WO2014108053A1 - 含多环取代的吡唑类激酶活性抑制剂及其用途 - Google Patents

含多环取代的吡唑类激酶活性抑制剂及其用途 Download PDF

Info

Publication number
WO2014108053A1
WO2014108053A1 PCT/CN2014/070195 CN2014070195W WO2014108053A1 WO 2014108053 A1 WO2014108053 A1 WO 2014108053A1 CN 2014070195 W CN2014070195 W CN 2014070195W WO 2014108053 A1 WO2014108053 A1 WO 2014108053A1
Authority
WO
WIPO (PCT)
Prior art keywords
methyl
group
phenyl
pyrazolecarboxamide
alkyl
Prior art date
Application number
PCT/CN2014/070195
Other languages
English (en)
French (fr)
Inventor
陆涛
王越
陈亚东
陆旖
王占伟
金乔梅
杨涛涛
林国武
郭青龙
赵丽
Original Assignee
中国药科大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国药科大学 filed Critical 中国药科大学
Priority to RU2015133528A priority Critical patent/RU2655921C2/ru
Priority to KR1020157021621A priority patent/KR102136628B1/ko
Priority to CA2897366A priority patent/CA2897366C/en
Priority to AU2014204633A priority patent/AU2014204633B2/en
Priority to JP2015551972A priority patent/JP6322848B2/ja
Priority to ES14738057T priority patent/ES2863175T3/es
Priority to CN201480004085.9A priority patent/CN105189517B/zh
Priority to US14/759,516 priority patent/US9550792B2/en
Priority to DK14738057.0T priority patent/DK2955185T3/da
Priority to BR112015016327A priority patent/BR112015016327A8/pt
Priority to EP14738057.0A priority patent/EP2955185B1/en
Publication of WO2014108053A1 publication Critical patent/WO2014108053A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D495/00Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms
    • C07D495/02Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms in which the condensed system contains two hetero rings
    • C07D495/04Ortho-condensed systems
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/90Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having two or more relevant hetero rings, condensed among themselves or with a common carbocyclic ring system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/496Non-condensed piperazines containing further heterocyclic rings, e.g. rifampin, thiothixene or sparfloxacin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/505Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
    • A61K31/519Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim ortho- or peri-condensed with heterocyclic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/535Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with at least one nitrogen and one oxygen as the ring hetero atoms, e.g. 1,2-oxazines
    • A61K31/53751,4-Oxazines, e.g. morpholine
    • A61K31/53771,4-Oxazines, e.g. morpholine not condensed and containing further heterocyclic rings, e.g. timolol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • A61P17/02Drugs for dermatological disorders for treating wounds, ulcers, burns, scars, keloids, or the like
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/02Drugs for disorders of the nervous system for peripheral neuropathies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/08Antiepileptics; Anticonvulsants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/28Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • A61P3/10Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/10Antimycotics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • A61P35/02Antineoplastic agents specific for leukemia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/06Immunosuppressants, e.g. drugs for graft rejection
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
    • C07D471/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
    • C07D487/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D491/00Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00
    • C07D491/02Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00 in which the condensed system contains two hetero rings
    • C07D491/04Ortho-condensed systems
    • C07D491/044Ortho-condensed systems with only one oxygen atom as ring hetero atom in the oxygen-containing ring
    • C07D491/048Ortho-condensed systems with only one oxygen atom as ring hetero atom in the oxygen-containing ring the oxygen-containing ring being five-membered
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D493/00Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system
    • C07D493/02Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system in which the condensed system contains two hetero rings
    • C07D493/04Ortho-condensed systems

Definitions

  • the present invention relates to the field of medicinal chemistry, and in particular to 4-(5-membered heterocyclic pyrimidine/pyridine substituted) amino-1H-3-pyrazole carboxamide derivatives, processes for preparing the same, pharmaceutical compositions containing the same, and Their medical use, especially as a protein kinase inhibitor for anti-tumor use.
  • the cell cycle is regulated under normal conditions by a group of related proteases that are responsible for different biological functions, including inhibition or promotion of cell cycle function, in which most proteins that promote cell cycle are kinases, and kinases regulate proteins.
  • Important physiological functions play an important role. Its main function in the organism is to transfer the high-energy molecule adenosine triphosphate (ATP) phosphate to the receptor molecule to regulate the activation or deactivation of protein receptors, protein activation or go.
  • ATP adenosine triphosphate
  • CDK cell cycle-dependent kinase
  • PLK Aurora kinase Polo-like kinase
  • KSP kinesin spindle protein
  • CHK Checkpoint kinase
  • the co-activation of Aurora kinase and CDK on the centrosome is one of the essential conditions for initiating mitosis of cells, which are related to each other and promote each other during the regulation of the whole cell cycle and mitosis.
  • the related inhibitors of the two studies are also deeper, and a number of compounds have entered the clinical stage, showing good prospects for anti-tumor drug development.
  • the study found that almost all tumors are associated with uncontrolled cell growth, impaired differentiation, and abnormal apoptosis caused by disorders of cell cycle regulation, and excessive activation of cyclin-dependent kinases (CDKs) is one of them. important reason.
  • CDKs are an important class of serine/threonine protein kinases that are not active in themselves and must be combined with cyclin to produce activity, which catalyzes substrate phosphorylation and drives cell cycle progression. DNA synthesis and mitosis are completed in sequence, causing cell growth and proliferation. At the same time, CDKs also play a negative regulatory role in binding to CDKs inhibitory factor (CDI), inhibiting cell cycle progression and preventing cell division. Since CDKs play a key role in regulating the proliferation and apoptosis of tumor cells, by selectively inhibiting the activity of CDKs in tumor tissues, it can play a positive role in the treatment of malignant proliferative diseases such as tumors, so small molecules inhibit CDKs. The screening and research of agents has become one of the hotspots of tumor treatment and development of new chemotherapy drugs.
  • CDI CDKs inhibitory factor
  • CDK1, CDK2, CDK4 and CDK6 are important in the regulation of CDKs throughout the cell cycle. Since the out of control of the cell cycle is an important cause of cancer, if the cell cycle can be prevented from entering the S phase, abnormal replication of DNA will not occur, and the G1 phase into the S phase is mainly regulated by CDK2/cyclin E, so CDK2 inhibitors can prevent cells. Week The phase enters the S phase for DNA replication.
  • CDK2/ C yclin A also controls the TS and G2 phases, which shows that CDK2 plays a very important role in the cell cycle, so if it is effective By inhibiting the activity of CDK2, it is possible to control the cell cycle, thereby achieving the effect of inhibiting the uncontrolled proliferation of tumor cells.
  • CDKs small molecule inhibitors have been published, and most of these inhibitors have a good inhibitory effect on CDK2, mainly by competitively binding to ATP active sites in CDKs, thereby inhibiting CDKs.
  • Aurora family is also a silk/threonine protein kinase. It is known that there are three structurally and functionally highly relevant Aurora kinase subtypes in human cells: Aurora A, B and C. It is involved in regulating the mitotic process of cells, including centrosome replication, formation of bipolar spindles, and rearrangement of chromosomes on the spindle, and accurate monitoring of spindle checkpoints, halting erroneous cell cycle progression and Complete the repair process. Throughout the cell cycle, Aurora kinase acts primarily on the M phase, which together with CDKs initiates a series of biochemical events of mitosis.
  • Aurora A and B Aurora B are closely related to tumors.
  • Aurora A is positioned at 20ql3.2
  • Aurora B Aurora B is closely related to tumors.
  • Aurora A is a potential oncogene when overexpressed;
  • These two chromosomal regions are ubiquitously amplified in breast cancer and colorectal cancer tumor tissues as well as in breast cancer, ovarian cancer, colon cancer, prostate cancer, neuroblastoma, and cervical cancer cell lines.
  • Aurora A, B and C have high homology in the catalytic region, only a small amino acid sequence at the end of the regulatory region and the catalytic region is different, and the active site bound to the inhibitor is located in the hinge region.
  • the ankle ring in the ATP structure can be combined with
  • the hydrophobic pocket of the Aurora kinase structure forms a hydrogen bond with the amino acid residues of the hinge region, and the Aurora kinase inhibitor competitively binds to the binding site of ATP to Aurora kinase and is also an ATP competitive inhibitor.
  • co-activation of Aurora kinase and CDKs on the centrosome is one of the essential conditions for initiating cell mitosis throughout the cell cycle, and they are associated with each other in regulating cell cycle and cell mitosis, so if Inhibition of Aurora kinase and CDKs activity can double inhibit the over-reproduction of tumor cells.
  • novel CDKs/Aurora multi-target inhibitors is extremely valuable.
  • CDK2 In the whole cell cycle, in addition to controlling the G1 phase into the S phase, CDK2 also controls cells in the S and G2 phases. Run, thus inhibiting CDK2 prevents the normal replication of DNA in the cell cycle.
  • the regulation of cell mitosis mainly relies on Aurora A, which plays an irreplaceable role in centrosome replication, bipolar spindle formation, and chromosome rearrangement. Inhibition of Aurora A can prevent cell mitosis. Therefore, the search for small-molecule multi-target inhibitors that can simultaneously act on CDK and Aurora kinases can affect the cell cycle of cancer cells and better achieve the purpose of treating tumors.
  • CDK2 and AuroraA kinase inhibitors competitively bind to the ATP-binding pocket, mainly through hydrogen bonding and hydrophobic interactions and enzyme binding. They share some features in common with the mode of action of small molecule inhibitors.
  • the common pharmacodynamic regions are as follows: The three-dimensional structure and physical and chemical properties of CDK2 and AuroraA kinase, such as hydrogen bonding, hydrophobicity and hydrophilicity, are very spatially distributed.
  • Hinge The hinge region is an important region of action for all ATP competitive inhibitors, where there are often 2-3 critical hydrogen bonds in the two kinases involved in hydrogen bond formation.
  • the residues are Glu81 and Leu83 (CDK2); Glu211 and Ala213 (Aurora A).
  • CDK2 Glu81 and Leu83
  • Glu211 and Ala213 Glu211 and Ala213
  • hydrophobic region A refers to a hydrophobic cavity formed between the hinge region and aspartic acid (CDK2 is Aspl45, Aurora A is Asp274), which is located close to the DFG motif of the kinase, because the ring region has a certain The flexibility allows the selection of hydrophobic structural segments to exhibit a certain diversity.
  • Hydrophilic zone There is a hydrophilic region in both active sites. The introduction of hydrophilic groups in this region plays an important role in the regulation of the physical and chemical properties of the compound.
  • the hydrophilic region of CDK2 is near Gln85; the hydrophilic region of Aurora A is near Leu215.
  • Multi-target drug molecules produced by overlapping ligands tend to have small molecular weights, physicochemical properties. Well, the resistance is greatly improved.
  • Protein kinases can be classified into multiple subfamilies depending on the phosphorylated substrate (eg, protein-tyrosine, protein-serine/threonine, lipid, etc.). Protein kinases are characterized by their regulatory mechanisms. These mechanisms include, for example, autophosphorylation, transphosphorylation by other kinases, protein-protein interactions, protein-lipid interactions, and protein-polynucleotide interactions.
  • a single protein kinase can be involved in a variety of regulatory mechanisms.
  • the function of protein kinase is to catalyze the phosphorylation of the side chain hydroxyl group of serine, threonine or tyrosine residues in the protein by ⁇ -phosphate at the end of ATP, regulate its substrate activity, and mediate most cellular signal transduction pathways. Regulate many different cellular processes. Such cellular processes include, but are not limited to, proliferation, differentiation, apoptosis, movement, transcription, translation, and other signaling processes. Phosphorylation events are used as molecular switches to modulate or regulate the biological function of target proteins.
  • Suitable protein kinases play a role in (directly or indirectly) activation or inactivation of signaling pathways such as metabolic enzymes, regulatory proteins, receptors, cytoskeletal proteins, ion channels or pumps or transcription factors.
  • Loss of signaling due to defects in protein phosphorylation control is associated with a variety of diseases including, for example, inflammation, cancer, diabetes, allergy/asthma, diseases and conditions of the immune system, diseases and conditions of the central nervous system, and blood vessels Generated diseases and conditions, etc.
  • the humankinome contains 518 protein kinases, which can be divided into 90 tyrosine kinases, 388 serine/threonine kinases and 40 non-classical kinases. Based on evolutionary analysis, Hanks and Hunter have classified human protein kinases several times. As the number of cloned protein kinase members increases, their classification of protein kinases is increasingly systematic and detailed. They use phylogenetic trees as the basis for protein kinase classification. Hanks and Hunter performed a phylogenetic analysis of the amino acid sequence of the entire functional domain of the protein kinase member published since June 1993.
  • This phylogenetic tree includes four large family of kinases: (a) the AGC family, including the cyclic nucleotide-dependent family (PKA and PKG families), the protein kinase C family, and the B-adrenergic receptor kinase (BARK) family.
  • AGC cyclic nucleotide-dependent family
  • PKA and PKG families cyclic nucleotide-dependent family
  • BARK B-adrenergic receptor kinase
  • the ribosomal S6 kinase family and other related kinases (b) the CaMK family, including the Ca2+/- calmodulin-regulated protein kinase family, the Snfl/AMPK family and other related protein kinases; (c) the CMGC family, including cell cycle factor-dependent Protein kinase (CDK) family, Erk (MAP) protein kinase family, glycogen synthase 3 kinase (GSK3) family, casein kinase II family, Clk family and other related kinases; (d) tyrosine protein kinase family. This phylogenetic tree also includes many protein kinases that do not belong to these four families.
  • CDK cell cycle factor-dependent Protein kinase
  • MAP Erk
  • GSK3 glycogen synthase 3 kinase
  • tyrosine protein kinase family This phylogenetic tree also includes many protein kina
  • Each large family can be further classified as a subfamily, with at least one instance per large family, namely ABL Abelson kinase; Akt Akt/protein kinase B (PKB); EGFR epidermal growth factor receptor; FGFR fibroblast growth factor receptor MLK mixed-lineage kinase; PDGFR platelet-derived growth factor receptor; TIE has immunoglobulin-like tyrosine kinase and EGF-like structural region; VEGFR vascular endothelial growth factor receptor.
  • PBB Akt Akt/protein kinase B
  • EGFR epidermal growth factor receptor FGFR fibroblast growth factor receptor MLK mixed-lineage kinase
  • PDGFR platelet-derived growth factor receptor PDGFR platelet-derived growth factor receptor
  • TIE has immunoglobulin-like tyrosine kinase and EGF-like structural region
  • VEGFR vascular endothelial growth factor receptor Members of the same family have similarities in
  • CMGC is a class of serine/threonine protein kinases that mostly phosphorylate serine or threonine in a proline-rich environment. Members of this family have a large insertion sequence in the X and XI functional subdomains. Since Dyrk (MNB), Dyrk2, and Dyrk3 all have high homology with Yakl, they should be attributed to one family. Among them, the CDK family has been introduced as a large class in CMGC. For example, CDK1, CDK2, CDK4 and CDK6 are mainly involved in the regulation of the whole cell cycle, while other CDK family members are involved in other biochemical processes.
  • CDK5 is essential for proper neuronal development and it also involves several neuronal proteins (eg, Tau, NUDE-K synapsin 1, DARPP32, and Muncl8/synaptic fusion protein 1A complex) Phosphorylation.
  • Neuronal CDK5 is normally activated by binding to the p35/p39 protein.
  • the activity of CDK5 can be dysregulated by binding to p25 (a truncated form of p35). Transformation of p35 to p25 and subsequent dysregulation of CDK5 activity can be induced by ischemia, excitotoxicity and ⁇ -amyloid peptide. Therefore, ⁇ 25 has been implicated in the pathogenesis of neurodegenerative diseases such as Alzheimer's disease, and therefore it has been To directly target these diseases.
  • CDK7 is a nuclear protein having cdc2CAK activity and binding to cyclin H.
  • CDK7 has been shown to be a component of the TFIIH transcriptional complex with R A polymerase II C-terminal domain (CTD) activity. It is involved in the regulation of HIV-1 transcription through a Tat-mediated biochemical pathway.
  • CDK8 binds to cyclin C and is involved in the phosphorylation of CTD of R A polymerase II.
  • the CDK9/cyclin-T1 complex (P-TEFb complex) involves prolonged control of R A polymerase ⁇ .
  • PTEF-b also requires the HIV-1 genome to be transcriptionally activated by the viral transactivator Tat by interacting with cyclin T1. Therefore, the CDK7, CDK8, CDK9 and P-TEFb complexes are potential targets for antiviral therapy.
  • CDK phosphorylation is carried out by a panel of CDK-activated kinases (CAK) and/or kinases such as weel, Mytl and Mikl.
  • Dephosphorylation is carried out by phosphatases such as cdc25Ca and c), pp2a or KAP.
  • pl5 gene encodes the pl5 protein belonging to the INK4 protein family, which acts on cyclin-dependent kinase (CDK).
  • CDK cyclin-dependent kinase
  • CMGC kinase mitogen-activated protein kinase
  • MAPK mitogen-activated protein kinase
  • MAPKK-MAPK-MAPK serine/threonine protein kinase that transduces extracellular signals into cells and nucleus, through a conserved three The cascade cascade (MAPKK-MAPK-MAPK) activates transcription factors and regulates gene expression.
  • This pathway is present in most cells and is involved in a variety of cellular functions and can be involved in many physiological processes such as cell movement, apoptosis, differentiation, and growth and proliferation.
  • MAPK signal transduction pathways have been identified: each signaling pathway is highly specific and has independent functions. To some extent, there are certain crosstalks (cr 0SS talk) between several signal paths.
  • ERK signaling pathway is one of the most thorough pathways.
  • MEK is a key enzyme of the Ras-Raf-MEK-ER signal transduction pathway, which regulates cellular responses to different growth signals.
  • Seven MEK subtypes have been found to phosphorylate and activate downstream MAPKs, in which MEK1 and MEK2 activate ERK, MEK3 and MEK4 activate p38, and MEK5 and MEK6 activate JNK.
  • MEK1/MEK2 is often used as a target for tumor therapy to develop promising anti-tumor drugs.
  • the p38MAPK signaling pathway is an important branch of the MAPK pathway that can be stimulated by stress stimuli (osmotic shock, UV, hypoxia), cytokine stimulation, insulin, growth factor stimulation, even in normal immune and inflammatory responses. Activated.
  • stress stimuli osmotic shock, UV, hypoxia
  • cytokine stimulation cytokine stimulation
  • insulin growth factor stimulation
  • growth factor stimulation even in normal immune and inflammatory responses.
  • the research of another signaling pathway p38 has become a hot spot in recent years, and it is the main target for clinical treatment of rheumatoid arthritis.
  • JNK .c-Jun N-terminal kinase
  • SAPK stress-activated protein
  • the JNK signaling pathway is involved in inflammation and autoimmune diseases including rheumatoid arthritis, irritable bowel syndrome, and atherosclerosis.
  • K5/Lyspeptin-activated protein kinase (BMK1) signaling pathway ERK5/BMK1 is the latest signaling pathway in the MAPK family. Its extracellular stressors have high glucose, hypoxia, blood flow shear stress, and reactive oxygen species (ROS). ), osmotic pressure and various mitogens such as EGF, NGF, etc.
  • ER 5/ BMK1 also follows the cascade of MAPK, MEK 2/3 (MAPK-KK)-MEK5 (MAPK)-BMK1 / ERK5 (MAPK).
  • ER 5 moves from the cytosol to the nucleus and phosphorylates a large number of downstream targets, including MEF2C, c-Myc, Bim, AP-1, and so on. ER 5 plays an important role in cell survival, proliferation and differentiation. It has been found to be closely related to pathological processes such as diabetic nephropathy, liver fibrosis and tumor.
  • Glycogen synthase kinase-3 (GSK-3) is a serine-threonine kinase that exists in humans in two ubiquitously expressed isoforms (GSK3a and PGSK3P). GSK3 is involved in embryonic development, protein synthesis, cell proliferation, cell differentiation, microtubule dynamics, cell motility, and apoptosis. Likewise, GSK3 is involved in the progression of disease states such as diabetes, cancer, Alzheimer's disease, stroke, epilepsy, motor neuron disease and/or head trauma. In terms of phylogeny, GSK3 is most involved with cyclin-dependent kinase (CDK).
  • CDK cyclin-dependent kinase
  • GSK3 forms part of the mammalian insulin response pathway and is capable of phosphorylation, and thus inactivates the glycogen synthase.
  • glycogen synthase activity is up-regulated and thus glycogen synthesis has thus been recognized as a potential against type II or non-insulin-dependent diabetes (a condition in which NIDDMX is resistant to insulin stimulation) Methods.
  • Inhibition of GSK3 e.g., by inactivation of the mammalian rapamycin target protein (mTOR) can upregulate protein biosynthesis.
  • GSK3 phosphorylation of GSK3 by kinases (eg, mitogen-activated protein kinase-activated protein kinase 1 (MAPKAP-K1 or RSK)) via the mitogen-activated protein kinase (MAPK) pathway has been regulated by GSK3 activity.
  • kinases eg, mitogen-activated protein kinase-activated protein kinase 1 (MAPKAP-K1 or RSK)
  • MAPKAP-K1 or RSK mitogen-activated protein kinase
  • GSK3 P is a key component in the vertebrate Wnt signaling pathway. This biochemical pathway has been shown to be critical for normal embryonic development and regulates cell proliferation in normal tissues. GSK3 became inhibitory in response to Wnt stimulation. This can result in dephosphorylation of GSK3 substrates such as Axin, adenomatous colon polyp (APC) gene products and ⁇ -catenin. Abnormal regulation of the Wnt pathway is associated with many cancers. Mutations in APC and/or ⁇ -catenin are common in colorectal cancer and other tumors. It has also been shown that ⁇ -catenin is important in cell adhesion. Therefore, GSK3 can also regulate the cell adhesion process to some extent.
  • APC adenomatous colon polyp
  • GSK3 In addition to the biochemical pathways already described, there are also Regulation of cell division by phosphorylation of cyclin-Dl, GSK3 in transcription factors (eg c-Jim, CCAAT/enhancer binding protein alpha (; C/EBP a ), c-Myc and/or other Data for phosphorylation of nuclear factor (NFATc), heat shock factor (HSF-1) and c-AMP response element binding protein (CREB), such as activated T-cells.
  • transcription factors eg c-Jim, CCAAT/enhancer binding protein alpha (; C/EBP a ), c-Myc and/or other Data for phosphorylation of nuclear factor (NFATc), heat shock factor (HSF-1) and c-AMP response element binding protein (CREB), such as activated T-cells.
  • NFATc nuclear factor
  • HSF-1 heat shock factor
  • CREB c-AMP response element binding protein
  • GSK3 is capable of hyperphosphorizing microtubules associated with protein Tau. Excessive phosphorylation of Tau destroys its normal binding to microtubules and can also cause the formation of intracellular Tau filaments. It is believed that the progressive enrichment of these filaments causes the ultimate neuronal dysfunction and degeneration. Thus, inhibition of Tau phosphorylation by inhibition of GSK3 can provide a means of limiting and/or preventing neurodegenerative effects.
  • Protein tyrosine kinases (PTKsM ⁇ ) is another important family of protein kinases that catalyze the transfer of the ⁇ -phosphate group of ATP to the tyrosine residues of many important proteins, phosphorylating phenolic hydroxyl groups. In normal cells (except nerve cells), tyrosine phosphorylation of proteins is rare. Although phosphorylated tyrosine accounts for only 0.5% of phosphorylated amino acids in the body, a series of evidence suggests that tyrosine phosphate It plays an important role in many cell regulation processes. It transmits cell signals and is an important factor in signal transduction.
  • Protein tyrosine kinases are involved in a series of cellular functions and are closely related to cell growth, differentiation, and proliferation. Tyrosine kinase plays a very important role in malignant growth and proliferation. The dysfunction of tyrosine kinase function leads to activation of its downstream signaling pathway, which leads to disorder of cell proliferation regulation and ultimately to tumor formation. Therefore, tyrosine kinase Inhibitors can prevent and treat malignant tumors.
  • PTKs non-receptor Tyrosine Kinases
  • NRTKs non-receptor Tyrosine Kinases
  • RTKs Receptor Tyrosine Kinases
  • NRTKs non-receptor Tyrosine Kinases
  • RTKs Receptor Tyrosine Kinases
  • the structure of these protein kinases has a catalytic structural region consisting of about 270 amino acid residues, which is very similar.
  • Receptor-type tyrosine kinases are proteins with a transmembrane structure, usually with an extracellular domain, a transmembrane domain, and an intracellular kinase domain. Clinical studies of cancer have shown that these receptors and their ligands are importantly linked to many tumors.
  • PDGF platelet-derived growth factors
  • CSF-I colony stimulating factor
  • FLT-3 stem cell factor receptor
  • c-kit stem cell factor receptor
  • FLT3 gene is located on chromosome 13ql2 and is an early hematopoietic growth factor receptor gene discovered in 1991. Its encoded FLT3 receptor belongs to the class III tyrosine kinase (RTK) receptor family.
  • FLT-3 When the extracellular domain of the FLT-3 receptor binds to its endogenous ligand, FLT-3 forms a homo- or heterodimeric complex, causing its tyrosine kinase activity to be activated and the activation loop to open.
  • the substrate protein is linked to the ATP binding site, further catalyzing the phosphorylation of the substrate protein, thereby mediating a series of downstream signal transduction, leading to cell proliferation and differentiation.
  • FLT-3 receptor is widely divided It is distributed in various tissues such as bone marrow hematopoietic stem/progenitor cells, thymus, lymph, placenta, brain, and gonads.
  • FLT-3 gene mutations mainly including internal tandem repeat mutations in the juxtamembrane domain and point mutations in the tyrosine kinase region
  • overexpression may lead to various hematological malignancies such as acute myeloid leukemia. Therefore, the use of FLT-3 as a target for tumor therapy has become a research hotspot, especially in hematological malignancies, FLT3 is expressed at high levels or FLT3 mutations cause uncontrolled FLT3 receptors and downstream molecular channels. Possible Ras activation.
  • Hematological malignancies include "leukemia, lymphoma (non-Hodgkin's lymphoma), Hodgkin's disease (also known as Hodgkin's lymphoma), and myeloma - for example, acute lymphoblastic leukemia (ALL), acute granulocytes Leukemia (AML), acute promyelocytic leukemia (APL), chronic lymphocytic leukemia (CLL), chronic myeloid leukemia (CML), chronic neutrophilic leukemia (CNL), acute undifferentiated cell leukemia (AUL) , regressive developmental large cell lymphoma (ALCL), juvenile lymphocytic leukemia (PML), juvenile granulocyte-monocytic leukemia (JMML), adult T-cell ALL, AML with trilineage myelodysplasia (AML/TMDS) Mixed general leukemia (MLL), myelodysplastic syndrome (MDSs), myelodysplastic
  • the extracellular structural region of the receptor tyrosine kinase binds to a specific ligand such as a growth factor, and the intracellular domain reaches kinase (self) phosphorylation.
  • the signaling pathways and biological processes mediated by receptor tyrosine kinases are concentrated in angiogenesis, and numerous studies have shown that selection of pathways involved in activation by receptor tyrosine kinases is required in angiogenesis.
  • Pathway activation for example by VEGFR or PDGFR, can lead to a variety of angiogenic processes such as cell proliferation, migration, survival and vascular permeability. This is inseparable from the series of vascular diseases.
  • Non-receptor tyrosine kinases are usually located in the cytosol, either continuously or temporarily, or in the cell's inner side, and are therefore called cytosolic tyrosine kinases in tumors.
  • nPTKs are often activated in tissues, promote cell proliferation, resist apoptosis, and promote tumorigenesis and development.
  • Non-receptor tyrosine kinases mainly include 10 families including SRC, ABL, JAK, ACK, CSK, FAK, FES, FRK, TEC, and SYK. Cytokine is involved in the regulation of cell growth and apoptosis through a variety of pathways for intracellular signal transduction.
  • Cytokine target cell growth, differentiation and apoptosis processes Cytokine receptors usually have no PTKs domain in the cytoplasm, but signal transduction in cytokine target cells after nrPTKs-mediated cytokine binding to its receptor. Among them, JAK kinase and its downstream STAT constitute an important signaling pathway. Many cytokines activate the JAK/STAT signaling pathway.
  • cytokine When a cytokine binds to its receptor, it causes a conformational change in the cytoplasmic receptor, which in turn activates binding to the receptor and causes a conformational change in the cytoplasmic receptor, thereby activating the receptor-associated
  • JAK kinase activates the corresponding STAT phosphorylation, and the activated STAT is freed from the receptor, forms a dimer and enters the nucleus, and binds to GAS-enhanced family members, thereby activating transcription, inducing cell transformation, and regulating certain
  • the expression of genes involved in cell proliferation and survival plays an important role in the development of tumors.
  • receptor tyrosine kinases such as vascular endothelial growth factor are more frequently studied in the EGFR and VEGFR tyrosine kinase inhibitors, and angiogenesis inhibition has been developed as a systemic therapeutic strategy for cancer.
  • Early marketed protein kinase Inhibitors are mainly single-target inhibitors for single targets. Although they have achieved remarkable results in cancer treatment at the time of marketing, the problems have gradually emerged with the prolonged use time and the increase in treatment cases. Compared to more target kinase inhibitors, it shows certain advantages. By simultaneously targeting multiple kinase molecules and multiple signaling pathways, not only the resistance caused by single target mutations can be avoided, but also the anti-tumor spectrum can be significantly expanded.
  • TKIs Three anti-angiogenic tyrosine kinase inhibitors (TKIs), sunitinib (simitinib), sorafenib (sorafenib) and pazopanib, have different binding abilities to angiogenic kinases recently approved Treatment of patients with advanced cancer (renal cell carcinoma, gastrointestinal stromal tumor, and hepatocellular carcinoma). Many other anti-angiogenic TKIs are undergoing clinical trials in the ⁇ - ⁇ phase. In addition to their beneficial anti-tumor activity, clinical tolerance and toxicity have been observed with these drugs.
  • CDK and Auraro A their related proteins, coordinate and drive key roles in the cell cycle in proliferating cells, they can be used for proliferative disorders such as cancer therapy (using therapies that usually target CDK or specific CDK), and can also be used for treatment. Other conditions such as viral infections, autoimmune diseases, and neurodegenerative diseases.
  • CDK targeted therapies can also provide clinical benefit in the treatment of the previously described diseases when used in combination with existing or new therapeutic agents. Compared with many current anti-tumor agents, and compared with the tyrosine kinases mentioned above, CDK mutations and their inhibitors have less resistance, and targeted anti-cancer treatment has potential advantages, and is not directly related to DNA interacts and can therefore reduce the risk of secondary tumorigenesis.
  • Small molecule multi-target CDK inhibitors such as flavopiridol and UCN201
  • most inhibitors are single-family inhibitors, and many companies have conducted such inhibitor studies, such as the novel small-cell multi-cyclin-dependent kinase inhibitor AT7519, which is in the ⁇ / ⁇ phase study phase, acts on CDKl/ Cyclin B, CDK2/Cyclin A, CDK3/Cyclin E and other targets, AT7519 can also induce GSK-3 P activation by down-regulating phosphorylation of the same family protein inhibitor GSK-3 P, leading to apoptosis.
  • the structural types of inhibitors of the cross-kinase protein family have not been reported so far, and the development of kinase inhibitors that selectively act on targets characterized by multiple diseases has a breakthrough significance. Summary of the invention
  • CDK2 and Aurora A inhibitors were constructed by computer-assisted drug design.
  • the effect relationship model and the drug virtual screening model were used to construct a library of related compounds.
  • a series of 4- (5-membered heterocyclic pyrimidine/pyridine substitutions were determined and synthesized by virtual screening.
  • Amino-1H-3-pyrazolecarboxamide is a novel structure of the mother nucleus.
  • RR 2 and R 3 each independently represent hydrogen, alkyl, cyano, halogen, haloalkyl, hydroxy, decyl, alkoxy, alkylthio, alkoxyalkyl, aralkyl, diarylalkyl , aryl or Het;
  • X and Y each independently represent an N atom or a CH group; wherein the CH group may be optionally substituted by R 4 , and R 4 may be hydrogen, alkyl, cyano, halogen, haloalkyl, hydroxy, decyl, alkoxy, alkane Thio group, alkoxyalkyl group, aralkyl group, diarylalkyl group, aryl group or Het;
  • Z, M each independently represents an NH, 0, S or CH radical, and Z, M must have one of NH, 0 or S; wherein the CH or NH radicals are each independently optionally substituted by R 5 , R 5 may be Hydrogen, alkyl, cyano, halogen, haloalkyl, hydroxy, decyl, alkoxy, alkylthio, alkoxyalkyl, aralkyl, diarylalkyl, aryl or Het;
  • a 1 each independently represent NH, 0, S or alkylene radical; wherein NH groups or alkylene radicals each independently may optionally be substituted with R 6, R 6 can be hydrogen, alkyl, cyano, halo, Haloalkyl, hydroxy, decyl, alkoxy, thiol, alkoxy, aryl, diaryl, aryl or Het;
  • a 2 each independently represents an alkylene group, C(0)NH, C(0), NHC(0), alkylene-C(0), C(O)-alkylene, alkylene-C ( O) - alkylene or NHC (0) NH; each of the aforementioned radicals may optionally be independently substituted with R 7, R 7 can be hydrogen, alkyl, cyano, halo, haloalkyl, hydroxy, mercapto, alkoxy Base, alkylthio, alkoxyalkyl, aralkyl, diarylalkyl, aryl or Het; Q 1 is selected from aryl or Het, wherein aryl or Het are each independently optionally substituted by one or more R 8 , and R 8 may be hydrogen, alkyl, cyano, halogen, haloalkyl, hydroxy, decyl , alkoxy, alkylthio, alkoxyalkyl, aralkyl, diarylalkyl, aryl or Het;
  • Q 2 is selected from aryl or Het, wherein aryl or Het are each independently optionally substituted by one or more R 9 , and R 9 may be hydrogen, alkyl, cyano, halogen, haloalkyl, hydroxy, decyl , alkoxy, alkylthio, alkoxyalkyl, aralkyl, diarylalkyl, aryl or Het;
  • An alkyl group is a linear or branched saturated hydrocarbon group having 1 to 6 carbon atoms; or a cyclic saturated hydrocarbon group having 3 to 6 carbon atoms; or a straight or branched chain having 1 to 6 carbon atoms a saturated hydrocarbon group having 3 to 6 carbon atoms in a saturated hydrocarbon group; an alkylene group being a linear or branched saturated hydrocarbon group having 1 to 6 carbon atoms; or a cyclic saturated hydrocarbon group having 3 to 6 carbon atoms Or a group formed by the loss of one hydrogen atom for a cyclic saturated hydrocarbon group having 3 to 6 carbon atoms which is bonded to a linear or branched saturated hydrocarbon group having 1 to 6 carbon atoms;
  • the alkoxy group is a linear or branched saturated hydrocarbon group having 1 to 6 carbon atoms; or a cyclic saturated hydrocarbon group having 3 to 6 carbon atoms; or a straight chain or a branch having 1 to 6 carbon atoms a cyclic saturated hydrocarbon group having 3 to 6 carbon atoms; wherein each carbon atom is optionally substituted by oxygen;
  • An alkylthio group is a linear or branched saturated hydrocarbon group having 1 to 6 carbon atoms; or a cyclic saturated hydrocarbon group having 3 to 6 carbon atoms; or a straight chain or a branch having 1 to 6 carbon atoms a cyclic saturated hydrocarbon group having 3 to 6 carbon atoms; wherein each carbon atom is optionally substituted by sulfur;
  • An alkoxyalkyl group is an alkoxy group as defined above attached to an alkyl group
  • the aryl group is a carbocyclic ring selected from phenyl, naphthyl, anthracenyl or tetrahydronaphthyl, each of which is optionally substituted by 1, 2 or 3 substituents, each substituent being independently selected from the group consisting of hydrogen, alkyl, cyanide Base, ⁇ , ⁇ alkyl, hydroxy, decyl, alkoxy, alkylthio, alkoxy, aryl, diaryl, aryl or Het;
  • An aralkyl group, a diarylalkyl group is an aryl group as defined above attached to an alkyl group;
  • Het is selected from piperidinyl, pyrrolyl, pyrazolyl, imidazolyl, furyl, thienyl, oxazolyl, isoxazolyl, thiazolyl, isothiazolyl, pyridyl, pyrimidinyl, pyrazinyl or Monocyclic heterocyclic ring of pyridazinyl; or selected from quinolyl, quinoxalinyl, fluorenyl, benzimidazolyl, benzoxazolyl, benzisoxazolyl, benzothiazolyl, benzo Isothiazolyl, benzofuranyl, benzothienyl, 2,3-dihydrobenzo[1,4]dioxanyl or benzo[1,3]dioxolyl a bicyclic heterocyclic ring; each monocyclic or bicyclic heterocyclic ring is optionally substituted by 1, 2 or 3 substituents, each substituent being
  • Halogen is a substituent selected from fluorine, chlorine, bromine or iodine;
  • a haloalkyl group is a straight or branched chain saturated hydrocarbon group having 1 to 6 carbon atoms, or a cyclic saturated hydrocarbon group having 3 to 6 carbon atoms, or a straight or branched chain having 1 to 6 carbon atoms a saturated hydrocarbon group having a ring saturation of 3 to 6 carbon atoms a hydrocarbon group; wherein one or more carbon atoms are substituted by one or more halogen atoms.
  • RR 2 and R 3 each independently represent hydrogen, alkyl, cyano, halogen, haloalkyl, hydroxy, decyl, alkoxy, alkylthio, alkoxyalkyl, aralkyl or aryl;
  • X and Y each independently represent an N atom or a CH atom; wherein the CH group may be optionally substituted by R 4 , and R 4 may be hydrogen, alkyl, cyano, phenyl, alkyl, hydroxy, decyl, alkoxy a base, an alkylthio group, an alkoxyalkyl group, an aralkyl group or an aryl group;
  • Z, M each independently represents an NH, 0, S or CH radical, and Z, M must have one of NH, 0 or S; wherein the CH or NH radicals are each independently optionally substituted by R 5 , R 5 may be Hydrogen, alkyl, cyano, halogen, haloalkyl, hydroxy, decyl, alkoxy, alkylthio, alkoxyalkyl, aralkyl or aryl;
  • a 1 each independently represent NH, 0, S or alkylene radical; wherein NH groups or alkylene radicals each independently may optionally be substituted with R 6, R 6 can be hydrogen, alkyl, cyano, halo, Haloalkyl, hydroxy, decyl, alkoxy, alkylthio, alkoxyalkyl, aralkyl or aryl;
  • a 2 each independently represents an alkylene group, C(0)NH, C(0) NHC(0)alkylene-C(0), C(O)-alkylene, alkylene-C(O) - alkylene or NHC (0) NH; each of the aforementioned radicals may optionally be independently substituted with R 7, R 7 can be hydrogen, alkyl, cyano, halo, haloalkyl, hydroxy, a mercapto group, an alkoxy group, An alkylthio group, an alkoxyalkyl group, an aralkyl group or an aryl group; Q 1 is selected from an aryl group or a Het, wherein each of the aryl group or Het may be independently substituted by one or more R 8 , and R 8 may be Is hydrogen, alkyl, cyano, ⁇ , alkyl, hydroxy, decyl, alkoxy, alkylthio, alkoxyalkyl, aralkyl or aryl;
  • Q 2 is selected from aryl or Het, wherein each aryl or Het may be independently substituted by one or more R 9 , and R 9 may be hydrogen, alkyl, cyano, thiol, alkyl, Hydroxy, mercapto, alkoxy, alkylthio, alkoxyalkyl, aralkyl or aryl.
  • RR 2 and R 3 each independently represent hydrogen, alkyl, cyano, halogen, haloalkyl, hydroxy, decyl, alkoxy, alkylthio or alkoxyalkyl;
  • X and Y each independently represent an N atom or a CH atom; wherein the CH group may be optionally substituted by R 4 , and R 4 may be hydrogen, alkyl, cyano, phenyl, alkyl, hydroxy, decyl, alkoxy Base, alkylthio or alkoxyalkyl;
  • Z, M each independently represents an NH, 0, S or CH radical, and Z, M must have one of NH, 0 or S; wherein the CH or NH radicals are each independently optionally substituted by R 5 , R 5 may be Hydrogen, alkyl, cyano, halogen, halogen An alkyl group, a hydroxyl group, a decyl group, an alkoxy group, an alkylthio group or an alkoxyalkyl group;
  • a 1 each independently represents an NH, O, S or alkylene radical; wherein the NH or alkylene radicals are each independently optionally substituted by R 6 , and R 6 may be hydrogen, alkyl, cyano, halogen, haloalkane a base, a hydroxyl group, a decyl group, an alkoxy group, an alkylthio group or an alkoxyalkyl group;
  • a 2 each independently represents an alkylene group, C(0)NH, C(0) NHC(0)alkylene-C(0), C(O)-alkylene, alkylene-C(O) - alkylene or NHC (0) NH; each of the aforementioned radicals may optionally be independently substituted with R 7, R 7 can be hydrogen, alkyl, cyano, Su ⁇ , ⁇ alkyl group, a hydroxyl group, a mercapto group, an alkoxy An oxy group, an alkylthio group or an alkoxyalkyl group;
  • Q 1 is selected from aryl or Het, wherein aryl or Het are each independently optionally substituted by one or more R 8 , and R 8 may be hydrogen, alkyl, cyano, thiol, alkyl, a hydroxy, decyl, alkoxy, alkylthio or alkoxyalkyl group;
  • Q 2 is selected from aryl or Het, wherein each aryl or Het may be independently substituted by one or more R 9 , and R 9 may be hydrogen, alkyl, cyano, thiol, alkyl, Hydroxy, decyl, alkoxy, alkylthio or alkoxyalkyl.
  • RR 2 and R 3 each independently represent hydrogen, alkyl, cyano, halogen, haloalkyl, hydroxy, decyl, alkoxy, alkylthio or alkoxyalkyl;
  • X and Y each independently represent an N atom or a CH atom; wherein the CH group may be optionally substituted by R 4 , and R 4 may be hydrogen, alkyl, cyano, phenyl, alkyl, hydroxy, decyl, alkoxy Base, alkylthio or alkoxyalkyl;
  • Z, M each independently represents an NH, 0, S or CH radical, and Z, M must have one of NH, 0 or S; wherein the CH or NH radicals are each independently optionally substituted by R 5 , R 5 may be Hydrogen, alkyl, cyano, halogen, haloalkyl, hydroxy, decyl, alkoxy, alkylthio or alkoxyalkyl;
  • a 1 each independently represents an NH, O, S or alkylene radical; wherein the NH or alkylene radicals are each independently optionally substituted by R 6 , and R 6 may be hydrogen, alkyl, cyano, halogen, haloalkane a base, a hydroxyl group, a decyl group, an alkoxy group, an alkylthio group or an alkoxyalkyl group;
  • a 2 each independently represents an alkylene group, C(0)NH, C(0) NHC(0)alkylene-C(0), C(0)-alkylene, alkylene-C(0) - alkylene or NHC (0) NH; each of the aforementioned radicals may optionally be independently substituted with R 7, R 7 can be hydrogen, alkyl, cyano, Su ⁇ , ⁇ alkyl group, a hydroxyl group, a mercapto group, an alkoxy An oxy group, an alkylthio group or an alkoxyalkyl group;
  • Q 1 is an aromatic ring or a substituted aromatic ring selected from the group consisting of phenyl, naphthyl, pyrrolyl, furyl, thienyl, pyridyl, pyrazinyl, pyrimidinyl, each of which may optionally be Substituted by one or more R 8 , R 8 may be hydrogen, alkyl, cyano, ⁇ , alkyl, hydroxy, decyl, alkoxy, alkylthio or alkoxyalkyl;
  • Q 2 is an aromatic ring selected from the group consisting of phenyl, naphthyl, pyrazolyl, furyl, thienyl, pyridyl, pyrazinyl, pyrimidinyl, Or a C 3 -C 8 aliphatic carbocyclic ring, or the following aliphatic heterocyclic ring: tetrahydropyrrolyl, piperidinyl, morpholinyl, methylpiperazinyl; each of the above groups may optionally be one by one Alternatively, a plurality of R 8 may be substituted, and R 8 may be hydrogen, alkyl, cyano, halogen, haloalkyl, hydroxy, decyl, alkoxy, alkylthio or alkoxyalkyl.
  • RR 2 and R 3 each independently represent hydrogen, alkyl, cyano, halogen, haloalkyl, hydroxy, decyl, alkoxy, alkylthio or alkoxyalkyl;
  • X and Y each independently represent an N atom or a CH atom; wherein the CH group may be optionally substituted by R 4 , and R 4 may be hydrogen, alkyl, cyano, phenyl, alkyl, hydroxy, decyl, alkoxy Base, alkylthio or alkoxyalkyl;
  • Z, M each independently represents an NH, 0, S or CH radical, and Z, M must have one of NH, 0 or S; wherein the CH or NH radicals are each independently optionally substituted by R 5 , R 5 may be Hydrogen, alkyl, cyano, halogen, haloalkyl, hydroxy, decyl, alkoxy, alkylthio or alkoxyalkyl;
  • a 1 each independently represents an NH, O, S or alkylene radical; wherein the NH or alkylene radicals are each independently optionally substituted by R 6 , and R 6 may be hydrogen, alkyl, cyano, halogen, haloalkane a base, a hydroxyl group, a decyl group, an alkoxy group, an alkylthio group or an alkoxyalkyl group;
  • a 2 each independently represents an alkylene group, C(0)NH, C(0) NHC(0)alkylene-C(0), C(O)-alkylene, alkylene-C(O) - alkylene or NHC (0) NH; each of the aforementioned radicals may optionally be independently substituted with R 7, R 7 can be hydrogen, alkyl, cyano, Su ⁇ , ⁇ alkyl group, a hydroxyl group, a mercapto group, an alkoxy An oxy group, an alkylthio group or an alkoxyalkyl group;
  • Q 1 is an aromatic ring or a substituted aromatic ring selected from the group consisting of phenyl, naphthyl, pyrrolyl, furyl, thienyl, pyridyl, pyrazinyl, pyrimidinyl, and the substituent may be 1 to 2 halogens or Trifluoromethyl;
  • Q 2 is an aromatic ring selected from the group consisting of phenyl, naphthyl, pyrazolyl, furyl, thienyl, pyridyl, pyrazinyl, pyrimidinyl, or C 3 -C 8 aliphatic carbocyclic ring, or the following Aliphatic heterocycle: tetrahydropyrrolyl, piperidinyl, morpholinyl, methylpiperazinyl.
  • Another preferred embodiment of the invention consists in:
  • RR 2 and R 3 each independently represent hydrogen, dC 4 alkyl
  • X and Y each independently represent an N atom or a CH atom group
  • Z, M each independently represents an NH, 0, S or CH atomic group, and Z, M must have one of NH, 0 or S;
  • a 1 each independently represents an NH, 0, S or CH 2 atomic group
  • a 2 each independently represents a chain dC 4 alkylene group, C(0)NH, C(0), NHC(O);
  • Q 1 is an aromatic ring or a substituted aromatic ring selected from the group consisting of phenyl, naphthyl, pyrrolyl, furyl, thienyl, pyridyl, pyrazinyl, pyrimidinyl, and the substituent may be 1 to 2 halogens or Trifluoromethyl;
  • Q 2 is an aromatic ring selected from the group consisting of phenyl, naphthyl, pyrazolyl, furyl, thienyl, pyridyl, pyrazinyl, pyrimidinyl, or C 3 -C 8 aliphatic carbocyclic ring, or the following Aliphatic heterocycle: tetrahydropyrrolyl, piperidinyl, morpholinyl, methylpiperazinyl.
  • Another preferred embodiment of the invention consists in:
  • RR 2 and R 3 each independently represent hydrogen or methyl
  • a 1 represents NH
  • a 2 represents CH 2 ;
  • Q 1 represents a phenyl group;
  • Q 2 represents a morpholinyl group and a methyl piperazinyl group.
  • pharmaceutically acceptable salts include the acid addition salts of the compounds of formula I with the following acids: hydrochloric acid, hydrobromic acid, sulfuric acid, phosphoric acid, methanesulfonic acid, benzenesulfonic acid, p-toluenesulfonic acid, naphthalenesulfonic acid Acid, citric acid, tartaric acid, lactic acid, pyruvic acid, acetic acid, maleic acid or succinic acid, fumaric acid, salicylic acid, phenylacetic acid, mandelic acid.
  • acid salts of inorganic bases such as: basic metal cations, alkaline earth metal cations, ammonium cation salts.
  • sulfur When sulfur is present, it may be present as -S -, -s(o)- or -s(o) 2 - when the properties of adjacent atoms and groups permit.
  • the compounds of formula I are preferably the following structural compounds:
  • the compounds of the present invention can be prepared by the above or similar preparation methods as described above, and the corresponding starting materials can be selected depending on the substituents and the position of the substituents.
  • the pyrazole group may be any one of the following two tautomeric forms A and B. , N - ⁇ , *- just
  • t tautomeric form examples include, for example, keto-, enol- and enolate-forms, such as, for example, in the following tautomeric pairs: ketone/alcohol (described below), imine/ene Amine, amide/imine alcohol, hydrazine/hydrazine, nitroso/oxime, thioketone/enyl mercaptan and nitro/acid-nitro group.
  • ketone/alcohol described below
  • imine/ene Amine amide/imine alcohol
  • hydrazine/hydrazine nitroso/oxime
  • thioketone/enyl mercaptan nitro/acid-nitro group.
  • CMGC family kinases particularly selected from the group consisting of CDK cyclin kinase, GSK glycogen synthase, mitogen-activated protein kinase (MAPK) and CDK-like kinase (CLK) family kinases. .
  • Preferred compounds are compounds which inhibit one or more of CDK kinase, GSK kinase and MAPK kinase selected from the group consisting of CDK1, CDK2, CDK3, CDK4, CDK5, CDK6, CDk7, CDK9, GSK3, CHK2, ER 7 FGFR, VEGFR, JAk, JNK, KDR, PDGFR, C-SCR, Aurora and FLT3.
  • the compounds of the invention are also considered to be TK family kinase inhibitors, in particular selected from the group consisting of receptor tyrosine family inhibitors and non-receptor tyrosine family inhibitors, wherein in particular selected from receptor kinase family inhibitors, epidermal growth factor receptors EGFR family, platelet growth factor receptor (PDGFR) family, nerve growth factor receptor (NGFR), fibroblast growth factor receptor (FGFR) family, hepatocyte growth factor receptor (HGFR) family, vascular endothelium Growth factor receptor (VEGFR) and insulin receptor (INSR) family and other RTKs non-receptor tyrosine kinases mainly include 10 families including SRC, ABL, JAK, ACK, CSK, FAK, FES, FRK, TEC, SYK, etc.
  • CMGC family and TK family kinases As a result of their regulation or inhibition of the CMGC family and TK family kinases, they are expected to be useful in providing a means of preventing or restoring abnormalities in cell proliferation, differentiation and related signal transduction processes. It will therefore prove useful for the treatment or prevention of cell signaling disorders and disorders, such as tumors. It is also envisioned that the compounds of the invention are useful in the treatment of diseases such as inflammation, viral infections, sputum or non-insulin dependent diabetes, autoimmune diseases. Head trauma, stroke, epilepsy, neurological diseases (such as Alzheimer's disease), motor neuron diseases.
  • diseases such as inflammation, viral infections, sputum or non-insulin dependent diabetes, autoimmune diseases. Head trauma, stroke, epilepsy, neurological diseases (such as Alzheimer's disease), motor neuron diseases.
  • the compounds of the invention are also considered to be inhibitors of glycogen synthase kinase-3 (GSK3).
  • GSK3 glycogen synthase kinase-3
  • CDK kinases and glycogen synthase kinases are expected to be useful as a means of providing cell cycle arrest or restorative control of aberrantly differentiated cells.
  • these compounds will prove useful in the treatment or prevention of proliferative disorders, such as cancer.
  • the compounds of the invention are useful in the treatment of conditions such as viral infections, type II or non-insulin dependent diabetes, autoimmune diseases, head trauma, stroke, epilepsy, neurodegenerative diseases such as Alzheimer's disease.
  • a subset of the disease states and conditions for which the compounds of the invention are useful include viral infections, autoimmune diseases, and neurodegenerative diseases.
  • tumors that can be inhibited include, but are not limited to, cancer: eg, bladder cancer, breast cancer, colon cancer (eg, colorectal cancer, lung cancer)
  • GSK3b can regulate glycogen synthase, p27, and other protein factors, as well as participate in intracellular classical signals.
  • Pathway and other methods regulating the differentiation, proliferation and apoptosis of cancer cells, play an important role in the pathogenesis of neuropsychiatric diseases by participating in the behavioral regulation of monoamine neuroreceptors, and can also pass other factors outside the pathway and Pathways mediate the development of neurodegenerative diseases and, therefore, become a hot target for the suppression of various major diseases.
  • the invention includes the use of a compound of the invention to inhibit FLT3 kinase activity in a cell or a subject, or to treat a condition associated with FLT3 kinase activity or expression.
  • cancers examples include, but are not limited to, cancer, such as bladder cancer, breast cancer, colon cancer (eg, colorectal cancer, such as colon adenocarcinoma and colon adenoma), kidney cancer, epidermal cancer, liver cancer, lung cancer (eg, gland) Cancer, small cell lung cancer and non-small cell lung cancer), esophageal cancer, gallbladder cancer, ovarian cancer, pancreatic cancer (eg exocrine pancreatic cancer), gastric cancer, cervical cancer, thyroid cancer, prostate cancer or skin cancer (eg squamous cell carcinoma) Hematopoietic tumors of the lymphoid lineage (eg leukemia, acute lymphocytic leukemia, B-cell lymphoma, T-cell lymphoma, Hodgkin's lymphoma, non-Hodgkin's lymphoma, hairy cell lymphoma or Burkitt's lymphoma); ); hematopoietic tumors of the lymphoi
  • CMGC and TK dual family kinase activity can be measured using the assays described in the Examples below, and the level of activity exhibited by a given compound can be defined by the IC50 value.
  • the synthesized compound was assayed for its inhibitory activity against CDK2/A by fluorescence resonance energy transfer (FRET), and compared with the positive control, a compound having a better activity was selected.
  • CDK2/A is obtained by purification or by direct purchase of the kit.
  • CDK2/A is diluted with a kinase dilution to a suitable concentration and used.
  • the kinase reaction mixture contained CDK2/A, peptide substrate HEPES (pH 7.5), BRIJ-35 MgCl 2 and EDTA.
  • the CDK2 phospho-peptide substrate was used as a 100% phosphorylation control without ATP as a 0% phosphorylation control.
  • a moderately diluted Development Reagent A was added to the reaction system.
  • the reaction was continued for 1 h at room temperature, and Stop Reagent was added to terminate the reaction.
  • the excitation wavelength was 400 nm, and the fluorescence intensities at wavelengths of 445 nm (coumarin) and 520 nm (fluorescein) were simultaneously detected.
  • the inhibition rate of the test compound was calculated according to the formula.
  • the synthesized compound was assayed for its inhibitory activity against Aurora A by fluorescence resonance energy transfer (FRET), and a more active compound was selected as compared with the positive control.
  • FRET fluorescence resonance energy transfer
  • Aurora A is obtained by purification or by purchasing a kit directly.
  • Aurora A is diluted with a kinase dilution to a suitable concentration and used.
  • the kinase reaction mixture contains Aurora A, peptide substrate HEPES (pH 7.5), BRIJ-35 MgCl 2 and EDTA.
  • Aurora A phospho-peptide substrate was used as a 100% phosphorylation control without ATP as a 0% phosphorylation control.
  • a moderately diluted Development Reagent A was added to the reaction system.
  • the reaction was continued for 1 h at room temperature, and Stop Reagent was added to terminate the reaction.
  • the excitation wavelength was 400 nm, and the fluorescence intensities at wavelengths of 445 nm (coumarin) and 520 nm (fluorescein) were simultaneously detected.
  • the inhibition rate of the test compound was calculated according to the formula.
  • the assay was based on the HotSpot kinase screening platform developed by RCB, using standard radiolabeled kinase assays, kinases (determining IC50 values by cloning to baculovirus and expressing kinase domain activity assays, and baculovirus expression using FastBac baculovirus) System and substrate and process (principle: Substrate + [33P]-ATP 33P-Substrate + ADP) can detect the interaction between test compounds and 342 kinase and diseases associated with mutation variants. Comprehensive, high-throughput screening of compounds that act on human kinases.
  • the kinase assay used 10 ⁇ , [33 ⁇ ] ⁇ , and biotin peptides to determine the 33 ⁇ combination rate using an SA-flash plate.
  • the experiments were performed at various concentrations and diluted with a series of DMSO stock solutions.
  • the IC50 value was determined using data regression curve analysis corresponding to different concentrations, or the inhibition rate was detected at a single concentration.
  • the synthesized compounds were subjected to single-dose 10 ⁇ double-well rescreening of 342 kinases according to the standard screening procedure.
  • the positive control was diluted with Staurosporine to obtain 10 doses at a 4-fold dilution with a starting concentration of 10 ⁇ .
  • other positive controls The drug was given 10 doses at 3 times the concentration of 342 kinases at a starting concentration of 20 ⁇ M o: provided by Reaction Biology, Pennsylvania, USA.
  • DMSO was purchased from Sigma, USA.
  • ALK5/TGFBR1 (12), ALK6/BMPR1 B (13), ARAF (14), AR 5/NUAK1 (15), ASK1/MAP3K5 (16), Aurora A (17), Aurora B (18), Aurora C ( 19), AXL (20), BLK (21), BMPR2 (22), BMX/ETK (23) BRAF (24), BRK (25), BRSK1 (26), BRSK2 (27) BTK (28), c- Kit(29), c-MER(30), c-MET(31), c-Src(32), CAMKla(33), CAMKlb(34), CAMKld(35), CAMKlg(36), CAMK2a(37) CAMK2b (38), CAMK2d (39), CAMK2g (40), CAMK4 (41), CAMK 1 (42), CAMKK2 (43) CDC7/DBF4 (44), CDKl/cyclin A (45) CDKl/cyclin B (46) CDK
  • EPHB4 (106), ERBB2/HER2 (107) ERBB4/HER4 (108), ER 1 (109), ERK2/MAPK1 (110), ER 5/MAPK7 (111) ER 7/MAPK15 (112) FAK/PTK2 (113) FER(114), FES/FPS(115), FGFR1(116), FGFR2(117) FGFR3(118), FGFR4(119), FGR(120), FLT1/VEGFR1(121), FLT3(122), FLT4 /VEGFR3(123), FMS(124), FRK/PTK5(125) FYN(126) GCK/MAP4K2(127) GLK/MAP4K3(128) GR 1(129) GRK2(130) GR 3(131) GR 4( 132) GRK5(133) GR 6(134), GRK7(135), GSK3a(136), GSK3b(137) Haspin(138) HCK(139),
  • HGK/MAP4K4 (140), HIPK1 (141), HIPK2 (142) HIPK3 (143) HIPK4 (144),
  • TAOK2/TAO 1 (308), TAOK3/JIK (309) TBK1 (310), TEC (311), TESK1 (312), TGFBR2 (313) TIE2/TEK (314), TLK1 (315), TLK2 (316) TNIK (317) TNK1 (318), TRKA (319) TRKB (320) TR C (321) TSSK2 (322), TSSK3/STK22C (323) TTBK1 (324), TTBK2 (325) TXK (326) TYK1/LTK (327 ) TYK2(328) TYR03/SKY(329) ULK1(330) ULK2(331) ULK3(332) VR 1(333) VRK2(334) WEE1(335) WNK1(336) WNK2(337) WNK3(338) YESA" ES1 (339) ZAK/mLTK (340) ZAP70 (341) ZIPK/DAPK3 (342).
  • the compound has an inhibitory activity of more than 90% on 200 kinases (Kinase No. labeled in the outer ring), and is selective for the GMGC family: CDK family kinase CDK6/cyclin Dl (57 CDK6/cyclin D3(58) CDK4/cyclin Dl(53) CDK4/cyclin D3(54), CDK5/p35(56), GSK3b kinase (137), CDK5/p25(55), CDK16/cyclin Y PIM1 (48) DAPK2 (98), ER 7/MAPK15 (112), and TK family: KDR/VEGFR2 (161), FLT1/VEGFR1 (121), FLT4/VEGR3 (123), FLT3 (122). Its inhibitory activity is above 99%.
  • the IC50 test was performed on the compounds of the GMGC family and the TK family at a concentration of 1 ⁇ M, and a 10-point 3-fold serial dilution of each compound was prepared in a 100% DMSO solution. 20 ⁇ ⁇ ATP, kinase and its substrate biotin peptide.
  • CDKl/cyclin A 0.157 0.142 0.128 0.158 0.173 0.164 0.003
  • CDKl/cyclin B 0.087 0.079 0.071 0.088 0.096 0.091 0.003
  • CDK2/cyclin A 0.015 0.014 0.013 0.015 0.017 0.016 0.001
  • CDK3/cyclin E 0.190 0.171 0.155 0.191 0.210 0.198 0.004
  • CDK4/cyclin Dl 0.006 0.006 0.006 0.008 0.007 0.007 0.009
  • CDK5/p35 0.015 0.013 0.012 0.015 0.016 0.015 0.002
  • CDK6/cyclin Dl 0.005 0.004 0.004 0.005 0.005 0.005 0.003
  • CDK7/cyclin H 0.522 0.495 0.471 0.583 0.611 0.575 0.256
  • KDR/VEGFR2 0.035 0.033 0.031 0.039 0.041 0.038 0.015
  • Kinase screening results indicate that the synthesized compounds are to the kinase tyrosine protein kinase receptor (RTK) family of FGFR1, FGFR2, KDR/VEGFR2, FLT1/VEGFR1, FLT3, FLT4/VEGFR3 and
  • the CDK kinase, GSK3b, JAK, ER 7/MAPK15 and other kinases of the CGCM family exhibit activity and selectivity, and are particularly active and selective for the kinases CDK, GSK3b and FLT3. At the same time, it has special significance for the inhibitory activity of VEGFR and CDK.
  • MTT method The presence of NADP-associated dehydrogenase in living cell mitochondria can reduce exogenous MTT to insoluble blue-purple crystals (Formazan) and deposit in cells, whereas dead cells do not.
  • the purple crystals in the cells were lysed with dimethyl sulfoxide (DMSO) or a triple solution (10% SDS-5% isobutanol-O.Olmol/L HCL) and determined by enzyme-linked immunosorbent assay at a wavelength of 570 nm. Its OD value indirectly reflects its viable cell mass.
  • DMSO dimethyl sulfoxide
  • HCL enzyme-linked immunosorbent assay
  • the tumor cells to be tested in the logarithmic growth phase of the cells are seeded in a 96-well culture plate according to a certain amount of cells, and after 24 hours of culture, the sieved sample is added (the suspension cells can be directly added after the plate is attached), the cells are After continuing to culture for 48 hours at 37 ° C and 5% CO 2 , MTT was added to continue the culture for 4 hours, and the crystal was dissolved in DMSO, and the label was placed under the microplate reader. Line detection.
  • Pharmacological test results indicate that the compound of the present invention has multiple kinase inhibitory activities and can be used for preventing or treating clinical diseases associated with protein kinase inhibitors, such as melanoma, liver cancer, renal cancer, acute leukemia, non-small cell lung cancer, Prostate cancer, thyroid cancer, skin cancer, colorectal cancer, pancreatic cancer, ovarian cancer, breast cancer, myelodysplastic syndrome, esophageal cancer, gastrointestinal cancer or mesothelioma.
  • protein kinase inhibitors such as melanoma, liver cancer, renal cancer, acute leukemia, non-small cell lung cancer, Prostate cancer, thyroid cancer, skin cancer, colorectal cancer, pancreatic cancer, ovarian cancer, breast cancer, myelodysplastic syndrome, esophageal cancer, gastrointestinal cancer or mesothelioma.
  • the active compound may be administered alone or as a pharmaceutical combination (for example a formulation) comprising at least one active compound of the invention and one or more pharmaceutically acceptable carriers, adjuvants, excipients , thinner, filler, stabilizer, preservative. on the other hand.
  • a pharmaceutical combination for example a formulation
  • the present invention provides synthetic compounds and subtypes thereof in the form of a pharmaceutical composition, such as a compound of formula ⁇ as defined herein and subgroups thereof.
  • the pharmaceutical combination may be in any form suitable for oral, parenteral, topical, intranasal, ophthalmic, otic, rectal, intravaginal or scalp administration.
  • compositions When the compositions are intended for parenteral administration, they can be formulated for intravenous, intramuscular, intraperitoneal, subcutaneous administration or delivery directly to the target organ or tissue by injection, infusion or other means of delivery.
  • Some formulations are prepared as follows: 1. Lyophilized formulation: An equivalent amount of the compound of formula (I) as defined herein and subgroups thereof are placed in a 50 mL vial and lyophilized. During lyophilization, the composition was frozen using a one-step freezing method at -45 °C.
  • Capsules were prepared as follows: 100 mg of the synthesized compound was mixed with 100 mg of lactose, and the resulting mixture was filled into a standard opaque hard gelatin capsule. 4. (iii) Injectable I The parenteral composition for injection administration is prepared as follows: The synthesized compound (for example, a salt form) is dissolved in water containing 10% propylene glycol to give a concentration of the active compound of 1.5% by weight. The solution is then sterilized by filtration, filled in an ampoule, and sealed. 5.
  • the synthesized compound for example, a salt form
  • the parenteral composition for injection is prepared by dissolving the synthesized compound (2 mg/mL) and mannitol (50 mg/mL) in water, sterilely filtering the solution, and filling in a sealable Lml vial or ampoule. 6.
  • Subcutaneous Injection The subcutaneous administration composition was prepared as follows: The synthesized compound was mixed with a pharmaceutical grade corn oil to give a concentration of 5 mg/mL. The composition is sterilized and filled in a suitable container.
  • the invention also provides the use of a compound of structure (I) as defined herein and subgroups thereof as an antifungal agent.
  • These compounds can be used in animal medicine (for example in the treatment of mammals, such as humans), in the treatment of plants (for example in agriculture and horticulture), or as general antifungal agents, for example as preservatives and disinfectants.
  • the invention provides an antifungal composition for agricultural (including horticultural) use, the composition comprising a compound of formula (I) as defined above and subgroups thereof, such as structure (I) and agriculturally acceptable dilution Agent or carrier.
  • the antifungal activity of the synthesized compounds was determined by the following protocol, including Candida parapsilosis Candida tropicalis, Candida albicans-ATCC 36082, and Cryptococcus neoformans.
  • the test microorganisms were maintained on a Sabourahd dextrose agar slant at 4 °C.
  • a single-state suspension of each microorganism was prepared as follows: on a rotating drum at 27 ° C, in yeast containing amino acids (DifCO, DetrOit, MiCh.) (pH 7.0) and 0.05 morpholine propanesulfonic acid (MOPS) - In the nitrogen-based broth (YNB), the yeast is grown overnight.
  • yeast containing amino acids DifCO, DetrOit, MiCh.
  • MOPS morpholine propanesulfonic acid
  • the suspension was then centrifuged, washed twice with 0.85% NaCl, and the washed cell suspension was sonicated for 4 seconds (Branson Sonifier, Model 350, Danbury, Conn.). The singlet blast spores were counted at 0. 85%. Adjust to the desired concentration in NaCl.
  • the activity of the test compound was determined using a modified method of broth microdilution technique. The test compound was diluted to a ratio of 1.0 mg/mL in DMSO, and then diluted to 64 g/mL in a YNB broth containing MOPS ( ⁇ 7 ⁇ 0) (using fluconazole as a control) to obtain the work of each compound. Solution.
  • the first and third to 12 wells were prepared with YNB broth, and a ten-fold dilution of the compound solution (concentration range of 64 to 0.125 g/mL) was prepared at the 2nd to 11th holes.
  • the 1431 well served as a sterile control and blank for spectrophotometry.
  • the 12th well served as a growth control.
  • Each well of the 2nd to 11th wells of the microplate was inoculated with ⁇ (the final inoculum number was 104 organisms/mL). The plate that was inoculated was at 35.
  • the plate was shaken with a Runzi mixer (Vorte-Genie 2 Mixer, Scientific Industries, Inc., Bolemia 7N. Y.) for 2 minutes, and the absorbance at 420 nm was measured (Automatic Microplate Reader, DuPont Instruments, Wilmington). , Del.), the MIC value is determined spectrophotometrically.
  • the MIC endpoint was defined as the lowest drug concentration showing a decrease in growth of about 50% (or more) compared to control wells. In the turbidity assay, this is defined as the lowest drug concentration (IC50) for the small hole turbidity ⁇ 50% control.
  • MCC minimum cell lysis concentration
  • the invention also provides a method of treating a fungal infection of a plant or seed, the method comprising treating the plant or seed with an antifungal effective amount of a fungicidal composition as defined above.
  • the synthesized compound was dissolved in acetone and then serially diluted in acetone to give a desired concentration in a range.
  • the composition was then tested for activity against tomato leaf blight (Phytophthora infestans) using the following protocol. Tomato (Rutgers variety) seeds were grown in a soilless peat canned mixture until the seedlings were 10-20 cm high.
  • test compound was then sprayed onto the plants to overflow, at a ratio of 100 ppm. After 24 hours, the test plants were sprayed with a spore-pocket aqueous suspension of Phytophthora infestans and stored overnight in a dew chamber. The plants are then transferred to the greenhouse until the disease forms on the untreated control plants.
  • FIG. 1 is a graph showing the inhibition rate of a portion of compounds against 342 kinases, wherein the kinases are numbered (see above).
  • the melting point is determined by a b-shaped melting point tube, the medium is methyl silicone oil, the thermometer is not corrected; the IR spectrum is measured by Nicolet Impact 410 infrared spectrometer, KBr is compressed; 1HNMR is JEOL FX90Q type Fourier transform nuclear magnetic resonance apparatus, BRUKER ACF-300 type nuclear magnetic The resonance instrument and the BRUKER AM-500 NMR instrument were completed (TMS internal standard); the MS was measured with a Nicolet 2000 type Fourier transform mass spectrometer and a MAT-212 mass spectrometer; the microwave reaction was performed with a CEM Discover single mode microwave instrument.
  • the preparation method is similar to (1-1), N-(4-((4-methyl-1-piperazinyl)methyl)phenyl-4-amino-1H-3-pyrazolecarboxamide 120 mg ( 0.38 mmol) and 4-chloro-6-methylthieno[2,3-d]pyrimidine 70 mg (0.38 mmol) as a starting material to give (1-3) 75 mg, yield 42.9%. mp: 235-238 C, MS [ ⁇ + ⁇ ]+ 463.3.
  • the preparation method is similar to (1-1), N-(4-((4-methyl-1-piperazinyl)methyl)phenyl-4-amino-1H-3-pyrazolecarboxamide 129 mg ( 0.41 mmol) and 4-chlorothieno[3,2-d]pyrimidine 70 mg (0.41 mmol) as a starting material to give (1-9) 88 mg, yield 47.8%. mp: > 280. + ⁇ ] + 449.3.
  • the preparation method is similar to (1-1), N-(4-((4-methyl-1-piperazinyl)methyl)phenyl-4-amino-1H-3-pyrazolecarboxamide 144 mg ( 0.46 mmol) and 4-chloro-7H-pyrrolo[2,3-d]pyrimidine 70 mg (0.46 mmol) as a starting material to give (1-11) 63 mg, yield 32.0%. mp: 229-230. , MS [ ⁇ + ⁇ ]+ 432.3.
  • the preparation method is similar to (1-1), with N-(4-((4-methyl-1-piperazinyl)methyl)phenyl-4-amino-1H-3-pyrazolecarboxamide 132 mg ( 0.42 mmol) and 4-chloro-6-methyl-7H-pyrrolo[2,3-d]pyrimidine 70 mg (0.42 mmol) as the starting material, (1-13) 56 mg, The yield was 23.0%. Mp: 268-270. C, MS [M+H]+ 446.3.
  • the preparation method is similar to (1-1), N-(4-((4-methyl-1-piperazinyl)methyl)phenyl-4-amino-1H-3-pyrazolecarboxamide 144 mg ( 0.46 mmol) and 4-chloro-5H-pyrrolo[3,2-d]pyrimidine 70 mg (0.46 mmol) as a starting material to give (1-17) 50 mg, yield 25.4%. mp: 261-263. , MS [ ⁇ + ⁇ ] + 432.3.
  • the preparation method is similar to (1-25), with N-(4-((4-methyl-1-piperazinyl)methyl)phenyl-4-amino-1H-3-pyrazolecarboxamide 121 mg ( 0.38 mmol) and 7-chloro-3-methylthieno[2,3-c]pyridine 70 mg (0.38 mmol) were used as the starting material to give (1-31) 71 mg, yield 40.3%. mp: 258-260 C, MS [ ⁇ + ⁇ ]+ 462.3.
  • the preparation method is similar to (1-25), N-(4-((4-methylpiperazinyl)methyl)phenyl-4-amino-1H-3-pyrazolecarboxamide 145 mg (0.46 mmol) And 7-chloro-1H-pyrrolo[2,3-c]pyridine 70 mg (0.46 mmol) as a starting material to give (1-43) 64 mg, yield 32.3%. mp: 279-282. [ ⁇ + ⁇ ] + 431.3.
  • Reagents, pharmaceuticals, and consumables Compound 1, methanesulfonate (IS) of Compound 1, Compound 2, methanesulfonate (2S) of Compound 2, acetonitrile, ethyl acetate, methanol, column Hypersil ODS (4.6 mm) 200mm, 5mm), centrifuge tube, EP tube, gun head, rubber gloves, lmL syringe, etc.
  • n-octanol and distilled water are saturated with each other for 24 h, then accurately weigh a certain amount of the sample in a 50 ml volumetric flask, make up to volume with water-saturated n-octanol (the sample is completely dissolved), and then take 10 ml of the sample of n-octanol solution in a 50 ml triangle.
  • 10 ml of n-octanol-saturated distilled water was added thereto, and the mixture was shaken at 25 ° C for 72 hours in a 125 rpm constant temperature shaker.
  • the rat plasma 300 was accurately aspirated and contained 30 methanol, 2 ml of ethyl acetate, vortexed for 3 min, centrifuged at 4000 rpm for 15 min, the supernatant was taken, transferred to another centrifuge tube, and the lower layer was extracted once, and the supernatant was combined. Blow dry under a stream of nitrogen. After reconstitution with methanol 150, a 0.22 ⁇ microporous membrane was passed through and 20 L was injected.
  • CMC-Na aqueous solution containing 3 mg/mL of the drug Accurately weigh the appropriate amount of the drug and prepare a CMC-Na aqueous solution containing 3 mg/mL of the drug. Twelve healthy male Wistar rats were randomly divided into 2 groups, 6 in each group. Group 1 is administered orally 2, and group 2 is administered orally. The dosage is 30 mg/kg (equivalent to 2 ml per rat), and the rats are fasted for 12 hours before administration, and the water is freely administered. After administration, respectively, 0.5, 1, 1 , 5, 2, 2 5, 3, 5, 8, 12, 2411 venous sinus blood collection 0.
  • Test drug Compound 1-1 Positive drug name: AT7519 Purchased from Jinan Great Chemical Co., Ltd. Lines and sources: ICR mice, clean grade; provided by Yangzhou University Comparative Medicine Center, License number: SCXK (Su) 2007-0001 ; Weight: 18-22g; Gender: Female; Feed: Particles, from Jiangsu Province Cooperative medical bioengineering limited liability company supply; Serving conditions: air-conditioned room, temperature 18-240C, relative humidity 70%.
  • Tumor strain source S180 was provided by Jiangsu Cancer Drug Research Institute. Instrument: YJ-875 medical purification workbench (Suzhou purification equipment factory).
  • the experimental method Take ICR mice, inoculate solid tumors according to the transplanted tumor research method (take the tumor block under aseptic operation, weigh, grind with a glass tissue homogenizer, grind and place in a sterile container, add saline Dilute into a 1:3 cell suspension, place the container on ice, use an empty needle to aspirate, mix the cells before each aspiration, and inject 0.2 ml of each right arm of the right forelimb in each mouse, 24 hours after inoculation.
  • the rats were heavy and randomly divided into 5 groups, 10 in each group. Each administration group was administered for the first time 24 hours after the inoculation (dl), administered intravenously, once a day for 7 times, and the administration volume was 0.4 ml/20 g.
  • Tumor-bearing mice were weighed on the 8th day after inoculation (d8), and the tumor pieces were weighed and the data were statistically processed (t-test).
  • test drugs (30mg/kg and 15mg/kg) had a significant inhibitory effect on the tumor growth of S180 (P ⁇ 0.01), and the dose of 7.5mg/kg to be tested was S180. Tumor growth was significantly inhibited (P ⁇ 0.05).
  • the test drugs (30 mg/kg and 15 mg/kg) significantly inhibited the body weight of the experimental animals (P ⁇ 0.05).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Immunology (AREA)
  • Neurosurgery (AREA)
  • Neurology (AREA)
  • Biomedical Technology (AREA)
  • Epidemiology (AREA)
  • Oncology (AREA)
  • Diabetes (AREA)
  • Hematology (AREA)
  • Communicable Diseases (AREA)
  • Pain & Pain Management (AREA)
  • Pest Control & Pesticides (AREA)
  • Dermatology (AREA)
  • Plant Pathology (AREA)
  • Hospice & Palliative Care (AREA)
  • Psychiatry (AREA)
  • Transplantation (AREA)
  • Cardiology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Dentistry (AREA)
  • Agronomy & Crop Science (AREA)
  • Obesity (AREA)
  • Emergency Medicine (AREA)
  • Endocrinology (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)

Abstract

本发明涉及药物化学领域,具体涉及4-(五元杂环并嘧啶/吡啶取代)氨基-1H-3-吡唑甲酰胺类衍生物、它们的制备方法、含有这些化合物的药用组合物以及它们的医疗用途,特别是作为蛋白激酶抑制剂的抗肿瘤用途。

Description

含多环取代的吡唑类激酶活性抑制剂及其用途
技术领域
本发明涉及药物化学领域, 具体涉及 4- (五元杂环并嘧啶 /吡啶取代)氨基 -1H-3-吡唑甲酰 胺类衍生物、 它们的制备方法、 含有这些化合物的药用组合物以及它们的医疗用途, 特别是 作为蛋白激酶抑制剂的抗肿瘤用途。
背景技术
细胞周期在正常条件下, 由一群相关蛋白酶负责进行调控, 它们担负着不同的生物功能, 包括抑制或促进细胞周期的功能, 其中促进细胞周期进行的大多数蛋白都属于激酶, 激酶对 调控蛋白质进行重要生理功能起着重要的作用, 它在生物体内的主要功能是将高能分子三磷 酸腺苷 (ATP) 的磷酸根转移到受体分子上, 以调控蛋白质受体的活化或者去活化, 蛋白质 的活化或者去活化会调控细胞周期, 而许多癌细胞中发现这些控制着正常细胞周期的激酶会 突然不受调控, 所以若是能够抑制这些不受调控的激酶, 相信就能抑制癌细胞的不断增生。 近年来陆续发现细胞周期依赖性激酶 (CDK)、 Aurora kinase Polo-like kinase (PLK)、 驱动 蛋白 (Kinesins spindle protein; KSP)和 Checkpoint kinase (CHK) 等新型靶标都和细胞周期有 着密切的关系。
其中,中心体上 Aurora激酶和 CDK 的共激活是启动细胞有丝分裂必不可少的条件之一, 它们在调节整个细胞周期和细胞有丝分裂的过程中彼此关联、 互相促进。 二者的相关抑制剂 研究也较为深入, 且多个化合物已进入临床阶段, 表现出良好的抗肿瘤药物研发前景。 研究发现, 几乎所有的肿瘤都与细胞周期调控机制紊乱所导致的细胞生长失控、 分化受 阻、 凋亡异常有关, 而细胞周期蛋白依赖激酶 (cyclin-dependent kinases, CDKs)的过度活化是 其中的一个重要原因。 CDKs是一类重要的丝氨酸 /苏氨酸蛋白激酶, 其本身并不具有活性, 必须与细胞周期蛋白 (cycli )结合后才能产生活性, 可催化底物磷酸化, 驱动细胞周期各时相 进程, 依序完成 DNA合成和有丝分裂, 引起细胞的生长和增殖。 同时, CDKs也能与 CDKs 抑制因子 (CDI)结合发挥负调节作用, 抑制细胞周期进程, 阻止细胞分裂。 由于 CDKs在调节 肿瘤细胞的增殖与凋亡中起关键作用, 通过选择性地抑制肿瘤组织中 CDKs的活性, 可以对 肿瘤等恶性增生性疾病的治疗起到积极的作用, 所以对 CDKs小分子抑制剂的筛选与研究已 成为肿瘤治疗和开发新型化疗药物的热点领域之一。
在 CDKs调控整个细胞周期的运行中, 以 CDK1、 CDK2、 CDK4和 CDK6较为重要。 由 于细胞周期失控是癌变的重要原因, 如果能够阻止细胞周期进入 S期, DNA的异常复制就不 会发生,而 G1期进入 S期主要是由 CDK2/cyclin E调控, 因此 CDK2抑制剂可以阻止细胞周 期进入 S期进行 DNA复制。此外,在整个细胞周期中,除了掌控 G1期进入 S期, CDK2/Cyclin A还控制 T S、 G2期的进行, 由此可见, CDK2在细胞周期中扮演着相当重要的角色, 所以 如果能有效抑制 CDK2的活性, 就可以控制细胞周期的进行, 进而达到抑制肿瘤细胞增殖失 控的功效。
近年来, 一些 CDKs小分子抑制剂已陆续公开发表, 这些抑制剂大都对 CDK2具有良好 的抑制作用, 主要是通过竞争性地结合于 CDKs 中 ATP活性位点, 从而起到抑制 CDKs的作 用。
Aurora家族也是一种丝 /苏氨酸蛋白激酶, 目前已知人类细胞中存在 3种结构和功能高度 相关的 Aurora激酶亚型: Aurora A、 B和 C。 它参与调节细胞的有丝分裂过程, 包括中心体 复制、 两极纺锤体的形成以及染色体在纺锤体上的重排等, 并可对纺锤体检测点 (checkpoint) 进行精确监测, 中止错误的细胞周期进程并完成修复过程。在整个细胞周期的运行中, Aurora 激酶主要作用于 M期, 它与 CDKs共同启动有丝分裂的一系列生化事件。
其中, Aurora A禾 B Aurora B与肿瘤密切相关。 首先, Aurora A定位在 20ql3.2, Aurora
B定位在 17pl3, 都在易位、 缺失或扩增活跃的染色体区段, 意味着它们具有天然的不稳定 性, 这些研究表明当 Aurora A过度表达时, 它是一种潜在的致癌基因; 而且这两个染色体区 在乳腺癌和结直肠癌肿瘤组织中以及乳腺癌、 卵巢癌、 结肠癌、 前列腺癌、 神经母细胞瘤 和宫颈癌细胞株普遍存在扩增。 目前人们对 Aurora C的致癌作用研究较少。
Aurora A, B和 C在催化区具有很高的同源性, 仅有调节区和催化区末端的一小段氨基 酸序列存在差异, 与抑制剂结合的活性位点则位于铰链区。 ATP 结构中的嘌呤环可结合于
Aurora激酶结构的疏水口袋, 并与铰链区的氨基酸残基形成氢键, Aurora激酶抑制剂则可竞 争性结合 ATP与 Aurora激酶的结合位点, 也属于 ATP竞争性抑制剂。
有文献报道, 在 G2末期显微注射 Aurora激酶抗体可致有丝分裂启动显著延迟, 现在认 为其机制是 Aurora A激酶作为活化的细胞周期蛋白依赖激酶 (CDKs)/CyClin复合物的下游效 应物, 参与完成了启动有丝分裂的一系列生化事件; 它与 CDKs/cyclin 复合物形成正反馈交 互活化环, 即 CDKs/cyclin复合物先激活 Aurora激酶,反过来 Aurora激酶又促进 CDKs 的完 全活化及该复合物的细胞核内定位, 而这两个事件对于启动有丝分裂来说极为重要。 总之, 在整个细胞周期的运行中, 中心体上 Aurora激酶和 CDKs 的共激活是启动细胞有丝分裂必 不可少的条件之一, 它们在调节细胞周期和细胞有丝分裂的过程中彼此关联, 因此若能同时 抑制 Aurora激酶和 CDKs的活性, 就能双重抑制肿瘤细胞的过度繁殖, 由此可见, 开发新型 CDKs/Aurora多靶点抑制剂极具价值。
在整个细胞周期中, CDK2除了掌控 G1期进入 S期, CDK2还控制了 S、 G2期的细胞 运行, 因此抑制 CDK2就可以阻止细胞周期中 DNA的正常复制。 而在 M期, 调节细胞的有 丝分裂主要是依靠 Aurora A, 它在中心体复制、 两极纺锤体的形成以及染色体的重排等方面 起着不可替代的作用,抑制 Aurora A就可以阻止细胞有丝分裂。因此,寻找对 CDK和 Aurora 激酶能同时作用的小分子多靶点抑制剂, 多方式影响癌细胞的细胞周期, 更好的达到治疗肿 瘤的目的。
到目前为止, 有大量的 CDK2和 AuroraA的晶体复合物结构已被解析, 抑制剂与靶标的 作用模式已非常清晰, 为基于结构的多靶点药物设计奠定了基础。 通过对比发现, CDK2 和 AuroraA激酶抑制剂都竞争性的结合于 ATP结合口袋中, 主要是通过氢键和疏水作用和酶结 合。它们与小分子抑制剂的作用模式具有一些共同的特点, 其共同的药效作用区域表现如下: 即 CDK2和 AuroraA激酶的三维结构和理化性质如氢键、疏水性以及亲水性的空间分布很相 似: 1 )铰链区 (hinger): 铰链区为所有 ATP竞争性抑制剂的重要作用区域, 在此区域往往 存在有 2-3 个关键性的氢键, 这两个激酶中参与氢键形成的残基分别为 Glu81 和 Leu83 (CDK2); Glu211和 Ala213 (Aurora A)。 另外该区域存在的往往为一些疏水性的平面结构 片段,以保证在铰链区还存在有一定的疏水作用。2)疏水区 A:指在铰链区与天冬氨酸(CDK2 为 Aspl45, Aurora A为 Asp274)之间形成的一个疏水空腔, 该区域位置靠近激酶的 DFG基 序, 由于该环区具有一定的柔性,使得该处的疏水性结构片段的选择表现出一定的多样性。3 ) 亲水区: 两者的活性位点中都存在有一个亲水性的区域, 在这一区域的亲水性基团的引入对 化合物的理化性质的调节有着重要的意义。 CDK2的亲水区在 Gln85附近; Aurora A的亲水 区在 Leu215 附近。 这些药效作用区域在空间上有着高度的重叠性, 从而使我们设计出 CDK/Aurora多靶点的抑制剂成为可能,通过重叠配体方式所产生多靶点药物分子往往具有分 子量小, 理化性质好, 耐药性大为改善的特点。
同时, 近年来随着对蛋白激酶研究的深入, 基于结构与基因序列, 蛋白家族这样概念被 不断提出作为参与细胞内多种信号转导调控、 结构和功能相似的酶家族。 依据磷酸化底物的 不同 (例如蛋白质-酪氨酸、蛋白质-丝氨酸 /苏氨酸、脂质等),可将蛋白激酶分类为多个子家族。 蛋白激酶的特征在于它们的调节机制。 这些机制包括例如自磷酸化、 通过其它激酶的转磷酸 作用、 蛋白质 -蛋白质相互作用、 蛋白质-脂类相互作用以及蛋白质-多核苷酸相互作用。 单一 的蛋白激酶可参与多种机制调节。 蛋白激酶的功能在于催化 ATP末端的 δ -磷酸对蛋白质中 丝氨酸、 苏氨酸或酪氨酸残基的侧链羟基进行磷酸化, 调控其底物活性, 介导多数细胞信号 转导通路, 从而调节很多不同的细胞过程。 所述的细胞过程包括但不限于增殖、 分化、 凋亡、 运动、 转录、 翻译和其它信号过程。 磷酸化事件用作分子开关, 可调节或调控靶蛋白生物学 功能。 靶蛋白的磷酸化因响应于多种细胞外信号 (激素、 神经递质、 生长和分化因子等)、 细 胞周期事件、 环境或营养应激等而发生。 适合的蛋白激酶在 (直接或间接)活化或钝化例如代 谢酶、 调节蛋白、 受体、 细胞骨架蛋白、 离子通道或泵或者转录因子的信号传导途径中发挥 作用。 由于蛋白磷酸化控制缺陷造成的信号传导失控与多种疾病有关, 所述的疾病包括例如 炎症、 癌症、 糖尿病、 变态反应 /哮喘、 免疫系统的疾病和病症、 中枢神经系统的疾病和病症 以及血管生成的疾病和病症等。
人类激酶组 (humankinome)包含 518种蛋白激酶, 主要可分为酪氨酸激酶 90种、 丝氨酸 / 苏氨酸激酶 388种和非经典激酶 40种。基于进化分析, Hanks和 Hunter通过对人类蛋白激酶 进行过几次分类。 随着克隆蛋白激酶成员的增加, 他们对蛋白激酶的分类越来越系统和详细。 他们以系统进化树作为蛋白激酶分类的基础。 Hanks和 Hunter对 1993年 6月为止发表的蛋 白激酶成员的整个功能域的氨基酸序列进行系统进化分析。 此系统进化树中包括 4个大的激 酶家族:(a)AGC家族, 包括环核苷酸依赖家族 (PKA和 PKG家族), 蛋白激酶 C家族, B-肾上 腺素受体激酶 (BARK)家族,核糖体 S6激酶家族和其它相关激酶; (b) CaMK家族, 包括 Ca2+/- 钙调素调节的蛋白激酶家族, Snfl/AMPK家族和其它相关蛋白激酶; (c)CMGC家族, 包括细胞 周期因子依赖蛋白激酶 (CDK)家族, Erk( MAP) 蛋白激酶家族, 糖原合成酶 3激酶 (GSK3) 家 族, 酪蛋白激酶 II家族, Clk家族和其他相关激酶;(d)酪氨酸蛋白激酶家族。此系统进化树中还 包括许多不属于此四大家族的蛋白激酶。 每个大家族可进一步分类为亚家族, 其中每大家族 中至少显示一个实例, 即 ABL Abelson激酶; Akt Akt/蛋白激酶 B(PKB); EGFR表皮生长因 子受体; FGFR纤维母细胞生长因子受体; MLK混合谱系激酶 (mixed-lineage kinase); PDGFR 血小板衍生生长因子受体; TIE有免疫球蛋白-样酪氨酸激酶和 EGF-样结构区; VEGFR血管 内皮生长因子受体。 同一个家族的成员除了在一级结构上有较高的一致性以外, 它们在拓扑 结构、 调节方式和底物特异性方面具有相似性,进化上相近的成员,功能上也具有相近性。
CMGC是丝氨酸 /苏氨酸蛋白激酶中的一类, 它们大都磷酸化位于脯氨酸丰富的环境中的 丝氨酸或苏氨酸。这一家族的成员在 X和 XI功能亚域有一较大的插入序列。 由于 Dyrk(MNB), Dyrk2, Dyrk3都与 Yakl有较高同源性, 因此应归于一个家族。 其中 CDK家族作为 CMGC中 一大类在本文之前有过介绍, 如 CDK1、 CDK2、 CDK4和 CDK6主要参与调控整个细胞周期 的运行中, 而其他 CDK家族成员参与了其它生物化学过程。 以 CDK5举例说明, CDK5在正 确的神经元发展中是必需的并且其也涉及数种神经元蛋白 (例如 Tau、 NUDE-K 突触蛋白 1、 DARPP32和 Muncl8/突触融合蛋白 1A复合体)的磷酸化。神经元 CDK5通常是通过与 p35/p39 蛋白结合而活化的。但是, CDK5的活性可以通过与 p25(p35的截短形式)的结合而失调。 p35 至 p25的转化以及接下来 CDK5活性的失调可以由局部缺血、 兴奋性中毒和 β -淀粉样肽诱 导。 因此, ρ25已经涉及神经变性疾病 (例如阿尔茨海默病)的发病机制, 并且因此其被关注作 为直接治疗这些疾病的靶标。
CDK7是具有 cdc2CAK活性并且与细胞周期蛋白 H结合的核蛋白。 已经表明 CDK7是 具有 R A聚合酶 II C-末端结构域 (CTD)活性的 TFIIH转录复合体的组分。其通过 Tat-介导的 生物化学途径而与 HIV-1转录的调节有关。 CDK8与细胞周期蛋白 C结合并且涉及 R A聚 合酶 II的 CTD的磷酸化。类似地, CDK9/细胞周期蛋白 -T1复合体 (P-TEFb复合体)涉及 R A 聚合酶 Π的延长控制。 PTEF-b也需要 HIV-1基因组通过与细胞周期蛋白 T1相互作用而被病 毒反式激活蛋白 Tat转录活化。 因此, CDK7、 CDK8、 CDK9和 P-TEFb复合体是抗病毒治疗 的潜在靶标。
在分子水平调节 CDK/细胞周期蛋白复合体的活性需要一系列刺激的和抑制的磷酸化或 去磷酸化事件。 CDK磷酸化是通过一组 CDK活化激酶 (CAK)和 /或激酶例如 weel、 Mytl和 Mikl而进行的。 去磷酸化是通过磷酸酶例如 cdc25Ca和 c)、 pp2a或 KAP进行的。
同时, 人们发现细胞周期蛋白 D1 的过度表达与食管癌、 乳腺癌、 鳞状癌和非小细胞肺 癌有关。 在肺癌发病机制中, 作用抑癌基因的失活是目前研究中的一个热点, 抑癌基因 pl5/MTS2(简称 pl5基因)编码 pl5蛋白属于 INK4蛋白家族, 它作用于细胞周期蛋白依赖激 酶 (CDK)与细胞周期蛋白 (cyclin)复合物,特异性抑制 CDK4及 CDK16激酶活性, 阻止其磷酸 化 R6蛋白, 限制细胞由 G1期向 S期转变, 减少细胞增殖.。
CMGC激酶的另一家族成员丝裂原活化蛋白激酶 (mitogen-activated protein kinase, MAPK) 是一类丝氨酸 /苏氨酸蛋白激酶, 能将细胞外信号转导至细胞及核内, 通过保守的三级级联反 应 (MAPKK -MAPK -MAPK)激活转录因子, 调节基因表达。 该通路存在于大多数细胞中, 且与多种细胞功能相关, 可参与细胞运动、 凋亡、 分化及生长增殖等多种生理过程。 已确定 有 4条 MAPK信号转导通路: 每条信号通路都具有高度特异性, 具有独立的功能。 在某些程 度上几条信号通路间存在着一定的串话 (cr0SStalk)。 利用抑制剂或激活剂对各条信号通路进行 研究, 不仅可以非常好的了解信号通路的作用机制, 而且可以为疾病的诊断和治疗创造新的 契机, ERK信号通路是研究最透彻的通路之一, 其中, MEK是 Ras-Raf-MEK-ER 信号转导 途径的关键酶, 对不同的生长信号调节细胞应答。 至今发现 7个 MEK亚型, 分别磷酸化并 激活下游的 MAPKs, 其中 MEK1和 MEK2激活 ERK, MEK3和 MEK4激活 p38, 而 MEK5 和 MEK6激活 JNK。因此在 ERK信号通路研究中, 常以 MEK1/MEK2作为肿瘤治疗的靶标, 开发具发展前景的抗肿瘤药物。 p38MAPK信号通路是 MAPK通路的一条重要分支, 该通路 可被应激刺激 (渗透压休克、 UV、 缺氧)、 细胞因子刺激、 胰岛素、 生长因子刺激激活, 甚至 在正常的免疫和炎性反应中被活化。 同时, 近几年另一信号通路 p38的研究也成为热点, 是 临床上治疗风湿性关节炎攻克的主要靶标。 .c-Jun N端激酶 (JNK)/应激活化蛋白 (SAPK)信号 通路 JNKs (c-Jun N端激酶) 是 MAPKs家族的重要成员之一。 c-Jun属于 AP-1转录因子复合 物的一个成员, 参与控制细胞增殖、 转化、 生存和死亡。 JNK也能磷酸化 p53和一些非核蛋 白。 JNK介导的目标蛋白磷酸化作用极其重要, 它能够诱导白细胞介素、 VEGF、 COX-2、 MMP-9、 血红素加氧酶 -1、 ICAM-l, NCXl, GnRHR及其他细胞因子的基因表达。 JNK信号 通路参与炎症及包括风湿性关节炎、 肠易激综合征、 动脉粥样硬化在内的自身免疫性疾病。 K5/大丝裂素活化蛋白激酶 (BMK1)信号通路 ERK5/BMK1 是 MAPK家族最晚发现的信号通 路, 其胞外应激物有高糖、 低氧、 血流切应力、 活性氧簇 (ROS)、 渗透压以及各种丝裂原如 EGF 、 NGF 等 。 ER 5/ BMK1 同样遵循 MAPK 的级联反应 , MEK 2/3 (MAPK-KK)-MEK5(MAPK )- BMK1 / ERK5(MAPK)。 一旦激活后, ER 5由胞浆移至核内, 并磷酸化大量的下游目标, 包括 MEF2C、 c-Myc、 Bim、 AP-1等。 ER 5在细胞生存、 增殖 及分化中发挥着重要作用, 目前研究发现其与糖尿病肾病、 肝纤维化以及肿瘤等病理过程密 切相关。
糖原合酶激酶 -3(GSK-3)是丝氨酸-苏氨酸激酶, 该酶在人体中以两种普遍存在的表达的 同种型 (GSK3 a 和 P GSK3 P )存在。 GSK3涉及在胚胎发育、 蛋白质合成、 细胞增殖、 细胞 分化、 微管动力学、 细胞运动和细胞凋亡中起作用。 同样 GSK3涉及疾病状态的进程, 所述 的疾病状态例如糖尿病、癌症、 阿尔茨海默病、 中风、癫痫、运动神经元疾病和 /或头部创伤。 在系统发育方面, GSK3与细胞周期蛋白依赖性激酶 (CDK)是最相关的。
GSK3 形成了哺乳动物胰岛素响应途径的一部分并且能够磷酸化, 并且因此钝化糖原合 酶。 通过 GSK3的抑制, 糖原合酶活性增量调节并且因此糖原合成已经因此被认为是对抗 II 型或非胰岛素依赖性糖尿病 (NIDDMX其中机体组织对胰岛素刺激变得有抗性的病症)的潜在 的方法。 抑制 GSK3(例如通过 "哺乳动物雷帕霉素靶标"蛋白 (mTOR)的钝化)可以增量调节 蛋白的生物合成。 最后, 通过促细胞分裂原活化的蛋白激酶 (MAPK)途径通过激酶 (例如促细 胞分裂原活化的蛋白激酶活化的蛋白激酶 1(MAPKAP-K1或 RSK))磷酸化 GSK3来调节 GSK3 活性已经有一些证据。 这些数据表明 GSK3的活性可以由促细胞分裂的、 胰岛素 /或氨基酸刺 激来调节。
除此之外, GSK3 P 在脊椎动物 Wnt信号传导途径中是关键组分。 已经表明该生物化学 途径对于正常的胚胎发育是关键的并且调节正常组织中的细胞增殖。 在对 Wnt刺激响应中 GSK3变为抑制的。这可以引起 GSK3底物 (例如 Axin、腺瘤性结肠息肉 (APC)基因产物和 β - 联蛋白)的去磷酸化。 Wnt途径的异常调节与许多癌症有关。 APC和 /或 β -联蛋白中的突变在 结肠直肠癌和其它肿瘤中是很普遍的。 也表明 β -联蛋白在细胞粘附中很重要。 因此, GSK3 也可以在某种程度上调节细胞粘附过程。 除了已经描述的生物化学途径, 也有涉及 GSK3在 通过细胞周期蛋白 -Dl 的磷酸化来调节细胞分裂中的数据、 GSK3 在转录因子 (例如 c-Jim、 CCAAT/增强子结合蛋白 α (; C/EBP a )、 c-Myc和 /或其它底物, 例如活化的 T-细胞的核因子 (NFATc)、 热休克因子 (HSF-1)和 c-AMP响应元件结合蛋白 (CREB))的磷酸化的数据。 虽然具 有组织特异性, 但是 GSK3也在调节细胞凋亡中发挥作用。 GSK3在通过前凋亡机制调节细 胞凋亡中的作用可能与可以发生神经元凋亡的医学病症特别有关。 这些病症的实例是头部创 伤、 中风、 癫痫、 阿尔茨海默病和运动神经元疾病、 进行性核上麻痹、 皮质基底节变性和皮 肤病。 体外已经表明 GSK3能够过度磷酸化与蛋白 Tau有关的微管。 Tau的过度磷酸化破坏 了其与微管的正常结合并且也可以引起细胞内 Tau纤丝的形成。 相信这些纤丝的逐步富集引 起了最终的神经元功能障碍和变性。 因此, 通过抑制 GSK3而抑制 Tau磷酸化可以提供限制 和 /或预防神经变性作用的方法。
蛋白酪氨酸激酶 (protein tyrosine kinases, PTKsM乍为另一类重要的蛋白激酶家族, 它催化 ATP的 γ磷酸基转到许多重要蛋白质的酪氨酸残基上, 使酚羟基磷酸化, 在一般的正常细胞 中 (神经细胞除外), 蛋白质的酪氨酸磷酸化是极少发生的。 虽然磷酸化的酪氨酸仅占体内磷 酸化氨基酸 0.5%。,但是一系列证据表明,酪氨酸磷酸化在许多细胞调节过程中起着重要作用。 它传递细胞信号, 是信号传递过程中的重要因子。 蛋白酪氨酸激酶参与一系列细胞功能, 与 细胞生长、 分化、 增殖密切相关。 在细胞的恶性生长和增殖中, 酪氨酸激酶起着非常重要的 作用, 酪氨酸激酶功能的失调, 会导致其下游信号途径激活,, 引起细胞增殖调节紊乱, 最终 导致肿瘤形成。 所以酪氨酸激酶抑制剂可对恶性肿瘤有预防和治疗作用。
根据 (PTKs)是否存在于细胞膜受体可将其分为非受体酪氨酸激酶 (Nonreceptor Tyrosine Kinases,简称 NRTKs)和受体酪氨酸激酶 (Receptor Tyrosine Kinases, 简称 RTKs)。 目前发现受 体酪氨酸激酶 (RTKs)58种。 这些蛋白激酶的结构上都存在一个由约 270氨基酸残基构成的催 化结构区, 这个结构区非常相似。受体型的酪氨酸激酶 (PTKs)则是一种具有跨膜结构的蛋白, 通常具有一个细胞外结构域、 一个跨膜区以及一个细胞内激酶域。 癌症临床研究表明, 这些 受体及其配体与很多肿瘤都有重要联系, 很多癌症出现了相关生长因子的过量表达, 导致过 量的酪氨酸磷酸化信号传入细胞, 其中包括血小板衍生生长因子 (PDGF)受体 (PDGF 受体 α 和 β )、 集落刺激因子 (; CSF-I)受体 (; CSF-1R, c-Fms)、 FLT-3和干细胞因子受体 (c-kit)等, 与多 种细胞增生及炎症等疾病有关。 其中, FLT3基因位于染色体 13ql2,是 1991年发现的早期造 血生长因子受体基因,其编码的 FLT3 受体属于第 III 类酪氨酸激酶 (RTK)受体家族成员。 当 FLT-3 受体的细胞膜外结构域与其内源性配体结合后, FLT-3 形成同源或异源二聚体复合物, 致使其酪氨酸激酶活性被激活,活化环开启,促使底物蛋白连接到 ATP结合位点上,进一步催化 底物蛋白的磷酸化,从而介导一系列下游信号转导,导致细胞的增殖和分化。 FLT-3受体广泛分 布于骨髓造血干 /祖细胞、 胸腺、 淋巴、 胎盘、 大脑、 生殖腺等多种组织中。 但 FLT-3基因突 变 (主要包括近膜结构域的内部串联重复突变和酪氨酸激酶区域的点突变)、 过度表达则会导 致急性髓细胞性白血病等多种血液系统恶性肿瘤疾病的发生,因此,将 FLT-3 作为靶点用于肿 瘤治疗已经成为研究的热点, 特别是在血液学 恶性肿瘤中, FLT3 以高水平表达或者 FLT3 突变引起不受控制的 FLT3 受体和下游分子通道诱导, 可能的 Ras活化。 血液学恶性肿瘤包 括"白血病、 淋巴瘤 (非霍奇金淋巴瘤)、 霍奇金病 (也称为霍奇金淋巴瘤)和骨髓瘤一例如, 急 性淋巴细胞白血病 (ALL)、 急性粒细胞白血病 (AML)、 急性早幼粒细胞白血病 (APL)、 慢性淋 巴细胞白血病 (CLL)、慢性粒细胞白血 病 (CML)、慢性嗜中性粒细胞白血病 (CNL)、 急性未分 化细胞白血病 (AUL)、 退行发育性大细胞性淋巴瘤 (ALCL)、 幼淋巴细胞白血病 (PML)、 幼年 型粒-单核细胞白血病 (JMML)、 成人 T 细胞 ALL、 伴有三镨系 (trilineage)脊髓发育不良的 AML(AML/TMDS) 混合型普系白血病 (MLL)、 脊髓发育不良综合征 (MDSs)、 骨髓增生异常 (MPD)、 多发性骨 髓瘤 (MM)和脊髓肉瘤。
同时, 受体酪氨酸激酶胞外结构区可结合特异性配基如生长因子, 而细胞内结构区达到 激酶 (自身)磷酸化。 被受体酪氨酸激酶介导的信号传导通路和生物学过程集中在血管生成, 大量研究表明显示了在血管生成中选择涉及被受体酪氨酸激酶活化的通路。 通路活化, 例如 通过 VEGFR或 PDGFR可导致各种血管生成过程, 如细胞增殖, 迁移, 生存和血管通透性。 这与系列的血管类疾病密不可分。
目前发现的 32种非受体酪氨酸激酶 (NRTKs), 通常持续或暂时位于胞浆, 或者在细胞内 侧与跨膜蛋白结合, 所以它们又被称作胞浆型酪氨酸激酶, 在肿瘤组织中 nPTKs 常被激活, 促进细胞增殖、抵抗细胞凋亡, 促使肿瘤发生和发展。非受体酪氨酸激酶主要包括 SRC、ABL、 JAK、 ACK、 CSK、 FAK、 FES、 FRK、 TEC、 SYK等 10个家族。 细胞因子 (cytokine)能够通 过多种途径进行细胞内信号转导, 从而参与调控细胞生长和凋亡过程。细胞因子靶细胞生长, 分化和凋亡过程。 细胞因子受体通常在胞质没有 PTKs结构域, 但是在细胞因子靶细胞中在 有 nrPTKs—次介导细胞因子与其受体结合后的信号转导。 其中 JAK激酶与其下游的 STAT 组成了重要的信号途径。 许多细胞因子都能激活 JAK/STAT信号途径, 当细胞因子与其受体 结合引起细胞质受体的构象改变, 进而激活与受体结合引起细胞胞质受体的构象改变, 进而 激活与受体关联的 JAK激酶家族, JAK激酶促使相应的 STAT磷酸化而激活, 激活的 STAT 从受体上游离, 形成二聚体后进入细胞核, 与 GAS增强家族成员结合, 从而激活转录、 诱导 细胞转化, 调控某些与细胞增殖和存活相关基因的表达, 在肿瘤中的发生中起重要的作用。
目前, 受体酪氨酸激酶如血管内皮生长因子受体现阶段研究较多的是 EGFR和 VEGFR 酪氨酸激酶抑制剂, 是以血管生成抑制被发展为一种癌全身治疗策略。 早期上市的蛋白激酶 抑制剂主要是针对单一靶点的单靶点抑制剂, 虽然刚上市时在肿瘤治疗中取得了令人瞩目的 成就, 但是随着使用时间的延长及治疗病例的增多, 问题逐渐暴露出来。 相比较多靶点激酶 抑制剂则显示出一定的优势。 由于同时靶向多个激酶分子和多条信号通路, 不但可以避免单 一靶点突变造成的耐药性,而且可以显著扩大其抗瘤谱。 单一靶点抑制剂 SU5416和 SU6668 开发的失败进一步提示,多靶点激酶抑制剂应将成为未来的主流发展方向。 SU5416和 SU6668 分别靶向 KDR和 PDGFR-β, 都因疗效不佳而终止于临床 III期和 II期, 但同样靶向 KDR等 多个激酶的 Simitinib却最终成功上市。 现在研究的化合物大多是针对多靶点设计的, 这是因 为多靶点比单一靶点抑制活性和病人耐受性都好。 现在上市的和在临床研究的小分子酪氨酸 抑制剂根据化学结构只要分为以下几类: 喹唑啉类、 吲哚酮类、 哒嗪类、 氰基喹啉类和吡咯 并嘧啶类等结构。 三种抗血管生成酪氨酸激酶抑制剂 (TKIs), 舒尼替尼 (simitinib), 索拉非尼 (sorafenib)和帕唑帕尼 (pazopanib), 与血管生成激酶有不同结合能力最近被批准治疗晚期癌症 (肾细胞癌, 胃肠道间质瘤, 和肝细胞癌)患者。 许多其它抗血管生成 TKIs正在 Ι-ΙΠ期临床试 验研究。 除了它们有益的抗肿瘤活性, 用这些药物还曾观察到临床耐受性和毒性。
长期大剂量使用紫杉烷类注射液已造成病人耐药现象并导致疗效下降, 越来越多的证据 表明, 耐药现象会限制靶点受体酪氨酸激酶抑制剂的疗效。 因而, 开发新一代的抗癌药物, 具有重要的意义。 同时研究表明激酶类疾病存在内源性的相关联, 单一的靶标作用难以真正 抑制其发生。
由于 CDK及 Auraro A其相关蛋白在增殖细胞中协调和推动细胞周期中的关键性作用, 可用于增殖性障碍例如癌症治疗 (应用通常靶向 CDK或特异性 CDK的疗法), 也可以用于治 疗其它病症例如病毒感染、 自身免疫疾病和神经变性疾病等。 当与存在的或新的治疗剂组合 用于治疗时, CDK靶向治疗也可以在前面描述的疾病的治疗中提供临床益处。 与许多目前的 抗肿瘤剂相比, 且相对于前文中的酪氨酸激酶, CDK的突变及其抑制剂的耐药情况发生情况 少, 靶向抗癌治疗具有潜在的优势, 且不直接与 DNA相互作用并且因此可以降低继发性肿 瘤发生的危险。
小分子多靶点的 CDK抑制剂,如 flavopiridol和 UCN201,已经在 I、 II期临床试验中显示 出良好的抗肿瘤活性。 但多数抑制剂为单一家族抑制剂, 这方面许多公司都开展了这类的抑 制剂研究,如处于 Ι/Π期研究阶段的新型小分子多细胞周期蛋白依赖性激酶抑制剂 AT7519作 用于 CDKl/cyclin B, CDK2/Cyclin A, CDK3/Cyclin E等多个靶点, 同时, AT7519也可通过下 调同家族蛋白抑制剂 GSK-3 P 磷酸化而诱导 GSK-3 P 激活, 从而导致细胞凋亡。相对而言, 跨激酶蛋白家族的抑制剂的结构类型目前报道尚不多, 选择性的作用于多个疾病特征性的靶 点的激酶抑制剂的研发具有其突破性的意义。 发明内容
本发明在研究了大量具有选择性的 CDK2、AuraraA小分子抑制剂的基础上,根据 CDK2、 Aurora A的晶体结构模型, 利用计算机辅助药物设计手段分别搭建了 CDK2、 Aurora A抑制 剂的构效关系模型和药物虚拟筛选模型, 在此基础上采用碎片增长的计算机辅助药物设计方 法构建相关化合物库, 通过虚拟筛选, 确定并合成了一系列以 4- (五元杂环并嘧啶 /吡啶取代) 氨基 -1H-3-吡唑甲酰胺为母核的全新结构的化合物, 药理试验显示, 本发明的化合物均具有 优良的 CDK2、 Aurora A双重抑制活性的同时, 还对多个 CMCG家族及 TK家族激酶具有抑 制活性。 对多种肿瘤细胞株具有强的抑制活性, 部分化合物优于目前已报道的 CDK2抑制剂 AT-7519, Aurora A抑制剂 AT-9283及多靶点抑制剂十字苞碱。
本发明的技术方案如下:
通式 (I)的化合物或其药学上可接受的盐及互变异构体:
Figure imgf000012_0001
其中 R R2、 R3 各自独立地表示氢、 烷基、 氰基、 卤素、 卤代烷基、 羟基、 巯基、 烷 氧基、 烷硫基、 烷氧基烷基、 芳烷基、 二芳基烷基、 芳基或 Het;
X、 Y各自独立地表示 N 原子或 CH 原子团;其中 CH 原子团可任选被 R4 取代, R4 可 以是氢、 烷基、 氰基、 卤素、 卤代烷基、 羟基、 巯基、 烷氧基、 烷硫基、 烷氧基烷基、 芳烷 基、 二芳基烷基、 芳基或 Het;
Z、 M 各自独立地表示 NH、 0、 S 或 CH 原子团, 且 Z、 M 必需有一个为 NH、 0 或 S; 其中 CH 或 NH 原子团各自独立地可任选被 R5 取代, R5 可以是氢、 烷基、 氰基、 卤素、 卤 代烷基、 羟基、 巯基、 烷氧基、 烷硫基、 烷氧基烷基、 芳烷基、 二芳基烷基、 芳基或 Het;
A1 各自独立地表示 NH、 0、 S 或亚烷基原子团; 其中 NH 原子团或亚烷基原子团各自 独立地可任选被 R6 取代, R6 可以是氢、 烷基、 氰基、 卤素、 卤代烷基、 羟基、 巯基、 烷氧 基、 院硫基、 院氧基院基、 芳院基、 二芳基院基、 芳基或 Het;
A2各自独立地表示亚烷基、 C(0)NH、 C(0)、 NHC(0)、 亚烷基 -C(0)、 C(O)-亚烷基、 亚 烷基 - C(O)-亚烷基或 NHC(0)NH; 上述基团各自独立地可任选被 R7 取代, R7 可以是氢、 烷 基、 氰基、 卤素、 卤代烷基、 羟基、 巯基、 烷氧基、 烷硫基、 烷氧基烷基、 芳烷基、 二芳基 烷基、 芳基或 Het; Q1 是选自芳基或 Het,其中芳基或 Het各自独立地可任选被一个或多个 R8 取代, R8 可 以是氢、 烷基、 氰基、 卤素、 卤代烷基、 羟基、 巯基、 烷氧基、 烷硫基、 烷氧基烷基、 芳烷 基、 二芳基烷基、 芳基或 Het;
Q2 是选自芳基或 Het,其中芳基或 Het各自独立地可任选被一个或多个 R9 取代, R9 可 以是氢、 烷基、 氰基、 卤素、 卤代烷基、 羟基、 巯基、 烷氧基、 烷硫基、 烷氧基烷基、 芳烷 基、 二芳基烷基、 芳基或 Het;
烷基为具有 1-6 个碳原子的直链或支链饱和烃基; 或为具有 3-6 个碳原子的环状饱和烃 基;或为连接具有 1-6 个碳原子的直链或支链饱和烃基的具有 3-6 个碳原子的环状饱和烃基; 亚烷基为具有 1-6 个碳原子的直链或支链饱和烃基; 或为具有 3-6 个碳原子的环状饱和 烃基; 或为连接具有 1-6 个碳原子的直链或支链饱和烃基的具有 3-6 个碳原子的环状饱和烃 基失去一个氢原子形成的基团;
烷氧基为具有 1-6 个碳原子的直链或支链饱和烃基; 或为具有 3-6 个碳原子的环状饱和 烃基; 或为连接具有 1-6 个碳原子的直链或支链饱和烃基的具有 3-6 个碳原子的环状饱和烃 基; 其中各碳原子任选被氧取代;
烷硫基为具有 1-6 个碳原子的直链或支链饱和烃基; 或为具有 3-6 个碳原子的环状饱和 烃基; 或为连接具有 1-6 个碳原子的直链或支链饱和烃基的具有 3-6 个碳原子的环状饱和烃 基; 其中各碳原子任选被硫取代;
烷氧基烷基为如上定义的烷氧基与烷基连接;
芳基为选自苯基、 萘基、 苊基或四氢萘基的碳环, 其各自任选被 1、 2 或 3 个取代基取 代, 各取代基独立地选自氢、 烷基、 氰基、 ^素、 ^代烷基、 羟基、 巯基、 烷氧基、 烷硫基、 院氧基院基、 芳院基、 二芳基院基、 芳基或 Het;
芳烷基、 二芳基烷基为如上定义的芳基与烷基连接;
Het 为选自哌啶基、 吡咯基、 吡唑基、 咪唑基、 呋喃基、 噻吩基、 噁唑基、 异噁唑基、 噻唑基、 异噻唑基、 吡啶基、 嘧啶基、 吡嗪基或哒嗪基的单环杂环; 或选自喹啉基、 喹喔啉 基、 吲哚基、 苯并咪唑基、 苯并噁唑基、 苯并异噁唑基、 苯并噻唑基、 苯并异噻唑基、 苯并 呋喃基、苯并噻吩基、 2,3-二氢苯并 [1,4]二氧杂环己烯基或苯并 [1,3]二氧杂环戊烯基的双环杂 环; 各单环或双环杂环任选被 1、 2 或 3 个取代基取代, 各取代基独立选自卤素、 卤代烷基、 羟基、 烷基或烷氧基;
卤素为选自氟、 氯、 溴或碘的取代基;
卤代烷基为具有 1-6 个碳原子的直链或支链饱和烃基, 或为具有 3-6 个碳原子的环状饱 和烃基, 或为连接具有 1-6 个碳原子的直链或支链饱和烃基的具有 3-6 个碳原子的环状饱和 烃基; 其中一个或多个碳原子被一个或多个卤原子取代。
本发明的优选方案在于:
其中 R R2、 R3 各自独立地表示氢、 烷基、 氰基、 卤素、 卤代烷基、 羟基、 巯基、 烷氧基、 烷硫基、 烷氧基烷基、 芳烷基或芳基;
X、 Y各自独立地表示 N 原子或 CH 原子团; 其中 CH 原子团可任选被 R4 取代, R4 可以 是氢、 烷基、 氰基、 ^素、 ^代烷基、 羟基、 巯基、 烷氧基、 烷硫基、 烷氧基烷基、 芳烷基 或芳基;
Z、 M 各自独立地表示 NH、 0、 S 或 CH 原子团, 且 Z、 M 必需有一个为 NH、 0 或 S ; 其 中 CH 或 NH 原子团各自独立地可任选被 R5 取代, R5 可以是氢、 烷基、 氰基、 卤素、 卤代 烷基、 羟基、 巯基、 烷氧基、 烷硫基、 烷氧基烷基、 芳烷基或芳基;
A1 各自独立地表示 NH、 0、 S 或亚烷基原子团; 其中 NH 原子团或亚烷基原子团各自独立 地可任选被 R6 取代, R6 可以是氢、 烷基、 氰基、 卤素、 卤代烷基、 羟基、 巯基、 烷氧基、 烷硫基、 烷氧基烷基、 芳烷基或芳基;
A2各自独立地表示亚烷基、 C(0)NH、 C(0) NHC(0) 亚烷基 -C(0)、 C(O)-亚烷基、 亚烷基 -C(O)-亚烷基或 NHC(0)NH; 上述基团各自独立地可任选被 R7 取代, R7 可以是氢、 烷基、 氰基、 卤素、 卤代烷基、 羟基、 巯基、 烷氧基、 烷硫基、 烷氧基烷基、 芳烷基或芳基; Q1 是选自芳基或 Het, 其中芳基或 Het各自独立地可任选被一个或多个 R8 取代, R8 可以 是氢、 烷基、 氰基、 ^素、 ^代烷基、 羟基、 巯基、 烷氧基、 烷硫基、 烷氧基烷基、 芳烷基 或芳基;
Q2 是选自芳基或 Het, 其中芳基或 Het各自独立地可任选被一个或多个 R9 取代, R9 可以 是氢、 烷基、 氰基、 ^素、 ^代烷基、 羟基、 巯基、 烷氧基、 烷硫基、 烷氧基烷基、 芳烷基 或芳基。
本发明的另一优选方案在于:
其中 R R2、 R3 各自独立地表示氢、 烷基、 氰基、 卤素、 卤代烷基、 羟基、 巯基、 烷氧基、 烷硫基或烷氧基烷基;
X、 Y各自独立地表示 N 原子或 CH 原子团; 其中 CH 原子团可任选被 R4 取代, R4 可以 是氢、 烷基、 氰基、 ^素、 ^代烷基、 羟基、 巯基、 烷氧基、 烷硫基或烷氧基烷基;
Z、 M 各自独立地表示 NH、 0、 S 或 CH 原子团, 且 Z、 M 必需有一个为 NH、 0 或 S ; 其 中 CH 或 NH 原子团各自独立地可任选被 R5 取代, R5 可以是氢、 烷基、 氰基、 卤素、 卤代 烷基、 羟基、 巯基、 烷氧基、 烷硫基或烷氧基烷基;
A1 各自独立地表示 NH、 0、 S 或亚烷基原子团; 其中 NH 原子团或亚烷基原子团各自独立 地可任选被 R6 取代, R6 可以氢、 烷基、 氰基、 卤素、 卤代烷基、 羟基、 巯基、 烷氧基、 烷 硫基或烷氧基烷基;
A2各自独立地表示亚烷基、 C(0)NH、 C(0) NHC(0) 亚烷基 -C(0)、 C(O)-亚烷基、 亚烷基 -C(O)-亚烷基或 NHC(0)NH; 上述基团各自独立地可任选被 R7 取代, R7 可以是氢、 烷基、 氰基、 ^素、 ^代烷基、 羟基、 巯基、 烷氧基、 烷硫基或烷氧基烷基;
Q1 是选自芳基或 Het, 其中芳基或 Het各自独立地可任选被一个或多个 R8 取代, R8 可以 是氢、 烷基、 氰基、 ^素、 ^代烷基、 羟基、 巯基、 烷氧基、 烷硫基或烷氧基烷基;
Q2 是选自芳基或 Het, 其中芳基或 Het各自独立地可任选被一个或多个 R9 取代, R9 可以 是氢、 烷基、 氰基、 ^素、 ^代烷基、 羟基、 巯基、 烷氧基、 烷硫基或烷氧基烷基。
本发明的另一优选方案在于:
其中 R R2、 R3 各自独立地表示氢、 烷基、 氰基、 卤素、 卤代烷基、 羟基、 巯基、 烷氧基、 烷硫基或烷氧基烷基;
X、 Y各自独立地表示 N 原子或 CH 原子团; 其中 CH 原子团可任选被 R4 取代, R4 可以 是氢、 烷基、 氰基、 ^素、 ^代烷基、 羟基、 巯基、 烷氧基、 烷硫基或烷氧基烷基;
Z、 M 各自独立地表示 NH、 0、 S 或 CH 原子团, 且 Z、 M 必需有一个为 NH、 0 或 S ; 其 中 CH 或 NH 原子团各自独立地可任选被 R5 取代, R5 可以是氢、 烷基、 氰基、 卤素、 卤代 烷基、 羟基、 巯基、 烷氧基、 烷硫基或烷氧基烷基;
A1 各自独立地表示 NH、 0、 S 或亚烷基原子团; 其中 NH 原子团或亚烷基原子团各自独立 地可任选被 R6 取代, R6 可以氢、 烷基、 氰基、 卤素、 卤代烷基、 羟基、 巯基、 烷氧基、 烷 硫基或烷氧基烷基;
A2各自独立地表示亚烷基、 C(0)NH、 C(0) NHC(0) 亚烷基 -C(0)、 C(0)-亚烷基、 亚烷基 -C(0)-亚烷基或 NHC(0)NH; 上述基团各自独立地可任选被 R7 取代, R7 可以是氢、 烷基、 氰基、 ^素、 ^代烷基、 羟基、 巯基、 烷氧基、 烷硫基或烷氧基烷基;
Q1 是选自下列的芳香环或取代的芳香环: 苯基、 萘基、 吡咯基、 呋喃基、 噻吩基、 吡啶基、 吡嗪基、 嘧啶基, 上述基团各自独立地可任选被一个或多个 R8 取代, R8 可以是氢、 烷基、 氰基、 ^素、 ^代烷基、 羟基、 巯基、 烷氧基、 烷硫基或烷氧基烷基;
Q2 是选自下列的芳香环: 苯基、 萘基、 吡唑基、 呋喃基、 噻吩基、 吡啶基、 吡嗪基、 嘧啶基, 或 C3-C8 的脂肪族碳环, 或下列的脂肪族杂环: 四氢吡咯基、 哌啶基、 吗啉基、 甲基哌嗪基; 上述基团各自独立地可任选被一个或多个 R8 取代, R8 可以是氢、 烷基、 氰基、 卤素、 卤代 烷基、 羟基、 巯基、 烷氧基、 烷硫基或烷氧基烷基。
本发明的另一优选方案在于:
其中 R R2、 R3 各自独立地表示氢、 烷基、 氰基、 卤素、 卤代烷基、 羟基、 巯基、 烷氧基、 烷硫基或烷氧基烷基;
X、 Y各自独立地表示 N 原子或 CH 原子团; 其中 CH 原子团可任选被 R4 取代, R4 可以 是氢、 烷基、 氰基、 ^素、 ^代烷基、 羟基、 巯基、 烷氧基、 烷硫基或烷氧基烷基;
Z、 M 各自独立地表示 NH、 0、 S 或 CH 原子团, 且 Z、 M 必需有一个为 NH、 0 或 S ; 其 中 CH 或 NH 原子团各自独立地可任选被 R5 取代, R5 可以是氢、 烷基、 氰基、 卤素、 卤代 烷基、 羟基、 巯基、 烷氧基、 烷硫基或烷氧基烷基;
A1 各自独立地表示 NH、 0、 S 或亚烷基原子团; 其中 NH 原子团或亚烷基原子团各自独立 地可任选被 R6 取代, R6 可以氢、 烷基、 氰基、 卤素、 卤代烷基、 羟基、 巯基、 烷氧基、 烷 硫基或烷氧基烷基;
A2各自独立地表示亚烷基、 C(0)NH、 C(0) NHC(0) 亚烷基 -C(0)、 C(O)-亚烷基、 亚烷基 -C(O)-亚烷基或 NHC(0)NH; 上述基团各自独立地可任选被 R7 取代, R7 可以是氢、 烷基、 氰基、 ^素、 ^代烷基、 羟基、 巯基、 烷氧基、 烷硫基或烷氧基烷基;
Q1 是选自下列的芳香环或取代的芳香环: 苯基、 萘基、 吡咯基、 呋喃基、 噻吩基、 吡啶基、 吡嗪基、 嘧啶基, 取代基可以是 1〜2 个卤素或三氟甲基;
Q2 是选自下列的芳香环: 苯基、 萘基、 吡唑基、 呋喃基、 噻吩基、 吡啶基、 吡嗪基、 嘧啶基, 或 C3-C8 的脂肪族碳环, 或下列的脂肪族杂环: 四氢吡咯基、 哌啶基、 吗啉基、 甲基哌嗪基。 本发明的另一优选方案在于:
其中 R R2、 R3 各自独立地表示氢、 d-C4 烷基;
X、 Y各自独立地表示 N 原子或 CH 原子团;
Z、 M 各自独立地表示 NH、 0、 S 或 CH 原子团, 且 Z、 M 必需有一个为 NH、 0 或 S ;
A1 各自独立地表示 NH、 0、 S 或 CH2 原子团;
A2各自独立地表示链状 d-C4 亚烷基、 C(0)NH、 C(0)、 NHC(O);
Q1 是选自下列的芳香环或取代的芳香环: 苯基、 萘基、 吡咯基、 呋喃基、 噻吩基、 吡啶基、 吡嗪基、 嘧啶基, 取代基可以是 1〜2 个卤素或三氟甲基; Q2 是选自下列的芳香环: 苯基、 萘基、 吡唑基、 呋喃基、 噻吩基、 吡啶基、 吡嗪基、 嘧啶基, 或 C3-C8 的脂肪族碳环, 或下列的脂肪族杂环: 四氢吡咯基、 哌啶基、 吗啉基、 甲基哌嗪基。 本发明的另一优选方案在于:
其中 R R2、 R3 各自独立地表示氢、 甲基;
A1 表示 NH;
A2表示 CH2; Q1 表示苯基;
Q2表示吗啉基、 甲基哌嗪基。
根据本发明, 药学上可接受的盐包括通式 I化合物与下列酸形成的酸加成盐: 盐酸、 氢 溴酸、 硫酸、 磷酸、 甲磺酸、 苯磺酸、 对甲苯磺酸、 萘磺酸、 柠檬酸、 酒石酸、 乳酸、 丙酮 酸、 乙酸、 马来酸或琥珀酸、 富马酸、 水杨酸、 苯基乙酸、 杏仁酸。 此外还包括无机碱的酸 式盐, 如: 含有碱性金属阳离子、 碱土金属阳离子、 铵阳离子盐。 当存在硫时, 其可以在相邻原 子和基团的性质允许时以 -S -、 -s(o)-或 -s(o)2-存在。
通式 I的化合物优选以下结构化合物:
4-(4-噻吩并 [2,3-d]嘧啶基氨基) -N-(4-((4-甲基 -1-哌嗪基)甲基)苯基) -1H-3-吡唑甲酰胺 (1-1) 4-(4-噻吩并 [2,3-d]嘧啶基氨基) -N-(4-((4-吗啡啉基)甲基)苯基) -1H-3-吡唑甲酰胺 (1-2)
4-(4-(6-甲基噻吩并 [2,3-d]嘧啶基)氨基) -N-(4-((4-甲基 -1-哌嗪基)甲基)苯基) -1H-3-吡唑甲酰胺 (1-3)
4-(4-(6-甲基噻吩并 [2,3-d]嘧啶基)氨基) -N-(4-((4-吗啡啉基)甲基)苯基) -1H-3-吡唑甲酰胺 (1-4) 4-(4-(5-甲基噻吩并 [2,3-d]嘧啶基)氨基) -N-(4-((4-甲基 -1-哌嗪基)甲基)苯基) -1H-3-吡唑甲酰胺 (1-5)
4-(4-(5-甲基噻吩并 [2,3-d]嘧啶基)氨基) -N-(4-((4-吗啡啉基)甲基)苯基) -1H-3-吡唑甲酰胺 (1-6) 4-(4-(5,6-二甲基噻吩并 [2,3-d]嘧啶基)氨基) -N-(4-((4-甲基 -1-哌嗪基)甲基)苯基) -1H-3-吡唑甲 酰胺 (1-7)
4-(4-(5,6-二甲基噻吩并 [2,3-d]嘧啶基)氨基) -N-(4-((4-吗啡啉基)甲基)苯基) -1H-3-吡唑甲酰胺 (1-8)
4-(4-噻吩并 [3,2-d]嘧啶基氨基) -N-(4-((4-甲基 -1-哌嗪基)甲基)苯基) -1H-3-吡唑甲酰胺 (1-9) 4-(4-噻吩并 [3,2-d]嘧啶基氨基) -N-(4-((4-吗啡啉基)甲基)苯基) -1H-3-吡唑甲酰胺 (1-10) 4-(4-(7H-吡咯并 [2,3-d]嘧啶基)氨基) -N-(4-((4-甲基 -1-哌嗪基)甲基)苯基) -1H-3-吡唑甲酰胺 (I-H) 4-(4-(7H-吡咯并 [2,3-d]嘧啶基)氨基) -N-(4-((4-吗啡啉基)甲基)苯基) -1H-3-吡唑甲酰胺 (1-12) 4-(4-(6-甲基 -7H-吡咯并 [2,3-d]嘧啶基)氨基) -N-(4-((4-甲基 -1-哌嗪基)甲基)苯基) -1H-3-吡唑甲 酰胺 (1-13)
4-(4-(6-甲基 -7H-吡咯并 [2,3-d]嘧啶基)氨基) -N-(4-((4-吗啡啉基)甲基)苯基) -1H-3-吡唑甲酰胺 (1-14)
4-(4-(5-甲基 -7H-吡咯并 [2,3-d]嘧啶基)氨基) -N-(4-((4-甲基 -1-哌嗪基)甲基)苯基) -1H-3-吡唑甲 酰胺 (1-15)
4-(4-(5-甲基 -7H-吡咯并 [2,3-d]嘧啶基)氨基) -N-(4-((4-吗啡啉基)甲基)苯基) -1H-3-吡唑甲酰胺 (1-16)
4-(4-(5H-吡咯并 [3,2-d]嘧啶基)氨基) -N-(4-((4-甲基 -1-哌嗪基)甲基)苯基) -1H-3-吡唑甲酰胺 (1-17)
4-(4-(5H-吡咯并 [3,2-d]嘧啶基)氨基) -N-(4-((4-吗啡啉基)甲基)苯基) -1H-3-吡唑甲酰胺 (1-18) 4-(4-(6-甲基 -5H-吡咯并 [3,2-d]嘧啶基)氨基) -N-(4-((4-甲基 -1-哌嗪基)甲基)苯基) -1H-3-吡唑甲 酰胺 (1-19)
4-(4-(6-甲基 -5H-吡咯并 [3,2-d]嘧啶基)氨基) -N-(4-((4-吗啡啉基)甲基)苯基) -1H-3-吡唑甲酰胺 (1-20)
4-(4-呋喃并 [2,3-d]嘧啶基氨基) -N-(4-((4-甲基 -1-哌嗪基)甲基)苯基) -1H-3-吡唑甲酰胺 (1-21) 4-(4-呋喃并 [2,3-d]嘧啶基氨基) -N-(4-((4-吗啡啉基)甲基)苯基) -1H-3-吡唑甲酰胺 (1-22) 4-(4-呋喃并 [3,2-d]嘧啶基氨基) -N-(4-((4-甲基 -1-哌嗪基)甲基)苯基) -1H-3-吡唑甲酰胺 (1-23) 4-(4-呋喃并 [3,2-d]嘧啶基氨基) -N-(4-((4-吗啡啉基)甲基)苯基) -1H-3-吡唑甲酰胺 (1-24) 4-(4-噻吩并 [3,2-c]吡啶基氨基) -N-(4-((4-甲基 -1-哌嗪基)甲基)苯基) -1H-3-吡唑甲酰胺 (1-25) 4-(4-噻吩并 [3,2-c]吡啶基氨基) -N-(4-((4-吗啡啉基)甲基)苯基) -1H-3-吡唑甲酰胺 (1-26) 4-(4-(2-甲基噻吩并 [3,2-C]吡啶基)氨基) -N-(4-((4-甲基 -1-哌嗪基)甲基)苯基) -1H-3-吡唑甲酰胺 (1-27)
4-(4-(2-甲基噻吩并 [3,2-c]吡啶基)氨基) -N-(4-((4-吗啡啉基)甲基)苯基) -1H-3-吡唑甲酰胺 (1-28) 4-(7-噻吩并 [2,3-c]吡啶基氨基) -N-(4-((4-甲基 -1-哌嗪基)甲基)苯基) -1H-3-吡唑甲酰胺 (1-29) 4-(7-噻吩并 [2,3-c]吡啶基氨基) -N-(4-((4-吗啡啉基)甲基)苯基) -1H-3-吡唑甲酰胺 (1-30) 4-(7-(3-甲基噻吩并 [2,3-c]吡啶基)氨基) -N-(4-((4-甲基 -1-哌嗪基)甲基)苯基) -1H-3-吡唑甲酰胺 (1-31)
4-(7-(3-甲基噻吩并 [2,3-c]吡啶基)氨基) -N-(4-((4-吗啡啉基)甲基)苯基) -1H-3-吡唑甲酰胺 (1-32) 4-(4-呋喃并 [3,2-C]吡啶基氨基) -N-(4-((4-甲基 -1-哌嗪基)甲基)苯基) -1H-3-吡唑甲酰胺 (1-33) 4-(4-呋喃并 [3,2-c]吡啶基氨基) -N-(4-((4-吗啡啉基)甲基)苯基) -1H-3-吡唑甲酰胺 (1-34) 4-(4-(2-甲基呋喃并 [3,2-C]吡啶基)氨基) -N-(4-((4-甲基 -1-哌嗪基)甲基)苯基) -1H-3-吡唑甲酰胺 (1-35)
4-(4-(2-甲基呋喃并 [3,2-C]吡啶基)氨基) -N-(4-((4-吗啡啉基)甲基)苯基) -1H-3-吡唑甲酰胺 (1-36) 4-(7-呋喃并 [2,3-c]吡啶基氨基) -N-(4-((4-甲基 -1-哌嗪基)甲基)苯基) -1H-3-吡唑甲酰胺 (1-37) 4-(7-呋喃并 [2,3-c]吡啶基氨基) -N-(4-((4-吗啡啉基)甲基)苯基) -1H-3-吡唑甲酰胺 (1-38) 4-(7-呋喃并 [3,2-b]吡啶基氨基) -N-(4-((4-甲基 -1-哌嗪基)甲基)苯基) -1H-3-吡唑甲酰胺 (1-39) 4-(7-呋喃并 [3,2-b]吡啶基氨基) -N-(4-((4-吗啡啉基)甲基)苯基) -1H-3-吡唑甲酰胺 (1-40) 4-(4-呋喃并 [2,3-b]吡啶基氨基) -N-(4-((4-甲基 -1-哌嗪基)甲基)苯基) -1H-3-吡唑甲酰胺 (1-41) 4-(4-呋喃并 [2,3-b]吡啶基氨基) -N-(4-((4-吗啡啉基)甲基)苯基) -1H-3-吡唑甲酰胺 (1-42) 4-(7-(lH-吡咯并 [2,3-c]吡啶基)氨基) -N-(4-((4-甲基 -1-哌嗪基)甲基)苯基) -1H-3-吡唑甲酰胺 (1-43)
4-(7-(lH-吡咯并 [2,3-c]吡啶基)氨基) -N-(4-((4-吗啡啉基)甲基)苯基) -1H-3-吡唑甲酰胺 (1-44) 4-(7-(2-甲基 -1H-吡咯并 [2,3-c]吡啶基)氨基) -N-(4-((4-甲基 -1-哌嗪基)甲基)苯基) -1H-3-吡唑甲 酰胺 (1-45)
4-(7-(2-甲基 -1H-吡咯并 [2,3-c]吡啶基)氨基) -N-(4-((4-吗啡啉基)甲基)苯基) -1H-3-吡唑甲酰胺 (1-46)
4-(4-(2-甲基噻吩并 [3,2-d]嘧啶)基氨基) -N-(4-((4-甲基 -1-哌嗪基)甲基)苯基) -1Η-3-吡唑甲酰胺 (1-47)
4-(4-(2-甲基噻吩并 [3,2-d]嘧啶)基氨基) -N-(4-((4-吗啡啉基)甲基)苯基) -1Η-3-吡唑甲酰胺 (1-48) 本发明的部分化合物制备方法如下:
方法一:
Figure imgf000019_0001
方法二
Figure imgf000020_0001
Figure imgf000020_0002
方法四:
Figure imgf000020_0003
本发明化合物都可以用上述或类似上述的制备方法制备得到, 根据取代基的不同和取代基位 置的不同选用相应的原料即可。
在式 (I)化合物中, 包括吡唑基团可以是下列两种互变异构体形式 A和 B中的任何一种。 、 N- ^,*- 剛
H
A 互变异构体形式的其它实例包括例如酮-、 烯醇-和烯醇化物-形式, 如例如在下列互变异 构体对中: 酮 /醇 (以下说明的)、 亚胺 /烯胺、 酰胺 /亚胺醇、 脒 /脒、 亚硝基 /肟、 硫酮 /烯硫醇以 及硝基 /酸式-硝基中。
式 (I)化合物及其亚组作为是 CMGC家族激酶, 特别选自 CDK细胞周期蛋白激酶、 GSK 糖原合成激酶、 促分裂素原活化蛋白激酶 (MAPK)和 CDK-样激酶 (CLK)家族激酶。 优选的化 合物是抑制一种或多种 CDK激酶、 GSK激酶及 MAPK激酶的化合物,所述激酶选自 CDK1、 CDK2、 CDK3、 CDK4、 CDK5、 CDK6、 CDk7、 CDK9、 GSK3、 CHK2、 ER 7 FGFR、 VEGFR、 JAk、 JNK、 KDR、 PDGFR、 C-SCR、 Aurora禾卩 FLT3。
本发明化合物还被视为 TK家族激酶抑制, 特别是选自受体酪氨酸家族抑制剂及非受体 酪氨酸家族抑制剂, 其中特别选自受体激酶家族抑制剂,表皮生长因子受体 (EGFR)家族、血小 板生长因子受体 (PDGFR)家族、神经生长因子受体 (NGFR)、成纤维细胞生长因子受体 (FGFR) 家族、 肝细胞生长因子受体 (HGFR)家族、 血管内皮生长因子受体 (VEGFR)以及胰岛素受体 (INSR)家族等等 RTKs非受体酪氨酸激酶主要包括 SRC、 ABL、 JAK、 ACK、 CSK、 FAK、 FES、 FRK、 TEC、 SYK等 10个家族.作为它们调节或抑制 CMGC家族和 TK家族激酶的结 果, 预期它们可用于提供对细胞增殖, 分化及相关信号转导过程中的异常的阻止或恢复性的 控制手段。 因此将证实可用于治疗或预防细胞信号转导失调与紊乱, 例如肿瘤。 还可以想象 本发明的化合物可用于治疗如下疾病, 例如炎症, 病毒感染, Π 型或非胰岛素依赖糖尿病、 自身免疫疾病。 头部创伤、 中风、 癫痫, 神经性疾病 (如阿尔默兹海姆症)、 运动神经元疾病。
本发明化合物还被视为糖原合成酶激酶 -3(GSK3)的抑制剂。作为它们调节或抑制 CDK激 酶和糖原合成酶激酶的活性的结果, 预期它们可用于提供对异常分化细胞的细胞周期阻止性 或恢复性控制的手段。 因此, 可以预见, 这些化合物将证实可用于治疗或预防增殖紊乱, 例 如癌症。 还可以想象本发明的化合物可用于治疗下列病症, 例如病毒感染、 II 型或非胰岛素 依赖型糖尿病、 自身免疫性疾病、头部创伤、中风、癫痫、神经变性疾病 (如阿尔茨海默氏病)、 运动神经元疾病、 进行性核上性麻痹、 皮质基底节变性和皮克氏病。 本发明的化合物对其有 用的疾病状态和病症的一个亚组包括病毒感染、 自身免疫性疾病和神经变性疾病。 可被抑制 的肿瘤实例包括但不限于癌: 例如膀胱癌、 乳腺癌、 结肠癌 (例如结肠直肠癌肺癌) GSK3b 可 通过调节糖原合成酶、 p27和等蛋白因子, 以及参与胞内经典的 信号通路等方式, 调控癌细 胞的分化增殖与凋亡, 通过参与单胺神经受体的行为调控作用, 在神经精神类疾病的发病机 制中起到重要作用, 同时还能通过 通路以外的其他因子和通路介导神经退行性疾病的发生, 因此, 成为各种重大疾病治疗中炙手可热的抑制靶点。
本发明包括本发明的化合物抑制细胞或受试者的 FLT3激酶活性、或治疗与 FLT3激酶活 性或表达有关的病症的用途。
可以被抑制的癌症的实例包括但是不限于癌症, 例如膀胱癌、 乳腺癌、 结肠癌 (例如结肠 直肠癌, 例如结肠腺癌和结肠腺瘤)、 肾癌、 表皮癌、 肝癌、 肺癌 (例如腺癌、 小细胞肺癌和 非小细胞肺癌)、 食道癌、 胆囊癌、 卵巢癌、 胰腺癌 (例如外分泌胰腺癌)、 胃癌、 宫颈癌、 甲 状腺癌、 前列腺癌或皮肤癌 (例如鳞状细胞癌); 淋巴谱系的造血肿瘤 (例如白血病、 急性淋巴 性白血病、 B-细胞淋巴瘤、 T-细胞淋巴瘤、 霍奇金淋巴瘤、 非霍奇金淋巴瘤、 多毛细胞淋巴 瘤或伯基特淋巴瘤); 骨髓谱系的造血肿瘤 (例如急性或慢性髓性白血病、 骨髓发育不良综合 症或早幼粒细胞白血病); 甲状腺滤泡癌; 间充质起源的肿瘤 (例如纤维肉瘤或横纹肌肉瘤), 中枢或外周神经系统的肿瘤 (例如星形细胞瘤、 神经母细胞瘤、 神经胶质瘤或神经鞘瘤); 黑 素瘤; 精原细胞瘤; 恶性畸胎瘤; 骨肉瘤; 着色性干皮病; keratoctanthoma; 甲状腺滤泡癌; 卡波西肉瘤, B-细胞淋巴瘤和慢性淋巴细胞白血病。
本发明的化合物作为作为 CMGC及 TK双家族激酶活性抑制剂的用途可以利用下文实施 例中所述的测定法来测量, 给定化合物所表现的活性水平可通过 IC50值来限定。
下面是部分药理学试验及结果:
( 1 ) 目标化合物的 CDK2抑制活性测定
所合成的化合物用荧光共振能量转移(FRET)法测定对 CDK2/A的抑制活性, 并与阳性 对照药比较, 筛选出活性较好的化合物。 CDK2/A通过纯化或直接购买试剂盒获得。
具体方法: CDK2/A用激酶稀释液稀释至合适浓度后使用。激酶反应混合物中含 CDK2/A、 peptide substrate HEPES (pH7.5)、 BRIJ-35 MgCl2和 EDTA。 CDK2 phospho-peptide substrate 用作 100%磷酸化对照, 不加 ATP用作 0%磷酸化对照。 室温下反应 lh后, 向反应体系中加 入适度稀释的 Development Reagent A。 室温下继续反应 lh, 加入 Stop Reagent中止反应。激 发波长 400nm, 同时检测波长为 445nm(coumarin)和 520nm(fluorescein)的荧光强度。按公式计 算受试化合物抑制率。
( 2 ) 目标化合物的 Aurora A抑制活性测定
所合成的化合物用荧光共振能量转移 (FRET) 法测定对 Aurora A的抑制活性, 并与阳 性对照药比较, 筛选出活性较好的化合物。 Aurora A通过纯化或直接购买试剂盒获得。
具体方法: Aurora A用激酶稀释液稀释至合适浓度后使用。 激酶反应混合物中含 Aurora A、 peptide substrate HEPES (pH7.5)、 BRIJ-35 MgCl2和 EDTA。 Aurora A phospho-peptide substrate用作 100%磷酸化对照, 不加 ATP用作 0%磷酸化对照。 室温下反应 lh后, 向反应 体系中加入适度稀释的 Development Reagent A。室温下继续反应 lh, 加入 Stop Reagent中止 反应。 激发波长 400nm, 同时检测波长为 445nm(coumarin)和 520nm(fluorescein)的荧光强度。 按公式计算受试化合物抑制率。
(3 ) CDK2、 Aurora A抑制活性结果 化合物 CDK2 抑制率% Aurora A 抑制率 化合物代 CDK2 抑制率% Aurora A 抑制率 代号 (l x l0"6mol/L) %(l x l0"6mol/L) 号 (l x l0"6mol/L) %(l x l0"6mol/L)
1-1 70.91 67.88 1-25 59.48 59.70
1-2 46.60 52.17 1-26 73.14 61.07
1-3 62.47 75.19 1-27 72.62 67.82 1-4 52.73 64.46 1-28 76.91 67.63
1-5 51.24 58.62 1-29 76.17 64.39
1-6 60.68 54.80 1-30 73.13 55.09
1-7 65.12 54.93 1-31 45.34 70.27
1-8 54.65 48.49 1-32 38.28 67.45
1-9 65.03 67.63 1-33 44.93 45.08
1-10 56.23 54.89 1-34 65.75 50.52
1-11 67.90 64.26 1-35 73.23 55.99
1-12 66.39 49.44 1-36 64.51 56.23
1-13 67.00 60.82 1-37 72.22 59.65
1-14 65.78 66.26 1-38 64.85 50.95
1-15 73.16 57.43 1-39 37.58 42.11
1-16 50.49 56.18 1-40 20.24 40.70
1-17 65.96 62.17 1-41 56.16 42.64
1-18 64.99 53.66 1-42 54.20 51.83
1-19 65.01 70.28 1-43 76.09 55.02
1-20 62.25 60.72 1-44 75.91 54.94
1-21 66.01 60.80 1-45 60.11 63.21
1-22 66.33 48.54 1-46 68.57 60.73
1-23 60.65 59.67 AT-7519 74.96 38.02
1-24 67.10 49.16 AT-9283 39.68 77.36
(4) 目标化合物的多靶点筛选
试验方法基于 RCB公司开发的 HotSpot的激酶筛选平台, 使用标准放射性标记的激酶试 验法,激酶 (通过克隆到杆状病毒并表达激酶域的活性实验测定 IC50值,杆状病毒使用 FastBac 杆状病毒表达系统。 )及底物及流程 (原理: Substrate + [33P]-ATP 33P-Substrate + ADP)可检测 待测化合物与 342激酶及与突变变异型相关的疾病之间的相互作用, 是目前最具综合性的, 对作用于人类激酶的化合物进行高通量筛选的系统。 激酶实验使用 10 μ Μ ΑΤΡ, [33Ρ]ΑΤΡ, 及生物素肽段, 使用 SA-闪光板测定 33Ρ的合并率。 实验使用多种浓度的, 用一系列 DMSO 储液稀释。使用不同浓度对应的数据回归曲线分析测定 IC50值,或单一浓度进行抑制率检测。 所合成的化合物对 342个激酶进行单剂量 10 μ Μ双孔复筛, 依据标准筛选流程, 其中阳性对 照要十字苞碱 (Staurosporine)以 4倍稀释得到 10个剂量, 起始浓度为 10 μ Μ, 其他阳性对照 药则以 3倍浓度得到 10个剂量, 起始浓度为 20 μ M o所测 342个激酶为: 由美国宾夕法尼亚 州的 Reaction Biology提供。 DMSO购自美国 Sigma公司。
所测激酶: ABL1(1)、 ABL2/ARG(2)、 ACK1(3)、 AKT1(4)、 AKT2(5)、 AKT3(6)、 ALK(7)、 ALK1/ACVRL1(8) ALK2/ACVR1(9) ALK3/BMPR1A(10)、 ALK4/ACVR1B(11)、
ALK5/TGFBR1 (12)、 ALK6/BMPR1 B( 13)、 ARAF( 14)、 AR 5/NUAK1 (15)、 ASK1/MAP3K5(16)、 Aurora A( 17)、 Aurora B( 18)、 Aurora C( 19)、 AXL(20)、 BLK(21)、 BMPR2(22)、 BMX/ETK(23) BRAF(24)、 BRK(25)、 BRSK1(26)、 BRSK2(27) BTK(28)、 c-Kit(29)、 c-MER(30)、 c-MET(31)、 c-Src(32)、 CAMKla(33)、 CAMKlb(34)、 CAMKld(35)、 CAMKlg(36)、 CAMK2a(37) CAMK2b(38)、 CAMK2d(39)、 CAMK2g(40)、 CAMK4(41)、 CAMK 1(42)、 CAMKK2(43) CDC7/DBF4(44)、 CDKl/cyclin A(45) CDKl/cyclin B(46) CDKl/cyclin E(47) CDK16/cyclin Y (PCTAIRE)(48)、 CDK2/cyclin A(49) CDK2/Cyclin Al(50) CDK2/cyclin E(51) CDK3/cyclin E(52)、 CDK4/cyclin Dl(53) CDK4/cyclin D3(54) CDK5/p25(55)、 CDK5/p35(56)、 CDK6/cyclin Dl(57)、 CDK6/cyclin D3(58) CDK7/cyclin H(59) CDK9/cyclin K(60) CDK9/cyclin Tl(61) CHK1(62)、 CHK2(63)、 CKlal(64)、 CKld(65)、 CKlepsilon(66) CKlgl(67)、 CKlg2(68)、 CKlg3(69)、 CK2a(70)、 CK2a2(71) CLK1(72)、 CLK2(73) CLK3(74)、 CLK4(75)、
C0T1/MAP3K8(76)、 CSK(77)、 CTK/MATK(78)、 DAPK1(79)、 DAPK2(80)、 DCAMKL1(81)、 DCAMKL2(82)、 DDR1(83)、 DDR2(84)、 DLK/MAP3K12(85) DMPK(86)、 DMPK2(87)、 DRAK1/STK17A(88)、 DYRK1/DYR 1A(89)、 DYR 1B(90)、 DYR 2(91) DYR 3(92) DYR 4(93) EGFR(94)、 EPHA1(95)、 EPHA2(96)、 EPHA3(97)、 EPHA4(98)、 EPHA5(99)、 EPHA6(100)、 EPHA7(101) EPHA8(102)、 EPHB1(103) EPHB2(104) EPHB3(105)
EPHB4(106)、 ERBB2/HER2(107) ERBB4/HER4(108)、 ER 1(109)、 ERK2/MAPK1(110)、 ER 5/MAPK7(111) ER 7/MAPK15(112) FAK/PTK2(113) FER(114)、 FES/FPS(115)、 FGFR1(116)、 FGFR2(117) FGFR3(118)、 FGFR4(119)、 FGR(120)、 FLT1/VEGFR1(121)、 FLT3(122)、 FLT4/VEGFR3(123)、 FMS(124)、 FRK/PTK5(125) FYN(126) GCK/MAP4K2(127) GLK/MAP4K3(128) GR 1(129) GRK2(130) GR 3(131) GR 4(132) GRK5(133) GR 6(134)、 GRK7(135)、 GSK3a(136)、 GSK3b(137) Haspin(138) HCK(139)、
HGK/MAP4K4(140)、 HIPK1(141)、 HIPK2(142) HIPK3(143) HIPK4(144)、
HPK1/MAP4K1(145)、 IGF1R(146)、 IK a/CHUK(147) IK b/IKBKB(148) IK e/IKBKE(149) IR(150)、 IRAK1(151)、 IRAK4(152)、 IRR/INSRR(153) ITK(154)、 JAK1(155)、 JAK2(156)、 JAK3(157)、 JNK1(158)、 JNK2(159) JNK3(160) KDR/VEGFR2(161)、 KHS/MAP4K5(162)、 LATS1(163)、 LATS2(164)、 LCK(165)、 LCK2/ICK(166)、 LIMK1(167)、 LIMK2(168)、 LKB1(169)、 LOK/STK10(170)、 LR K2(171)、 LYN(172)、 LYN B(l 73)、 MAPKAPK2(174)、 MAPKAPK3(175)、 MAPKAPK5/PRAK( 176) MAR 1(177) MARK2/PAR- 1 Ba( 178) MAR 3(179) MAR 4(180)、 MEK1(181)、MEK2(182)、MEK3(183)、MEK 1(184)、MEKK2(185)、MEKK3(186)、MELK(187)、 MINK/MINK1(188) MK 4(189)、 MKK6(190)、 MLCK/MYLK(191)、 MLCK2/MYLK2(192) MLK1/MAP3K9(193) MLK2/MAP3K10(194) MLK3/MAP3K11(195)、 MNK1(196)、 MNK2(197) MRCKa/CDC42BPA(198)、 MRCKb/CDC42BPB(199)、 MSK1/RPS6KA5(200) MSK2/RPS6KA4(201) MSSK1/STK23(202) MST1/STK4(203)、 MST2/STK3(204)、
MST3/STK24(205) MST4(206)、 MUSK(207)、 MYLK3(208)、 MYO3b(209)、 NEK1(210)、 NEK11(211)、 NEK2(212) NEK3(213) NEK4(214)、 NEK5(215)、 NEK6(216)、 NEK7(217) NEK9(218)、 NLK(219)、 OSR1/OXSR1(220) P38a/MAPK14(221)、 P38b/MAPK11(222)、 P38d/MAPK13(223)、 P38g(224)、 p70S6K/RPS6KB 1 (225)、 p70S6Kb/RPS6KB2(226)、 PAK1 (227)、 PAK2(228) PAK3(229) PAK4(230)、 PAK5(231)、 PAK6(232)、 PASK(233) PBK/TOPK(234) PDGFRa(235)、 PDGFRb(236)、 PDK1/PDPK1(237) PHKgl(238)、 PHKg2(239) PIM1(240)、 PIM2(241)、 PIM3(242)、 PKA(243) PKAcb(244)、 PKAcg(245)、 PKCa(246)、 PKCbl(247)、 PKCb2(248)、 PKCd(249)、 PKCepsilon(250) PKCeta(251)、 PKCg(252)、 PKCiota(253)、 PKCmu/PRKD 1(254)、 PKCnu/PRKD3(255) PKCtheta(256)、 PKCzeta(257)、 PKD2/PR D2(258) PKGla(259)、 PKGlb(260)、 PKG2/PR G2(261) PK 1/PR 1(262) PK 2/PRK2(263) PK 3/PRK3(264) PLK1(265)、 PLK2(266)、 PLK3(267) PLK4/SAK(268)、 PRKX(269) PYK2(270) RAF1(271)、 RET(272) RIPK2(273) RIPK3(274) RIPK5(275) R0CK1(276) ROCK2(277) R0N/MST1R(278)、 ROS/ROS 1(279)、 RSK1(280)、 RSK2(281)、 RSK3(282)、 RSK4(283)、 SGK1(284)、 SGK2(285)、 SGK3/SGKL(286) SIK1(287)、 SIK2(288)、 SIK3(289)、 SLK/STK2(290) SNARK/NUAK2(291) SRMS(292)、 SRPK1(293)、 SRPK2(294)、
SSTK/TSSK6(295)、 STK16(296)、 STK22D/TSSK1(297) STK25/YSK1(298)、
STK32B/YANK2(299)、 STK32C/YANK3(300)、 STK33(301) STK38/NDR1(302)
STK38L/NDR2(303) STK39/STLK3(304)、 SYK(305)、 TAK1(306)、 TAOK1(307)、
TAOK2/TAO 1(308)、 TAOK3/JIK(309) TBK1(310)、 TEC(311)、 TESK1(312)、 TGFBR2(313) TIE2/TEK(314)、 TLK1(315)、 TLK2(316) TNIK(317) TNK1(318)、 TRKA(319) TRKB(320) TR C(321) TSSK2(322)、 TSSK3/STK22C(323) TTBK1(324)、 TTBK2(325) TXK(326) TYK1/LTK(327) TYK2(328) TYR03/SKY(329) ULK1(330) ULK2(331) ULK3(332) VR 1(333) VRK2(334) WEE1(335) WNK1(336) WNK2(337) WNK3(338) YESA"ES1(339) ZAK/mLTK(340) ZAP70(341) ZIPK/DAPK3(342)。 部分化合物试验结果如附图 1所示: 化合物对进 200个激酶 (Kinase No.标记于外圈)抑制 活性达到 90%以上, 同时选择性的对 GMGC家族: CDK家族激酶 CDK6/cyclin Dl(57) CDK6/cyclin D3(58) CDK4/cyclin Dl(53) CDK4/cyclin D3(54)、 CDK5/p35(56)、 GSK3b激 酶 (137), CDK5/p25(55)、 CDK16/cyclin Y PIM1(48) DAPK2(98)、 ER 7/MAPK15(112)以 及 TK家族: KDR/VEGFR2(161)、 FLT1/VEGFR1(121)、 FLT4/VEGR3(123)、 FLT3(122)。 其 抑制活性在 99%以上。
同时针对 GMGC家族及 TK家族的激酶对所发明化合物进行 IC50测试,以起始浓度为 1 μ M,在 100% DMSO溶液中制备每个化合物 10个点 3倍浓度系列稀释液,反应液中含 20 μ Μ ATP, 激酶及其底物生物素肽。 通过使用定量、 精密、 敏感、 检测相关 33P标记的同位素标 记方法测试, 以判断筛选" hits。 其中% trl = [(待测化合物信号-阳性对照信号 )/ (阴性对照信号- 阳性对照信号)] % 阴性对照 DMSO、 (100% Ctrl); 阳性对照=对照化合物 (0 % Ctrl)。 通过标 准的剂量 -反应曲线, 使用 Hill方程计算 IC50; 用 PriSmGraphpad5计算 IC50部分结果如下表 所示:
1-1 1-11 1-13 1-21 1-27 十字苞碱 激酶
IC50* (μΜ)
CDKl/cyclin A 0.157 0.142 0.128 0.158 0.173 0.164 0.003
CDKl/cyclin B 0.087 0.079 0.071 0.088 0.096 0.091 0.003
CDKl/cyclin E 0.096 0.087 0.078 0.097 0.106 0.100 0.003
CDK2/cyclin A 0.015 0.014 0.013 0.015 0.017 0.016 0.001
CDK2/Cyclin Al 0.009 0.009 0.008 0.010 0.011 0.010 0.001
CDK3/cyclin E 0.190 0.171 0.155 0.191 0.210 0.198 0.004
CDK4/cyclin Dl 0.006 0.006 0.006 0.008 0.007 0.007 0.009
CDK5/p35 0.015 0.013 0.012 0.015 0.016 0.015 0.002
CDK6/cyclin Dl 0.005 0.004 0.004 0.005 0.005 0.005 0.003
CDK7/cyclin H 0.522 0.495 0.471 0.583 0.611 0.575 0.256
CDK9/cyclin K 0.039 0.037 0.035 0.043 0.045 0.043 0.018
ERK7/MAPK15 0.007 0.007 0.007 0.008 0.008 0.008 0.006
FGFR1 0.304 0.274 0.247 0.305 0.335 0.316 0.005 FGFR2 0.233 0.210 0.189 0.234 0.257 0.242 0.003 FGFR3 0.807 0.728 0.657 0.811 0.890 0.841 0.018
FLT1/VEGFR1 0.020 0.019 0.019 0.023 0.024 0.022 0.015
FLT3 0.000 0.000 0.001 0.001 0.001 0.001 0.001
FLT4/VEGFR3 0.005 0.004 0.004 0.005 0.005 0.005 0.002
GSK3b 0.000 0.001 0.001 0.001 0.001 0.001 0.005
JAK2 0.795 0.716 0.644 0.795 0.875 0.826 0.001
JNK1 1.000 1.128 1.243 1.547 1.428 1.328 2.280
JNK2 1.000 1.171 1.325 1.650 1.490 1.383 2.710
KDR/VEGFR2 0.035 0.033 0.031 0.039 0.041 0.038 0.015 激酶筛选结果表明, 所合成化合物对激酶酪氨酸蛋白激酶受体 (RTK)家族的 FGFR1、 FGFR2、 KDR/VEGFR2、 FLT1/VEGFR1、 FLT3、 FLT4/VEGFR3和 CGCM家族的 CDK激 酶、 GSK3b 、 JAK、 ER 7/MAPK15等激酶表现出活性和选择性, 尤其对激酶 CDK, GSK3b 以及 FLT3具有极高的活性和选择性。 而同时对 VEGFR和 CDK现出的抑制活性具有特殊的 意义。
(4) 目标化合物的体外抗肿瘤活性测定
用 MTT法测定对乳腺癌细胞株 MDA231、 胃癌细胞株 MGC803、 胃癌细胞株 BSG823、 白血病细胞株 K562、 乳腺癌细胞株 MCF7、 耐药乳腺癌细胞株 MCF7、 白血病细胞株 NB4、 肝癌细胞株 HEPG2、 脐静脉血管内皮细胞株 HUVEC、 肺癌细胞株 A549、 结肠癌细胞株 HCT116、 大细胞肺癌细胞株 H460、 肝癌细胞 7721、 肺癌细胞 H1299等肿瘤细胞株的抑制作 用。
MTT法 利用活细胞线粒体中存在与 NADP相关的脱氢酶能使外源性的 MTT还原成难 溶性的蓝紫色结晶物 (Formazan),并沉积在细胞中,而死细胞无此功能。再用二甲基亚砜 (DMSO) 或三联液 (10%SDS-5%异丁醇 -O.Olmol/L HCL) 溶解细胞中的紫色结晶物, 用酶联免疫检测 仪在 570nm波长处测定其 OD值间接反应其活细胞量。
具体方法:将处于细胞对数生长期的要进行实验的肿瘤细胞按一定的细胞量接种于 96孔 培养板内, 培养 24h后加入所筛的样品 (悬浮细胞接板后可直接加), 细胞在 37 °C、 5%C02 条件下继续培养 48小时后, 加入 MTT继续培养 4小时, 用 DMSO溶解结晶, 在酶标仪下进 行检测。
部分目标化合物对结肠癌细胞 HCT116、 肝癌细胞 7721、 肺癌细胞 H1299的体外抗肿瘤 活性结果如下:
化合物代号 HCT-116 (IC50/ M) 7721 (ICso/μΜ) HI 299 (ICso/μΜ)
1-1 0.13 6.232 3.30
1-3 0.89 5.09 6.17
1-16 32.27 54.19 88.97
1-21 9.58 17.39 7.66
1-22 8.63 18.09 10.31
1-29 0.26 4.95 3.84
1-39 > 200 > 200 > 200
AT-7519 21.18 > 200 9.32
AT-9283 21.25 61.18 10.76 目标化合物 1-1对乳腺癌细胞株 MDA231、 胃癌细胞株 MGC803、 胃癌细胞株 BSG823、 白血病细胞株 K562、 乳腺癌细胞株 MCF7、 耐药乳腺癌细胞株 MCF7、 白血病细胞株 NB4、 肝癌细胞株 HEPG2、 脐静脉血管内皮细胞株 HUVEC、 肺癌细胞株 A549、 结肠癌细胞株 HCT116、 大细胞肺癌细胞株 H460的体外抗肿瘤活性结果如下:
Figure imgf000028_0001
药理测试结果表明, 本发明化合物具有多重激酶抑制活性, 可用于预防或治疗与蛋白激 酶抑制剂有关的临床疾病, 这些疾病可以是: 黑色素瘤、 肝癌、 肾癌、 急性白血病、 非小细 胞肺癌、 前列腺癌、 甲状腺癌、 皮肤癌、 结肠直肠癌、 胰腺癌、 卵巢癌、 乳腺癌、 骨髓增生 异常综合症、 食管癌、 胃肠道癌或间皮瘤等。
药物制剂 可单独施用活性化合物, 也可作为药物组合 (例如制剂)的形式出给, 所述组合化合物包 含至少一种本发明的活性化合物和一种或多种可药用载体、 助剂、 赋形剂、 稀释剂、 填充剂、 稳定剂、 防腐剂。 另一方面。 本发明提供了药物合物形式的所合成化合物及其亚型, 例如本 文所定义的式 ω化合物及其亚组。 药物组合可以是任意适于口服、 胃肠道外、 局部、 鼻内、 眼用、 耳用、 直肠、 阴道内或头皮给药的形式。 当组合物意欲用于胃肠道外给药时, 它们可 被配制成静脉内、 肌内、 腹膜内、 皮下给药或者通过注射、 输注或其它递送手段直接递送至 靶器官或组织的形式。 部分制剂制备方法如: 1、 冻干制剂: 将等量配制的本文定义的式 (I) 的化合物及其亚组放入 50mL小瓶中并且冻干。在冻干期间, 在 -45°C下应用一步冷冻方法冷 冻组合物。 将温度升至 -10°C退火, 然后降低至 -45°C冷冻, 随后在 25°C进行第一步干燥时 间约 3400分钟, 随后升温至 50°C进行第二步干燥。 第一步干燥和第二步干燥过程中的压力 设为 80毫托。 2、 片剂 :252 mg含有所合成化合物的片剂组合物如下制备: 按照已知方式将 50mg化合物与作为稀释剂的 197mg乳糖 (BP)以及作为润滑剂的 :3mg硬脂酸镁混合并压片。3、 胶囊剂: 胶囊剂如下制备: 将 lOOmg所合成化合物与 lOOmg乳糖混合, 将所得混合物填充入 标准的不透明硬明胶胶囊中。 4、 (iii)注射剂 I注射给药的胃肠道外组合物如下制备: 所合成 化合物 (例如盐形式)溶于含有 10%丙二醇的水中, 得到活性化合物的浓度为 1.5重量%。然后 将溶液过滤除菌, 灌装在安瓿中, 密封。 5、(iv)注射剂 II供注射的胃肠道外组合物如下制备: 在水中溶解所合成化合物 (2mg/mL)和甘露糖醇 (50mg/mL), 无菌过滤该溶液, 灌装在可密封 的 lml小瓶或安瓿中。 6、 (iv)皮下注射剂皮下给药组合物如下制备: 将所合成化合物与药物 级玉米油混合, 得到浓度为 5mg/mL。 将组合物灭菌, 灌装在适合的容器中。
本发明还提供了如本文所定义的结构 (I)化合物及其亚组作为抗真菌剂的用途。 这些化 合物可以用在动物医学中 (例如治疗哺乳动物, 例如人), 或者用在植物的处理中 (例如农业和 园艺), 或者用作一般性的抗真菌剂, 例如用作防腐剂和消毒剂。 另一方面, 本发明提供了农 业 (包括园艺)用途的抗真菌组合物, 该组合物包含如上所定义的式 (I)化合物及其亚组、 例如 结构 (I) 以及农业上可接受的稀释剂或载体。
例如: 采用下列方案测定所合成化合物的抗真菌活性, 包括近平滑念珠菌 (Candidaparapsilosis) 热带念珠菌 (Candida tropicalis)、 白色念珠菌 -ATCC 36082和新型隐球菌 (Cryptococcus neoformans)。 在 4°C下, 在 Sabourahd葡萄糖琼脂斜面上维持测试微生物。 每 一微生物的单态混悬液如下制备: 于 27°C在转鼓上, 在含有氨基酸 (DifCO, DetrOit, MiCh.) (pH7.0)和 0.05吗啉丙磺酸 (MOPS)的酵母-氮基肉汤 (YNB)中, 使酵母生长过夜。 然后将混悬 液离心, 用 0.85%NaCl 洗涤两次, 然后将经洗涤的细胞混悬液用声波处理 4 秒 (Branson Sonifier, 350型, Danbury, Conn.)。 在血细胞计数器中计数单态 (singlet)芽生孢子, 在 0. 85% NaCl 中调节至所需浓度。采用肉汤微量稀释技术的修改方法测定测试化合物的活性。将测试 化合物在 DMSO中稀释至 1. Omg/mL比率, 然后在含有 MOPS的 YNB肉汤 (ρΗ7·0)中稀释至 64 g/mL (使用氟康唑作为对照), 得到每种化合物的工作溶液。 采用 96孔板, 用 YNB肉汤 准备第 1和 3至 12孔,在第 2至 11孔制备化合物溶液的十倍稀释液 (浓度范围为 64至 0.125 g/mL)。 第 1431孔充当分光光度测定的无菌对照和空白。 第 12孔充当生长对照。 向微量板 第 2至 11孔每孔接种 ΙΟμΙ (最终接种物数目为 104个生物 /mL)。 将经接种的板在 35。C下温 育 48小时用润方 ϋ混合器 (Vorte-Genie 2Mixer, Scientific Industries, Inc. ,Bolemia7N. Y.)振荡板 2分钟后, 通过测量 420nm下的吸光度 (Automatic Microplate Reader, DuPont Instruments, Wilmington, Del.), 按分光光度法测定 MIC值。 MIC终点被定义为表现出生长与对照孔相比 减少约 50% (或以上)的最低药物浓度。在浊度测定中,这被定义为小孔浊度为< 50%对照的最 低药物浓度 (IC50)。 最小细胞溶解浓度 (MCC)如下确定: 在 Sabourahd葡萄糖琼脂 (SDA)板上 移种 96孔板的所有小孔, 在 35°C下温育 1至 2天, 然后检查存活性。 部分测试结果如下表: 平滑念珠菌 热带念珠菌 新型隐球菌
白色念珠菌
(Candida (Candida (Cryptococcus
-ATCC 36082
化合物 ar apsilosis) tropicalis) neoformans)
MIC值 ( g/ML)
1-1 2.08 2.30 2.90 3.64
1-3 2.11 1.88 5.08 4.89
1-5 1.12 5.14 11.06 7.28
1-7 9.81 10.29 14.71 17.75
1-9 8.70 10.70 12.74 15.57
1-11 11.20 7.72 7.45 15.03
1-13 0.98 3.24 5.85 4.23
1-15 5.78 5.00 6.77 9.40
1-17 2.76 4.70 9.49 7.99
1-19 6.45 8.58 11.80 12.86
1-21 9.76 8.29 7.82 13.84
1-23 4.32 3.24 2.92 5.82
1-25 0.96 1.08 3.38 2.83
1-27 1.02 3.57 5.48 4.06
1-29 6.47 4.21 2.73 7.81 本发明还提供了治疗植物或种子真菌感染的方法, 该方法包括用抗真菌有效量的如上所 定义的杀真菌组合物处理植物或种子。 将所合成化合物溶于丙酮, 随后在丙酮中系列稀释, 得到一定范围的所需浓度。 加入 9 体积 0.05% Tween-20™水溶液或 Triton X-100™,这因病原体而异, 得到最终处理体积。 然后 采用下列方案, 使用组合物来测试本发明化合物对抗番茄叶枯病 (致病疫霉 (Phytophthora infestans))的活性。 使番茄 (Rutgers 品种)种子在无土泥炭类罐装混合物中生长, 直至幼苗高 10-20cm。 然后向植物喷洒测试化合物至溢流, 比率 100ppm。 24小时后, 向测试植物喷洒蔓 延疫霉的孢子囊水混悬液进行接种, 在露室 (dew chamber)内保存过夜。 然后将植物转移至温 室, 直至疾病在未经处理的对照植物上形成。
部分化合物测试如下所示: 番茄叶枯病严重情况
0.0001 0.001 0.01 0.1
1-1 +++ ++ + 一
1-3 ++ ++ 一 一
1-5 +++ ++ + 一
1-7 ++ ++ 一 一
1-9 ++ ++ 一 一
1-11 +++ ++ + 一
1-13 ++ ++ + 一
1-15 ++ ++ + 一
1-17 +++ ++ + 一
1-19 ++++ ++ + 一
1-21 ++++ ++ + 一
1-23 +++ ++ 一 一
1-25 ++ ++ + 一
1-27 ++++ ++ + 一
1-29 +++ ++ + 一
空白对照 ++++ ++++ ++++ +++
a ++++: 大于 60%的枯叶现象, +++: 40-60%的枯叶现象, ++: 15-40%的枯叶 现象, +: 0-15%的枯叶现象, - -: 无枯叶现象。 附图说明 图 1是示出部分化合物对 342个激酶的抑制率, 其中激酶以编号 (见上文) 表示。
具体实施方式 熔点用 b形熔点管测定, 介质为甲基硅油, 温度计未校正; IR谱用 Nicolet Impact 410型 红外光谱仪测定, KBr压片; 1HNMR用 JEOL FX90Q型傅立叶变换核磁共振仪、 BRUKER ACF-300型核磁共振仪和 BRUKER AM-500型核磁共振仪完成 (TMS内标); MS用 Nicolet 2000型傅立叶变换质谱仪和 MAT-212型质谱仪测定;微波反应用 CEM Discover单模微波仪。
实施例 1
4-甲基 - 1 -C4-硝基苄基)哌嗪 Oa)
在 500 mL单颈瓶中加入对硝基溴苄 10 g(46.3 mmol)和二氯甲烷 100 mL,在冰水浴下 (0-5 。C) 缓慢滴加 N-甲基哌嗪 4.7 g(47.0 mmol)和三乙胺 7.1 g (70.3 mmol)的二氯甲烷 20 mL混合 液, 加毕加热回流 1 hr, TLC检测原料消失 (乙酸乙酯:石油醚 =1: 2 将氯仿 150 mL和饱 和碳酸氢钠溶液 100 mL 加入反应液中, 于室温剧烈搅拌 30 min。 反应液用氯仿萃取 (100 mLx3), 合并有机层, 分别用水和饱和氯化钠各洗一次 (100 mLxl)。 无水硫酸镁干燥, 过滤, 减压蒸除溶剂得淡黄色固体 8.5 g, 收率 78.1%, 产品无需进一步纯化, 直接投入下一步反应。
1H-NMR[300MHz, DMSO-d6]: 52.15 (3H, s, -CH3), 2.3-2.5 (8H, m, -CH2-x4), 3.5 (2H, s, -CH2-), 7.5 (2H, d, / = 8.7 Hz, ArH), 8.1 (2H, d, / = 8.7 Hz, ArH). 实施例 2
4-(4-硝基苄基)吗啉 (I-b)
在 500 mL单颈瓶中加入对硝基溴苄 10 g(46.5 mmol)和二氯甲烷 100 mL,在冰水浴下 (0-5 °C)缓慢滴加吗啉 4.1 g(47.1 mmol)和三乙胺 7.1 g(70.3 mmol)的二氯甲烷 20 mL混合液, 加毕 加热回流 1 hr, TLC检测原料消失 (乙酸乙酯:石油醚 =1: 2)。 将氯仿 150 mL和饱和碳酸氢 钠溶液 100 mL加入反应液中, 于室温剧烈搅拌 30 min。 反应液用氯仿萃取 (100 mLx3), 合并 有机层, 分别用水和饱和氯化钠各洗一次 (100 mLxl 无水硫酸镁干燥, 过滤, 减压蒸除溶 剂得淡黄色固体 (I-b) 8.7 g, 收率 84.5%, 产品无需进一步纯化, 直接投入下一步反应。
1H-NMR[300MHz, DMSO-d6]: 52.3 (4H, m, -NCH2-x2), 3.3-3.5 (6H, m, -OCH2-x2, -CH2-), 6.9 (2H, d, J = 8.7 Hz, ArH), 7.6 (2H, d, J = 8.7 Hz, ArH). 实施例 3
4-((4-甲基- 1 -哌嗪基)甲基)苯胺 (I-c)
在 500mL单颈瓶中加入 I-a粗品 8.5 g(36.2 mmol)、 FeO(OH)/C催化剂 2.0 g和 95%乙醇 100 mL, 加热回流, 缓慢滴加水合肼 25 mL和 95%乙醇 20 mL的混合液, TLC检测原料消失 (甲醇:氯仿 =1: 15)。 趁热抽滤, 滤饼用热的乙醇洗两次 (30 mLx2), 减压蒸除溶剂得白色固 体, 真空干燥得 (I-c) 6.7 g, 收率 90.3%。 产品无需进一步纯化, 直接投入下一步反应。
1H-NMR[300MHz, DMSO-d6]: 52.1 (3H, s, -CH3), 2.3-2.5 (8H, m, -CH2-x4), 3.5 (2H, s, -CH2-), 4.0(2H, s, -NH2), 7.5 (2H, d, / = 8.7 Hz, ArH), 8.1 (2H, d, / = 8.7 Hz, ArH). 实施例 4
4-((4-吗啉基)甲基)苯胺 (I-d)
在 500mL单颈瓶中加入 I-b粗品 8.5 g(38.3 mmol) FeO(OH)/C催化剂 2.0 g和 95%乙醇 100 mL, 加热回流, 缓慢滴加水合肼 25 mL和 95%乙醇 20 mL的混合液, TLC检测原料消失 (甲醇:氯仿 =1: 20)。 趁热抽滤, 滤饼用热的乙醇洗两次 (30 mLx2), 减压蒸除溶剂得白色固 体, 真空干燥得 (I-d) 6.6 g, 收率 89.7%。 产品无需进一步纯化, 直接投入下一步反应。
1H-NMR[300MHz, DMSO-d6]: 52.3 (4H, m, -NCH2-x2), 3.2 (4H, m, -OCH2-x2), 3.5 (2H, s, -CH2-), 4.9 (2H, s, -NH2), 6.5 (2H, d, / = 8.4 Hz, ArH), 6.9 (2H, d, / = 8.4 Hz, ArH). 实施例 5
N-(4-((4-甲基- 1 -哌嗪基)甲基)苯基 -4-硝基 - 1H-3-吡唑甲酰胺 (I-e)
在 250 mL圆底烧瓶中加入 I-c粗品 7.5 g(36.6 mmol)、 4-硝基 -1H-吡唑 -3-甲酸 6.3 g(40.1 mmol)、 EDC - HCl 8.4 g(44.0 mmol) HOBt 6.0 g(44.4 mmol)和无水 DMFIOO mL, 室温搅拌 24 hro TLC检测原料消失 (甲醇:氯仿 =1: 10)。将反应液到入冰水 200 mL中, 析出大量淡黄色固 体, 静置, 抽虑得黄色固体, 所得粗品用乙酸乙酯和甲醇混合溶剂重结晶得 (I-e) 11.1 g, 收率 88.2%。 mp: 194-196 °C, MS [M+H]+ 345.3。
1H-NMR[300MHz, DMSO-d6]: 52.2 (3H, s, -CH3), 2.3-2.4 (8H, m, -CH2-x4), 3.4 (2H, s, -CH2-), 7.3 (2H, d, / = 8.4 Hz, ArH), 7.6 (2H, d, J = 8.4 Hz, ArH), 8.8 (1H, s, ArH), 10.6 (1H, s, -NHCO-), 14.2(1H, s, -NH-, Pyrazole). 实施例 6
N-(4-((4-吗啡啉基)甲基)苯基) -4-硝基 -1H-3-吡唑甲酰胺 (I-f)
在 250 mL圆底烧瓶中加入 I-d粗品 7.5 g(39.0 mmol)、 4-硝基 -1H-吡唑 -3-甲酸 6.3 g(40.1 mmol)、 EDC - HCl 8.4 g(44.0 mmol) HOBt 6.0 g(44.4 mmol)和无水 DMFIOO mL, 室温搅拌 24 hro TLC检测原料消失 (甲醇:氯仿 =1: 20) o将反应液到入冰水 200 mL中, 析出大量淡黄色固 体, 静置, 抽虑得黄色固体, 所得粗品用乙酸乙酯和甲醇混合溶剂重结晶得 (I-f) 11.6 g, 收率 89.7%。 mp: 208-210 °C, MS [M+H]+ 332.4。
1H-NMR[300MHz, DMSO-d6]: 52.4 (4H, t, / = 4.1 Hz, -NCH2-x2), 3.4 (2H, s, -CH2-), 3.6 (4H, t, / = 4.1 Hz, -OCH2-x2), 7.3 (2H, d, / = 8.4 Hz, ArH), 7.6 (2H, d, / = 8.4 Hz, ArH), 8.9 (1H, s: ArH), 10.7 (1H, s, -NHCO-), 14.2 (1H, s, Pyrazole). 实施例 7
N-(4-((4-甲基 -1-哌嗪基)甲基)苯基 -4-氨基 -1H-3-吡唑甲酰胺 (I-g)
在 250 mL单颈瓶中加入 I-e 6.0 g(17.4 mmol)、 FeO(OH)/C催化齐 [J2 g和 95%乙醇 100 mL, 加 热回流, 缓慢滴加水合肼 25 mL和 95%乙醇 20 mL的混合液, TLC检测原料消失 (甲醇:氯仿 = 1: 10)。 趁热抽滤, 滤饼用热的乙醇洗两次 (30 mLx2), 减压蒸除溶剂得类白色固体, 所得粗 品用乙酸乙酯和甲醇混合溶剂重结晶得 (I-g) 3.5 g, 产率 63.9%。 mp: 199-201。C, MS [M+H]+ 315.8。
1H-NMR[300MHz, DMSO-d6]: 52.1 (3H, s, -CH3), 2.3-2.5 (8H, m, -CH2-x4), 3.3 (2H, s, -CH2-), 4.7 (2H, s, -NH2), 7.1-7.2 (3H, m, ArH), 7.7 (2H, d, ArH), 9.7 (1H, s, -NHCO-), 12.7 (1H, s Pyrazole). 实施例 8
N-(4-((4-吗啡啉基)甲基)苯基) -4-氨基 -1H-3-吡唑甲酰胺 (I-h)
在 250 mL单颈瓶中加入 I-f 6.0 g(18.1 mmol) FeO(OHyC催化齐 [J2 g和 95%乙醇 100 mL, 加 热回流, 缓慢滴加水合肼 25 mL和 95%乙醇 20 mL的混合液, TLC检测原料消失 (甲醇:氯仿 = 1: 10)。 趁热抽滤, 滤饼用热的乙醇洗两次 (30 mLx2), 减压蒸除溶剂得类白色固体, 所得粗 品用乙酸乙酯和甲醇混合溶剂重结晶得 (I-h)3.2 g, 产率 58.6%。 mp: 216-218。C, MS [M+H]+ 302.0。
1H-NMR[300MHz, DMSO-d6]: 52.5 (4H, m, -NCH2-x2), 3.3 (2H, s, -CH2-), 3.6 (4H, m, -OCH2-x2), 4.7 (2H, s, -NH2), 7.2 (3H, m, ArH), 7.7 (2H, d, / = 8.4 Hz, ArH), 9.7 (1H, s, -NHCO-): 12.7 (1H, s, Pyrazole)。 实施例 9
4-(4-噻吩并 [2,3-d]嘧啶基氨基) -N-(4-((4-甲基 -1-哌嗪基)甲基)苯基) -1H-3-吡唑甲酰胺 (1-1 ) 在 50 mL单颈瓶中加入 N-(4-( 4-甲基- 1 -哌嗪基)甲基)苯基 -4-氨基 - 1H-3-吡唑甲酰胺 129 mg (0.41 mmol) 4-氯噻吩并 [2,3-d]嘧啶 70 mg(0.41 mmol)和 50%乙酸水溶液 25 mL, 加热回流, TLC检测原料消失 (甲醇:氯仿 =1: 10), 反应液冷却至室温, 用饱和氢氧化钠水溶液调节 pH 到 8-9, 乙酸乙酯萃取 3次 (50ml X 3 ), 合并萃取液, 无水硫酸镁干燥, 抽滤后减压蒸除溶剂 得淡黄色固体, 粗品经柱层析 (流动相: 甲醇:氯仿 =1: 15), 得 (1-1 ) 70 mg, 收率 37.8%。 mp: 285-287。C, [M+H]+ 449.3。
1H-NMR[300MHz, DMSO-d6]: 52.1 (3H, s, -CH3), 2.2-2.4 (8H, m, -CH2-x4), 3.4 (2H, s, -CH2-), 7.3 (2H, d, / = 8.4 Hz, ArH), 7.5 (1H, d, J=5A Hz, ArH), 7.7-7.8 (3H, m, ArH), 8.5 (1H, s, ArH), 8.6 (1H, s, ArH), 10.0 (1H, s, -NHCO-), 10.3 (1H, s, -NH-), 13.5 (1H, s, Pyrazole). 实施例 10
4-(4-噻吩并 [2,3-d]嘧啶基氨基) -N-(4-((4-吗啡啉基)甲基)苯基) -1H-3-吡唑甲酰胺 (1-2)
制备方法类似于 (1-1), 以 N-(4-((4-吗啡啉基)甲基)苯基) -4-氨基 -1H-3-吡唑甲酰胺 124mg
(0.41 mmol)和 4-氯噻吩 [2,3-d]并嘧啶 70 mg(0.41 mmol)为原料,得 (1-2)78 mg,收率 43.6%。 mp:
262-265。C, MS [Μ+Η]+ 436.2。
1H-NMR[300MHz, DMSO-d6]: 52.3 (4H, t, J=4.2 Hz, -CH2-x2), 3.4 (2H, s, -CH2-), 3.5 (4H, t,
J=4.2 Hz, -CH2-x2), 7.3 (2H, d, J=8.4, ArH), 7.5 (1H, d,J=6.0Hz, ArH), 7.7-7.8 (3H, m, ArH), 8.5
(1H, s, ArH), 8.6 (1H, s, ArH), 9.9 (1H, s, -NHCO-), 10.3 (1H, s, -NH-), 13.5 (1H, s, Pyrazole). 实施例 11
4-(4-(6-甲基噻吩并 [2,3-d]嘧啶基)氨基) -N-(4-((4-甲基 -1-哌嗪基)甲基)苯基) -1H-3-吡唑甲酰胺 (1-3)
制备方法类似于 (1-1), 以 N-(4-((4-甲基 -1-哌嗪基)甲基)苯基 -4-氨基 -1H-3-吡唑甲酰胺 120 mg(0.38 mmol)和 4-氯 -6-甲基噻吩并 [2,3-d]嘧啶 70 mg(0.38 mmol)为原料, 得 (1-3)75 mg, 收率 42.9%。 mp: 235-238。C, MS [Μ+Η]+ 463.3。
1H-NMR[300MHz, DMSO-d6]: δ2.1(3Η, s, -CH3), 2.2-2.4 (8H, m, -CH2-x4), 2.6 (3H, s, -CH3): 3.4 (2H, s, -CH2-), 7.2 (1H, s, ArH), 7.3 (2H, d, J = 8.4 Hz, ArH), 7.8 (2H, d, J = 8.4 Hz, ArH), 8.5 (2H, s, ArH), 9.8 (1H, s, -NHCO-), 10.3 (1H, s, -NH-), 13.5 (1H, s, Pyrazole). 实施例 12
4-(4-(6-甲基噻吩并 [2,3-d]嘧啶基)氨基) -N-(4-((4-吗啡啉基)甲基)苯基) -1H-3-吡唑甲酰胺 (1-4) 制备方法类似于 (1-1), 以 N-(4-((4-吗啡啉基)甲基)苯基) -4-氨基 -1H-3-吡唑甲酰胺 118 mg (0.38 mmol)和 4-氯 -6-甲基噻吩并 [2,3-d]嘧啶 70 mg(0.38 mmol)为原料, 得 (1-4) 80 mg, 收率 47%。 mp: >280。C, MS [M+H]+ 450.3。
1H-NMR[300MHz, DMSO-d6]: 52.4 (4H, t, J=4.2 Hz, -CH2-x2), 2.6 (3H, s, -CH3), 3.4 (2H, s, -CH2-), 3.6 (4H, t, J=4.2 Hz, -CH2-x2), 7.2 (1H, s, ArH), 7.3 (2H, d, J = 8.4 Hz, ArH), 7.8 (2H, d, J=8.4Hz, ArH), 8.5 (2H, s, ArH), 9. 8 (1H, s, -NHCO-), 10.3 (1H, s, -NH-), 13.5 (1H, s, Pyrazole). 实施例 13
4-(4-(5-甲基噻吩并 [2,3-d]嘧啶基)氨基) -N-(4-((4-甲基 -1-哌嗪基)甲基)苯基) -1H-3-吡唑甲酰胺 (1-5)
制备方法类似于 (1-5), 以 N-(4-((4-甲基 -1-哌嗪基)甲基)苯基 -4-氨基 -1H-3-吡唑甲酰胺 120 mg(0.38 mmol)和 4-氯 -5-甲基噻吩并 [2,3-d]嘧啶 70 mg(0.38 mmol)为原料, 得 (1-5)72 mg, 收率 41.1%。 mp: 245-247。C, MS [Μ+Η]+ 463.3。
1H-NMR[300MHz, DMSO-d6]: 52.1 (3H, s, -CH3), 2.2-2.4(8H, m, -CH2-x4), 2.8 (3H, s, -CH3), 3.4 (2H, s, -CH2-), 7.3 (2H, d, J = 8.4 Hz, ArH), 7.4 (1H, s, ArH), 7.8 (2H, d, J = 8.4 Hz, ArH), 8.6 (1H, s, ArH), 8.7 (1H, s, ArH), 10.2 (1H, s, -NHCO-), 10.3 (1H, s, -NH-), 13.5 (1H, s, Pyrazole). 实施例 14
4-(4-(5-甲基噻吩并 [2,3-d]嘧啶基)氨基) -N-(4-((4-吗啡啉基)甲基)苯基) -1H-3-吡唑甲酰胺 (1-6) 制备方法类似于 (1-1), 以 N-(4-((4-吗啡啉基)甲基)苯基) -4-氨基 -1H-3-吡唑甲酰胺 118 mg
(0.38 mmol)和 4-氯 -5-甲基噻吩并 [2,3-d]嘧啶 70 mg(0.38 mmol)为原料, 得 (1-6)64 mg, 收率
37.6% mp: >280。C, MS [Μ+Η]+450.3。
1H-NMR[300MHz, DMSO-d6]: δ2.4(4Η, t, J=4.2 Hz, -CH2-x2), 2.8 (3H, s, -CH3), 3.4 (2H, s,
-CH2-), 3.6 (4H, t, J=4.2 Hz, -CH2-x2), 7.3 (2H, d, J = 8.4 Hz, ArH), 7.4 (1H, s, ArH), 7.8 (2H, d, J
= 8.4 Hz, ArH), 8.6 (1H, s, ArH), 8.7 (1H, s, ArH), 10.2 (1H, s, -NHCO-), 10.3 (1H, s, -NH-), 13.5
(1H, s, Pyrazole). 实施例 15
4-(4-(5,6-二甲基噻吩并 [2,3-d]嘧啶基)氨基) -N-(4-((4-甲基 -1-哌嗪基)甲基)苯基) -1H-3-吡唑甲 酰胺 (1-7)
制备方法类似于 (1-1), 以 N-(4-((4-甲基 -1-哌嗪基)甲基)苯基 -4-氨基 -1H-3-吡唑甲酰胺 111 mg (0.35 mmol)和 4-氯 -5,6-二甲基噻吩并 [2,3-d]嘧啶 70 mg(0.35 mmol)为原料, 得 (1-7)66 mg, 收率 39.3%。 mp: 264-267。C, MS [Μ+Η]+ 477.3。 Ή-ΝΜΚ[300ΜΗζ, DMSO-d6]: 52.1 (3H, s, -CH3), 2.2-2.4 (8H, m, -CH2-x4), 2.6 (3H, s, -CH3), 2.8 (3H, s, -CH3), 3.4 (2H, s, -CH2-), 7.3 (2H, d, / = 8.4 Hz, ArH), 7.8 (2H, d, / = 8.4 Hz, ArH), 8.6 (1H, s, ArH), 8.7 (1H, s, ArH), 10.2 (1H, s, -NHCO-), 10.3 (1H, s, -NH-), 13.5 (1H, s, Pyrazole) 实施例 16
4-(4-(5,6-二甲基噻吩并 [2,3-d]嘧啶基)氨基) -N-(4-((4-吗啡啉基)甲基)苯基) -1H-3-吡唑甲酰胺 (1-8)
制备方法类似于 (1-1), 以 N-(4-((4-吗啡啉基)甲基)苯基) -4-氨基 -1H-3-吡唑甲酰胺 110 mg (0.35 mmol)和 4-氯 -5,6-二甲基噻吩并 [2,3-d]嘧啶 70 mg(0.35 mmol)为原料, 得 (1-8)73 mg, 收 率 44.5%。 mp: 254-256。C, MS [Μ+Η]+ 464.3。
1H-NMR[300MHz, DMSO-d6]: 52.4 (4H, t, J=4.2 Hz, -CH2-x2), 2.6 (3H, s, -CH3), 2.8 (3H, s, -CH3), 3.4 (2H, s, -CH2-), 3.6 (4H, t, J=4.2 Hz, -CH2-x2), 7.3 (2H, d, / = 8.4 Hz, ArH), 7.8 (2H, d, J = 8.4 Hz, ArH), 8.6 (1H, s, ArH), 8.7 (1H, s, ArH), 10.2 (1H, s, -NHCO-), 10.3 (1H, s, -NH-), 13.5 (1H, s, Pyrazole). 实施例 17
4-(4-噻吩并 [3,2-d]嘧啶基氨基) -N-(4-((4-甲基 -1-哌嗪基)甲基)苯基) -1H-3-吡唑甲酰胺 (1-9)
制备方法类似于 (1-1), 以 N-(4-((4-甲基 -1-哌嗪基)甲基)苯基 -4-氨基 -1H-3-吡唑甲酰胺 129 mg(0.41mmol)和 4-氯噻吩并 [3,2-d]嘧啶 70 mg(0.41 mmol)为原料, 得 (1-9)88 mg, 收率 47.8%。 mp:> 280。C, MS [Μ+Η]+ 449.3。
1H-NMR[300MHz, DMSO-d6]: 52.2 (3H, s, -CH3), 52.3-2.5 (8H, m, -CH2-x4), 3.4 (2H, s,
-CH2-), 7.3 (2H, d, J=8.4 Hz, ArH), 7.5 (1H, d, / = 5.3 Hz, ArH), 7.8 (2H, d, / = 8.4 Hz, ArH), 8.2
(1H, d, J=5.3 Hz, ArH), 8.5 (1H, s, ArH), 8.7 (1H, s, ArH), 9.7 (1H, s, -NHCO-), 10.3 (1H, s, -NH-):
13.5 (1H, s, Pyrazole). 实施例 18
4-(4-噻吩并 [3,2-d]嘧啶基氨基) -N-(4-((4-吗啡啉基)甲基)苯基) -1H-3-吡唑甲酰胺 (1-10)
制备方法类似于 (1-1), 以 N-(4-((4-吗啡啉基)甲基)苯基) -4-氨基 -1H-3-吡唑甲酰胺 128 mg (0.41 mmol)和 4-氯噻吩并 [3,2-d]嘧啶 70 mg(0.41 mmol)为原料, 得 (1-10)93 mg, 收率 52.0%。 mp: 275-277。C, MS [Μ+Η]+ 436.3。 Ή-ΝΜΚ[300ΜΗζ, DMSO-d6]: 52.4 (4H, t, J=4.2 Hz, -CH2-x2), 3.4 (2H, s, -CH2-), 3.6 (4H, t, J=4.2 Hz, -CH2-x2), 7.3 (2H, d, J=8.4 Hz, ArH), 7.5 (1H, d, J = 5.2 Hz, ArH), 7.8 (2H, d, J = 8.4 Hz, ArH), 8.3 (1H, d, J=5.2 Hz, ArH), 8.5 (1H, s, ArH), 8.7 (1H, s, ArH), 9.7 (1H, s, -NHCO-), 10.3 (1H, s, -NH-), 13.5 (1H, s, Pyrazole). 实施例 19
4-(4-(7H-吡咯并 [2,3-d]嘧啶基)氨基) -N-(4-((4-甲基 -1-哌嗪基)甲基)苯基) -1H-3-吡唑甲酰胺 (1-11)
制备方法类似于 (1-1), 以 N-(4-((4-甲基 -1-哌嗪基)甲基)苯基 -4-氨基 -1H-3-吡唑甲酰胺 144 mg(0.46 mmol)和 4-氯 -7H-吡咯并 [2,3-d]嘧啶 70 mg (0.46 mmol)为原料, 得 (1-11)63 mg, 收率 32.0%。 mp: 229-230。C, MS [Μ+Η]+ 432.3。
1H-NMR[300MHz, DMSO-d6]: 52.1 (3H, s, -CH3), 2.2-2.4 (8H, m, -CH2-x4), 3.4 (2H, s, -CH2-), 6.5 (1H, s, ArH), 7.3 (2H, d, J = 8.4 Hz, ArH), 7.6 (1H, s, ArH), 7.8 (2H, d, J = 8.4 Hz, ArH), 8.4 (1H, s, ArH), 8.6 (1H, s, ArH), 9.2 (1H, s, -NHCO-), 10.2 (1H, s, -NH-), 12.0 (1H, s, Pyrrole), 13.4 (1H, s, Pyrazole). 实施例 20
4-(4-(7H-吡咯并 [2,3-d]嘧啶基)氨基) -N-(4-((4-吗啡啉基)甲基)苯基) -1H-3-吡唑甲酰胺 (1-12) 制备方法类似于 (1-1), 以 N-(4-((4-吗啡啉基)甲基)苯基) -4-氨基 -1H-3-吡唑甲酰胺 142 mg
(0.46 mmol)和 4-氯 -7H-吡咯并 [2,3-d]嘧啶 70 mg(0.46 mmol)为原料,得 (1-12)70 mg,收率 36.6%。 mp: 213-214 °C, MS [Μ+Η]+ 419.3。
1H-NMR[300MHz, DMSO-d6]: 52.3 (4H, t, J=4A Hz, -CH2-x2), 2.4 (2H, s, -CH2-), 3.6 (4H, t,
J=4A Hz, -CH2-x2), 6.5 (1H, s, ArH), 7.3 (2H, d, J = 8.4 Hz, ArH), 7.6 (1H, s, ArH), 7.8 (2H, d, J
= 8.4 Hz, ArH), 8.4 (1H, s, ArH), 8.6 (1H, s, ArH), 9.2 (1H, s, -NHCO-), 10.2 (1H, s, -NH-), 12.0
(1H, s, Pyrrole), 13.4 (1H, s, Pyrazole). 实施例 21
4-(4-(6-甲基 -7H-吡咯并 [2,3-d]嘧啶基)氨基) -N-(4-((4-甲基 -1-哌嗪基)甲基)苯基) -1H-3-吡唑甲 酰胺 (1-13)
制备方法类似于 (1-1), 以 N-(4-((4-甲基 -1-哌嗪基)甲基)苯基 -4-氨基 -1H-3-吡唑甲酰胺 132 mg(0.42 mmol)和 4-氯 -6-甲基 -7H-吡咯并 [2,3-d]嘧啶 70 mg(0.42 mmol)为原料, 得 (1-13)56 mg, 收率 23.0%。 mp: 268-270。C, MS [M+H]+ 446.3。
1H-NMR[300MHz, DMSO-d6]: 52.1 (3H, s, -CH3), 2.2-2.4 (11H, m, -CH2-x4, -CH3), 3.4 (2H, s, -CH2-), 6.5(1H, s, ArH), 7.3 (2H, d, J = 8.4 Hz, ArH), 7.8 (2H, d, J = 8.4 Hz, ArH), 8.4 (1H, s, ArH), 8.6 (1H, s, ArH), 9.2 (1H, s, -NHCO-), 10.2 (1H, s, -NH-), 12.0 (1H, s, Pyrrole), 13.4 (1H, s, Pyrazole). 实施例 22
4-(4-(6-甲基 -7H-吡咯并 [2,3-d]嘧啶基)氨基) -N-(4-((4-吗啡啉基)甲基)苯基) -1H-3-吡唑甲酰胺 (1-14)
制备方法类似于 (1-1), 以 N-(4-((4-吗啡啉基)甲基)苯基) -4-氨基 -1H-3-吡唑甲酰胺 130 mg (0.42 mmol)禾 B 4-氯 -6-甲基 -7H-吡咯并 [2,3-d]嘧啶 70 mg(0.42 mmol)为原料, 得 (1-14) 61 mg, 收率 33.7%。 mp: 271-273。C, MS [Μ+Η]+ 433.3。
1H-NMR[300MHz, DMSO-d6]: 52.3 (7H, m, -CH2-x2, -CH3), 2.4 (2H, s, -CH2-), 3.6 (4H, t, J=4A Hz, -CH2-x2), 6.5 (1H, s, ArH), 7.3 (2H, d, J = 8.4 Hz, ArH), 7.8 (2H, d, J = 8.4 Hz, ArH), 8.4 (1H, s, ArH), 8.6 (1H, s, ArH), 9.2 (1H, s, -NHCO-), 10.2 (1H, s, -NH-), 12.0 (1H, s, Pyrrole), 13.4 (1H, s, Pyrazole). 实施例 23
4-(4-(5-甲基 -7H-吡咯并 [2,3-d]嘧啶基)氨基) -N-(4-((4-甲基 -1-哌嗪基)甲基)苯基) -1H-3-吡唑甲 酰胺 (1-15)
制备方法类似于 (1-1), 以 N-(4-((4-甲基 -1-哌嗪基)甲基)苯基 -4-氨基 -1H-3-吡唑甲酰胺 132 mg(0.45 mmol)和 4-氯 -5-甲基 -7H-吡咯并 [2,3-d]嘧啶 70 mg(0.45 mmol)为原料,得 (1-15) 53 mg, 收率 28.3%。 mp: 258-261。C, MS [Μ+Η]+ 446.3。
1H-NMR[300MHz, DMSO-d6]: 52.1 (3H, s, -CH3), 2.2-2.4 (8H, m, -CH2-x4), 2.6 (3H, s, -CH3), 3.4 (2H, s, -CH2-), 7.3 (2H, d, J = 8.4 Hz, ArH), 7.6 (1H, s, ArH), 7.8 (2H, d, J = 8.4 Hz, ArH), 8.4 (1H, s, ArH), 8.6 (1H, s, ArH), 9.2 (1H, s, -NHCO-), 10.2 (1H, s, -NH-), 12.0 (1H, s, Pyrrole), 13.4 (1H, s, Pyrazole). 实施例 24
4-(4-(5-甲基 -7H-吡咯并 [2,3-d]嘧啶基)氨基) -N-(4-((4-吗啡啉基)甲基)苯基) -1H-3-吡唑甲酰胺 (1-16) 制备方法类似于 (1-1), 以 N-(4-((4-吗啡啉基)甲基)苯基) -4-氨基 -1H-3-吡唑甲酰胺 130 mg (0.45 mmol)和 4-氯 -5-甲基 -7H-吡咯并 [2,3-d]嘧啶 70 mg(0.45 mmol)为原料, 得 (1-16)62 mg, 收 率 34.3%。 mp: 267-269。C, MS [Μ+Η]+ 433.3。
1H-NMR[300MHz, DMSO-d6]: 52.3 (4H, t, J=4A Hz, -CH2-x2), 2.4 (2H, s, -CH2-), 2.6 (3H, s, -CH3), 3.6 (4H, t, J=4A Hz, -CH2-x2), 7.3 (2H, d, / = 8.4 Hz, ArH), 7.6 (1H, s, ArH), 7.8 (2H, d, J = 8.4 Hz, ArH), 8.4 (1H, s, ArH), 8.6 (1H, s, ArH), 9.2 (1H, s, -NHCO-), 10.2 (1H, s, -NH-), 12.0 (1H, s, Pyrrole), 13.4 (1H, s, Pyrazole). 实施例 25
4-(4-(5H-吡咯并 [3,2-d]嘧啶基)氨基) -N-(4-((4-甲基 -1-哌嗪基)甲基)苯基) -1H-3-吡唑甲酰胺 (1-17)
制备方法类似于 (1-1), 以 N-(4-((4-甲基 -1-哌嗪基)甲基)苯基 -4-氨基 -1H-3-吡唑甲酰胺 144 mg(0.46 mmol)和 4-氯 -5H-吡咯并 [3,2-d]嘧啶 70 mg(0.46 mmol)为原料, 得 (1-17)50 mg, 收率 25.4%。 mp: 261-263。C, MS [Μ+Η]+ 432.3。
1H-NMR[300MHz, DMSO-d6]: 52.1 (3H, s, -CH3), 2.2-2.4 (8H, m, -CH2-x4), 3.4 (2H, s, -CH2-), 7.3 (2H, d, / = 8.4 Hz, ArH), 7.6 (1H, s, ArH), 7.8 (2H, d, J = 8.4 Hz, ArH), 8.2 (1H, s, ArH), 8.4 (1H, s, ArH), 8.6 (1H, s, ArH), 9.2 (1H, s, -NHCO-), 10.2 (1H, s, -NH-), 12.0 (1H, s, Pyrrole), 13.4 (1H, s, Pyrazole). 实施例 26
4-(4-(5H-吡咯并 [3,2-d]嘧啶基)氨基) -N-(4-((4-吗啡啉基)甲基)苯基) -1H-3-吡唑甲酰胺 (1-18) 制备方法类似于 (1-1), 以 N-(4-((4-吗啡啉基)甲基)苯基) -4-氨基 -1H-3-吡唑甲酰胺 142 mg
(0.46 mmol)和 4-氯 -5H-吡咯并 [3,2-d]嘧啶 70 mg(0.46 mmol)为原料, 得 (1-18)67 mg, 收率
35.1%。 mp: 258-260。C, MS [Μ+Η]+ 419.3。
1H-NMR[300MHz, DMSO-d6]: 52.3 (4H, t, J=4A Hz, -CH2-x2), 2.4 (2H, s, -CH2-), 3.6 (4H, t,
J=4A Hz, -CH2-x2), 7.3 (2H, d, J = 8.4 Hz, ArH), 7.6 (1H, s, ArH), 7.8 (2H, d, J = 8.4 Hz, ArH),
8.2 (1H, s, ArH), 8.4 (1H, s, ArH), 8.6 (1H, s, ArH), 9.2 (1H, s, -NHCO-), 10.2 (1H, s, -NH-), 12.0
(1H, s, Pyrrole), 13.4 (1H, s, Pyrazole). 实施例 27
4-(4-(6-甲基 -5H-吡咯并 [3,2-d]嘧啶基)氨基) -N-(4-((4-甲基 -1-哌嗪基)甲基)苯基) -1H-3-吡唑甲 酰胺 (1-19)
制备方法类似于 (1-1), 以 N-(4-((4-甲基 -1-哌嗪基)甲基)苯基 -4-氨基 -1H-3-吡唑甲酰胺 132 mg(0.42 mmol)和 4-氯 -6-甲基 -5H-吡咯并 [3,2-d]嘧啶 70 mg(0.42 mmol)为原料, 得 (1-19)55 mg, 收率 29.4%。 mp: 265-267。C, MS [Μ+Η]+ 446.3。
1H-NMR[300MHz, DMSO-d6]: 52.1 (3H, s, -CH3), 2.2-2.4 (8H, m, -CH2-x4), 2.6 (3H, s, -CH3), 3.4 (2H, s, -CH2-), 7.3 (2H, d, J = 8.4 Hz, ArH), 7.6 (1H, s, ArH), 7.8 (2H, d, J = 8.4 Hz, ArH), 8.4 (1H, s, ArH), 8.6 (1H, s, ArH), 9.2 (1H, s, -NHCO-), 10.2 (1H, s, -NH-), 12.0 (1H, s, Pyrrole), 13.4 (1H, s, Pyrazole). 实施例 28
4-(4-(6-甲基 -5H-吡咯并 [3,2-d]嘧啶基)氨基) -N-(4-((4-吗啡啉基)甲基)苯基) -1H-3-吡唑甲酰胺 (1-20)
制备方法类似于 (1-1), 以 N-(4-((4-吗啡啉基)甲基)苯基) -4-氨基 -1H-3-吡唑甲酰胺 130 mg (0.42 mmol)和 4-氯 -6-甲基 -5H-吡咯并 [3,2-d]嘧啶 70 mg(0.42 mmol)为原料, 得 (1-20)69 mg, 收 率 38.1%。 mp: 268-270。C, MS [Μ+Η]+ 433.3。
1H-NMR[300MHz, DMSO-d6]: 52.3 (4H, t, J=4A Hz, -CH2-x2), 2.4 (2H, s, -CH2-), 2.6 (3H, s, -CH3), 3.6 (4H, t, J=4A Hz, -CH2-x2), 7.3 (2H, d, / = 8.4 Hz, ArH), 7.6 (1H, s, ArH), 7.8 (2H, d, J = 8.4 Hz, ArH), 8.4 (1H, s, ArH), 8.6 (1H, s, ArH), 9.2 (1H, s, -NHCO-), 10.2 (1H, s, -NH-), 12.0 (1H, s, Pyrrole), 13.4 (1H, s, Pyrazole). 实施例 29
4-(4-呋喃并 [2,3-d]嘧啶基氨基) -N-(4-((4-甲基 -1-哌嗪基)甲基)苯基) -1H-3-吡唑甲酰胺 (1-21) 制备方法类似于 (1-1), 以 N-(4-((4-甲基 -1-哌嗪基)甲基)苯基 -4-氨基 -1H-3-吡唑甲酰胺 143 mg(0.45 mmol)和 4-氯呋喃并 [2,3-d]嘧啶 70 mg(0.45 mmol)为原料,得 (1-21)45 mg,收率 23.0%。 mp: 255-257。C, MS [Μ+Η]+ 433.3。
1H-NMR[300MHz, DMSO-d6]: 52.1 (3H, s, -CH3), 2.2-2.4 (8H, m, -CH2-x4), 3.4 (2H, s,
-CH2-), 7.1(1H, d, / = 2.5 Hz, ArH), 7.2 (2H, d, J = 8.4 Hz, ArH), 7.7 (2H, d, J = 8.4 Hz, ArH), 8.0
(1H, d, / = 2.5 Hz, ArH), 8.4 (1H, s, ArH), 8.5 (1H, s, ArH), 9.7 (1H, s, -NHCO-), 10.2 (1H, s,
-NH-), 13.4 (1H, s, Pyrazole). 实施例 30 4-(4-呋喃并 [2,3-d]嘧啶基氨基) -N-(4-((4-吗啡啉基)甲基)苯基) -1H-3-吡唑甲酰胺 (1-22) 制备方法类似于 (1-1), 以 N-(4-((4-吗啡啉基)甲基)苯基) -4-氨基 -1H-3-吡唑甲酰胺 141 mg
(0.45 mmol)和 4-氯呋喃并 [2,3-d]嘧啶 70 mg(0.45 mmol)为原料, 得 (1-22)53 mg, 收率 27.9%。 mp: >280。C, MS [Μ+Η]+ 420.3。
1H-NMR[300MHz, DMSO-d6]: 52.3 (4H, t, J=4.2 Hz, -CH2-x2), 3.4 (2H, s, -CH2-), 3.6 (4H, t,
J=4.2 Hz, -CH2-x2), 7.1 (1H, d, / = 2.5 Hz, ArH), 7.3 (2H, d, / = 8.2 Hz, ArH), 7.8 (2H, d, J = 8.2
Hz, ArH), 8.0 (1H, d, J = 2.5 Hz, ArH), 8.4 (1H, s, ArH), 8.5 (1H, s, ArH), 9.7 (1H, s, -NHCO-),
10.2 (1H, s, -NH-), 13.4 (1H, s, Pyrazole). 实施例 31
4-(4-呋喃并 [3,2-d]嘧啶基氨基) -N-(4-((4-甲基 -1-哌嗪基)甲基)苯基) -1H-3-吡唑甲酰胺 (1-23) 制备方法类似于 (1-1), 以 N-(4-((4-甲基 -1-哌嗪基)甲基)苯基 -4-氨基 -1H-3-吡唑甲酰胺 143 mg(0.45 mmol)和 4-氯呋喃并 [3,2-d]嘧啶 70 mg(0.45 mmol)为原料,得 (1-23)71 mg,收率 36.2%。 mp: 277-279。C, MS [Μ+Η]+ 433.3。
1H-NMR[300MHz, DMSO-d6]: 52.1 (3H, s, -CH3), 2.2-2.4 (8H, m, -CH2-x4), 3.4 (2H, s,
-CH2-), 7.2 (2H, d, / = 8.4 Hz, ArH), 7.7 (2H, d, J = 8.4 Hz, ArH), 7.8 (1H, d, J = 2.5 Hz, ArH),
8.2(1H, d, / = 2.5 Hz, ArH), 8.4 (1H, s, ArH), 8.5 (1H, s, ArH), 9.7 (1H, s, -NHCO-), 10.2 (1H, s,
-NH-), 13.4 (1H, s, Pyrazole). 实施例 32
4-(4-呋喃并 [3,2-d]嘧啶基氨基) -N-(4-((4-吗啡啉基)甲基)苯基) -1H-3-吡唑甲酰胺 (1-24)
制备方法类似于 (1-1), 以 N-(4-((4-吗啡啉基)甲基)苯基) -4-氨基 -1H-3-吡唑甲酰胺 141 mg
(0.45 mmol)和 4-氯呋喃并 [3,2-d]嘧啶 70 mg(0.45 mmol)为原料, 得 (1-24)80 mg, 收率 42.1%。 mp: 271-273。C, MS [Μ+Η]+ 420.3。
1H-NMR[300MHz, DMSO-d6]: 52.3 (4H, t, J=4.2 Hz, -CH2-x2), 3.4 (2H, s, -CH2-), 3.6 (4H, t,
J=4.2 Hz, -CH2-x2), 7.3 (2H, d, / = 8.2 Hz, ArH), 7.7 (2H, d, / = 8.2 Hz, ArH), 7.8 (1H, d, / = 2.5
Hz, ArH), 8.2(1H, d, J = 2.5 Hz, ArH), 8.4 (1H, s, ArH), 8.5 (1H, s, ArH), 9.7 (1H, s, -NHCO-),
10.2 (1H, s, -NH-), 13.4 (1H, s, Pyrazole). 实施例 33
4-(4-噻吩并 [3,2-c]吡啶基氨基) -N-(4-((4-甲基 - 1 -哌嗪基)甲基)苯基) - 1H-3-吡唑甲酰胺 (1-25) 将 N-(4-((4-甲基 -1-哌嗪基)甲基)苯基 -4-氨基 -1H-3-吡唑甲酰胺 129 mg(0.41 mmol)、 4-氯 噻吩并 [3,2-c]吡啶 70 mg(0.41 mmol)和冰醋酸 1 mL溶解在 8 mL异丙醇中, 在 190°C下, 微 波反应 (300W)30分钟, 减压蒸处异丙醇, 蒸馏水将所得固体溶解, 用饱和氢氧化钠水溶液调 节 ρΗ到 8-9, 用乙酸乙酯萃取 3次 (50mL X 3 ), 合并萃取液, 无水硫酸镁干燥, 抽滤后减 压蒸除溶剂得到淡黄色固体, 粗品经柱层析 (流动相: 甲醇:氯仿 =1: 15), #(1-25)67 mg, 收 率 36.4%。 mp: 268-270。C, MS [Μ+Η]+ 448.3。
1H-NMR[300MHz, DMSO-d6]: 52.1 (3H, s, -CH3), 2.2-2.4 (8H, m, -CH2-x4), 3.4 (2H, s, -CH2-), 6.7 (1H, d, J=8.0 Hz, ArH), 7.3 (2H, d, J = 8.4 Hz, ArH), 7.5 (1H, d, J=5A Hz, ArH), 7.7-7.8 (3H, m, ArH), 7.9 (1H, d, J=8.0 Hz, ArH), 8.5 (1H, s, ArH), 10.0 (1H, s, -NHCO-), 10.3 (1H: s, -NH-), 13.5 (1H, s, Pyrazole). 实施例 34
4-(4-噻吩并 [3,2-c]吡啶基氨基) -N-(4-((4-吗啡啉基)甲基)苯基) -1H-3-吡唑甲酰胺 (1-26)
制备方法类似于 (1-25), 以 N-(4-((4-吗啡啉基)甲基)苯基) -4-氨基 -1H-3-吡唑甲酰胺 128 mg
(0.41 mmol)和 4-氯噻吩并 [3,2-c]吡啶 70 mg(0.41 mmol)为原料, 得 (1-26)71 mg, 收率 39.7%。 mp: 269-271。C, MS [Μ+Η]+ 435.3。
1H-NMR[300MHz, DMSO-d6]: 52.3 (4H, t, J=4.2Hz, -CH2-x2), 3.4 (2H, s, -CH2-), 3.5 (4H, t,
J=4.2 Hz, -CH2-x2), 6.7 (1H, d, J=8.0 Hz, ArH), 7.3 (2H, d, J=8.4 Hz, ArH), 7.5 (1H, d, J=5A Hz,
ArH), 7.7-7.8 (3H, m, ArH), 7.9 (1H, d, J=8.0 Hz, ArH), 8.5 (1H, s, ArH), 9.9 (1H, s, -NHCO-),
10.3 (1H, s, -NH-), 13.5 (1H, s, Pyrazole). 实施例 35
4-(4-(2-甲基噻吩并 [3,2-C]吡啶基)氨基) -N-(4-((4-甲基 -1-哌嗪基)甲基)苯基) -1H-3-吡唑甲酰胺 (1-27)
制备方法类似于 (1-25), 以 N-(4-((4-甲基 -1-哌嗪基)甲基)苯基 -4-氨基 -1H-3-吡唑甲酰胺 121 mg(0.38 mmol)和 4-氯 -2-甲基噻吩并 [3,2-c]吡啶 70 mg(0.38 mmol)为原料, 得 (1-27)68 mg, 收率 38.6%。 mp: 267-269。C, MS [Μ+Η]+ 462.3。
1H-NMR[300MHz, DMSO-d6]: 52.1 (3H, s, -CH3), 2.6 (3H, s, -CH3), 2.2-2.4 (8H, m, -CH2-x4), 3.4 (2H, s, -CH2-), 6.7 (1H, d, J=8.0 Hz, ArH), 7.2 (1H, s, ArH), 7.3 (2H, d, / = 8.4 Hz, ArH), 7.8 (2H, d, J=8.4 Hz, ArH), 7.9 (1H, d, J=8.0 Hz, ArH), 8.5 (1H, s, ArH), 10.0 (1H, s, -NHCO-), 10.3 (1H, s, -NH-), 13.5 (1H, s, Pyrazole). 实施例 36
4-(4-(2-甲基噻吩并 [3,2-c]吡啶基)氨基) -N-(4-((4-吗啡啉基)甲基)苯基) -1H-3-吡唑甲酰胺 (1-28) 制备方法类似于 (1-25), 以 N-(4-((4-吗啡啉基)甲基)苯基) -4-氨基 -1H-3-吡唑甲酰胺 119 mg
(0.38 mmol)和 4-氯 -2-甲基噻吩并 [3,2-c]吡啶 70 mg(0.38 mmol)为原料, 得 (1-28)59 mg, 收率
34.5%。 mp: 265-267。C, MS [Μ+Η]+ 449.3。
1H-NMR[300MHz, DMSO-d6]: 52.3 (4H, t, J=4.2Hz, -CH2-x2), 2.6 (3H, s, -CH3), 3.4 (2H, s,
-CH2-), 3.5 (4H, t, J=4.2 Hz, -CH2-x2), 6.7 (1H, d, J=8.0 Hz, ArH), 7.2 (1H, s, ArH), 7.3 (2H, d,
J=8.4 Hz, ArH), 7.8 (2H, d, J=8.4 Hz, ArH), 7.9 (1H, d, J=8.0 Hz, ArH), 8.5 (1H, s, ArH), 9.9 (1H, s, -NHCO-), 10.3 (1H, s, -NH-), 13.5 (1H, s, Pyrazole). 实施例 37
4-(7-噻吩并 [2,3-c]吡啶基氨基) -N-(4-((4-甲基 -1-哌嗪基)甲基)苯基) -1H-3-吡唑甲酰胺 (1-29) 制备方法类似于 (1-25), 以 N-(4-((4-甲基 -1-哌嗪基)甲基)苯基 -4-氨基 -1H-3-吡唑甲酰胺
129 mg(0.41 mmol)禾 B 7-氯噻吩并 [2,3-c]吡啶 70 mg(0.41 mmol)为原料, 得 (1-29)56 mg, 收率
30.4%。 mp: 274-276。C, MS [Μ+Η]+ 448.3。
1H-NMR[300MHz, DMSO-d6]: 52.2 (3H, s, -CH3), 52.3-2.5 (8H, m, -CH2-x4), 3.4 (2H, s,
-CH2-), 6.7 (1H, d, J=8.0 Hz, ArH), 7.3 (2H, d, J=8.4 Hz, ArH), 7.5 (1H, d, J = 5.3 Hz, ArH), 7.8
(2H, d, / = 8.4 Hz, ArH), 7.9 (1H, d, J=8.0 Hz, ArH), 8.2 (1H, d, J=5.3 Hz, ArH), 8.5 (1H, s, ArH),
9.7 (1H, s, -NHCO-), 10.3 (1H, s, -NH-), 13.5 (1H, s, Pyrazole). 实施例 38
4-(7-噻吩并 [2,3-c]吡啶基氨基) -N-(4-((4-吗啡啉基)甲基)苯基) -1H-3-吡唑甲酰胺 (1-30)
制备方法类似于 (1-25), 以 N-(4-((4-吗啡啉基)甲基)苯基) -4-氨基 -1H-3-吡唑甲酰胺 128 mg
(0.41 mmol)和 7-氯噻吩并 [2,3-c]吡啶 70 mg(0.41 mmol)为原料, 得 (1-30)81 mg, 收率 45.3%。 mp: 271-273。C, MS [Μ+Η]+ 435.3。
1H-NMR[300MHz, DMSO-d6]: 52.4 (4H, t, J=4.2 Hz, -CH2-x2), 3.4 (2H, s, -CH2-), 3.6 (4H, t,
J=4.2 Hz, -CH2-x2), 6.7 (1H, d, J=8.0 Hz, ArH), 7.3 (2H, d, J=8.4 Hz, ArH), 7.5 (1H, d, / = 5.2 Hz,
ArH), 7.8 (2H, d, / = 8.4 Hz, ArH), 7.9 (1H, d, J=8.0 Hz, ArH), 8.3 (1H, d, J=5.2 Hz, ArH), 8.5 (1H: s, ArH), 9.7 (1H, s, -NHCO-), 10.3 (1H, s, -NH-), 13.5 (1H, s, Pyrazole). 实施例 39
4-(7-(3-甲基噻吩并 [2,3-c]吡啶基)氨基) -N-(4-((4-甲基 -1-哌嗪基)甲基)苯基) -1H-3-吡唑甲酰胺 (1-31)
制备方法类似于 (1-25), 以 N-(4-((4-甲基 -1-哌嗪基)甲基)苯基 -4-氨基 -1H-3-吡唑甲酰胺 121 mg(0.38 mmol)和 7-氯 -3-甲基噻吩并 [2,3-c]吡啶 70 mg(0.38 mmol)为原料, 得 (1-31)71 mg, 收率 40.3%。 mp: 258-260。C, MS [Μ+Η]+ 462.3。
1H-NMR[300MHz, DMSO-d6]: 52.2 (3H, s, -CH3), 52.3-2.5 (8H, m, -CH2-x4), 2.6 (3H, s, -CH3), 3.4 (2H, s, -CH2-), 6.7 (1H, d, J=8.0 Hz, ArH), 7.3 (2H, d, J=8.4 Hz, ArH), 7.8 (2H, d, J = 8.4 Hz, ArH), 7.9 (1H, d, J=8.0 Hz, ArH), 8.2 (1H, s, ArH), 8.5 (1H, s, ArH), 9.7 (1H, s, -NHCO-), 10.3 (1H, s, -NH-), 13.5 (1H, s, Pyrazole). 实施例 40
4-(7-(3-甲基噻吩并 [2,3-c]吡啶基)氨基) -N-(4-((4-吗啡啉基)甲基)苯基) -1H-3-吡唑甲酰胺 (1-32) 制备方法类似于 (1-25), 以 N-(4-((4-吗啡啉基)甲基)苯基) -4-氨基 -1H-3-吡唑甲酰胺 119 mg
(0.38 mmol)和 7-氯 -3-甲基噻吩并 [2,3-c]吡啶 70 mg(0.38 mmol)为原料, 得 (1-32)73 mg, 收率
42.7%。 mp: 275-277 °C, MS [Μ+Η]+ 449.3。
1H-NMR[300MHz, DMSO-d6]: 52.4 (4H, t, J=4.2 Hz, -CH2-x2), 2.6 (3H, s, -CH3), 3.4 (2H, s,
-CH2-), 3.6 (4H, t, J=4.2 Hz, -CH2-x2), 6.7 (1H, d, J=8.0 Hz, ArH), 7.3 (2H, d, J=8.4 Hz, ArH), 7.8
(2H, d, / = 8.4 Hz, ArH), 7.9 (1H, d, J=8.0 Hz, ArH), 8.3 (1H, s, ArH), 8.5 (1H, s, ArH), 9.7 (1H, s,
-NHCO-), 10.3 (1H, s, -NH-), 13.5 (1H, s, Pyrazole). 实施例 41
4-(4-呋喃并 [3,2-C]吡啶基氨基) -N-(4-((4-甲基 - 1 -哌嗪基)甲基)苯基) - 1H-3-吡唑甲酰胺 (1-33) 制备方法类似于 (1-25), 以 N-(4-((4-甲基 -1-哌嗪基)甲基)苯基 -4-氨基 -1H-3-吡唑甲酰胺
120 mg(0.46 mmol)禾 B 4-氯呋喃并 [3,2-c]吡啶 70 mg(0.46 mmol)为原料, 得 (1-33)75 mg, 收率
38.1%。 mp: 268-270。C, MS [Μ+Η]+ 432.3。
1H-NMR[300MHz, DMSO-d6]: 52.1 (3H, s, -CH3), 2.2-2.4 (8H, m, -CH2-x4), 3.4 (2H, s,
-CH2-), 6.7 (1H, d, J=8.0 Hz, ArH), 7.1(1H, d, / = 2.5 Hz, ArH), 7.2 (2H, d, / = 8.4 Hz, ArH), 7.7
(2H, d, / = 8.4 Hz, ArH), 7.9 (1H, d, J=8.0 Hz, ArH), 8.0 (1H, d, / = 2.5 Hz, ArH), 8.4 (1H, s, ArH),
9.7 (1H, s, -NHCO-), 10.2 (1H, s, -NH-), 13.4 (1H, s, Pyrazole). 实施例 42
4-(4-呋喃并 [3,2-c]吡啶基氨基) -N-(4-((4-吗啡啉基)甲基)苯基) -1H-3-吡唑甲酰胺 (1-34)
制备方法类似于 (1-25), 以 N-(4-((4-吗啡啉基)甲基)苯基) -4-氨基 -1H-3-吡唑甲酰胺 119 mg (0.46 mmol)和 4-氯呋喃并 [3,2-c]吡啶 70 mg(0.46 mmol)为原料, 得 (1-34)68 mg, 收率 35.6%。 mp: 268-271。C, MS [Μ+Η]+ 419.3。
1H-NMR[300MHz, DMSO-d6]: 52.3 (4H, t, J=4.2 Hz, -CH2-x2), 3.4 (2H, s, -CH2-), 3.6 (4H, t, J=4.2 Hz, -CH2-x2), 6.7 (1H, d, J=8.0 Hz, ArH), 7.1 (1H, d, J = 2.5 Hz, ArH), 7.3 (2H, d, J = 8.2 Hz, ArH), 7.8 (2H, d, J = 8.2 Hz, ArH), 7.9 (1H, d, J=8.0 Hz, ArH), 8.0 (1H, d, / = 2.5 Hz, ArH), 8.4 (1H, s, ArH), 9.7 (1H, s, -NHCO-), 10.2 (1H, s, -NH-), 13.4 (1H, s, Pyrazole). 实施例 43
4-(4-(2-甲基呋喃并 [3,2-C]吡啶基)氨基) -N-(4-((4-甲基 -1-哌嗪基)甲基)苯基) -1H-3-吡唑甲酰胺 (1-35)
制备方法类似于 (1-25), 以 N-(4-((4-甲基 -1-哌嗪基)甲基)苯基 -4-氨基 -1H-3-吡唑甲酰胺 144 mg(0.42 mmol)和 4-氯 -2-甲基呋喃并 [3,2-c]吡啶 70 mg(0.42 mmol)为原料, 得 (1-35)47 mg, 收率 25.1%。 mp: 274-276。C, MS [Μ+Η]+ 446.3。
1H-NMR[300MHz, DMSO-d6]: 52.1 (3H, s, -CH3), 2.2-2.4 (8H, m, -CH2-x4), 2.6 (3H, s, -CH3), 3.4 (2H, s, -CH2-), 6.7 (1H, d, J=8.0 Hz, ArH), 7.1(1H, s, ArH), 7.2 (2H, d, / = 8.4 Hz, ArH), 7.7 (2H, d, / = 8.4 Hz, ArH), 7.9 (1H, d, J=8.0 Hz, ArH), 8.4 (1H, s, ArH), 9.7 (1H, s, -NHCO-), 10.2 (1H, s, -NH-), 13.4 (1H, s, Pyrazole). 实施例 44
4-(4-(2-甲基呋喃并 [3,2-C]吡啶基)氨基) -N-(4-((4-吗啡啉基)甲基)苯基) -1H-3-吡唑甲酰胺 (1-36) 制备方法类似于 (1-25), 以 N-(4-((4-吗啡啉基)甲基)苯基) -4-氨基 -1H-3-吡唑甲酰胺 142 mg
(0.42 mmol)和 4-氯 -2-甲基呋喃并 [3,2-c]吡啶 70 mg(0.42 mmol)为原料, 得 (1-36)63 mg, 收率
34.8%。 mp: 275-277。C, MS [Μ+Η]+ 433.3。
1H-NMR[300MHz, DMSO-d6]: 52.3 (4H, t, J=4.2 Hz, -CH2-x2), 2.6 (3H, s, -CH3), 3.4 (2H, s,
-CH2-), 3.6 (4H, t, J=4.2 Hz, -CH2-x2), 6.7 (1H, d, J=8.0 Hz, ArH), 7.1 (1H, s, ArH), 7.3 (2H, d, J
= 8.2 Hz, ArH), 7.8 (2H, d, / = 8.2 Hz, ArH), 7.9 (1H, d, J=8.0 Hz, ArH), 8.4 (1H, s, ArH), 9.7 (1H, s, -NHCO-), 10.2 (1H, s, -NH-), 13.4 (1H, s, Pyrazole). 4-(7-呋喃并 [2,3-c]吡啶基氨基) -N-(4-((4-甲基 -1-哌嗪基)甲基)苯基) -1H-3-吡唑甲酰胺 (1-37) 制备方法类似于 (1-25),以 N-(4-((4-甲基小哌嗪基)甲基)苯基 -4-氨基 -1H-3-吡唑甲酰胺 132 mg(0.46 mmol)和 7-氯呋喃并 [2,3-c]吡啶 70 mg(0.46 mmol)为原料,得 (1-37)45 mg,收率 22.8%。 mp: 258-261。C, MS [Μ+Η]+ 432.3。
1H-NMR[300MHz, DMSO-d6]: 52.1 (3H, s, -CH3), 2.2-2.4 (8H, m, -CH2-x4), 3.4 (2H, s,
-CH2-), 6.7 (1H, d, J=8.0 Hz, ArH), 7.2 (2H, d, / = 8.4 Hz, ArH), 7.7 (2H, d, / = 8.4 Hz, ArH), 7.8
(1H, d, / = 2.5 Hz, ArH), 7.9 (1H, d, J=8.0 Hz, ArH), 8.3 (1H, d, / = 2.5 Hz, ArH), 8.4 (1H, s, ArH),
9.7 (1H, s, -NHCO-), 10.2 (1H, s, -NH-), 13.4 (1H, s, Pyrazole). 实施例 46
4-(7-呋喃并 [2,3-c]吡啶基氨基) -N-(4-((4-吗啡啉基)甲基)苯基) -1H-3-吡唑甲酰胺 (1-38)
制备方法类似于 (1-25), 以 N-(4-((4-吗啡啉基)甲基)苯基) -4-氨基 -1Η-3-吡唑甲酰胺 130 mg (0.46 mmol)和 7-氯呋喃并 [2,3-c]吡啶 70 mg(0.46 mmol)为原料, 得 (1-38)47 mg, 收率 24.6%。 mp: 268-272。C, MS [Μ+Η]+ 419.3。
1H-NMR[300MHz, DMSO-d6]: 52.3 (4H, t, J=4.2 Hz, -CH2-x2), 3.4 (2H, s, -CH2-), 3.6 (4H, t, J=4.2 Hz, -CH2-x2), 6.7 (1H, d, J=8.0 Hz, ArH), 7.3 (2H, d, J = 8.2 Hz, ArH), 7.7 (2H, d, J = 8.2 Hz, ArH), 7.8 (1H, d, / = 2.5 Hz, ArH), 7.9 (1H, d, J=8.0 Hz, ArH), 8.3 (1H, d, / = 2.5 Hz, ArH), 8.4 (1H, s, ArH), 9.7 (1H, s, -NHCO-), 10.2 (1H, s, -NH-), 13.4 (1H, s, Pyrazole). 实施例 47
4-(7-呋喃并 [3,2-b]吡啶基氨基) -N-(4-((4-甲基 -1-哌嗪基)甲基)苯基) -1H-3-吡唑甲酰胺 (1-39) 制备方法类似于 (1-25),以 N-(4-((4-甲基小哌嗪基)甲基)苯基 -4-氨基 -1H-3-吡唑甲酰胺 144 mg(0.46 mmol)和 7-氯呋喃并 [3,2-b]吡啶 70 mg(0.46 mmol)为原料,得 (1-39)48 mg,收率 24.4%。 mp: 268-270。C, MS [Μ+Η]+ 432.3。
1H-NMR[300MHz, DMSO-d6]: 52.1 (3H, s, -CH3), 2.2-2.4 (8H, m, -CH2-x4), 3.4 (2H, s, -CH2-), 6.7 (1H, d, J=8.0 Hz, ArH), 7.2 (2H, d, J = 8.4 Hz, ArH), 7.4(1H, s, ArH), 7.7 (2H, d, J = 8.4 Hz, ArH), 7.8 (1H, d, J = 2.5 Hz, ArH), 8.2 (1H, d, J=8.0 Hz, ArH), 8.3 (1H, d, J = 2.5 Hz, ArH), 8.4 (1H, s, ArH), 9.7 (1H, s, -NHCO-), 10.2 (1H, s, -NH-), 13.4 (1H, s, Pyrazole). 实施例 48
45 4-(7-呋喃并 [3,2-b]吡啶基氨基) -N-(4-((4-吗啡啉基)甲基)苯基) -1H-3-吡唑甲酰胺 (1-40) 制备方法类似于 (1-25), 以 N-(4-((4-吗啡啉基)甲基)苯基) -4-氨基 -1Η-3-吡唑甲酰胺 142 mg (0.46 mmol)和 7-氯呋喃并 [3,2-b]吡啶为 70 mg(0.46 mmol)原料, 得(1-40)53 1¾, 收率 27.7%。 mp: 275-278 °C, MS [Μ+Η]+ 419.3。
1H-NMR[300MHz, DMSO-d6]: 52.3 (4H, t, J=4.2 Hz, -CH2-x2), 3.4 (2H, s, -CH2-), 3.6 (4H, t, J=4.2 Hz, -CH2-x2), 6.7 (1H, d, J=8.0 Hz, ArH), 7.3 (2H, d, J = 8.2 Hz, ArH), 7.7 (2H, d, J = 8.2 Hz, ArH), 7.8 (1H, d, / = 2.5 Hz, ArH), 8.2 (1H, d, J=8.0 Hz, ArH), 8.3 (1H, d, / = 2.5 Hz, ArH), 8.4 (1H, s, ArH), 9.7 (1H, s, -NHCO-), 10.2 (1H, s, -NH-), 13.4 (1H, s, Pyrazole). 实施例 49
4-(4-呋喃并 [2,3-b]吡啶基氨基) -N-(4-((4-甲基 -1-哌嗪基)甲基)苯基) -1H-3-吡唑甲酰胺 (1-41) 制备方法类似于 (1-25),以 N-(4-((4-甲基小哌嗪基)甲基)苯基 -4-氨基 -1H-3-吡唑甲酰胺 144 mg(0.46 mmol)和 4-氯呋喃并 [2,3-b]吡啶为 70 mg(0.46 mmol)原料,得 (1-41)64 mg,收率 32.5%。 mp: 273-276。C, MS [Μ+Η]+ 432.3。
1H-NMR[300MHz, DMSO-d6]: 52.1 (3H, s, -CH3), 2.2-2.4 (8H, m, -CH2-x4), 3.4 (2H, s,
-CH2-), 6.7 (1H, d, J=8.0Hz, ArH), 7.1(1H, d, J = 2.5 Hz, ArH), 7.2 (2H, d, J = 8.4 Hz, ArH), 7.7
(2H, d, / = 8.4 Hz, ArH), 8.0 (1H, d, / = 2.5 Hz, ArH), 8.2 (1H, d, J=8.0Hz, ArH), 8.4 (1H, s, ArH),
9.7 (1H, s, -NHCO-), 10.2 (1H, s, -NH-), 13.4 (1H, s, Pyrazole). 实施例 50
4-(4-呋喃并 [2,3-b]吡啶基氨基) -N-(4-((4-吗啡啉基)甲基)苯基) -1H-3-吡唑甲酰胺 (1-42)
制备方法类似于 (1-25), 以 N-(4-((4-吗啡啉基)甲基)苯基) -4-氨基 -1H-3-吡唑甲酰胺 142 mg (0.46 mmol)和 4-氯呋喃并 [2,3-b]吡啶为 70 mg(0.46 mmol)原料, 得 (1-42)56 mg, 收率 29.3%。 mp: 269-271。C, MS [Μ+Η]+ 419.3。
1H-NMR[300MHz, DMSO-d6]: 52.3 (4H, t, J=4.2Hz, -CH2-x2), 3.4 (2H, s, -CH2-), 3.6 (4H, t, J=4.2Hz,-CH3x2), 6.7 (1H, d, J=8.0Hz, ArH), 7.1 (1H, d, / = 2.5 Hz, ArH), 7.3 (2H, d, / = 8.2 Hz, ArH), 7.8 (2H, d, J = 8.2 Hz, ArH), 8.0 (1H, d, J = 2.5 Hz, ArH), 8.2 (1H, d, J=8.0Hz, ArH), 8.4 (1H, s, ArH), 9.7 (1H, s, -NHCO-), 10.2 (1H, s, -NH-), 13.4 (1H, s, Pyrazole). 实施例 51
4-(7-(lH-吡咯并 [2,3-c]吡啶基)氨基) -N-(4-((4-甲基 -1-哌嗪基)甲基)苯基) -1H-3-吡唑甲酰胺 (1-43)
制备方法类似于 (1-25),以 N-(4-((4-甲基小哌嗪基)甲基)苯基 -4-氨基 -1H-3-吡唑甲酰胺 145 mg(0.46 mmol)和 7-氯 -1H-吡咯并 [2,3-c]吡啶 70 mg(0.46 mmol)为原料, 得 (1-43)64 mg, 收率 32.3%。 mp: 279-282。C, MS [Μ+Η]+ 431.3。
1H-NMR[300MHz, DMSO-d6]: 52.1 (3H, s, -CH3), 2.2-2.4 (8H, m, -CH2-x4), 3.4 (2H, s, -CH2-), 7.3 (2H, d, / = 8.4 Hz, ArH), 7.4 (1H, d, J = 8.0 Hz, ArH), 7.6 (1H, s, ArH), 7.8 (2H, d, J = 8.4 Hz, ArH), 8.0 (1H, d, J=8.0Hz, ArH), 8.2 (1H, s, ArH), 8.4 (1H, s, ArH), 9.2 (1H, s, -NHCO-), 10.2 (1H, s, -NH-), 12.0 (1H, s, Pyrrole), 13.4 (1H, s, Pyrazole). 实施例 52
4-(7-(lH-吡咯并 [2,3-c]吡啶基)氨基) -N-(4-((4-吗啡啉基)甲基)苯基) -1H-3-吡唑甲酰胺 (1-44) 制备方法类似于 (1-25), 以 N-(4-((4-吗啡啉基)甲基)苯基) -4-氨基 -1H-3-吡唑甲酰胺 143 mg (0.46 mmol)和 7-氯 -1H-吡咯并 [2,3-c]吡啶 70 mg(0.46 mmol)为原料, 得 (1-44)52 mg, 收率 27.1%。 mp: 265-267。C, MS [Μ+Η]+ 420.3。
1H-NMR[300MHz, DMSO-d6]: 52.3 (4H, t, J=4.4Hz, -CH2-x2), 2.4 (2H, s, -CH2-), 3.6 (4H, t, J=4.4Hz, -CH2-x2), 7.3 (2H, d, J = 8.4 Hz, ArH), 7.4 (1H, d, J = 8.0 Hz, ArH), 7.6 (1H, s, ArH), 7.8 (2H, d, J = 8.4 Hz, ArH), 8.0 (1H, d, J=8.0 Hz, ArH), 8.2 (1H, s, ArH), 8.4 (1H, s, ArH), 9.2 (1H, s, -NHCO-), 10.2 (1H, s, -NH-), 12.0 (1H, s, Pyrrole), 13.4 (1H, s, Pyrazole). 实施例 53
4-(7-(2-甲基 -1H-吡咯并 [2,3-c]吡啶基)氨基) -N-(4-((4-甲基 -1-哌嗪基)甲基)苯基) -1H-3-吡唑甲 酰胺 (1-45)
制备方法类似于 (1-25),以 N-(4-((4-甲基小哌嗪基)甲基)苯基 -4-氨基 -1H-3-吡唑甲酰胺 132 mg(0.42 mmol)和 7-氯 -2-甲基 -1H-吡咯并 [2,3-c]吡啶 70 mg(0.42 mmol)为原料, 得 (1-45)49 mg, 收率 26.2%。 mp: 276-278。C, MS [Μ+Η]+ 445.3。
1H-NMR[300MHz, DMSO-d6]: 52.1 (3H, s, -CH3), 2.2-2.4 (8H, m, -CH2-x4), 2.6 (3H, s, -CH3), 3.4 (2H, s, -CH2-), 7.3 (2H, d, J = 8.4 Hz, ArH), 7.4 (1H, d, J = 8.0 Hz, ArH), 7.6 (1H, s, ArH), 7.8 (2H, d, J = 8.4 Hz, ArH), 8.0 (1H, d, J=8.0Hz, ArH), 8.4 (1H, s, ArH), 9.2 (1H, s, -NHCO-), 10.2 (1H, s, -NH-), 12.0 (1H, s, Pyrrole), 13.4 (1H, s, Pyrazole). 实施例 54 4-(7-(2-甲基 -1H-吡咯并 [2,3-c]吡啶基)氨基) -N-(4-((4-吗啡啉基)甲基)苯基) -1H-3-吡唑甲酰胺 (1-46)
制备方法类似于 (1-25), 以 N-(4-((4-吗啡啉基)甲基)苯基) -4-氨基 -1H-3-吡唑甲酰胺 131 mg (0.42 mmol)和 7-氯 -2-甲基 -1H-吡咯并 [2,3-c]吡啶 70 mg(0.42 mmol)为原料, 得 (1-46)73 mg, 收 率 40.1%。 mp: 254-258。C, MS [Μ+Η]+ 432.3。
1H-NMR[300MHz, DMSO-d6]: 52.3 (4H, t, J=4.4Hz, -CH2-x2), 2.4 (2H, s, -CH2-), 2.6 (3H, s, -CH3), 3.6 (4H, t, J=4.4Hz, -CH2-x2), 7.3 (2H, d, J = 8.4 Hz, ArH), 7.4 (1H, d, J = 8.0 Hz, ArH), 7.6 (1H, s, ArH), 7.8 (2H, d, J = 8.4 Hz, ArH), 8.0 (1H, d, J=8.0 Hz, ArH), 8.4 (1H, s, ArH), 9.2 (1H, s, -NHCO-), 10.2 (1H, s, -NH-), 12.0 (1H, s, Pyrrole), 13.4 (1H, s, Pyrazole). 实施例 55
4-(4-(2-甲基噻吩并 [3,2-d]嘧啶)基氨基) -N-(4-((4-甲基 -1-哌嗪基)甲基)苯基) -1H-3-吡唑甲酰胺 (1-47)
制备方法类似于 (1-1), 以 N-(4-((4-甲基小哌嗪基)甲基)苯基 -4-氨基 -1H-3-吡唑甲酰胺 120 mg(0.38 mmol)和 4-氯 -2-甲基噻吩并 [3,2-d]嘧啶 70 mg(0.38 mmol)为原料, 得 (1-47)85 mg, 收 率 49.7%。 mp: >280。C, MS [Μ+Η]+ 463.3。
1H-NMR[300MHz, DMSO-d6]: 52.1 (3H, s, -CH3), 2.2-2.5 (8H, m, -CH2-x4), 2.6 (3H, s, -CH3), 3.4 (2H, s, -CH2-), 7.3 (2H, d, / = 8.4 Hz, ArH), 7.4 (1H, d, J=4.1Hz, ArH), 7.8 (2H, d, J = 8.4 Hz, ArH), 8.2 (1H, d, J=4.1Hz, ArH), 8.6 (1H, s, ArH), 9.6 (1H, s, -NHCO-), 10.3 (1H, s, -NH-) 13.5 (1H, s, Pyrazole). 实施例 56
4-(4-(2-甲基噻吩并 [3,2-d]嘧啶)基氨基) -N-(4-((4-吗啡啉基)甲基)苯基) -1H-3-吡唑甲酰胺
(1-48)
制备方法类似于 (1-1), 以 N-(4-((4-吗啡啉基)甲基)苯基) -4-氨基 -1H-3-吡唑甲酰胺 119 mg (0.38 mmol)和 4-氯 -2-甲基噻吩并 [3,2-d]嘧啶 70 mg(0.38 mmol)为原料, 得 (1-48)93 mg, 收率 54.4%。 mp: 259-262。C, MS [Μ+Η]+ 450.2。
1H-NMR[300MHz, DMSO-d6]: 52.3 (4H, t, J=4.2 Hz, -CH2-x2), 2.6 (3H, s, -CH3), 3.4 (2H, s, -CH2-), 3.6 (4H, t, J=4.2 Hz, -CH3x2), 7.3 (2H, d, / = 8.4 Hz, ArH), 7.4 (1H, d, J=4.1Hz, ArH), 7.8 (2H, d, / = 8.4 Hz, ArH), 8.2 (1H, d, J=4.1Hz, ArH), 8.5 (1H, s, ArH), 9.7 (1H, s, -NHCO-), 10.4 (1H, s, -NH-), 13.5 (1H, s, Pyrazole). 实施例 57
1、 实验材料
试剂、 药品及耗材:化合物 1, 化合物 1的甲磺酸盐 (IS), 化合物 2, 化合物 2的甲磺酸盐 (2S), 乙腈, 乙酸乙酯, 甲醇, 色谱柱 Hypersil ODS(4. 6mmX 200mm,5mm), 离心管, EP管, 枪头, 橡胶手套, lmL注射器等。
2、 主要仪器
Agilent 1200高效液相色谱仪 (美国安捷伦科技有限公司); 水浴恒温振荡器 SHZ-88(金坛 市文化仪器厂有限公司); KQ3200DB 型超声波清洗器(昆山市超声仪器有限公司); UV-2102PCS 型紫外分光光度仪 (上海龙尼柯仪器有限公司); TGL-16 台式离心机 (上海安亭 科学仪器厂); XW-80A旋涡混合器 (上海精科实业有限公司); 瑞士梅特勒-托利多 PL203电子 天平 (瑞士)。实验动物:健康雄性 Wistar大鼠,体重 (200士 20)g (中国药科大学动物中心提供)。
3、 方法与结果
水中溶解度的测定: 取过量的样品于 50ml三角瓶中, 并加入 10ml蒸馏水, 并于 25° C 下恒温振荡器中振荡 72h, 将溶液于 lOOOOrpm离心 15min后, 取上清液过 0.22 μ m的微孔滤 膜除去未溶解的药物, 取 2ml续滤液用甲醇定容至 10ml, 20 μ L进样测定药物的含量。 得到 结果如表 3。 表 3水中溶解度的测定
Figure imgf000051_0001
由表 3结果可知: 化合物 1-1及化合物 1-2成甲磺酸盐 (I-1-S)及 (I-2-S)后在水中的溶解度增加。
4、 油水分配系数 (LogP)的测定
将正辛醇和蒸馏水互相饱和 24h, 然后精密称取一定量的样品于 50ml容量瓶中, 用水 饱和的正辛醇定容 (样品完全溶解), 随后取 10ml样品的正辛醇溶液于 50ml的三角瓶中, 接 着加入 10ml正辛醇饱和的蒸馏水, 25° C下, 125rpm恒温振荡器中振荡 72h。分别测定实验 前正辛醇储备液和实验后正辛醇层中药物的浓度, 从而计算样品的油水分配系数。 结果见表 4。 表 4油水分配系数
Figure imgf000051_0002
由表 4结果可知: 化合物 1-1及化合物 1-2成甲磺酸盐 (I-1-S)和 (I-2-s)后的油水分配系数 (LogP)变化不大。 3.稳定性考察:
3.1血浆样品的处理
精密吸取大鼠血浆 300 并含 30 甲醇, 2ml乙酸乙酯, 旋涡 3min, 4000rpm离心 15min, 量取上清液, 移至另一离心管中, 下层同法提取 1次, 合并上清液, 在氮气流下吹干。 用甲醇 150 复溶后, 过 0.22 μ ηι微孔滤膜, 取 20 L进样。
3. 2在血浆中的稳定性
别将化合物 1-1和 1-2标准溶液定量稀释于血浆中, 分别于 0、 1、 2、 4、 6、 8、 12、 24h 取样, 按 " 3. 1 "项下方法处理, 进样 20 记录色谱图峰面积, 确定药物浓度, 考察 1和 2 在血浆中的稳定性。 结果见表 5。 表 5在血浆中稳定性结果
时间 (h) 0 1 2 3 5 8 12 24 化合物 1-1 2.16 2.24 2.22 2.12 2.11 1.91 1.84 1.95 化合物 1-2 2.36 2.34 2.29 2.21 2.16 2.11 1.97 1.85 结果: 由上表可知化合物 1和 2在血浆中 24h均稳定。
4动物实验
4.1设计及经时血药浓度数据
精密称取药物适量,配制含 3mg/mL药物的 CMC-Na水溶液。取健康雄性 Wistar大鼠 12 只, 随机分为 2组, 每组 6只。 第 1组为口服给药 2, 第 2组为口服给药 2。 给药剂量均为 30mg/kg (相当于每只大鼠给药 2ml), 大鼠给药前禁食 12h, 自由饮水, 给药后分别于 0. 5、 1、 1 · 5、2、2. 5、3、5、8、12、2411静脉窦取血0. 6 1^,加入经肝素钠润洗过的£?管中, 4000r/min 离心 15min取上层血浆, 精密量取血浆 300 μ L, 进样测定记录色谱图和峰面积, 计算 1和 2血药浓度, 绘制平均药-时曲线。 结果见表 6和 7。 表 6化合物 1大鼠口服后经时血药浓度 (ng*ml/l)
给药时间
大鼠 NO. 0.5 1 1.5 2 2.5 3 5 8 12 24
1 65.08 73.81 82.09 100.94 113.35 125.86 115.59 233.26 153.29 167.23
2 76.41 81.17 82.19 86.23 104.16 78.87 172.92 151.83 135.94 133.16
3 80.51 80.91 81.99 86.97 106.91 266.46 127.6 271.51 110.59 79.81
4 76.52 90.92 92.66 132.81 158.41 191.06 232.81 205.77 162.93 123.91
5 68.85 104.54 88.06 113.55 100.48 149.67 174.04 157.03 107.83 126.6
6 68.95 65.58 77.48 97.96 96.8 112.43 159.33 150.59 135.84 105.83 均数 72.72 82.82 103.08 113.35 154.06 163.72 195 134.4 122.76 标准差 5.94 13.58 5.38 17.71 22.79 66.64 41.48 50.42 22.13 29.1 表 7化合物 2大鼠口服后经时血药浓度 (ng.ml/1)
给药时间
大鼠 NO. 0.5 1 1.5 2 2.5 3 5 8 12 24
1 25.98 28.68 42.95 37.16 57.6 57.21 86.12 119.66 229.22 209.56
2 24.36 18.66 33.31 47.57 39.48 41.79 78.03 82.66 256.32 221.75
3 - - 40.25 47.03 65.08 94.32 121.59 213.94 74.79
4 - - 45.26 46.08 51.04 53.93 76.64 186.27 286.97 138.91
5 29.26 208.71 48.34 53.04 72.86 81.11 124.06 196.61 252.66 198.92
6 123.49 - 57.05 88.44 74.79 87.89 272.93 263.95 345.56 97.83 均数 50.77 85.35 44.53 53.22 57.61 64.5 122.02 161.79 264.11 156.96 标准差 48.52 106.95 7.98 18 13.85 17.34 75.93 66.18 47.08 62.13
4. 2数据处理
采用 DAS2.0程序对单剂量口服给药后的血药浓度数据表 6、 7结果进行处理。 应用拟合 度法及 AIC判别法进行模型判断, 拟合度越大、 AIC越小, 模型拟合越好的原则, 口服给药 均符合二室模型。 采用统计距参数比较 2种药物的药代动力学参数。 结果见表 8。 表 8大鼠口服 1和 2药代动力学参数 (AUC : 药时曲线下面积; Tmax : 药峰时间; Tm : 半衰期; MRT : 平均滞留时间; Cmax : 药峰浓度) 参数 化合物 i-i 化合物 1-2
AUC 0-24(ng-ml/L) 3345.7土 467.56 4346.9土 1298.0
MRT 0-24 11.62土 1.09 13.76土 1.29
τ 5.5土 2.29 14土 5.29
Tl 45.76土 29.12 14,67土 4.23
Cmax(ng/mL) 241.35土 102.97 265.35土 52.91 由表 8结果可知: 化合物 1和 2均具有可接受的药代动力学参数。 实施例 58 药物对动物移植性肿瘤 S180的抑制作用
1试验材料及动物
受试药物:化合物 1-1阳性药物名称: AT7519 购买自 Jinan Great Chemical Co., Ltd。 品系 和来源: ICR小鼠, 清洁级; 扬州大学比较医学中心提供, 许可证号: SCXK (苏) 2007-0001 ; 体重: 18-22g; 性别: 雌性; 伺料: 颗粒伺料, 由江苏省协同医药生物工程有限责任公司供 给; 伺养条件:空调房间,温度 18-240C,相对湿度 70%。 瘤株来源: S180由江苏省肿瘤药物研 究所提供。 仪器: YJ-875型医用净化工作台 (苏州净化设备厂)。
2、 实验方法 取 ICR小鼠, 按移植性肿瘤研究法, 接种实体型瘤 (在无菌操作下取瘤块, 称重, 用玻璃 组织匀浆器研磨, 磨匀后放入无菌容器内, 加生理盐水稀释成 1 :3 的细胞悬液, 容器置冰块 上, 用空针抽吸, 每次抽吸前将细胞混匀, 每只小鼠右前肢腋窝皮下接种 0.2ml), 接种后 24 小时称鼠重, 并随机分为 5组, 每组 10只。 各给药组于接种 24小时后 (dl)第一次给药, 静 脉注射给药, 每天给药一次, 共给药 7次, 给药体积均为 0.4ml/20g。 于接种后第 8天 (d8)处 死荷瘤小鼠称重, 并分离瘤块称重, 所得数据进行统计学处理 (t检验)。 剂量设置: 共设 5组 模型对照组; 阳性对照组: AT7519 15mg/kg; 待测药: 30mg/kg; 待测药: 15mg/kg; 待 测药: 7.5mg/kg
4、 实验结果:
表 1药物对小鼠移植瘤 S180抑制作用 ± ^ )
Figure imgf000054_0001
*P<0.05 **P<0.01 与模型对照组比较
5、 实验结论
结果表明, 与模型对照组相比, 待测药 (30mg/kg和 15mg/kg)对 S180的肿瘤生长有极显 著的抑制作用 (P<0.01),待测药 7.5mg/kg剂量对 S180的肿瘤生长有显著的抑制作用 (P<0.05)。 待测药 (30mg/kg和 15mg/kg)对实验动物体重有显著抑制作用 (P<0.05)。

Claims

权利要求书
1、 通式 (I)的化合物或其药学上可接受的盐或互变异构体或溶剂化物的组合:
Figure imgf000055_0001
其中 R R2、 R3 各自独立地表示氢、 烷基、 氰基、 卤素、 卤代烷基、 羟基、 巯基、 烷氧基、 烷硫基、 烷氧基烷基、 芳烷基、 二芳基烷基、 芳基或 Het;
X、 Y各自独立地表示 N 原子或 CH 原子团; 其中 CH 原子团可任选被 R4取代, R4 可以是氢、 烷基、 氰基、 卤素、 卤代烷基、 羟基、 巯基、 烷氧基、 烷硫基、 烷氧基烷 基、 芳烷基、 二芳基烷基、 芳基或 Het;
Z、 M 各自独立地表示 NH、 0、 S 或 CH 原子团, 且 Z、 M 必需有一个为 NH、 0 或 S; 其中 CH 或 NH 原子团各自独立地可任选被 R5 取代, R5 可以是氢、 烷基、 氰 基、 卤素、 卤代烷基、 羟基、 巯基、 烷氧基、 烷硫基、 烷氧基烷基、 芳烷基、 二芳基烷 基、 芳基或 Het;
A1 各自独立地表示 NH、 0、 S 或亚烷基原子团; 其中 NH 原子团或亚烷基原子团 各自独立地可任选被 R6取代, R6 可以是氢、 烷基、 氰基、 卤素、 卤代烷基、 羟基、 巯 基、 院氧基、 院硫基、 院氧基院基、 芳院基、 二芳基院基、 芳基或 Het;
A2 各自独立地表示亚烷基、 C(0)NH、 C(0)、 NHC(0)、 亚烷基 -C(0)、 C(0)-亚烷 基、 亚烷基 -C(0)-亚烷基或 NHC(0)NH; 上述基团各自独立地可任选被 R7 取代, R7 可 以是氢、 烷基、 氰基、 卤素、 卤代烷基、 羟基、 巯基、 烷氧基、 烷硫基、 烷氧基烷基、 芳烷基、 二芳基烷基、 芳基或 Het;
Q1 是选自芳基或 Het, 其中芳基或 Het各自独立地可任选被一个或多个 R8 取代, R8 可以是氢、 烷基、 氰基、 卤素、 卤代烷基、 羟基、 巯基、 烷氧基、 烷硫基、 烷氧基烷 基、 芳烷基、 二芳基烷基、 芳基或 Het;
Q2是选自芳基或 Het, 其中芳基或 Het各自独立地可任选被一个或多个 R9 取代, R9 可以是氢、 烷基、 氰基、 卤素、 卤代烷基、 羟基、 巯基、 烷氧基、 烷硫基、 烷氧基烷 基、 芳烷基、 二芳基烷基、 芳基或 Het;
烷基为具有 1-6 个碳原子的直链或支链饱和烃基; 或为具有 3-6 个碳原子的环状饱和 烃基; 或为连接具有 1-6 个碳原子的直链或支链饱和烃基的具有 3-6 个碳原子的环状饱 和烃基;
亚烷基为具有 1-6 个碳原子的直链或支链饱和烃基; 或为具有 3-6 个碳原子的环状饱 和烃基; 或为连接具有 1-6 个碳原子的直链或支链饱和烃基的具有 3-6 个碳原子的环状 饱和烃基失去一个氢原子形成的基团;
烷氧基为具有 1-6 个碳原子的直链或支链饱和烃基; 或为具有 3-6 个碳原子的环状 饱和烃基; 或为连接具有 1-6 个碳原子的直链或支链饱和烃基的具有 3-6 个碳原子的环 状饱和烃基; 其中各碳原子任选被氧取代;
烷硫基为具有 1-6 个碳原子的直链或支链饱和烃基; 或为具有 3-6 个碳原子的环状 饱和烃基; 或为连接具有 1-6 个碳原子的直链或支链饱和烃基的具有 3-6 个碳原子的环 状饱和烃基; 其中各碳原子任选被硫取代;
烷氧基烷基为如上定义的烷氧基与烷基连接;
芳基为选自苯基、 萘基、 苊基或四氢萘基的碳环, 其各自任选被 1、 2 或 3 个取代 基取代, 各取代基独立地选自氢、 烷基、 氰基、 ^素、 ^代烷基、 羟基、 巯基、 烷氧 基、 院硫基、 院氧基院基、 芳院基、 二芳基院基、 芳基或 Het;
芳烷基、 二芳基烷基为如上定义的芳基与烷基连接;
Het 为选自哌啶基、 吡咯基、 吡唑基、 咪唑基、 呋喃基、 噻吩基、 噁唑基、 异噁唑 基、 噻唑基、 异噻唑基、 吡啶基、 嘧啶基、 吡嗪基或哒嗪基的单环杂环; 或选自喹啉 基、 喹喔啉基、 吲哚基、 苯并咪唑基、 苯并噁唑基、 苯并异噁唑基、 苯并噻唑基、 苯并 异噻唑基、 苯并呋喃基、 苯并噻吩基、 2,3-二氢苯并 [1,4]二氧杂环己烯基或苯并 [1,3]二氧 杂环戊烯基的双环杂环; 各单环或双环杂环任选被 1、 2 或 3 个取代基取代, 各取代基 独立选自卤素、 卤代烷基、 羟基、 烷基或烷氧基;
卤素为选自氟、 氯、 溴或碘的取代基;
卤代烷基为具有 1-6 个碳原子的直链或支链饱和烃基, 或为具有 3-6 个碳原子的环 状饱和烃基, 或为连接具有 1-6 个碳原子的直链或支链饱和烃基的具有 3-6 个碳原子的 环状饱和烃基; 其中一个或多个碳原子被一个或多个卤原子取代。
2、 权利要求 1 的化合物, 其特征在于:
其中 R R2、 R3 各自独立地表示氢、 烷基、 氰基、 卤素、 卤代烷基、 羟基、 巯基、 烷氧 基、 院硫基、 院氧基院基、 芳院基或芳基;
X、 Y各自独立地表示 N 原子或 CH 原子团; 其中 CH 原子团可任选被 R4取代, R4 可 以是氢、 烷基、 氰基、 卤素、 卤代烷基、 羟基、 巯基、 烷氧基、 烷硫基、 烷氧基烷基、 芳烷基或芳基;
Z、 M各自独立地表示 NH、 0、 S 或 CH 原子团, 且 Z、 M 必需有一个为 NH、 0 或 S; 其中 CH 或 NH 原子团各自独立地可任选被 R5 取代, R5 可以是氢、 烷基、 氰基、 卤素、 卤代烷基、 羟基、 巯基、 烷氧基、 烷硫基、 烷氧基烷基、 芳烷基或芳基;
A1 各自独立地表示 NH、 0、 S 或亚烷基原子团; 其中 NH 原子团或亚烷基原子团各自 独立地可任选被 R6取代, R6 可以氢、 烷基、 氰基、 卤素、 卤代烷基、 羟基、 巯基、 烷 氧基、 烷
硫基、 烷氧基烷基、 芳烷基或芳基;
A2各自独立地表示亚烷基、 C(0)NH、 C(0)、 NHC(0)、 亚烷基 -C(0)、 C(0)-亚烷基、 亚 烷基 -C(0)-亚烷基或 NHC(0)NH; 上述基团各自独立地可任选被 R7 取代, R7 可以是 氢、 烷基、 氰基、 卤素、 卤代烷基、 羟基、 巯基、 烷氧基、 烷硫基、 烷氧基烷基、 芳烷 基或芳基;
Q1 是选自芳基或 Het, 其中芳基或 Het各自独立地可任选被一个或多个 R8 取代, R8 可 以是氢、 烷基、 氰基、 卤素、 卤代烷基、 羟基、 巯基、 烷氧基、 烷硫基、 烷氧基烷基、 芳烷基或芳基;
Q2是选自芳基或 Het, 其中芳基或 Het各自独立地可任选被一个或多个 R9 取代, R9 可 以是氢、 烷基、 氰基、 卤素、 卤代烷基、 羟基、 巯基、 烷氧基、 烷硫基、 烷氧基烷基、 芳烷基或芳基。
3、 权利要求 2 的化合物, 其特征在于:
其中 R R2、 R3 各自独立地表示氢、 烷基、 氰基、 卤素、 卤代烷基、 羟基、 巯基、 烷氧 基、 烷硫基或烷氧基烷基;
X、 Y各自独立地表示 N 原子或 CH 原子团; 其中 CH 原子团可任选被 R4取代, R4 可 以是氢、 烷基、 氰基、 卤素、 卤代烷基、 羟基、 巯基、 烷氧基、 烷硫基或烷氧基烷基; Z、 M各自独立地表示 NH、 0、 S 或 CH 原子团, 且 Z、 M 必需有一个为 NH、 0 或 S; 其中 CH 或 NH 原子团各自独立地可任选被 R5 取代, R5 可以是氢、 烷基、 氰基、 卤素、 卤代烷基、 羟基、 巯基、 烷氧基、 烷硫基或烷氧基烷基; A1 各自独立地表示 NH、 0、 S 或亚烷基原子团; 其中 NH 原子团或亚烷基原子团各自 独立地可任选被 R6取代, R6 可以氢、 烷基、 氰基、 卤素、 卤代烷基、 羟基、 巯基、 烷 氧基、 烷硫基或烷氧基烷基;
A2各自独立地表示亚烷基、 C(0)NH、 C(0)、 NHC(0)、 亚烷基 -C(0)、 C(O)-亚烷基、 亚 烷基 -C(O)-亚烷基或 NHC(0)NH; 上述基团各自独立地可任选被 R7 取代, R7 可以是 氢、 烷基、 氰基、 卤素、 卤代烷基、 羟基、 巯基、 烷氧基、 烷硫基或烷氧基烷基; Q1 是选自芳基或 Het, 其中芳基或 Het各自独立地可任选被一个或多个 R8 取代, R8 可 以是氢、 烷基、 氰基、 卤素、 卤代烷基、 羟基、 巯基、 烷氧基、 烷硫基或烷氧基烷基; Q2是选自芳基或 Het, 其中芳基或 Het各自独立地可任选被一个或多个 R9 取代, R9 可 以是氢、 烷基、 氰基、 卤素、 卤代烷基、 羟基、 巯基、 烷氧基、 烷硫基或烷氧基烷基。
4、 权利要求 3 的化合物, 其特征在于:
其中 R R2、 R3 各自独立地表示氢、 烷基、 氰基、 卤素、 卤代烷基、 羟基、 巯基、 烷氧 基、 烷硫基或烷氧基烷基;
X、 Y各自独立地表示 N 原子或 CH 原子团; 其中 CH 原子团可任选被 R4取代, R4 可 以是氢、 烷基、 氰基、 卤素、 卤代烷基、 羟基、 巯基、 烷氧基、 烷硫基或烷氧基烷基; Z、 M各自独立地表示 NH、 0、 S 或 CH 原子团, 且 Z、 M 必需有一个为 NH、 0 或 S; 其中 CH 或 NH 原子团各自独立地可任选被 R5 取代, R5 可以是氢、 烷基、 氰基、 卤素、 卤代烷基、 羟基、 巯基、 烷氧基、 烷硫基或烷氧基烷基;
A1 各自独立地表示 NH、 0、 S 或亚烷基原子团; 其中 NH 原子团或亚烷基原子团各自 独立地可任选被 R6取代, R6 可以氢、 烷基、 氰基、 卤素、 卤代烷基、 羟基、 巯基、 烷 氧基、 烷硫基或烷氧基烷基;
A2各自独立地表示亚烷基、 C(0)NH、 C(0)、 NHC(0)、 亚烷基 -C(0)、 C(0)-亚烷基、 亚 烷基 -C(0)-亚烷基或 NHC(0)NH; 上述基团各自独立地可任选被 R7 取代, R7 可以是 氢、 烷基、 氰基、 卤素、 卤代烷基、 羟基、 巯基、 烷氧基、 烷硫基或烷氧基烷基;
Q1 是选自下列的芳香环或取代的芳香环: 苯基、 萘基、 吡咯基、 呋喃基、 噻吩基、 吡啶 基、 吡嗪基、 嘧啶基, 上述基团各自独立地可任选被一个或多个 R8 取代, R8 可以是 氢、 烷基、 氰基、 卤素、 卤代烷基、 羟基、 巯基、 烷氧基、 烷硫基或烷氧基烷基;
Q2 是选自下列的芳香环: 苯基、 萘基、 吡唑基、 呋喃基、 噻吩基、 吡啶基、 吡嗪基、 嘧 啶基, 或 C3-C8 的脂肪族碳环, 或下列的脂肪族杂环: 四氢吡咯基、 哌啶基、 吗啉基、 甲基哌嗪基; 上述基团各自独立地可任选被一个或多个 R8 取代, R8 可以是氢、 烷基、 氰基、 ^素、 ^代烷基、 羟基、 巯基、 烷氧基、 烷硫基或烷氧基烷基。
5、 权利要求 4 的化合物, 其特征在于:
其中 R R2、 R3 各自独立地表示氢、 烷基、 氰基、 卤素、 卤代烷基、 羟基、 巯基、 烷氧 基、 烷硫基或烷氧基烷基;
X、 Y各自独立地表示 N 原子或 CH 原子团; 其中 CH 原子团可任选被 R4取代, R4 可 以是氢、 烷基、 氰基、 卤素、 卤代烷基、 羟基、 巯基、 烷氧基、 烷硫基或烷氧基烷基; Z、 M各自独立地表示 NH、 0、 S 或 CH 原子团, 且 Z、 M 必需有一个为 NH、 0 或 S; 其中 CH 或 NH 原子团各自独立地可任选被 R5 取代, R5 可以是氢、 烷基、 氰基、 卤素、 卤代烷基、 羟基、 巯基、 烷氧基、 烷硫基或烷氧基烷基;
A1 各自独立地表示 NH、 0、 S 或亚烷基原子团; 其中 NH 原子团或亚烷基原子团各自 独立地可任选被 R6取代, R6 可以氢、 烷基、 氰基、 卤素、 卤代烷基、 羟基、 巯基、 烷 氧基、 烷硫基或烷氧基烷基;
A2各自独立地表示亚烷基、 C(0)NH、 C(0)、 NHC(0)、 亚烷基 -C(0)、 C(O)-亚烷基、 亚 烷基 -C(O)-亚烷基或 NHC(0)NH; 上述基团各自独立地可任选被 R7 取代, R7 可以是 氢、 烷基、 氰基、 卤素、 卤代烷基、 羟基、 巯基、 烷氧基、 烷硫基或烷氧基烷基;
Q1 是选自下列的芳香环或取代的芳香环: 苯基、 萘基、 吡咯基、 呋喃基、 噻吩基、 吡啶 基、 吡嗪基、 嘧啶基, 取代基可以是 1〜2个卤素或三氟甲基;
Q2 是选自下列的芳香环: 苯基、 萘基、 吡唑基、 呋喃基、 噻吩基、 吡啶基、 吡嗪基、 嘧 啶基, 或 C3-C8 的脂肪族碳环, 或下列的脂肪族杂环: 四氢吡咯基、 哌啶基、 吗啉基、 甲基哌嗪基。
6、 权利要求 5 的化合物, 其特征在于:
其中 R R2、 R3 各自独立地表示氢、 -C4烷基;
X、 Y各自独立地表示 N 原子或 CH 原子团;
Z、 M各自独立地表示 NH、 0、 S 或 CH 原子团, 且 Z、 M 必需有一个为 NH、 0 或 S;
A1 各自独立地表示 NH、 0、 S 或 CH2原子团;
A2各自独立地表示链状 CrC4 亚烷基、 C(0)NH、 C(0)、 NHC(O);
Q1 是选自下列的芳香环或取代的芳香环: 苯基、 萘基、 吡咯基、 呋喃基、 噻吩基、 吡啶 基、 吡嗪基、 嘧啶基, 取代基可以是 1〜2个卤素或三氟甲基;
Q2 是选自下列的芳香环: 苯基、 萘基、 吡唑基、 呋喃基、 噻吩基、 吡啶基、 吡嗪基、 嘧 啶基, 或 C3-C8 的脂肪族碳环, 或下列的脂肪族杂环: 四氢吡咯基、 哌啶基、 吗啉基、 甲基哌嗪基。
7、 权利要求 6 的化合物, 其特征在于:
其中 R R2、 R3 各自独立地表示氢、 甲基;
A1 表示顧;
A2表示 CH2;
Q1 表示苯基;
Q2表示吗啉基、 甲基哌嗪基。
8、 权利要求 1 的化合物, 其特征在于是如下化合物:
4-(4-噻吩并 [2,3-d]嘧啶基氨基) -N-(4-((4-甲基 -1-哌嗪基)甲基)苯基 HH-3-吡唑甲酰胺 (1-1) 4-(4-噻吩并 [2,3-d]嘧啶基氨基) -N-(4-((4-吗啡啉基)甲基)苯基 HH-3-吡唑甲酰胺 (1-2) 4-(4-(6-甲基噻吩并 [2,3-d]嘧啶基)氨基) -N-(4-((4-甲基 -1-哌嗪基)甲基)苯基 HH-3-吡唑甲酰 胺 (1-3)
4-(4-(6-甲基噻吩并 [2,3-d]嘧啶基)氨基) -N-(4-((4-吗啡啉基)甲基)苯基 HH-3-吡唑甲酰胺 (I- 4)
4-(4-(5-甲基噻吩并 [2,3-d]嘧啶基)氨基) -N-(4-((4-甲基 -1-哌嗪基)甲基)苯基 HH-3-吡唑甲酰 胺 (1-5)
4-(4-(5-甲基噻吩并 [2,3-d]嘧啶基)氨基) -N-(4-((4-吗啡啉基)甲基)苯基 HH-3-吡唑甲酰胺 (I- 6)
4-(4-(5,6-二甲基噻吩并 [2,3-d]嘧啶基)氨基) -N-(4-((4-甲基 -1-哌嗪基)甲基)苯基 HH-3-吡唑 甲酰胺 (1-7)
4-(4-(5,6-二甲基噻吩并 [2,3-d]嘧啶基)氨基) -N-(4-((4-吗啡啉基)甲基)苯基 HH-3-吡唑甲酰 胺 (1-8)
4-(4-噻吩并 [3,2-d]嘧啶基氨基) -N-(4-((4-甲基 -1-哌嗪基)甲基)苯基 HH-3-吡唑甲酰胺 (1-9) 4-(4-噻吩并 [3,2-d]嘧啶基氨基) -N-(4-((4-吗啡啉基)甲基)苯基 HH-3-吡唑甲酰胺 (1-10) 4-(4-(7H-吡咯并 [2,3-d]嘧啶基)氨基) -N-(4-((4-甲基 -1-哌嗪基)甲基)苯基 HH-3-吡唑甲酰胺 (Ι-Π)
4-(4-(7H-吡咯并 [2,3-d]嘧啶基)氨基) -N-(4-((4-吗啡啉基)甲基)苯基 HH-3-吡唑甲酰胺 (1-12) 4-(4-(6-甲基 -7H-吡咯并 [2,3-d]嘧啶基)氨基) -N-(4-((4-甲基 -1-哌嗪基)甲基)苯基 HH-3-吡唑 甲酰胺 (1-13)
4-(4-(6-甲基 -7H-吡咯并 [2,3-d]嘧啶基)氨基) -N-(4-((4-吗啡啉基)甲基)苯基 HH-3-吡唑甲酰 胺 (1-14)
4-(4-(5-甲基 -7H-吡咯并 [2,3-d]嘧啶基)氨基) -N-(4-((4-甲基 -1-哌嗪基)甲基)苯基 HH-3-吡唑 甲酰胺 (1-15)
4-(4-(5-甲基 -7H-吡咯并 [2,3-d]嘧啶基)氨基) -N-(4-((4-吗啡啉基)甲基)苯基 HH-3-吡唑甲酰 胺 (1-16)
4-(4-(5H-吡咯并 [3,2-d]嘧啶基)氨基) -N-(4-((4-甲基 -1-哌嗪基)甲基)苯基 HH-3-吡唑甲酰胺 (1-17)
4-(4-(5H-吡咯并 [3,2-d]嘧啶基)氨基) -N-(4-((4-吗啡啉基)甲基)苯基 HH-3-吡唑甲酰胺 (1-18) 4-(4-(6-甲基 -5H-吡咯并 [3,2-d]嘧啶基)氨基) -N-(4-((4-甲基 -1-哌嗪基)甲基)苯基 HH-3-吡唑 甲酰胺 (1-19)
4-(4-(6-甲基 -5H-吡咯并 [3,2-d]嘧啶基)氨基) -N-(4-((4-吗啡啉基)甲基)苯基 HH-3-吡唑甲酰 胺 (1-20)
4-(4-呋喃并 [2,3-d]嘧啶基氨基) -N-(4-((4-甲基 -1-哌嗪基)甲基)苯基 HH-3-吡唑甲酰胺 (1-21) 4-(4-呋喃并 [2,3-d]嘧啶基氨基) -N-(4-((4-吗啡啉基)甲基)苯基 HH-3-吡唑甲酰胺 (1-22) 4-(4-呋喃并 [3,2-d]嘧啶基氨基) -N-(4-((4-甲基 -1-哌嗪基)甲基)苯基 HH-3-吡唑甲酰胺 (1-23) 4-(4-呋喃并 [3,2-d]嘧啶基氨基) -N-(4-((4-吗啡啉基)甲基)苯基 HH-3-吡唑甲酰胺 (1-24) 4-(4-噻吩并 [3,2-c]吡啶基氨基) -N-(4-((4-甲基 -1-哌嗪基)甲基)苯基 HH-3-吡唑甲酰胺 (1-25) 4-(4-噻吩并 [3,2-c]吡啶基氨基) -N-(4-((4-吗啡啉基)甲基)苯基 HH-3-吡唑甲酰胺 (1-26) 4-(4-(2-甲基噻吩并 [3,2-c]吡啶基)氨基) -N-(4-((4-甲基 -1-哌嗪基)甲基)苯基 HH-3-吡唑甲酰 胺 (1-27)
4-(4-(2-甲基噻吩并 [3,2-c]吡啶基)氨基) -N-(4-((4-吗啡啉基)甲基)苯基 HH-3-吡唑甲酰胺 (I- 28)
4-(7-噻吩并 [2,3-c]吡啶基氨基) -N-(4-((4-甲基 -1-哌嗪基)甲基)苯基 HH-3-吡唑甲酰胺 (1-29) 4-(7-噻吩并 [2,3-c]吡啶基氨基) -N-(4-((4-吗啡啉基)甲基)苯基 HH-3-吡唑甲酰胺 (1-30) 4-(7-(3-甲基噻吩并 [2,3-c]吡啶基)氨基) -N-(4-((4-甲基 -1-哌嗪基)甲基)苯基 HH-3-吡唑甲酰 胺 (1-31)
4-(7-(3-甲基噻吩并 [2,3-c]吡啶基)氨基) -N-(4-((4-吗啡啉基)甲基)苯基 HH-3-吡唑甲酰胺 (I- 32) 4-(4-呋喃并 [3,2-c]吡啶基氨基) -N-(4-((4-甲基 -1-哌嗪基)甲基)苯基 HH-3-吡唑甲酰胺 (1-33) 4-(4-呋喃并 [3,2-c]吡啶基氨基) -N-(4-((4-吗啡啉基)甲基)苯基 HH-3-吡唑甲酰胺 (1-34) 4-(4-(2-甲基呋喃并 [3,2-c]吡啶基)氨基) -N-(4-((4-甲基 -1-哌嗪基)甲基)苯基 HH-3-吡唑甲酰 胺 (1-35)
4-(4-(2-甲基呋喃并 [3,2-c]吡啶基)氨基) -N-(4-((4-吗啡啉基)甲基)苯基 HH-3-吡唑甲酰胺 (I- 36)
4-(7-呋喃并 [2,3-c]吡啶基氨基) -N-(4-((4-甲基 -1-哌嗪基)甲基)苯基 HH-3-吡唑甲酰胺 (1-37) 4-(7-呋喃并 [2,3-c]吡啶基氨基) -N-(4-((4-吗啡啉基)甲基)苯基 HH-3-吡唑甲酰胺 (1-38) 4-(7-呋喃并 [3,2-b]吡啶基氨基) -N-(4-((4-甲基 -1-哌嗪基)甲基)苯基 HH-3-吡唑甲酰胺 (1-39) 4-(7-呋喃并 [3,2-b]吡啶基氨基) -N-(4-((4-吗啡啉基)甲基)苯基 HH-3-吡唑甲酰胺 (1-40) 4-(4-呋喃并 [2,3-b]吡啶基氨基) -N-(4-((4-甲基 -1-哌嗪基)甲基)苯基 HH-3-吡唑甲酰胺 (1-41) 4-(4-呋喃并 [2,3-b]吡啶基氨基) -N-(4-((4-吗啡啉基)甲基)苯基 HH-3-吡唑甲酰胺 (1-42) 4-(7-(lH-吡咯并 [2,3-c]吡啶基)氨基) -N-(4-((4-甲基 -1-哌嗪基)甲基)苯基 HH-3-吡唑甲酰胺 (1-43)
4-(7-(lH-吡咯并 [2,3-c]吡啶基)氨基) -N-(4-((4-吗啡啉基)甲基)苯基 HH-3-吡唑甲酰胺 (1-44) 4—(7-(2-甲基 -1H-吡咯并 [2,3-c]吡啶基)氨基) -N-(4-((4-甲基 -1-哌嗪基)甲基)苯基 HH-3-吡唑 甲酰胺 (1-45)
4-(7-(2-甲基 -1H-吡咯并 [2,3-c]吡啶基)氨基) -N-(4-((4-吗啡啉基)甲基)苯基 HH-3-吡唑甲酰 胺 (1-46)
4-(4-(2-甲基噻吩并 [3,2-d]嘧啶)基氨基) -N-(4-((4-甲基 -1-哌嗪基)甲基)苯基) -1Η-3-吡唑甲酰 胺 (1-47)
4-(4-(2-甲基噻吩并 [3,2-d]嘧啶)基氨基) -N-(4-((4-吗啡啉基)甲基)苯基) -1Η-3-吡唑甲酰胺 (I- 48)。
9、 权利要求 1-8 任一项的化合物或其药学上可接受的盐, 其中药学上可接受的盐包括通 式 (I)化合物与下列酸形成的酸加成盐: 盐酸、 氢溴酸、 硫酸、 磷酸、 甲磺酸、 苯磺酸、 对甲苯磺酸、 萘磺酸、 柠檬酸、 酒石酸、 乳酸、 丙酮酸、 乙酸、 马来酸或琥珀酸、 富马 酸、 水杨酸、 苯基乙酸、 杏仁酸, 此外还包括无机碱的酸式盐。
10、 一种药物组合物, 其中含有权利要求 1-9 任一项所述的化合物和药学上可接受的载 体。
11、 权利要求 1-9任一项所述的化合物在制备用于预防或治疗与 CDK2、 Aurora A有关的 临床病症的药物中的用途。
12、 权利要求 11的用途, 其中与 CDK2、 Aurora A有关的疾病可以是黑色素瘤、 肝癌、 肾癌、 急性白血病、 非小细胞肺癌、 前列腺癌、 甲状腺癌、 皮肤癌、 结肠直肠癌、 胰腺 癌、 卵巢癌、 乳腺癌、 骨髓增生异常综合症、 食管癌、 胃肠道癌或间皮瘤。
13、 权利要求 1-9任一项所述的化合物在制备用于预防或治疗与 CMGC家族和 TK家族 激酶有关的临床病症的药物中的用途。
14、 权利要求 1-9任一项所述的化合物在制备用于预防或治疗与 GSK3b、 FLT3、 KDR、 VEGFR有关的临床病症的药物中的用途。
15、 权利要求 14 的用途, 其中所述的临床病症包括炎症、 病毒感染、 II型或非胰岛素依 赖糖尿病、 自身免疫疾病、 头部创伤、 中风、 癫痫、 阿尔默兹海姆症或运动神经元疾 病。
16、 权利要求 1-9任一项所述的化合物在制备抗真菌剂中的用途。
PCT/CN2014/070195 2013-01-08 2014-01-07 含多环取代的吡唑类激酶活性抑制剂及其用途 WO2014108053A1 (zh)

Priority Applications (11)

Application Number Priority Date Filing Date Title
RU2015133528A RU2655921C2 (ru) 2013-01-08 2014-01-07 Замещенные полициклические пиразольные ингибиторы киназной активности и их применение
KR1020157021621A KR102136628B1 (ko) 2013-01-08 2014-01-07 폴리사이클릭 치환된 피라졸 키나제 활성 저해제 및 그의 용도
CA2897366A CA2897366C (en) 2013-01-08 2014-01-07 Polycyclic substituted pyrazole kinase activity inhibitors and use thereof
AU2014204633A AU2014204633B2 (en) 2013-01-08 2014-01-07 Polycyclic substituted pyrazole kinase activity inhibitors and use thereof
JP2015551972A JP6322848B2 (ja) 2013-01-08 2014-01-07 多環式置換ピラゾールキナーゼ活性阻害剤及びその用途
ES14738057T ES2863175T3 (es) 2013-01-08 2014-01-07 Inhibidores policíclicos sustituidos de la actividad de pirazol quinasa y uso de los mismos
CN201480004085.9A CN105189517B (zh) 2013-01-08 2014-01-07 含多环取代的吡唑类激酶活性抑制剂及其用途
US14/759,516 US9550792B2 (en) 2013-01-08 2014-01-07 Polycyclic substituted pyrazole kinase activity inhibitors and use thereof
DK14738057.0T DK2955185T3 (da) 2013-01-08 2014-01-07 Polycycliske substituerede inhibitorer af pyrazol-kinaseaktivitet og anvendelse deraf
BR112015016327A BR112015016327A8 (pt) 2013-01-08 2014-01-07 inibidores da atividade de pirazol quinase substituídos por policíclicos e seu uso
EP14738057.0A EP2955185B1 (en) 2013-01-08 2014-01-07 Polycyclic substituted pyrazole kinase activity inhibitors and use thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310005258.6 2013-01-08
CN2013100052586A CN103012428A (zh) 2013-01-08 2013-01-08 4-(五元杂环并嘧啶/吡啶取代)氨基-1H-3-吡唑甲酰胺类CDK/Aurora双重抑制剂及其用途

Publications (1)

Publication Number Publication Date
WO2014108053A1 true WO2014108053A1 (zh) 2014-07-17

Family

ID=47961580

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/070195 WO2014108053A1 (zh) 2013-01-08 2014-01-07 含多环取代的吡唑类激酶活性抑制剂及其用途

Country Status (13)

Country Link
US (1) US9550792B2 (zh)
EP (1) EP2955185B1 (zh)
JP (1) JP6322848B2 (zh)
KR (1) KR102136628B1 (zh)
CN (3) CN103012428A (zh)
AU (1) AU2014204633B2 (zh)
BR (1) BR112015016327A8 (zh)
CA (1) CA2897366C (zh)
DK (1) DK2955185T3 (zh)
ES (1) ES2863175T3 (zh)
PT (1) PT2955185T (zh)
RU (1) RU2655921C2 (zh)
WO (1) WO2014108053A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104592251A (zh) * 2015-01-23 2015-05-06 中国药科大学 4-(稠杂环取代氨基)-1h-吡唑-3-甲酰胺类化合物及其用途
US9550792B2 (en) 2013-01-08 2017-01-24 Shanghai Fosun Pharmaceutical Development Co., Ltd. Polycyclic substituted pyrazole kinase activity inhibitors and use thereof
US11168093B2 (en) 2018-12-21 2021-11-09 Celgene Corporation Thienopyridine inhibitors of RIPK2
US11247987B2 (en) 2017-10-06 2022-02-15 Forma Therapeutics, Inc. Inhibiting ubiquitin specific peptidase 30
US11535618B2 (en) 2018-10-05 2022-12-27 Forma Therapeutics, Inc. Fused pyrrolines which act as ubiquitin-specific protease 30 (USP30) inhibitors

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103435606A (zh) * 2013-08-22 2013-12-11 中国药科大学 CDK2与GSK3β双重抑制剂及用途
CN107235906B (zh) * 2017-06-28 2020-05-01 郑州大学第一附属医院 一组吡唑酰胺类衍生物及其应用
CN107245073B (zh) * 2017-07-11 2020-04-17 中国药科大学 4-(芳杂环取代)氨基-1h-3-吡唑甲酰胺类flt3抑制剂及其用途
CN109970717B (zh) * 2017-12-28 2022-10-18 中国药科大学 4-(脂肪环并嘧啶/吡啶取代)氨基-1h-3-吡唑甲酰胺类flt3抑制剂及其用途
CN110835334B (zh) * 2018-08-16 2022-10-18 中国药科大学 吲哚取代唑类化合物及其用途
CN111171044B (zh) * 2018-11-13 2022-06-24 沈阳化工研究院有限公司 一种噻吩并嘧啶类化合物及其医药用途
US11572369B2 (en) * 2019-02-01 2023-02-07 University Of South Carolina Bicyclic pyridine compositions and methods of using the same for cancer therapy
KR20200100429A (ko) * 2019-02-18 2020-08-26 한국과학기술연구원 단백질 키나아제 저해 활성을 갖는 신규한 피리도[3,4-d]피리미딘-8-온 유도체 및 이를 포함하는 암의 예방, 개선 또는 치료용 약학 조성물
CN110183464B (zh) * 2019-05-31 2021-08-31 淮阴工学院 一种抗癌化合物艾斯替尼及其合成方法和应用
CN112794855B (zh) * 2019-11-13 2023-07-28 中国药科大学 N-芳基嘧啶-4-胺类衍生物的制备方法与应用
CN112043710A (zh) * 2020-09-28 2020-12-08 广州智睿医药科技有限公司 一种治疗或预防与lrrk2激酶或异常lrrk2突变激酶活性相关疾病的药物
WO2023168246A2 (en) * 2022-03-01 2023-09-07 Purdue Research Foundation Selective g protein-coupled receptor kinase 5 inhibitors, compositions, and methods of use
CN114685371A (zh) * 2022-03-08 2022-07-01 四川大学 吡唑甲酰胺衍生物及其制备方法和用途
CN115746002B (zh) * 2022-11-13 2023-12-08 药康众拓(江苏)医药科技有限公司 一种氘代氮杂吲哚氨基-吡唑甲酰胺类化合物及其用途

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004094410A1 (en) * 2003-04-16 2004-11-04 Astrazeneca Ab Chemical compounds
WO2006077425A1 (en) * 2005-01-21 2006-07-27 Astex Therapeutics Limited Combinations of pyrazole kinase inhibitors and further antitumor agents
CN103012428A (zh) * 2013-01-08 2013-04-03 中国药科大学 4-(五元杂环并嘧啶/吡啶取代)氨基-1H-3-吡唑甲酰胺类CDK/Aurora双重抑制剂及其用途

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE60128709T2 (de) 2000-09-15 2007-12-27 Vertex Pharmaceuticals Inc., Cambridge Triazol-verbindungen als protein-kinase-inhibitoren
US7102009B2 (en) 2001-01-12 2006-09-05 Amgen Inc. Substituted amine derivatives and methods of use
US7105682B2 (en) 2001-01-12 2006-09-12 Amgen Inc. Substituted amine derivatives and methods of use
WO2005012256A1 (en) * 2003-07-22 2005-02-10 Astex Therapeutics Limited 3, 4-disubstituted 1h-pyrazole compounds and their use as cyclin dependent kinases (cdk) and glycogen synthase kinase-3 (gsk-3) modulators
GB0317127D0 (en) * 2003-07-22 2003-08-27 Astex Technology Ltd Pharmaceutical compounds
MY141220A (en) * 2003-11-17 2010-03-31 Astrazeneca Ab Pyrazole derivatives as inhibitors of receptor tyrosine kinases
DE602005024274D1 (de) 2004-07-16 2010-12-02 Sunesis Pharmaceuticals Inc Als aurora-kinase-inhibitoren nutzbare thienopyrimidine
JP2008513426A (ja) 2004-09-20 2008-05-01 バイオリポックス エービー 炎症の治療に有用なピラゾール化合物
US8404718B2 (en) 2005-01-21 2013-03-26 Astex Therapeutics Limited Combinations of pyrazole kinase inhibitors
WO2006077428A1 (en) 2005-01-21 2006-07-27 Astex Therapeutics Limited Pharmaceutical compounds
WO2006085685A1 (ja) 2005-02-09 2006-08-17 Takeda Pharmaceutical Company Limited ピラゾール化合物
US20090263398A1 (en) 2006-07-14 2009-10-22 Astex Therapeutics Limited Pharmaceutical combinations
US20100021420A1 (en) 2006-07-14 2010-01-28 Astex Therapeutics Limited Combinations of pyrazole derivatives for the inhibition of cdks and gsk's
US20100004243A1 (en) * 2006-07-14 2010-01-07 Astex Therapeutics Limited Pharmaceutical compounds
JP2009544602A (ja) 2006-07-21 2009-12-17 アステックス・セラピューティクス・リミテッド サイクリン依存性キナーゼ阻害剤の医学的使用
WO2009078432A1 (ja) 2007-12-18 2009-06-25 Taisho Pharmaceutical Co., Ltd. 1-アルキル-4-アミノ-1h-ピラゾール-3-カルボキサミド化合物
CA2722220C (en) * 2008-04-30 2016-06-07 National Health Research Institutes Fused bicyclic pyrimidine compounds as aurora kinase inhibitors
DK2331530T3 (da) * 2008-09-26 2013-11-11 Nat Health Research Institutes Kondenserede multicycliske forbindelser som proteinkinaseinhibitorer
PA8852401A1 (es) * 2008-12-05 2010-07-27 Abbott Lab Inhibidores de quinasa con perfiles de seguridad cyp mejorados
KR20120059525A (ko) * 2009-08-07 2012-06-08 메르크 파텐트 게엠베하 신규의 아자헤테로시클릭 화합물
EP2516444A2 (en) 2009-12-23 2012-10-31 Biocryst Pharmaceuticals, Inc. Heterocyclic compounds as janus kinase inhibitors
CN102060772A (zh) * 2010-12-17 2011-05-18 中国药科大学 N-(4-取代苯基)-1h-3-吡唑甲酰胺类细胞周期蛋白依赖性激酶2抑制剂及其用途
EP2723747A1 (en) * 2011-06-22 2014-04-30 Vertex Pharmaceuticals Inc. Compounds useful as inhibitors of atr kinase

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004094410A1 (en) * 2003-04-16 2004-11-04 Astrazeneca Ab Chemical compounds
WO2006077425A1 (en) * 2005-01-21 2006-07-27 Astex Therapeutics Limited Combinations of pyrazole kinase inhibitors and further antitumor agents
CN103012428A (zh) * 2013-01-08 2013-04-03 中国药科大学 4-(五元杂环并嘧啶/吡啶取代)氨基-1H-3-吡唑甲酰胺类CDK/Aurora双重抑制剂及其用途

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9550792B2 (en) 2013-01-08 2017-01-24 Shanghai Fosun Pharmaceutical Development Co., Ltd. Polycyclic substituted pyrazole kinase activity inhibitors and use thereof
CN104592251A (zh) * 2015-01-23 2015-05-06 中国药科大学 4-(稠杂环取代氨基)-1h-吡唑-3-甲酰胺类化合物及其用途
CN104592251B (zh) * 2015-01-23 2019-10-01 上海复星医药产业发展有限公司 4-(稠杂环取代氨基)-1h-吡唑-3-甲酰胺类化合物及其用途
US11247987B2 (en) 2017-10-06 2022-02-15 Forma Therapeutics, Inc. Inhibiting ubiquitin specific peptidase 30
US11535618B2 (en) 2018-10-05 2022-12-27 Forma Therapeutics, Inc. Fused pyrrolines which act as ubiquitin-specific protease 30 (USP30) inhibitors
US11814386B2 (en) 2018-10-05 2023-11-14 Forma Therapeutics, Inc. Fused pyrrolines which act as ubiquitin-specific protease 30 (USP30) inhibitors
US11168093B2 (en) 2018-12-21 2021-11-09 Celgene Corporation Thienopyridine inhibitors of RIPK2

Also Published As

Publication number Publication date
AU2014204633B2 (en) 2017-07-27
CA2897366A1 (en) 2014-07-17
JP6322848B2 (ja) 2018-05-16
US9550792B2 (en) 2017-01-24
BR112015016327A2 (pt) 2017-07-11
KR20150120966A (ko) 2015-10-28
CA2897366C (en) 2021-01-05
PT2955185T (pt) 2021-02-23
BR112015016327A8 (pt) 2018-01-23
KR102136628B1 (ko) 2020-07-23
EP2955185B1 (en) 2021-01-06
CN107098903A (zh) 2017-08-29
EP2955185A4 (en) 2016-06-08
ES2863175T3 (es) 2021-10-08
CN105189517B (zh) 2017-07-18
CN103012428A (zh) 2013-04-03
CN105189517A (zh) 2015-12-23
JP2016504395A (ja) 2016-02-12
CN107098903B (zh) 2020-07-17
US20150368259A1 (en) 2015-12-24
EP2955185A1 (en) 2015-12-16
RU2015133528A (ru) 2017-02-15
DK2955185T3 (da) 2021-03-29
RU2655921C2 (ru) 2018-05-30
AU2014204633A1 (en) 2015-08-27

Similar Documents

Publication Publication Date Title
KR102136628B1 (ko) 폴리사이클릭 치환된 피라졸 키나제 활성 저해제 및 그의 용도
US10266537B2 (en) 3-acetylenyl-pyrazole-pyrimidine derivative, and preparation method therefor and uses thereof
EP3154959B1 (en) 1-((3s,4r)-4-(3-fluorophenyl)-1-(2-methoxyethyl)pyrrolidin-3-yl)-3-(4-methyl-3-(2-methylpyrimidin-5-yl)-1-phenyl-1h-pyrazol-5-yl)urea as a trka kinase inhibitor
US9790178B2 (en) Pyrrolidinyl urea, thiourea, guanidine and cyanoguanidine compounds as TrkA kinase inhibitors
US8697692B2 (en) Pyrrolo [3,2-c] pyridine-4-one 2-indolinone protein kinase inhibitors
EP2499117B1 (en) A compound, a process for its preparation, a pharmaceutical composition, use of a compound, a method for modulating or regulating serine/threonine kinases and a serine/threonine kinases modulating agent
KR102297587B1 (ko) 치환된 n-헤테로아릴 유도체, 이의 제조방법 및 이를 유효성분으로 포함하는 암의 예방 또는 치료용 약학적 조성물
US20050107386A1 (en) Methods of treating diseases and disorders by targeting multiple kinases
Wang et al. The discovery of novel 3-(pyrazin-2-yl)-1H-indazoles as potent pan-Pim kinase inhibitors
US20120184535A1 (en) Compound, a process for its preparation, a pharmaceutical composition, use of a compound, a method for modulating or regulating serine/threonine kinases and a serine/threonine kinases modulating agent
KR20200100429A (ko) 단백질 키나아제 저해 활성을 갖는 신규한 피리도[3,4-d]피리미딘-8-온 유도체 및 이를 포함하는 암의 예방, 개선 또는 치료용 약학 조성물
RU2550346C2 (ru) Новые химические соединения (варианты) и их применение для лечения онкологических заболеваний
EP4212525A1 (en) 5-substituted indole 3-amide derivative, preparation method and use thereof
KR102163494B1 (ko) 단백질 키나아제 저해제인 헤테로방향족 매크로시클릭 유도체
US20220009920A1 (en) Kinase inhibitors
Takeuchi Development of Kinesin Spindle Protein Inhibitors with Fused-indole and Diaryl Amine Scaffolds
Lafleur Design and synthesis of selective kinase inhibitors
Frett Discovery and Development of Novel Ret Inhibitors for the Treatment of Pervasive Malignancies
MX2008009811A (en) Benzazole derivatives, compositions, and methods of use as aurora kinase inhibitors

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480004085.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14738057

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2897366

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2015551972

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112015016327

Country of ref document: BR

WWE Wipo information: entry into national phase

Ref document number: 2014738057

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2015133528

Country of ref document: RU

Kind code of ref document: A

Ref document number: 20157021621

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2014204633

Country of ref document: AU

Date of ref document: 20140107

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14759516

Country of ref document: US

ENP Entry into the national phase

Ref document number: 112015016327

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20150707