
- the inventors have found that the relative permittivity of the electron transport layer is a good index for correlation with device performance.
- the “relative dielectric constant” of the electron transport layer is measured by an evaluation element in which only an anode, an electron transport layer, and a cathode made of the same material as the actual device are stacked in the same order.
- the relative dielectric constant of the electron transport layer obtained in this way is used. This is because it is substantially difficult to accurately measure the relative dielectric constant of the electron transport layer in an actual device, so the relative dielectric constant of the electron transport layer in the evaluation element is the relative dielectric constant of the electron transport layer in the actual device. It is assumed that it is equivalent to the rate and is substituted.
- An organic EL device includes a substrate, an anode disposed on the substrate, a functional layer including a light emitting layer disposed on the anode, and a functional layer disposed on the functional layer.
- An organic EL device comprising: an electron transport layer composed of a material containing an organic compound; and a light-transmitting cathode disposed on the electron transport layer in contact with the electron transport layer, wherein the electron The transport layer is adjusted to have a relative dielectric constant of 2 or more and 10 or less under measurement conditions in which an AC voltage of 1 MHz or more and 1 GHz or less is applied.
- the electron transport layer has a layer thickness of 30 nm or more and 150 nm or less.
- the cathode is formed using a magnetron sputtering method.
- the cathode is formed of a conductive oxide including at least one element selected from In, Sn, Ti, Al, Zn, and Ga and an oxygen element. Consists of materials that contain.
- FIG. 1 is a schematic cross-sectional view showing an organic EL device 1 according to an embodiment.
- the organic EL device 1 has a configuration in which an anode 20, a hole injection layer 30, a hole transport layer 40, a light emitting layer 50, an electron transport layer 60 and a cathode 70 are sequentially stacked on a substrate 10. It is.
- the hole injection layer 30, the hole transport layer 40, and the light emitting layer 50 correspond to the functional layers referred to in the present invention.
- the substrate 10 is a known TFT (thin film transistor) substrate, and a TFT (not shown) for driving the light emitting layer 50 is formed on the surface of the base material.
- an insulating material such as a glass material, a resin material, or alumina is employed.
- the anode 20 is made of a conductive material and has a thickness of, for example, 200 nm.
- an alloy material such as an aluminum alloy, APC (silver, palladium, copper alloy), ARA (silver, rubidium, gold alloy) is employed.
- the anode 20 is formed using, for example, a vacuum evaporation method or a sputtering method.
- the anode 20 also functions as a reflecting member that reflects a part of the light emitted from the light emitting layer 50 to the light extraction side (here, the cathode 70 side).
- the hole injection layer 30 is made of, for example, a metal oxide such as MoOx (molybdenum oxide), WOx (tungsten oxide), or MoxWyOz (molybdenum-tungsten oxide), and is formed using a reactive sputtering method.
- a metal oxide such as MoOx (molybdenum oxide), WOx (tungsten oxide), or MoxWyOz (molybdenum-tungsten oxide)
- the hole transport layer 40 is composed of, for example, an amine organic polymer material such as (4-butylphenyl) diphenylamine (TFB), an aromatic tertiary amine compound, or a styrylamine compound, and an ink containing the constituent material is used. It is formed by applying and drying.
- the thickness of the hole transport layer 40 is, for example, 20 nm.
- the light emitting layer 50 is composed of, for example, F8-F6 (copolymer of F8 (polydioctylfluorene) and F6 (polydihexylfluorene)), and is formed by applying an ink containing the constituent material and drying it.
- F8-F6 copolymer of F8 (polydioctylfluorene) and F6 (polydihexylfluorene)
- the electron transport layer 60 is formed using, for example, a vacuum deposition method, and the thickness thereof is, for example, 30 nm or more and 150 nm or less.
- the electron transport layer 60 As a constituent material of the electron transport layer 60, a material containing an organic compound is used. For example, a material composed of an n-type dopant material having electron injection properties and a host material (organic compound) having electron transport properties is employed. . In this case, more specifically, for example, the electron transport layer 60 may be composed of a CT (Charge Transfer) complex.
- CT Charge Transfer
- the relative dielectric constant of the electron transport layer 60 is, for example, 2 or more and 10 or less under measurement conditions in which an alternating voltage of 1 MHz is applied.
- the cathode 70 is made of a light-transmitting conductive material, and is formed using, for example, a thin film method, a vacuum evaporation method, or a sputtering method.
- a translucent conductive material constituting the cathode 70 for example, ITO (indium tin oxide), IZO (indium zinc oxide), IGZO (indium gallium tin oxide), In, Sn, Ti, Al, Zn, and the like
- a conductive oxide including at least one element of Ga and an oxygen element can be used.
- the organic EL device 1 is a top emission type, and light emitted from the light emitting layer 50 is extracted from the cathode 70 side.
- holes are efficiently injected from the hole injection layer 30 and the hole transport layer 40 into the light emitting layer 50, and electrons are efficiently injected from the electron transport layer 60 into the light emitting layer 50.
- the light emission is based on the recombination of carriers (holes and electrons).
- the anode 20 has light reflectivity, and the cathode 70 has translucency. Thereby, the extraction efficiency of light emission of the light emitting layer 50 from the cathode 70 side is improved.
- FIG. 2A is a schematic cross-sectional view showing the electron transport layer 60 according to the embodiment of the present invention.
- FIG. 2B is a schematic cross-sectional view showing the evaluation element 100 according to the embodiment of the present invention, and
- FIG. 2C is an equivalent circuit diagram of the evaluation element 100.
- the electron transport layer 60 includes a main body layer 61 and an altered layer 62.
- the altered layer 62 is a part of the electron transport layer 60 that has been altered by thermal energy applied to the surface of the electron transport layer 60 when the cathode 70 is formed on the electron transport layer 60 using a thin film method. .
- the layer thickness of the altered layer 62 varies depending on the formation conditions of the cathode 70 and the constituent material of the electron transport layer 60, but is about 15 nm or less, for example.
- the altered layer in the present embodiment is a concept including a case where a part that has been altered and a part that has not been altered are mixed in the layer. Further, the layer thickness of the altered layer is represented, for example, by the penetration degree of indium In or oxygen O measured by BS-SIMS as described above.
- the evaluation element 100 is a measurement element for measuring the relative dielectric constant of the electron transport layer. As described above, it is difficult to accurately measure the relative dielectric constant of the electron transport layer 60 in the organic EL device 1. Therefore, the dielectric constant of the electron transport layer 60 is replaced with the dielectric constant of the electron transport layer 60a equivalent to the electron transport layer 60.
- the evaluation element 100 has a configuration in which an anode 20a, an electron transport layer 60a, and a cathode 70a are sequentially stacked on a substrate 10a.
- the substrate 10a, the anode 20a, the electron transport layer 60a, and the cathode 70a are formed under the same conditions as the substrate 10, the anode 20, the electron transport layer 60, and the cathode 70 of the organic EL device 1 shown in FIG.
- the electron transport layer 60a does not have a carrier, but has a function of transporting electrons when electrons are injected.
- the electron transport layer 60a is basically an insulator, and can be approximated as a dielectric. That is, as shown in FIG. 2 (c), the electron transport layer 60a composed of the main body layer 61a and the altered layer 62a has a capacitor C1 as the main body layer 61a and a capacitor C2 as the altered layer 62a. Can be regarded as being connected in series.
- the area in the in-plane direction (direction orthogonal to the thickness direction) of the layers is the same.
- the layer thicknesses of the main body layer 61a and the altered layer 62a are both nano-order, and the difference between the thicknesses of both is extremely small. Therefore, it can be considered that the parameter causing a difference in these electric capacities is mainly the dielectric constant.
- the relative dielectric constant of the electron transport layer 60 a specifically, the combined relative dielectric constant of the main body layer 61 a and the altered layer 62 a is employed as a parameter indicating the characteristics of the electron transport layer 60 related to the altered layer 62.
- the inventor of the present application conducted a verification experiment in order to verify the relationship between the relative dielectric constant of the electron transport layer and the device performance.
- a verification experiment an organic EL device in which a cathode was formed under various formation conditions was manufactured, and electron current and lifetime were measured as typical indices indicating device performance.
- an evaluation element was produced under the same formation conditions as described above, and the relative dielectric constant of the electron transport layer was measured.
- the verification result will be described.
- FIG. 3 is a verification result showing the relationship between the synthetic dielectric constant of the electron transport layer and device performance (electron current, lifetime), and FIG. 3 (a) shows the relationship between the synthetic dielectric constant and electron current.
- FIG. 3B shows the relationship between the combined dielectric constant and the lifetime.
- the time until the luminance is reduced to half in the state where the voltage with the initial luminance of 8000 cd / m 2 is applied and the voltage is maintained is defined as the lifetime.
- the conditions for forming the cathode in the organic EL device sample and the evaluation element used in this verification experiment are as follows.
- the conditions for forming the cathode by vapor deposition using Al as the constituent material which are indicated by hatched square marks in FIGS. 3 (a) and 3 (b), are the conditions in which the film formation rate is 1 nm / s and the substrate temperature is 50 ° C. It was.
- the conditions for forming the cathode by sputtering using ITO as a constituent material are as follows: a magnetron sputtering method, a gas pressure of 0.6 Pa, an argon flow rate of 200 sccm (3.38 ⁇ 10 ⁇ 2 Pa ⁇ m 3 / sec), oxygen flow rate 10 sccm (1.69 ⁇ 10 ⁇ 3 Pa ⁇ m 3 / sec), discharge power 5.4 W / cm 2 , and frequency 250 kHz.
- the conditions for forming the cathode 70a by vapor deposition using ITO as a constituent material are as follows.
- the plasma gun method is used to form a gas pressure of 0.7 Pa and an argon flow rate of 300 sccm (5.07 ⁇ 10 ⁇ 2 Pa ⁇ m 3 / sec), oxygen flow rate 35 sccm (5.915 ⁇ 10 ⁇ 3 Pa ⁇ m 3 / sec), water vapor flow rate 5 sccm (8.45 ⁇ 10 ⁇ 4 Pa ⁇ m 3 / sec),
- the substrate temperature was 50 ° C.
- the thickness of the electron transport layer is 80 nm, and the relative dielectric constant of the electron transport layer is measured by measuring the capacitance voltage under the conditions of a DC voltage of 5 V, an AC voltage of 200 mV, and a frequency of 1 MHz using an impedance resistance measuring device. It went by.
- FIG. 3 (a) is a plot of the synthetic dielectric constant and the value of the electron current linearly by the least square method.
- the result was obtained that the electron current increased linearly with the increase of the synthetic dielectric constant.
- the reason is presumed to be caused by the difference in the density of the electric double layer at the interface of the electron transport layer due to the difference in the synthetic dielectric constant.
- the higher the electric double layer density the smaller the energy barrier at the interface between the electron transport layer and the cathode as the electric field strength increases, and the electron injection property is increased by decreasing the resistance accordingly. .
- Electron current is 2. If E-05 mA or more, it is considered that good device performance can be realized. From FIG. 3A, when the combined dielectric constant is 2, the electron current is 2. The value is almost equal to E-05 mA. Therefore, it is desirable that the synthetic dielectric constant of the electron transport layer be at least 2.
- the electron current is smaller than that of Al.
- the constituent material of the cathode is ITO
- the electron current is smaller than that of Al.
- the surface of the electron transport layer is likely to be altered.
- a cathode is formed by sputtering using ITO as a constituent material, a uniform film (cathode) made of ITO can be formed with good quality, but on the other hand, an altered layer is easily formed in the electron transport layer.
- the electron current is considered to be small.
- the combined dielectric constant of the electron transport layer is in the range of 2 to 10 (the range of the arrow A indicated by the broken line in FIG. 3B). The lifetime for realizing is ensured.
- At least one element of In, Sn, Ti, Al, Zn, and Ga such as IZO (indium zinc oxide) and IGZO (indium gallium tin oxide), including ITO as a constituent material of the cathode
- IZO indium zinc oxide
- IGZO indium gallium tin oxide
- ITO indium gallium tin oxide
- a conductive oxide composed of an oxygen element is employed, both the translucency and conductivity of the cathode can be improved. And when using these materials, it is necessary to form using sputtering method as mentioned above. However, even in that case, it is possible to appropriately express the characteristics of the electron transport layer by adjusting the relative dielectric constant of the electron transport layer to a range of 2 to 10.
- FIG. 4 shows the relationship between the synthetic dielectric constant of the electron transport layer and the frequency of the alternating voltage applied during measurement.
- the formation conditions of the cathode shown in FIG. 4 are the same as those shown in FIG. Moreover, the measurement conditions of the synthetic dielectric constant are the same as those shown in FIG. 3 except that the frequency is changed, and the thickness of the electron transport layer is 80 nm.
- the altered layer formed in the electron transport layer is formed by changing the constituent material or film quality of the electron transport layer due to the formation conditions of the cathode. For example, it is considered that a plurality of crystallized regions may be gathered without being uniformly formed in the plane. For this reason, the susceptibility of polarization to the external electric field in the altered layer varies, and unless the high-frequency AC voltage is applied, the relative permittivity of the electron transport layer that better reflects the physical state of the altered layer may not be obtained. it is conceivable that.
- the frequency of the AC voltage to be applied is not particularly limited as long as the frequency is 1 MHz or higher.
- the upper limit is set to 1 GHz (1000000000 Hz). That is, the electron transport layer is adjusted so that the combined relative permittivity of the electron transport layer is in the range of 2 to 10 under the measurement conditions in which an alternating voltage in the range of 1 MHz to 1 GHz is applied.
- the composite dielectric constant of the electron transport layer may be in the range of 2 to 10.
- FIG. 5 shows the relationship between the synthetic dielectric constant of the electron transport layer and the layer thickness.
- the formation conditions of the cathode shown in FIG. 5 are the same as those shown in FIG. Moreover, the measurement conditions of the synthetic dielectric constant are the same as those shown in FIG. 3 except that the frequency is 250 kHz.
- the composite dielectric constant of the electron transport layer is large even if the layer thickness of the electron transport layer changes. There was not much difference.
- the composite dielectric constant of the electron transport layer was greatly different if the type of thin film method was different even if the layer thickness was the same. This indicates that the physical state of the altered layer formed in the vicinity including the surface of the electron transport layer is more strongly dependent on the type of thin film method used to form the cathode than the layer thickness of the electron transport layer. Yes.
- the layer thickness of the electron transport layer is in the nano-order range, specifically in the range of 30 nm to 150 nm, the layer thickness is increased as long as the material used for forming the cathode and the type of the thin film method are the same. However, it is difficult to reduce the influence of the altered layer on the characteristics of the electron transport layer.
- the relative permittivity of the electron transport layer is adjusted to a range of 2 to 10 when the thickness of the electron transport layer is in the range of 30 nm to 150 nm. It is particularly preferable to appropriately express the characteristics of the electron transport layer.
- Constituent materials of the substrate in the substrate include alkali-free glass, soda glass, non-fluorescent glass, phosphate glass, borate glass, quartz, acrylic resin, styrene resin, polycarbonate resin, epoxy resin, polyethylene, polyester It is possible to employ an insulating material such as silicon resin or alumina.
- the anode is not composed of only a reflective layer as in the embodiment, for example, a structure in which a reflective layer and a light transmissive layer made of a light transmissive conductive material are sequentially laminated, a structure made of only the light transmissive layer, It is possible to adopt a configuration in which a plurality of layers made of different materials are stacked as the reflective layer.
- the reflective layer is made of an alloy material such as MoCr (molybdenum and chromium alloy), NiCr (nickel and chromium alloy), and the transparent layer is made of ITO (indium tin oxide) or IZO (indium zinc oxide). ), IGZO (indium gallium tin oxide), etc., a conductive oxide composed of at least one element and oxygen element among In, Sn, Ti, Al, Zn, and Ga can be employed.
- an alloy material such as MoCr (molybdenum and chromium alloy), NiCr (nickel and chromium alloy)
- the transparent layer is made of ITO (indium tin oxide) or IZO (indium zinc oxide). ), IGZO (indium gallium tin oxide), etc.
- ITO indium tin oxide
- IZO indium zinc oxide
- IGZO indium gallium tin oxide
- ⁇ Hole injection layer> As a constituent material of the hole injection layer, in addition to the metal oxide of the embodiment, a metal nitride or oxynitride constituting the metal oxide can be employed.
- the constituent materials of the hole transport layer include oxadiazole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives and pyrazolone derivatives, arylamine derivatives, amino-substituted chalcone derivatives, oxazole derivatives, styrylanthracene derivatives, fluorenone derivatives, hydrazone derivatives.
- Stilbene derivatives, porphyrin compounds, butadiene compounds, polystyrene derivatives, hydrazone derivatives, triphenylmethane derivatives, tetraphenylbenzine derivatives, and the like can be employed.
- oxinoid compounds perylene compounds, coumarin compounds, azacoumarin compounds, oxazole compounds, oxadiazole compounds, perinone compounds, pyrrolopyrrole compounds, naphthalene compounds, anthracene compounds, fluorene compounds, fluoranthene compounds, tetracene compounds, Pyrene compounds, coronene compounds, quinolone compounds and azaquinolone compounds, pyrazoline derivatives and pyrazolone derivatives, rhodamine compounds, chrysene compounds, phenanthrene compounds, cyclopentadiene compounds, stilbene compounds, diphenylquinone compounds, styryl compounds, butadiene compounds, dicyanomethylenepyran compounds, dicyano Methylenethiopyran compound, fluorescein compound, pyrylium compound, thiapyrylium compound , Serenapyrylium compounds, fluorescein compound, pyrylium compound, thiapyry
- Electrode transport layer As a constituent material of the electron transport layer, in addition to a material group that becomes a CT complex, a material composed only of an organic compound or a material composed of an organic compound and an inorganic substance may be used.
- materials such as BCP (basocuproin), Bphen (vasophenanthroline), Alq3 (tris (8? Quinolinolato) aluminum), NTCDA (naphthalenetetracarboxylic dianhydride),
- organic compounds such as CoCp 2 (cobaltcene), TTN (dytyrosine thallium nitrate (III)), PyB (pyridinium betaine), ruthenium complex as Ru (terpy) 2 , and chromium complex as Cr (bby) 3
- materials such as Cr (TMB) 3 and alkali metals and alkaline earth metals as inorganic substances.
- the CT complex may not always be formed depending on the combination of the host material and the n-type dopant material and the film forming conditions.
- the level difference is set to 2 to 4 eV or less, more preferably within 1 eV. Good electron transportability can be expected.
- the cathode may be an ultrathin metal layer (for example, 10 nm thick) made of a metal material such as Al, or may have a laminated structure of the metal layer and the cathode of the embodiment.
- the conditions for forming the cathode are not limited to the conditions described in the above embodiment.
- the discharge power may be 4.5 to 10 W / cm 2
- the gas pressure may be 0.3 to 1.5 Pa
- the oxygen flow rate may be 5.5 to 11.5 sccm. If the discharge power, gas pressure, and oxygen flow rate are within the above ranges, the combined relative dielectric constant of the electron transport layer is considered to satisfy the range of 2 to 10.
- ⁇ Sealing layer> A structure in which a sealing layer for suppressing the light emitting layer from being deteriorated by moisture, air, or the like may be formed on the cathode.
- a sealing layer silicon nitride, silicon oxynitride, or the like can be used.
- Organic EL device in addition to the single organic EL element according to the present embodiment, an organic EL display panel or an organic EL display device in which a plurality of organic EL elements are arranged on a substrate can be employed. is there.
- the organic EL device of the present invention can be suitably used for organic EL elements, organic EL panels, organic EL display devices, and the like.
- Organic EL Device 10 Substrate 20 Anode 30 Hole Injection Layer 40 Hole Transport Layer 50 Light-Emitting Layer 60 Electron Transport Layer 70 Cathode
Landscapes
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Electroluminescent Light Sources (AREA)
Abstract
Description
本願の発明者は、薄膜法を用いて種々の条件でITOからなる陰極を電子輸送層上に形成した有機ELデバイスを用意した。まず、これら有機ELデバイスの陰極表面をSEM(Scanning Electron Microscope)により観察した。観察の結果、成膜条件によって、陰極の表面状態が異なることが確認された。さらに、BS-SIMS(Back Side Secondary Ion Mass Spectrometry)により測定した結果、成膜条件によって、インジウムInの浸入度、酸素Oの浸入度が異なることが確認された。浸入度とは、インジウムInまたは酸素Oが検出された位置から陰極までの電子輸送層の膜厚を意味する。これらの結果から、本願の発明者は、電子輸送層における陰極との界面領域が変質して変質層が形成されていると推測した。
本発明の一態様に係る有機ELデバイスは、基板と、前記基板上に配置された陽極と、前記陽極上に配置された、発光層を含む機能層と、前記機能層上に配置された、有機化合物を含む材料から構成される電子輸送層と、前記電子輸送層上に当該電子輸送層と接して配置された、透光性を有する陰極と、を備える有機ELデバイスであって、前記電子輸送層は、その比誘電率が1MHz以上1GHz以下の交流電圧を印加する測定条件で2以上10以下となるように調整されている。
図1は、実施の形態に係る有機ELデバイス1を示す模式的な断面図である。
<基板>
基板10は、公知のTFT(薄膜トランジスタ)基板とされ、基材の表面に発光層50を駆動させるためのTFT(不図示)が形成されている。
陽極20は、導電性の材料からなり、その厚さは、例えば200nmである。
正孔注入層30は、例えば、MoOx(酸化モリブデン)、WOx(酸化タングステン)又はMoxWyOz(モリブデン-タングステン酸化物)などの金属酸化物から構成され、反応性スパッタリング法を用いて形成される。
正孔輸送層40は、例えば、(4-ブチルフェニル)ジフェニルアミン(TFB)、芳香族第三級アミン化合物、スチリルアミン化合物などのアミン系有機高分子材料から構成され、当該構成材料を含むインクを塗布し、乾燥させることにより形成される。正孔輸送層40の厚さは、例えば20nmである。
発光層50は、例えば、F8-F6(F8(ポリジオクチルフルオレン)とF6(ポリジヘキシルフルオレン)との共重合体)から構成され、当該構成材料を含むインクを塗布し、乾燥させることにより形成される。
電子輸送層60は、例えば、真空蒸着法を用いて形成され、その厚さは、例えば、30nm以上150nm以下である。
陰極70は、透光性導電性材料からなり、例えば、薄膜法、真空蒸着法やスパッタリング法を用いて形成される。陰極70を構成する透光性導電性材料としては、例えば、ITO(酸化インジウムスズ)、IZO(酸化インジウム亜鉛)、IGZO(酸化インジウムガリウムスズ)など、In、Sn、Ti、Al、Zn、及びGaのうち少なくとも1つの元素と酸素元素とからなる導電性酸化物を用いることができる。
有機ELデバイス1は、トップエミッション型であり、発光層50で発せられた光は、陰極70側から取り出される。
図2(a)は、本発明の実施の形態に係る電子輸送層60を示す模式的な断面図である。図2(b)は、本発明の実施の形態に係る評価素子100を示す模式的な断面図であり、図2(c)は、評価素子100の等価回路図である。
図2(a)に示すように、電子輸送層60は、本体層61と変質層62とから構成される。
評価素子100は、電子輸送層の比誘電率を測定するための測定用素子である。上述のように、有機ELデバイス1における電子輸送層60の比誘電率を精度よく測定することは困難である。そこで、電子輸送層60と等価な電子輸送層60aの比誘電率をもって電子輸送層60の誘電率に代替させることとした。
電子輸送層60aは、キャリアを有さないが、電子が注入された場合に電子を輸送する機能を有するものである。電子輸送層60aは、基本的に絶縁体であり、誘電体として近似することが可能である。つまり、本体層61aと変質層62aとから構成される電子輸送層60aは、図2(c)に示すように、本体層61aを電気容量C1、変質層62aを電気容量C2とするそれぞれのコンデンサが直列接続したものとみなすことが可能である。
本願の発明者は、電子輸送層の比誘電率とデバイス性能との関係を検証すべく、検証実験を行った。検証実験は、種々の形成条件で陰極を形成した有機ELデバイスを作製し、デバイス性能を示す代表的な指標として、電子電流および寿命について測定を行った。それとともに、上記と同様の形成条件で評価素子を作製し、電子輸送層の比誘電率の測定を行った。以下、検証結果について説明する。
図3は、電子輸送層の合成比誘電率とデバイス性能(電子電流、寿命)との関係を示す検証結果であり、図3(a)が合成比誘電率と電子電流との関係を示し、図3(b)が合成比誘電率と寿命との関係を示す。ここでは、初期輝度8000cd/m2となる電圧を印加し、当該電圧を維持した状態で、輝度が半減するまでの時間を寿命とした。
図4は、電子輸送層の合成比誘電率と測定時に印加する交流電圧の周波数との関係を示すものである。
図5は、電子輸送層の合成比誘電率と層厚との関係を示すものである。
以上、本発明を実施の形態に基づいて説明したが、本発明は、上記実施の形態に限定されるものではなく、以下に示すような構成を採用することも可能である。
基板における基材の構成材料としては、無アルカリガラス、ソーダガラス、無蛍光ガラス、燐酸系ガラス、硼酸系ガラス、石英、アクリル系樹脂、スチレン系樹脂、ポリカーボネート系樹脂、エポキシ系樹脂、ポリエチレン、ポリエステル、シリコン系樹脂、またはアルミナ等の絶縁性材料を採用することが可能である。
陽極は、実施の形態のように反射層のみから構成することなく、例えば、反射層と透光性導電材料からなる透光層とが順次積層された構成、当該透光層のみからなる構成、反射層を異なる材料からなる層が複数積層された構成などを採用することが可能である。
正孔注入層の構成材料としては、実施形態の金属酸化物以外に、当該金属酸化物を構成する金属の窒化物や酸窒化物などを採用することが可能である。
正孔輸送層の構成材料としては、オキサジアゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体およびピラゾロン誘導体、アリールアミン誘導体、アミノ置換カルコン誘導体、オキサゾール誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、ポリフィリン化合物、ブタジエン化合物、ポリスチレン誘導体、ヒドラゾン誘導体、トリフェニルメタン誘導体、テトラフェニルベンジン誘導体などを採用することが可能である。
発光層の構成材料としては、オキシノイド化合物、ペリレン化合物、クマリン化合物、アザクマリン化合物、オキサゾール化合物、オキサジアゾール化合物、ペリノン化合物、ピロロピロール化合物、ナフタレン化合物、アントラセン化合物、フルオレン化合物、フルオランテン化合物、テトラセン化合物、ピレン化合物、コロネン化合物、キノロン化合物およびアザキノロン化合物、ピラゾリン誘導体およびピラゾロン誘導体、ローダミン化合物、クリセン化合物、フェナントレン化合物、シクロペンタジエン化合物、スチルベン化合物、ジフェニルキノン化合物、スチリル化合物、ブタジエン化合物、ジシアノメチレンピラン化合物、ジシアノメチレンチオピラン化合物、フルオレセイン化合物、ピリリウム化合物、チアピリリウム化合物、セレナピリリウム化合物、テルロピリリウム化合物、芳香族アルダジエン化合物、オリゴフェニレン化合物、チオキサンテン化合物、シアニン化合物、アクリジン化合物、8-ヒドロキシキノリン化合物の金属錯体、2-ビピリジン化合物の金属錯体、シッフ塩とIII族金属との錯体、オキシン金属錯体、希土類錯体等の蛍光物質、などを採用することが可能である。
電子輸送層の構成材料としては、CT錯体となる材料群以外にも、有機化合物のみからなる材料や、有機化合物と無機物質とからなる材料でもよい。
陰極としては、Alなどの金属材料からなる超薄膜(例えば厚み10nm)の金属層でもよく、当該金属層と実施の形態の陰極との積層構造としてもよい。
陰極上に、発光層が水分や空気等により劣化するのを抑制するための封止層を形成した構成でもよい。封止層の構成材料としては、窒化シリコン、酸窒化シリコン等を採用することが可能である。
有機ELデバイスとしては、本実施の形態である単体の有機EL素子以外にも、基板上に複数の有機EL素子を配設した有機EL表示パネルや有機EL表示装置等を採用することが可能である。
10 基板
20 陽極
30 正孔注入層
40 正孔輸送層
50 発光層
60 電子輸送層
70 陰極
Claims (4)
- 基板と、
前記基板上に配置された陽極と、
前記陽極上に配置された、発光層を含む機能層と、
前記機能層上に配置された、有機化合物を含む材料から構成される電子輸送層と、
前記電子輸送層上に当該電子輸送層と接して配置された、透光性を有する陰極と、を備える有機ELデバイスであって、
前記電子輸送層は、その比誘電率が1MHz以上1GHz以下の交流電圧を印加する測定条件で2以上10以下となるように調整されている
ことを特徴とする有機ELデバイス。 - 前記電子輸送層は、層厚が30nm以上150nm以下である
ことを特徴とする請求項1に記載の有機ELデバイス。 - 前記陰極は、マグネトロンスッパタリング法を用いて形成されている
ことを特徴とする請求項1又2に記載の有機ELデバイス。 - 前記陰極は、In、Sn、Ti、Al、Zn、及びGaのうち少なくとも1つの元素と酸素元素とからなる導電性酸化物を含む材料から構成されている
ことを特徴とする請求項3に記載の有機ELデバイス。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/396,134 US9136496B2 (en) | 2013-01-08 | 2013-11-13 | Organic el device |
JP2014556212A JP6405579B2 (ja) | 2013-01-08 | 2013-11-13 | 有機elデバイス |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013-001122 | 2013-01-08 | ||
JP2013001122 | 2013-01-08 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014108949A1 true WO2014108949A1 (ja) | 2014-07-17 |
Family
ID=51166629
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/006672 WO2014108949A1 (ja) | 2013-01-08 | 2013-11-13 | 有機elデバイス |
Country Status (3)
Country | Link |
---|---|
US (1) | US9136496B2 (ja) |
JP (1) | JP6405579B2 (ja) |
WO (1) | WO2014108949A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017199669A (ja) * | 2016-04-22 | 2017-11-02 | 株式会社半導体エネルギー研究所 | 発光素子、表示装置、電子機器、及び照明装置 |
WO2021084598A1 (ja) * | 2019-10-29 | 2021-05-06 | シャープ株式会社 | 発光素子 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10020351B2 (en) | 2016-06-24 | 2018-07-10 | Lg Display Co., Ltd. | Electroluminescence display device |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013004368A (ja) * | 2011-06-17 | 2013-01-07 | Panasonic Corp | 有機el素子の製造方法 |
JP2013137973A (ja) * | 2011-12-28 | 2013-07-11 | Panasonic Corp | 有機elデバイスの製造方法、有機elデバイスの検査方法および有機elデバイスの判定方法 |
WO2013118210A1 (ja) * | 2012-02-08 | 2013-08-15 | パナソニック株式会社 | 有機el素子の製造方法および有機el素子 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2780880B2 (ja) * | 1990-11-28 | 1998-07-30 | 出光興産株式会社 | 有機エレクトロルミネッセンス素子および該素子を用いた発光装置 |
JP4210093B2 (ja) * | 2002-10-03 | 2009-01-14 | 大日本印刷株式会社 | 有機エレクトロルミネッセント画像表示装置 |
JP2010092741A (ja) * | 2008-10-08 | 2010-04-22 | Panasonic Electric Works Co Ltd | 有機エレクトロルミネッセンス素子 |
EP2345096B1 (en) * | 2008-10-28 | 2018-10-17 | The Regents of the University of Michigan | Stacked white oled having separate red, green and blue sub-elements |
JP2011060468A (ja) | 2009-09-07 | 2011-03-24 | Panasonic Corp | 有機el素子、有機el素子の製造方法、および有機el表示パネル装置 |
-
2013
- 2013-11-13 WO PCT/JP2013/006672 patent/WO2014108949A1/ja active Application Filing
- 2013-11-13 US US14/396,134 patent/US9136496B2/en active Active
- 2013-11-13 JP JP2014556212A patent/JP6405579B2/ja active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013004368A (ja) * | 2011-06-17 | 2013-01-07 | Panasonic Corp | 有機el素子の製造方法 |
JP2013137973A (ja) * | 2011-12-28 | 2013-07-11 | Panasonic Corp | 有機elデバイスの製造方法、有機elデバイスの検査方法および有機elデバイスの判定方法 |
WO2013118210A1 (ja) * | 2012-02-08 | 2013-08-15 | パナソニック株式会社 | 有機el素子の製造方法および有機el素子 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017199669A (ja) * | 2016-04-22 | 2017-11-02 | 株式会社半導体エネルギー研究所 | 発光素子、表示装置、電子機器、及び照明装置 |
WO2021084598A1 (ja) * | 2019-10-29 | 2021-05-06 | シャープ株式会社 | 発光素子 |
Also Published As
Publication number | Publication date |
---|---|
JP6405579B2 (ja) | 2018-10-17 |
JPWO2014108949A1 (ja) | 2017-01-19 |
US20150060805A1 (en) | 2015-03-05 |
US9136496B2 (en) | 2015-09-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11094909B2 (en) | Thin film of metal oxide, organic electroluminescent device including the thin film, photovoltaic cell including the thin film and organic photovoltaic cell including the thin film | |
JP6284157B2 (ja) | 有機エレクトロルミネッセンス素子 | |
EP2190265B1 (en) | Organic electroluminescence device | |
JP5624141B2 (ja) | 有機el素子 | |
US10381589B2 (en) | Organic EL element and organic EL display panel | |
TW201336137A (zh) | 有機電子元件和有機電子元件的製造方法 | |
WO2013018251A1 (ja) | 有機発光素子 | |
JP6405579B2 (ja) | 有機elデバイス | |
JP6815294B2 (ja) | 有機el素子、および有機elパネル | |
US20160163985A1 (en) | Manufacturing method of organic light-emitting element and organic light-emitting element | |
US9059419B2 (en) | Organic EL element, organic EL panel having organic EL element, organic EL light-emitting apparatus, and organic EL display apparatus | |
JP5785871B2 (ja) | 有機elデバイスの製造方法、有機elデバイスの検査方法および有機elデバイスの判定方法 | |
US20170194590A1 (en) | Organic el element and organic el light emitting apparatus | |
Sarjidan et al. | Blending effect on small molecule based OLED | |
US10026795B2 (en) | Organic EL element and method for manufacturing organic EL element | |
CN104103764A (zh) | 有机电致发光器件及其制作方法 | |
CN103904249B (zh) | 有机电致发光器件及其制备方法 | |
Uchida et al. | P‐163L: Late‐News Poster: Inverted Transparent Organic Light‐Emitting Diodes Comprising an Oxide Compound Electron Injection Layer and a Nanoscale Metal/Dielectric Multilayer Anode | |
Najafabadi | STACKED INVERTED TOP-EMITTING WHITE ORGANIC LIGHT-EMITTING DIODES | |
CN104103773A (zh) | 有机电致发光器件及其制作方法 | |
CN104518124A (zh) | 有机电致发光器件及其制备方法 | |
JP2016115714A (ja) | 有機elパネル | |
CN104103772A (zh) | 有机电致发光器件及其制作方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13871199 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2014556212 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14396134 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13871199 Country of ref document: EP Kind code of ref document: A1 |