WO2014108046A1 - 移动设备及其充电方法 - Google Patents

移动设备及其充电方法 Download PDF

Info

Publication number
WO2014108046A1
WO2014108046A1 PCT/CN2014/070076 CN2014070076W WO2014108046A1 WO 2014108046 A1 WO2014108046 A1 WO 2014108046A1 CN 2014070076 W CN2014070076 W CN 2014070076W WO 2014108046 A1 WO2014108046 A1 WO 2014108046A1
Authority
WO
WIPO (PCT)
Prior art keywords
charging
mobile device
module
connection base
current
Prior art date
Application number
PCT/CN2014/070076
Other languages
English (en)
French (fr)
Inventor
陈涛
兰维建
潘传荣
周华
Original Assignee
无锡知谷网络科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 无锡知谷网络科技有限公司 filed Critical 无锡知谷网络科技有限公司
Priority to KR1020157021593A priority Critical patent/KR101727517B1/ko
Priority to JP2015551969A priority patent/JP6463694B2/ja
Priority to US14/760,329 priority patent/US9780585B2/en
Priority to EP14711673.5A priority patent/EP2793350B1/en
Priority to ES14711673.5T priority patent/ES2655239T3/es
Publication of WO2014108046A1 publication Critical patent/WO2014108046A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/14Conductive energy transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0046Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electric energy storage systems, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/04Cutting off the power supply under fault conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/64Constructional details of batteries specially adapted for electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/66Arrangements of batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/21Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules having the same nominal voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62BHAND-PROPELLED VEHICLES, e.g. HAND CARTS OR PERAMBULATORS; SLEDGES
    • B62B3/00Hand carts having more than one axis carrying transport wheels; Steering devices therefor; Equipment therefor
    • B62B3/14Hand carts having more than one axis carrying transport wheels; Steering devices therefor; Equipment therefor characterised by provisions for nesting or stacking, e.g. shopping trolleys
    • B62B3/1404Means for facilitating stowing or transporting of the trolleys; Antitheft arrangements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62BHAND-PROPELLED VEHICLES, e.g. HAND CARTS OR PERAMBULATORS; SLEDGES
    • B62B5/00Accessories or details specially adapted for hand carts
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • H02J7/0018Circuits for equalisation of charge between batteries using separate charge circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0042Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by the mechanical construction
    • H02J7/0045Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by the mechanical construction concerning the insertion or the connection of the batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/24Personal mobility vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/30AC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/549Current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62BHAND-PROPELLED VEHICLES, e.g. HAND CARTS OR PERAMBULATORS; SLEDGES
    • B62B3/00Hand carts having more than one axis carrying transport wheels; Steering devices therefor; Equipment therefor
    • B62B3/14Hand carts having more than one axis carrying transport wheels; Steering devices therefor; Equipment therefor characterised by provisions for nesting or stacking, e.g. shopping trolleys
    • B62B3/1408Display devices mounted on it, e.g. advertisement displays
    • B62B3/1424Electronic display devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • H02J1/14Balancing the load in a network
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0042Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by the mechanical construction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/92Energy efficient charging or discharging systems for batteries, ultracapacitors, supercapacitors or double-layer capacitors specially adapted for vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Definitions

  • the present invention relates to mobile devices with electronic devices, and more particularly to mobile devices with rechargeable electronic devices and methods of charging the same. Background technique
  • a charging method of a mobile device includes a body, a charging module mounted on the body, and a charging connector mounted on the body, the charging connector and the charging connector
  • the charging device is connected, and the charging method includes: serially charging a plurality of the mobile devices by connecting the plurality of the mobile devices together through the charging connection.
  • the method may further include the mobile device detecting the power supply bus current flowing through the charging module, and controlling the charging current for charging the mobile device according to the detected result to preferentially charge the other mobile devices after the mobile device.
  • the load capacity of a DC power supply is limited, and the number of vehicles that can be charged at the same time is limited.
  • the mobile devices that are subsequently connected are first charged, so that the mobile devices at the tail of the stacked mobile devices (cart or baggage car, etc.) are always Priority charging, suitable for the general situation where the car connected in series at the rear of the car is always the first to be used.
  • this method allows the manager to worry about whether or not the load capacity of the DC power supply can adequately provide the number of vehicles for charging the vehicle.
  • the charging connector includes an insulated housing, a male end at one end of the housing and a female base at the other end, the male and female seats respectively having electrodes, and inside the housing Electrode sheets electrically connected to a pair of the male and female seats, respectively.
  • the male connector of the charging device of the rear mobile device is connected to the female socket of the charging connector of the front mobile device to realize serial connection and charging of the plurality of mobile devices. Therefore, batch charging of a plurality of mobile devices can be realized, and only one external power supply interface is needed, which is economical.
  • the charging module includes a bus current detecting module
  • the method includes: when the bus current detecting module detects that a bus current flowing through a charging module of the mobile device reaches or approaches a load limit of a DC power supply When the current is flowing, the charging current of the charging module of the mobile device is temporarily cut off.
  • the vehicle connected in series at the rear is always charged preferentially, which satisfies as much energy as possible when the tail vehicle is taken by the user, and enables the manager to fully charge the charging vehicle without worrying about the load capacity of the DC power supply.
  • the problem of the number of vehicles in the current limit is detecting module, and the method includes: when the bus current detecting module detects that a bus current flowing through a charging module of the mobile device reaches or approaches a load limit of a DC power supply When the current is flowing, the charging current of the charging module of the mobile device is temporarily cut off.
  • the vehicle connected in series at the rear is always charged preferentially, which satisfies as much energy as possible when the tail vehicle is
  • a mobile device includes a body, a charging module mounted on the body, and a charging connector mounted on the body and connected to the charging module, wherein the charging connector includes one end a female base of the head and the other end, and two electrodes connected to each other inside the charging connector, when the mobile device is stacked back and forth, the charging connector of the rear mobile device
  • the male connector is connected to the female socket of the front mobile device's charging dock, thereby charging a plurality of mobile devices in series.
  • FIG. 1 is a schematic diagram of a batch charging scheme of a trolley according to an embodiment of the present invention
  • FIG. 2 is a schematic view of a cart with an electronic device according to an embodiment of the present invention.
  • FIG. 3 is a schematic view of a charging connector according to an embodiment of the present invention.
  • FIG 4 is a schematic view showing the internal structure of the charging connector shown in Figure 3;
  • Figure 5 shows a schematic diagram of the charging connectors shown in Figure 3 connected in series and connected to an external charging power supply;
  • FIG. 6 is a schematic diagram of an AC/DC converting apparatus used in a batch charging scheme according to an embodiment of the present invention
  • Figure 7 is a schematic view of the female base of the AC/DC converter shown in Figure 6;
  • FIG. 8 is a schematic diagram of stacking of carts in a batch charging scheme according to an embodiment of the present invention. detailed description
  • each of the blocks 101, 102, 103, ... represents a charging module of a trolley, respectively.
  • Each charging module includes a respective bus current detecting module 1011, 1021, 1031, ..., a controllable DC step-down module 1012, 1022, 1032, ..., a battery charging management circuit 1013, 1023, 1033, ..., and rechargeable batteries 1014, 1024, 1034, ....
  • Each module can have the same structure.
  • the rechargeable battery can be a lithium battery.
  • the charging module 101 includes a bus current detecting module 1011 that can be implemented in a conventional manner.
  • a Hall current detecting sensor and an MCU (microcontroller chip unit) with an A/D input and its peripheral circuits are used to form a current detecting module.
  • Connect the two pins (IP+, IP-) of the Hall current detecting sensor for connecting the external current path to be tested to the male and female terminals of the same metal electrode (positive or negative) of the vehicle charging power bus. At this time, an open circuit must be maintained between the male and female terminals of the metal electrode to which the Hall current detecting sensor is connected.
  • the Hall current detecting sensor outputs an output voltage corresponding to the magnitude of the measured bus current from the isolated output end of the sensor by detecting the power supply bus current flowing through the sensor. This voltage value is input to the A/D input terminal of the MCU. After being converted by the A/D conversion circuit inside the MCU and processed by the conventional processing program, the specific current value flowing through the power supply bus for charging of the vehicle can be obtained.
  • the detected current value flowing through the power bus of the module is the total charge current value of the hand truck connected in series behind it.
  • the MCU When the detected current value is very close to the limit current of the power supply, if the charging module of the vehicle is supplied at this time, the power overload protection may be caused, so that all the vehicles cannot be charged. Therefore, the MCU will output a control signal to the I/O port connected to the controllable DC buck module enable (EN) control input to turn off the DC buck module and stop it, thus cutting off the present.
  • EN controllable DC buck module enable
  • the MCU obtains the current value of the power supply bus flowing through the vehicle for less than the predetermined value, that is, the number of rear carts (correspondingly, the total charging current) has not reached the preset threshold (may be the total output current threshold of the charging power source) Go to the rated charging current of the vehicle, so that the MCU will pass the I connected to the controllable step-down DC module enable (EN) control input when the charging power supply is not overloaded due to the superposition of the charging current of the vehicle.
  • the /O port outputs a control signal to start the DC buck module, allowing it to operate in the buck conversion mode, providing +5V power to the charge management portion of the vehicle, and the car begins to charge.
  • Hall current sensing components can be used with ALLEGRO related products, the specific model depends on the maximum current value that can be provided by the DC power supply for charging.
  • the maximum supply current is At 40A
  • the ACS758LCB-050B-PFF-T in the company's ACS758XCB series can be selected, and its detection current range is plus or minus 50A.
  • the MCU can be used with RENESAS's RL78 series of chips with A/D inputs.
  • the current detection module can also be composed of a high-precision voltage comparator and its peripheral circuits. Since there are two power supply metal electrodes (positive and negative) for power supply during batch charging after stacking the vehicle at the bottom of the vehicle, each metal electrode has a male and a female, and the male and female of the same metal electrode There is a certain distance between the seats, and a certain internal resistance is formed between the male and the female of the same electrode. When a large current flows through the electrode, there is a certain voltage between the male and the female of the same electrode. Poor, by comparing the magnitude of the voltage difference between the male and female of the same electrode, the magnitude of the bus current flowing through the electrode can be indirectly determined. The internal resistance of the electrode is limited.
  • the same electrode of the same vehicle produces a voltage difference between the ends of the electrode (between the male and the female) even when a large current is passed.
  • Low so consider using a high precision voltage comparator. Connect the two ends of the same electrode (male and female) through the peripheral circuit to the two inputs of the comparator, and use the signal output from the comparator output to control the enable (EN) input of the controllable step-down DC conversion. In this way, it is also possible to achieve the purpose of controlling whether the charging part of the vehicle is powered by the bus current detection.
  • the male connector of the charging connector of the first vehicle is first connected to the matching base of the AC/DC converter (for example, 1500 W, 2000 W or 3000 W), and is connected to the power supply through the female base.
  • the matching base of the AC/DC converter for example, 1500 W, 2000 W or 3000 W
  • the input of the controllable DC buck module 1012 is connected to an electrode of the bulk charging power supply bus near the male.
  • the rechargeable battery 1013 is connected between the voltage output of the controllable DC step-down module 1012 and the other battery of the bulk charging power supply bus.
  • the controllable DC step-down module 1012 can be configured with a DC step-down conversion chip with an enable (EN) control terminal capable of operating over a wide input voltage range and capable of providing a large load current, and a peripheral circuit thereof. It is composed of a DC buck controller with a wide input voltage range and a large load current with an enable (EN) control terminal and its peripheral circuits.
  • the specific operating voltage range of the step-down converter chip and the buck converter controller of the DC step-down module is determined according to the output voltage of the DC power supply that is actually selected at the power supply front end.
  • the optional DC power supply can be used.
  • Output voltage specifications are: DC7.5V, DC12V, DC24V, DC27.5V, when the maximum continuous load current when charging a single car is about 4.2A/5V, DC conversion chip working in the input voltage range of DC5.5V ⁇ DC36V can be selected, and the continuous output load current can reach at least 5A, the output voltage is adjustable within a certain range.
  • the step-down conversion chip can be, for example, TPS5450 from TI, RT8279 from RICHTEK, and the like.
  • the charging management circuit can adopt an existing lithium battery charging management integrated circuit with charging process control, such as the HB6293 A series chip of Shenzhen Huatai Electronics, which integrates all charging process management and control required for charging lithium batteries, including : Management and control of charging processes such as pre-charging, constant current, and constant voltage.
  • the circuit of the charging device of each trolley is connected in parallel between the two electrodes of the power supply bus.
  • Figure 2 shows an example of a trolley in which the charging dock is mounted on the bottom of the cart.
  • Figure 3 shows an example of a charging dock in the cart.
  • the charging connector 30 includes an insulated housing 35, two male heads 31, 31' and two female seats 32, 32,.
  • the male head 31 has an electrode 33, a male head 31, and an electrode 33 thereon.
  • the female seats 32, 32' have openings corresponding to the male heads 31, 3 to accommodate the male head.
  • the housing 35 is formed with an electrical connection for the charging module to the interface 351, 35 in the charging connector 30.
  • FIG. 4 shows a schematic view of the internal structure of the charging connector 30.
  • the housing 35 of the charging dock 30 contains two mutually insulated copper plated electrode tabs 34, 34'.
  • One end of the copper plated electrode piece 34 is electrically connected to the electrode 33, and the other end is electrically connected to the reed electrode 321 for the three-way contact on the female seat 32; the copper plated electrode piece 34'-end is electrically connected to the electrode 33', and the other end is connected
  • the reed electrodes 321 for the three-way contact on the female seat 32' are electrically connected.
  • the reed electrodes 321, 321 each include a bottom end electrically connected to the copper plated electrode piece, and an elastic reed extending from the middle and both sides of the bottom end, respectively.
  • the three spring reeds of the reed electrode 321 are adapted to the electrodes 33 on the male head 31 so that when the male plug on the charging module of the other cart is inserted into the female seat, the three reed electrodes are clamped into the inserted
  • the electrodes on the males form an electrical connection.
  • the electrodes of the two male heads 31, 31' are insulated from each other, and the electrodes of the two female seats 32, 32' are insulated from each other.
  • connection holes 341, 341 for accessing the conductive lines of the charging module 101 and the like are provided on the copper plating electrodes 34, 34.
  • the connection screw holes 341, 341 are in communication with the interfaces 351, 351 on the housing 35 for the conductive lines to be connected.
  • the interior of the charging connector 30 is formed integrally with the housing 35. This makes the entire charging dock more robust.
  • Figure 5 shows a schematic view of the charging docks of the carts connected in series and connected to the power supply end when multiple carts are stacked in series.
  • the power supply terminal of the power supply is connected to the charging connector 30 of the first trolley through a conventional AC/DC converter 50 (e.g., 1500W, 2000W or 3000W).
  • Fig. 6 is a view showing the external structure of the AC/DC converter 50.
  • (a) is the case with the outer casing 500, and (b) is the case after the outer casing 500 is removed.
  • the device 50 further includes a base 501, an AC-DC conversion module 504, a switch 502, an indicator light 503, and the like.
  • the AC-DC converter module can be used with existing commercial products, such as the SP-320 series from Taiwan Mingwei Company.
  • the maximum output power is 320W.
  • the DC output voltage specifications can be DC7.5V, DC12V, DC24V, DC27V. To avoid confusion with the essential parts of the invention, no further details are provided.
  • the female seat 501 can adopt the same structure as the female seat of the charging connector 30, as shown in FIG. It has openings 5011, 501 corresponding to the male shape of the charging connector to accommodate the male.
  • a reed electrode 521, 52 is disposed in each of the two openings 5011, 5011', and has the same structure as the reed electrode 321 in the socket of the charging connector 30.
  • the reed electrodes 521, 521' are connected to the DC output terminals of the AC/DC converter 50 via mutually insulated copper plated electrode pieces 54, 54'.
  • each trolley When several trolleys are stacked and charged together as shown in Figure 8, the principle of the single vehicle is the same.
  • the bus current detection module of each trolley will be connected to the power bus at the bottom of the vehicle. Current is detected.
  • the electrode (charging socket) in the charging device is mounted on the bottom of the vehicle, that is, the power supply bus is disposed at the bottom of the vehicle.
  • the bus current detection module controls the operating state of its own DC voltage reduction conversion module based on the detection result of the power supply bus current.
  • the index of "load limit current” is employed. This indicator refers to the maximum load current value that can be provided at the output of the DC power supply.
  • the DC power supply can normally supply the load.
  • the power supply will start overload protection. At this time, the power supply will turn off the output, and the load will be unpowered, so it cannot be charged.
  • the current of the power bus detected by the charging module closest to the DC power supply is the largest.
  • the bus current detecting module detects that the power supply bus current flowing through the bottom of the vehicle has reached or is very close to the load limit current of the front-end 32V DC power supply, the buck DC conversion chip of the own vehicle is turned off, and the charging current of the vehicle is temporarily cut off. In order to ensure that the power supply can provide sufficient charging current for the vehicle after the vehicle.
  • the charging process of the battery is automatically managed and controlled by the charging management chip according to preset parameters. Different charging management chip preset values may differ. For example, when the battery voltage is lower than 3V, the charging management chip will work in the pre-charging state. By changing the parameters of the peripheral circuit of the charging management chip, the charging current is controlled to be about 20% of the constant current charging current. When the battery voltage is charged above 3V, the charge management chip will automatically switch to the constant current charging process. During the constant current charging process, the charging current remains constant, and the magnitude of the charging current can be preset by setting the relevant parameters of the peripheral circuit of the charging management chip.
  • the charge management chip When the battery voltage is charged to the preset full-charge voltage (the general lithium battery is set to 4.2V), the charge management chip will automatically switch to the constant voltage charging process. During the constant voltage charging process, the charging voltage is constant and the charging current will follow. The charging progress gradually decreases. When the constant voltage charging current drops to about 10% of the constant current charging current, the charging management chip will go into a stopped state, and the charging process is completed.
  • the preset full-charge voltage the general lithium battery is set to 4.2V
  • the current detecting module of the vehicle When the current detecting module of the vehicle detects that the charging power bus current (that is, the total current of the vehicle charging after the vehicle) located in the vehicle has reached or is very close to the load limit of the power source, the current detecting module of the vehicle outputs corresponding Level to turn off the vehicle's step-down DC module, temporarily cut off the vehicle's charging current to ensure that the vehicle behind the vehicle has enough charging current. If here
  • the step-down DC conversion chip is used to supply power to the charging management circuit of the vehicle, that is, charging the vehicle, which will cause the charging current of the vehicle to be superimposed with the charging current of the vehicle behind, so that the bus current exceeds the DC power source.
  • the load limit which causes DC power supply overload protection and turns off the power output, will not be able to complete charging for all connected charging vehicles.
  • the bus current flowing through the vehicle will gradually drop. Since the charging current of all the following vehicles flows through the charging bus metal electrode of the preceding vehicle, the change of the charging current of the following vehicle can be detected by the bus current detecting module of the preceding vehicle. In the constant current charging phase, the current flowing through the power supply bus for the preceding vehicle is not changed. When a trolley is charged at a constant voltage, the charging current will gradually decrease as the charging progresses, and the current change will be located. The vehicle current detection module in front of it is detected.
  • the bus current detecting module of the vehicle detects that the power supply bus current flowing through the vehicle (not the charging current of the vehicle) drops to a current that can charge the vehicle
  • the bus current detecting module outputs a corresponding level to control the vehicle.
  • the step-down DC conversion module operates in the step-down DC conversion state, and supplies +5V power to the charging management circuit of the vehicle (for example, referenced by numerals 1013, 1023, and 1033 in FIG. 1), and the battery is charged by the charging management circuit. Process control.
  • the charging management circuit 1013, 1023, 1033 in Fig. 1 can be disposed inside the electronic device of the armrest portion of the vehicle to control the supply of the rechargeable battery of the vehicle.
  • the output of the AC/DC converter 50 can be directly 5V-6V, and the lithium battery can be directly charged.
  • the step-down DC of the respective vehicle with EN is not required. And replace it with a controllable electronic switch.

Abstract

本发明公开了手推车或行李车等移动设备的充电装置与充电方法,移动设备包括充电模块和与充电模块连接的充电连接座,该充电连接座包括一端的公头和另一端的母座,以及内部连接的两个电极。当手推车等移动设备的车架前后相叠时,后方的移动设备的充电连接座的公头连接到前方移动设备的充电连接座的母座上,从而将多个移动设备串接起来充电。本发明的充电方法包括:将多个所述移动设备通过充电连接座串接在一起,实现多个移动设备的批量充电。本发明可以使具有充电装置的移动设备实现批量充电,简化了现有的充电过程,从而提高了设备的使用率,并提高了设备的使用安全度,降低了维护成本。

Description

移动设备及其充电方法 技术领域
本发明涉及带有电子装置的移动设备, 特别涉及带有可充电的电子装置 的移动设备及其充电方法。 背景技术
随着商业和公共服务业的持续发展, 在商城、 超市、 机场等公共场所, 便携式手推车及行李车等移动设备得到了广泛的应用, 方便了使用者对行李 及物品的搬运。 为了使使用者在使用过程中能方便、 及时地获取到更多的消 费或相关信息, 在现有的手推车及行李车上会安装电子播放设备以便于使用 者的信息获取和商家进行位置信息、 导航信息、 广告信息及其它相关信息的 播放。 但是, 由于目前的车辆充电有赖于固定的外接电源接头, 因此可充电 车辆的数量受到外接电源接头的限制, 在有成百上千辆手推车的大型公共场 所, 难以对众多的车辆同时进行充电。 因此, 在使用上存在较多的不便。
此外, 在车体上存在外露的电源接口也影响手推车及行李车的安全使 用, 使操作过程繁琐和不便于使用。
再有,现有的充电方式需要外接固定的电源接头,接头的数量也很庞大, 管理不便, 经济性不佳。 发明内容
因此, 本发明的目的之一是提供一种可充电的移动设备以及移动设备的 充电方法, 以解决现有技术的上述问题中的至少之一。
根据本发明的一方面, 提供了一种移动设备的充电方法, 所述移动设备 包括本体、 安装于本体上的充电模块、 以及在本体上安装的充电连接座, 所 述充电连接座与所述充电装置连接, 所述充电方法包括: 将多个所述移动设 备通过所述充电连接座串接在一起, 实现多个所述移动设备的批量充电。 由 此, 不需要大量的外接固定电源接口, 节省了大量的空间, 同时降低了设备 的成本。
上述方法还可包括, 所述移动设备对流过其充电模块的供电总线电流进 行检测, 才艮据检测的结果控制对本移动设备充电的充电电流, 以优先为本移 动设备之后的其它移动设备充电。
通常, 直流供电电源的负载能力有限, 能同时被充电的车辆数就有限。 根据上述方式, 在多个串接的移动设备共同充电的情况下, 先使后接入的移 动设备充电, 从而使串接叠放的移动设备 (手推车或行李车等) 尾部的移动 设备总是优先充电, 适用于串接在叠车尾部的车总是被最先取用的普遍情 况。 而且, 该方法可使管理人员无需顾虑直流供电电源的负载能力能否充分 为充电车辆提供充电电流的车辆数量限制问题。
在一些实施方式中, 所述充电连接座包括绝缘的壳体, 在壳体一端的公 头和另一端的母座, 所述公头和母座分别具有电极, 以及在所述壳体内部的 分别与一对所述公头和母座电连接的电极片。
当多个移动设备主体相叠时, 后方的移动设备的充电连接座的公头连接 到前方移动设备的充电连接座的母座上, 实现多个所述移动设备的串接和充 电。 由此可以实现多个移动设备的批量充电, 而只需要一个外部供电电源接 口即可, 具有较好的经济性。
在一些实施方式中, 所述充电模块包括总线电流检测模块, 所述方法包 括: 当所述总线电流检测模块检测到流经本移动设备的充电模块的总线电流 达到或接近直流供电电源的负载极限电流时, 暂时切断本移动设备的充电模 块的充电电流。 由此, 串接在尾部的车总是优先充电, 满足尾部车辆被用户 取用时, 有尽可能充足的能量, 并且能够使管理人员无需顾虑直流供电电源 的负载能力能否充分为充电车辆提供充电电流的车辆数量限制问题。
根据本发明的另一方面, 提供了一种移动设备, 包括本体、 安装于本体 上的充电模块、 以及在本体上安装的与充电模块连接的充电连接座, 其中, 充电连接座包括一端的公头和另一端的母座, 以及在充电连接座内部的相互 连接的两个电极, 当移动设备前后相叠时, 后方的移动设备的充电连接座的 公头连接到前方移动设备的充电连接座的母座上, 从而将多个移动设备串接 起来充电。
在多个串接上述移动设备共同充电的情况下, 能够方便地在将手推车紧 凑地在前后方向上叠放的同时实现批量充电, 而且通过推车批量充电中的后 进先出方式的安排, 总是优先充电从后方叠放进入的移动设备 (手推车或行 李车等), 从而更便于公共场所中大批量移动设备的充电和使用。 附图说明
下面结合附图对本发明的一些实施方式进行说明。 其中:
图 1为本发明一实施方式的手推车批量充电方案的示意图;
图 2为本发明一实施方式的具有电子装置的手推车的示意图;
图 3为本发明一实施方式的充电连接座的示意图;
图 4为图 3所示充电连接座内部结构的示意图;
图 5显示了图 3所示充电连接座串接在一起并与外部充电供电电源连接 的示意图;
图 6为本发明一实施方式的批量充电方案中使用的交直流变换装置的示 意图;
图 7是图 6所示的交直流变换装置的母座的示意图;
图 8为本发明一实施方式的批量充电方案中手推车叠放示意图。 具体实施方式
为便于说明和理解, 以下实施方式的说明中以手推车作为移动设备的实 例。 本领域技术人员可以理解, 本发明的实施方式可以适用于任何类似于手 推车之类的移动设备。
图 1为本发明一实施方式的移动设备(手推车)批量充电方案的示意图。 如图 1所示, 其中的各个框 101, 102 , 103 , …分别表示一辆手推车的充电 模块。 每个充电模块包括各自的总线电流检测模块 1011 , 1021 , 1031 , …、 可控的 DC降压模块 1012 , 1022 , 1032 , …、 电池充电管理电路 1013 , 1023 , 1033 , ...、 以及充电电池 1014 , 1024 , 1034 , …。 各模块可具有相同的结构。 充电电池可以采用锂电池。
例如, 充电模块 101 包括总线电流检测模块 1011 ,该电流检测模块 1011 可以采用常规的方式实现。 例如, 采用霍尔电流检测传感器以及带有 A/D输 入端的 MCU (微控制器芯片单元) 及其外围电路组成电流检测模块。 将霍 尔电流检测传感器的两个用于连接外部待测电流通路的管脚 (IP+、 IP-) 串 接在本车充电用供电总线的同一金属电极(正极或负极)的公头和母座之间, 此时连接霍尔电流检测传感器的金属电极的公头和母座之间必须保持断路。 霍尔电流检测传感器通过对流过本传感器的供电总线电流的检测, 从传感器 的隔离输出端输出与被测总线电流大小有对应关系的输出电压。 此电压值输 入 MCU的 A/D输入端, 经 MCU内部的 A/D转换电路转换并经过常规的处 理程序处理之后, 即可得到流经本车充电用供电总线的具体电流值。
所检测到的流过本模块的供电总线的电流值就是在其后方串接的手推 车的总充电供电电流值。
当检测到的电流值已经非常接近电源的极限电流时, 如果此时对本车的 充电模块供电, 可能会导致电源过载保护, 致使所有的车辆都不能充电。 所 以, MCU此时将通过与可控的 DC降压模块使能 (EN) 控制输入端连接的 I/O 端口输出一个控制信号去关闭 DC 降压模块, 使其停止工作, 这样就切 断了本车的充电部分的供电, 保证了位于本车之后的车辆的充电供电。
当 MCU得到的流经本车充电用供电总线电流值低于预定值, 即后方手 推车的数量 (相应地, 总充电电流大小) 尚未达到预设的门限 (可以是充电 电源总的输出电流门限减去本车的额定充电电流), 从而不会因为本车的充 电电流的叠加而导致充电电源的过载保护时, MCU 将通过与可控降压 DC 模块使能 (EN) 控制输入端连接的 I/O端口输出一个控制信号去启动 DC降 压模块, 使其工作在降压转换模式, 为本车的充电管理部分提供 +5V供电, 本车开始充电。
霍尔电流检测元件可以采用 ALLEGRO公司的相关产品, 具体型号需根 据充电用直流供电电源能够提供的最大电流值而定。 例如最大供电电流为 40A时, 可以选择该公司 ACS758XCB系列中的 ACS758LCB-050B-PFF-T , 其检测电流值范围为正负 50A。 MCU可选用 RENESAS的 RL78系列带 A/D 输入口的芯片。
另外, 电流检测模块也可以采用高精度电压比较器及其外围电路组成。 由于位于车辆的底部有用于车辆叠放后批量充电时供电用的两个供电用金 属电极 (正、 负极), 每一个金属电极都有公头和母座, 同一个金属电极的 公头与母座之间有一定的距离, 同一个电极的公头与母座之间形成一定的内 阻, 当较大电流流经电极时, 在同一个电极的公头与母座之间存在一定的电 压差, 通过检测比较同一个电极公头与母座之间电压差的大小也可以间接判 断流过电极的总线电流的大小。 电极的内阻是有限的, 对于供电总线来说, 同一辆车的同一个电极即使在较大电流通过的情况下, 在电极两端 (公头与 母座之间) 产生的电压差也非常低, 所以要考虑用高精度的电压比较器。 将 同一个电极的两端 (公头与母座) 分别通过外围电路连接比较器的两个输入 端, 用比较器输出端输出的信号去控制可控降压 DC转换的使能 (EN) 输入 端, 这样也可以达到通过总线电流检测去控制本车充电部分是否供电的目 的。
在本实施例中, 第一辆车的充电连接座的公头首先接入交直流变换装置 匹配的母座(例如 1500W、 2000W或 3000W) , 通过母座再与供电电源连接。
可控的 DC降压模块 1012的输入端与批量充电的供电总线靠近公头的一 个电极连接。 充电电池 1013连接在可控的 DC降压模块 1012的电压输出端 与批量充电的供电总线靠近母座的另一个电极之间。 可控的 DC 降压模块 1012可以采用能够工作在较宽的输入电压范围、能够提供较大负载电流的带 使能 (EN) 控制端的 DC降压转换芯片及其外围电路组成, 也可以采用能够 工作在较宽的输入电压范围、 能够提供较大负载电流的带使能 (EN) 控制端 的 DC降压控制器及其外围电路组成。
DC 降压模块部分的降压转换芯片及降压转换控制器的具体工作电压范 围的选择要根据实际选用的位于供电前端的直流供电电源的输出电压而定, 例如,可选用的直流供电电源的输出电压规格有: DC7.5V, DC12V、 DC24V、 DC27.5V , 当单辆车充电时的最大连续负载电流约为 4.2A/5V时, 可以选用 工作在输入电压范围为 DC5.5V~DC36V的 DC转换芯片,其连续输出的负载 电流至少可以达到 5A , 输出电压在一定范围内可调。 降压转换芯片可以采 用例如 TI公司的 TPS5450、 RICHTEK公司的 RT8279等。
充电管理电路可以采用现有的具备充电过程控制的锂电池充电管理集 成电路如深圳华太电子的 HB6293 A等系列芯片, 此类芯片集成了锂电池充电 所需的所有充电过程管理和控制, 包括: 预充、 恒流、 恒压等充电过程的管 理和控制。
由图 1所示的方案可以看出, 本发明的批量充电方案中, 各手推车的充 电装置构成的电路是并联在供电总线的两个电极之间的。
图 2显示了一个手推车的例子, 其中充电连接座安装于手推车底部。 图 3显示了在该手推车中的充电连接座的例子。
如图 3 所示, 该充电连接座 30 包括绝缘的壳体 35, 两个公头 31, 31' 和两个母座 32 , 32,。 公头 31,上具有电极 33 , 公头 31,上具有电极 33, 。 母 座 32 , 32' 具有与公头 31, 3 相应形状的开口以容纳公头。 壳体 35上形 成有供充电模块的导电线接入充电连接座 30内的接口 351, 35 。
图 4显示的是充电连接座 30 的内部结构示意图。 如图所示, 充电连接 座 30的壳体 35 内包含两个相互绝缘的镀铜电极片 34, 34'。 镀铜电极片 34 一端与电极 33 电连接, 另一端与母座 32上的用于三方接触的簧片电极 321 电连接; 镀铜电极片 34'—端与电极 33'电连接, 另一端与母座 32'上的用于 三方接触的簧片电极 321,电连接。 簧片电极 321, 321,每一个包括与镀铜电 极片电连接的底端, 以及从底端中部和两侧分别伸出的弹性簧片。 簧片电极 321 的三个弹性簧片与公头 31上的电极 33相适配, 以便当另一辆手推车的 充电模块上的公头插入母座中时, 三个簧片电极夹住插入的公头上的电极并 形成电连接。 两个公头 31, 31 '的电极之间互相绝缘, 两个母座 32, 32'的电 极之间互相绝缘。 在镀铜电极 34 , 34,上还设置有供充电模块 101等的导电线路接入的连 接螺孔 341, 341,。 连接螺孔 341, 341,与壳体 35上的接口 351, 351,相通以 供导电线路接入。
优选充电连接座 30的内部与壳体 35形成为一体。 这样使得整个充电连 接座更加坚固。
本领域技术人员可以理解, 虽然推车之间是通过充电连接座串在一起形 成了电连接, 使供电总线串接在一起, 但车与车之间的各充电模块在串接的 充电供电总线中却是并联的 (如图 1 所示), 每一辆车的充电供电总线部分 就是这辆车充电模块供电接入的连接节点。 若干车辆串在一起, 就相当于有 若干个单独的充电部分挂在供电总线上, 它们之间是并联关系。
图 5显示了当多个手推车串接叠放在一起时, 各手推车的充电连接座串 接在一起并连接至供电端的示意图。 在该图中, 供电电源的供电端通过常规 交直流变换装置 50 (例如 1500W、 2000W或 3000W) 与第一辆手推车的充 电连接座 30连接。
图 6显示了该交直流变换装置 50外部结构的示意图。 (a) 为带外壳 500的 情况, (b) 为去掉外壳 500后的情况。 如图所示, 该装置 50还包括母座 501, 交流-直流转换模块 504, 开关 502, 指示灯 503等。 交流-直流转换模块可以采 用已有的市售产品,例如台湾明纬公司的 SP- 320系列,最大输出功率为 320W , 选用的直流输出电压规格可以为 DC7.5V、 DC12V、 DC24V、 DC27V。 为避 免与本发明的实质部分混淆, 因此不再赘述。
母座 501可以采用与充电连接座 30的母座相同的结构, 如图 7所示。 其具 有与充电连接座的公头相应形状的开口 5011 , 501 以容纳公头。 两个开口 5011 , 5011 ' 中分别设置一个簧片电极 521 , 52 ,与充电连接座 30的母座中 的簧片电极 321结构相同。 簧片电极 521 , 521 ' 分别通过相互绝缘的镀铜电 极片 54 , 54' 连接至交直流变换装置 50的直流输出端。
下面说明才艮据本发明一个实施方式的批量充电的方法。
当若干辆手推车如图 8所示叠放在一起充电的时候 (单辆车原理也一 样), 每一辆手推车的总线电流检测模块都会对位于本车底部的供电总线的 电流进行检测。 如图 8所示, 充电装置中的电极 (充电连接座) 安装在车辆 底部, 即供电总线设置在车辆底部。
总线电流检测模块根据对供电总线电流的检测结果去控制自身的 DC降 压转换模块的工作状态。 在本实施例中, 采用"负载极限电流 "的指标。 该指 标指的是直流供电电源的输出端可以提供的最大负载电流值, 当实际负载电 流低于或等于该电源负载极限电流时直流电源可以正常为负载供电, 当实际 负载电流超过电源能够提供的最大负载电流值时, 电源将启动过载保护, 此 时电源关闭输出, 负载无供电, 也就不能充电。 按图 1所示的方案, 在与直 流供电电源最近的充电模块检测到的供电总线的电流最大。 当总线电流检测 模块检测到流过自身车辆底部的供电总线电流已经达到或非常接近前端 32V 直流供电电源的负载极限电流时, 则关闭自身车辆的降压 DC转换芯片, 暂时 切断自身的充电电流, 以保证电源能为本车之后的车辆提供足够的充电电 流。
对电池的充电过程是由充电管理芯片根据预设的参数自动完成管理和 控制的。 不同的充电管理芯片预设值可能存在差异。 例如, 一般在电池电压 低于 3V时充电管理芯片会工作在预充电状态,通过改变充电管理芯片外围电 路的参数, 控制充电电流约为恒流充电电流的 20%左右。 当电池电压充到高 于 3V时, 充电管理芯片将自动转入恒流充电过程。 在恒流充电过程中, 充电 电流保持恒定不变, 充电电流的大小可以通过设置充电管理芯片外围电路的 相关参数而预先设定。
当电池电压充到预设的满电量电压时 (一般锂电池设为 4.2V) , 充电管 理芯片将自动转入恒压充电过程, 在恒压充电过程中, 充电电压恒定, 充电 电流会随着充电的进行逐渐下降, 当恒压充电电流下降到恒流充电电流的 10%左右时, 充电管理芯片将转入停止状态, 充电过程完成。
当本车电流检测模块检测到位于本车的充电用供电总线电流 (也就是位 于本车之后的车辆充电的总电流) 已经达到或非常接近电源的负载极限时, 本车电流检测模块将输出相应电平去关断本车的降压 DC模块,暂时切断本车 的充电电流, 以保证位于本车之后的车辆有足够的充电用供电电流。 若在此 时启动本车的充电供电用降压 DC转换芯片为本车的充电管理电路供电,也就 是对本车进行充电, 将导致本车的充电电流与后面车辆的充电电流叠加, 使 总线电流超过直流电源的负载极限, 导致直流电源过载保护而关闭电源输 出, 则所有连接充电的车辆都将无法完成充电。
当位于本车之后的车辆充电进入到恒压充电过程之后, 流过本车的总线 电流将陆续下降。 因为后面所有车辆的充电电流都是流过前面车辆的充电用 供电总线金属电极的, 所以后面车辆的充电电流的变化就可以被前面车辆的 总线电流检测模块检测出来。 在恒流充电阶段流过前面车辆充电用供电总线 的电流是没有变化的, 而在某辆手推车恒压充电时, 充电电流会随着充电的 进行而逐渐减小, 这个电流的变化将被位于其前面的车辆电流检测模块检测 出来。
当本车总线电流检测模块检测到流过本车的供电总线电流 (不是本车的 充电电流) 下降到可以给本车充电的电流时, 本车总线电流检测模块输出相 应电平去控制本车的降压 DC转换模块工作在降压 DC转换状态, 为本车的充 电管理电路 (例如图 1中的标号 1013、 1023 , 1033所指) 提供 +5V供电, 由充 电管理电路完成对电池的充电过程控制。 图 1中的充电管理电路 1013、 1023 , 1033可以设置于本车扶手部分的电子设备内部, 控制对本车充电电池供电。
以上公开的仅为本发明的几个具体实施例。 本发明并非局限于此, 本领 域的技术人员根据其所能得到的技术手段对本发明的公开内容所做出的等 同变化都应落入本发明的保护范围。
例如, 在另一些实施方式中, 也可以使交直流变换装置 50的输出直接是 5V-6V的, 可以直接给锂电池充电, 此时各自车辆的带使能 EN的降压 DC也不 需要了, 而替换为可控电子开关即可。

Claims

权利要求书
1、 移动设备的充电方法, 所述移动设备包括本体、 安装于本体上的充 电模块、 以及在本体上安装的充电连接座, 所述充电连接座与所述充电装置 连接, 所述方法包括:
将多个所述移动设备通过所述充电连接座串接在一起, 实现多个所述移 动设备的批量充电。
2、 如权利要求 1 所述的移动设备的充电方法, 还包括, 所述移动设备 对流过其充电模块的供电总线电流进行检测, 才艮据检测的结果对本移动设备 的充电电流进行控制, 以优先为该移动设备之后的其它移动设备充电。
3、 如权利要求 1 或 2所述的移动设备的充电方法, 其中, 所述充电连 接座包括一端的公头和另一端的母座, 以及在所述充电连接座内部的两个电 极, 当多个所述移动设备主体相叠时, 后方的移动设备的充电连接座的公头 连接到前方移动设备的充电连接座的母座上, 实现多个所述移动设备的串接 和充电。
4、 如权利要求 2 所述的移动设备的充电方法, 其中, 所述充电模块包 括总线电流检测模块, 所述方法包括: 当所述总线电流检测模块检测到流经 本移动设备的充电模块的总线电流达到或接近直流供电电源的负载极限电 流时, 切断本移动设备的充电模块的充电电流。
5、如权利要求 1-4任一项所述的移动设备的充电方法, 其中, 流过所述 充电模块自身的供电总线电流是串接在所述移动设备之后的所有移动设备 的充电电路供电总线电流。
6、 如权利要求 4 所述的移动设备的充电方法, 其中, 所述总线电流检 测模块通过霍尔电流传感器检测所述总线电流; 或 所述总线电流检测模块通过检测比较同一个电极公头与母座之间电压 差, 来判断流过电极的总线电流的大小。
7、 移动设备, 包括本体、 安装于本体上的充电模块、 以及在本体上安 装的与所述充电模块连接的充电连接座, 所述充电连接座能够与其它所述移 动设备的充电连接座连接, 其中, 所述充电模块包括:
总线电流检测模块, 用于检测流过所述充电模块的供电总线电流, 才艮据 检测的结果对本移动设备的充电电流进行控制。
8、 如权利要求 7所述的移动设备, 其中所述充电连接座包括: 绝缘的壳体,
在壳体一端的公头和另一端的母座, 所述公头和母座分别具有电极, 以 及
在所述壳体内部的分别与一对所述公头和母座电连接的电极片, 当所述移动设备前后相叠时, 后方的移动设备的充电连接座的公头连接 到前方移动设备的充电连接座的母座上, 从而将多个所述移动设备串接起来 充电。
9、如权利要求 8所述的移动设备,其中,每个所述母座包括簧片电极, 簧 片电极包括与所述电极片电连接的底端, 和从所述底端中部和两侧分别伸出 的弹性簧片, 所述弹性簧片与所述公头的电极相适配, 以便当所述母座被另 一充电连接座的公头插入时, 所述簧片电极夹住插入的公头上的电极并形成 电连接。
10、如权利要求 7-9任一项所述的移动设备, 其中所述充电模块还包括: 可控的 DC降压模块, 接收所述总线电流检测模块的控制信号, 根据所 述控制信号为充电电池提供充电电流。
11、 如权利要求 10 所述的移动设备, 其中所述充电模块还包括: 电池 充电管理电路, 管理充电电池的供电。
PCT/CN2014/070076 2013-01-10 2014-01-03 移动设备及其充电方法 WO2014108046A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020157021593A KR101727517B1 (ko) 2013-01-10 2014-01-03 이동 가능한 장치 및 그 충전 방법
JP2015551969A JP6463694B2 (ja) 2013-01-10 2014-01-03 可動装置及びその充電方法
US14/760,329 US9780585B2 (en) 2013-01-10 2014-01-03 Movable device and method of charging the same
EP14711673.5A EP2793350B1 (en) 2013-01-10 2014-01-03 Mobile device and charging method therefor
ES14711673.5T ES2655239T3 (es) 2013-01-10 2014-01-03 Dispositivo móvil y método de carga del mismo

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310009334.0 2013-01-10
CN201310009334.0A CN103580297B (zh) 2013-01-10 2013-01-10 移动设备及其充电方法

Publications (1)

Publication Number Publication Date
WO2014108046A1 true WO2014108046A1 (zh) 2014-07-17

Family

ID=50051475

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/070076 WO2014108046A1 (zh) 2013-01-10 2014-01-03 移动设备及其充电方法

Country Status (8)

Country Link
US (1) US9780585B2 (zh)
EP (1) EP2793350B1 (zh)
JP (2) JP6463694B2 (zh)
KR (1) KR101727517B1 (zh)
CN (1) CN103580297B (zh)
ES (1) ES2655239T3 (zh)
HK (1) HK1190234A1 (zh)
WO (1) WO2014108046A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018503951A (ja) * 2015-01-13 2018-02-08 ▲無▼▲錫▼知谷▲網▼▲絡▼科技有限公司Chigoo Interactive Technology Co., Ltd. 充電コネクタおよびこれを備えたハンドカート
CN110783995A (zh) * 2019-11-21 2020-02-11 广州织点智能科技有限公司 可控式叠加充电系统、方法、装置、设备及存储介质

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103580297B (zh) 2013-01-10 2015-11-18 无锡知谷网络科技有限公司 移动设备及其充电方法
CN203103711U (zh) * 2013-01-10 2013-07-31 无锡知谷网络科技有限公司 电连接器及移动设备
CN105552673A (zh) * 2016-02-05 2016-05-04 无锡知谷网络科技有限公司 连接器,安全控制装置,充电装置和移动设备
CN105720656B (zh) * 2016-04-15 2019-06-11 无锡知谷网络科技有限公司 多个充电装置的充电控制方法、充电控制装置及移动设备
CN109017950A (zh) * 2017-06-09 2018-12-18 江苏弘冠智能科技有限公司 多功能购物车
JP2019129684A (ja) * 2018-01-26 2019-08-01 トヨタ自動車株式会社 電動自立移動体の充電方法
JP7040054B2 (ja) * 2018-01-26 2022-03-23 トヨタ自動車株式会社 電動自立移動体の充電方法
US10384556B1 (en) * 2018-03-12 2019-08-20 Honda Motor Co., Ltd. Multi-vehicle type device having battery packs
JP6522843B1 (ja) * 2018-10-09 2019-05-29 株式会社アイ・ディー・エクス バッテリ充電システムおよびその制御方法
EP3922505A4 (en) * 2019-02-08 2022-08-17 LG Electronics Inc. POWER SUPPLY DEVICE FOR POWERING MULTIPLE CARS, CARS AND METHOD OF CHARGING SAME
US11518263B2 (en) 2019-02-08 2022-12-06 Lg Electronics Inc. Power supply device supplying power to multiple carts, cart, and method for charging cart
JP7286363B2 (ja) 2019-03-22 2023-06-05 東芝テック株式会社 受電システムおよび給電システム
US11465663B2 (en) 2019-05-20 2022-10-11 Lg Electronics Inc. Cart robot having charge function
WO2024021047A1 (en) * 2022-07-29 2024-02-01 Maplebear Inc. Stackable charging device for shopping carts with onboard computing systems

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050225305A1 (en) * 2004-04-09 2005-10-13 Maxwell Technologies, Inc. Capacitor start-up apparatus and method with fail safe short circuit protection
CN101752889A (zh) * 2010-01-13 2010-06-23 钟馨稼 一种电动车快速充电系统
CN102005797A (zh) * 2010-12-08 2011-04-06 夏正奎 锂离子动力电池主动式自管理充电装置
CN201839051U (zh) * 2010-11-05 2011-05-18 深圳奥士达电子有限公司 充电器及充电器组件
CN102437607A (zh) * 2011-12-06 2012-05-02 北京恒泰源丰信息技术有限公司 可链接式充电器

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3652103A (en) * 1970-03-23 1972-03-28 Stuart P Higgs Automatic brake for a shopping cart
JPH05316607A (ja) * 1992-05-11 1993-11-26 Yaskawa Electric Corp 電動台車とその充電方法
JP2928431B2 (ja) * 1993-01-13 1999-08-03 富士通株式会社 補助バッテリ装置および充放電制御方法
ES1044890Y (es) 1999-11-16 2000-11-16 Serrano Martin Blas Gonzalez Carrito autopropulsado aplicable como carro de supermercado y similare.
BR8202970U (pt) 2002-11-08 2004-09-21 Marcelo Machado Coelho Carrinho para aeroporto com exposição de mìdia através de luminosos e sistema autocarregável
US8152062B2 (en) 2005-04-29 2012-04-10 Mercatus Technologies Inc. Portable information terminal mountable on shopping cart and removable memory device usable with same
JP5081780B2 (ja) * 2008-09-30 2012-11-28 本田技研工業株式会社 電動車両用充電制御装置
CN201345471Y (zh) * 2008-11-21 2009-11-11 深圳市好易通科技有限公司 可自由组合的座式充电器
US8269454B2 (en) * 2009-10-09 2012-09-18 Tai-Her Yang Power charging device with charge saturation disconnector through electromagnetic force release
US9878629B2 (en) * 2009-12-17 2018-01-30 Chargepoint, Inc. Method and apparatus for electric vehicle charging station load management in a residence
KR101146773B1 (ko) 2010-03-04 2012-05-21 한국과학기술원 카트 자동 충전 시스템 및 자동 충전 카트
KR101723234B1 (ko) 2010-09-27 2017-04-04 엘지이노텍 주식회사 전원 공급 기능을 가진 쇼핑 카트의 잠금 장치
CN202197136U (zh) * 2011-07-13 2012-04-18 胡逸柯 充电装置
TWM421641U (en) * 2011-08-09 2012-01-21 ming-xiang Ye Back discharging protection sleeve for handset device
CN202159803U (zh) * 2011-08-26 2012-03-07 现代照明电气(惠州)有限公司 一种插座导电片
CN203071613U (zh) * 2013-01-10 2013-07-17 无锡知谷网络科技有限公司 可充电的移动设备
CN103580297B (zh) 2013-01-10 2015-11-18 无锡知谷网络科技有限公司 移动设备及其充电方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050225305A1 (en) * 2004-04-09 2005-10-13 Maxwell Technologies, Inc. Capacitor start-up apparatus and method with fail safe short circuit protection
CN101752889A (zh) * 2010-01-13 2010-06-23 钟馨稼 一种电动车快速充电系统
CN201839051U (zh) * 2010-11-05 2011-05-18 深圳奥士达电子有限公司 充电器及充电器组件
CN102005797A (zh) * 2010-12-08 2011-04-06 夏正奎 锂离子动力电池主动式自管理充电装置
CN102437607A (zh) * 2011-12-06 2012-05-02 北京恒泰源丰信息技术有限公司 可链接式充电器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2793350A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018503951A (ja) * 2015-01-13 2018-02-08 ▲無▼▲錫▼知谷▲網▼▲絡▼科技有限公司Chigoo Interactive Technology Co., Ltd. 充電コネクタおよびこれを備えたハンドカート
CN110783995A (zh) * 2019-11-21 2020-02-11 广州织点智能科技有限公司 可控式叠加充电系统、方法、装置、设备及存储介质

Also Published As

Publication number Publication date
ES2655239T3 (es) 2018-02-19
JP6463694B2 (ja) 2019-02-06
KR20150106434A (ko) 2015-09-21
HK1190234A1 (zh) 2014-06-27
US20150349557A1 (en) 2015-12-03
JP2016510584A (ja) 2016-04-07
CN103580297B (zh) 2015-11-18
KR101727517B1 (ko) 2017-04-17
EP2793350A1 (en) 2014-10-22
JP2019009996A (ja) 2019-01-17
EP2793350B1 (en) 2017-10-18
CN103580297A (zh) 2014-02-12
EP2793350A4 (en) 2015-08-12
US9780585B2 (en) 2017-10-03

Similar Documents

Publication Publication Date Title
WO2014108046A1 (zh) 移动设备及其充电方法
CN107408815B (zh) 电负载管理系统及方法
JP5702859B2 (ja) 電気負荷管理システム及び方法
US20110234165A1 (en) Modular Charging System for Multi-Cell Series-Connected Battery Packs
JP2015100236A (ja) 電子機器及び充電方法
CN205385310U (zh) 电池充电箱
US20190131800A1 (en) Charging Control Method And Charging Control Apparatus For Plurality Of Charging Apparatuses, And Mobile Device
CN203071613U (zh) 可充电的移动设备
CN104553850A (zh) 一种电池管理系统的数据采集单元
CN115441723A (zh) 电源转换装置
TWI414125B (zh) 充電裝置及充電方法
CN201243068Y (zh) 串联蓄电池组在线均衡修复充电器装置
CN102593897A (zh) 一种动力锂电池组填谷式均衡模块
CN104242412B (zh) 一种蓄电池的充电状态检测装置及方法
CN203151187U (zh) 一种智能型便携式多功能移动电源充电器
TW201310858A (zh) 適用於電池裝置之充放電監測管理電路
EP3527421B1 (en) Off-prevention circuit of contactor
CN207719825U (zh) 一种多用途多路主动式电池均衡充电设备
KR20210068208A (ko) 멀티 충전 시스템
CN216649278U (zh) 一种基于集群充电系统的换电柜
CN203218930U (zh) 一种智能移动电源
CN217335109U (zh) 电源转换装置
CN215817563U (zh) 便携式多功能电池架单元及组合式电池架
CN207200349U (zh) 交直流二用泵充电全智能化控制电路
CN201966670U (zh) 充电器

Legal Events

Date Code Title Description
REEP Request for entry into the european phase

Ref document number: 2014711673

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014711673

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14711673

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015551969

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14760329

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20157021593

Country of ref document: KR

Kind code of ref document: A