WO2014108008A1 - 太阳电池芯片及其制作方法 - Google Patents

太阳电池芯片及其制作方法 Download PDF

Info

Publication number
WO2014108008A1
WO2014108008A1 PCT/CN2013/088917 CN2013088917W WO2014108008A1 WO 2014108008 A1 WO2014108008 A1 WO 2014108008A1 CN 2013088917 W CN2013088917 W CN 2013088917W WO 2014108008 A1 WO2014108008 A1 WO 2014108008A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar cell
grid
electrode
metal
transparent conductive
Prior art date
Application number
PCT/CN2013/088917
Other languages
English (en)
French (fr)
Inventor
熊伟平
林志东
蔡文必
林桂江
吴志敏
宋明辉
安晖
Original Assignee
厦门市三安光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 厦门市三安光电科技有限公司 filed Critical 厦门市三安光电科技有限公司
Publication of WO2014108008A1 publication Critical patent/WO2014108008A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/022433Particular geometry of the grid contacts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the invention relates to a high-concentration solar cell chip and a manufacturing method thereof, and belongs to the field of semiconductor optoelectronic devices and technologies.
  • Solar cell power generation is an important part of the future new energy field.
  • the current cost of solar cell power generation is still high.
  • the most direct and effective method is to improve the photoelectric conversion efficiency of solar cells.
  • the power loss of the internal series resistance of the battery is one of the most important factors.
  • the contact resistance between the light-receiving electrode and the battery semiconductor layer is an important component.
  • Conventional solar cells usually adopt a grid electrode structure, and the electrode grid lines form an ohmic contact with the semiconductor layer, and in order to maximize the use of sunlight, the total area of the grid electrode generally accounts for only a small portion (less than 10%) of the total area of the battery chip. This greatly limits the contact area between the electrode and the semiconductor layer, thereby increasing the contact resistance between the electrode and the semiconductor layer.
  • the invention discloses a high-concentration solar cell chip, comprising:
  • a transparent conductive layer is formed on the grid-like metal nano-electrode to form an ohmic contact with the epitaxial stack of the solar cell.
  • the grid electrode may be formed on the grid-shaped metal nano-electrode by a series of conventional processes such as evaporation, metal stripping, etc., and the metal grid electrode in the blank region of the grid is directly Contacting the surface of the epitaxial wafer of the high-concentration solar cell.
  • the transparent conductive layer may be directly covered on the epitaxial stack of the high-concentration solar cell in which the grid-like metal nanoelectrode and the metal grid electrode have been prepared by an evaporation method.
  • the grid-like metal nanoelectrode has a width between 20 and 500 nanometers and an electrode spacing of from 1 to 10 Between microns.
  • the transparent conductive layer forms an ohmic contact with the epitaxial wafer contact region of the high-concentration solar cell.
  • the transparent conductive layer has a thickness of between 100 and 500 nanometers.
  • the invention also discloses a manufacturing method of a high-concentration solar cell chip, comprising the steps of:
  • the transparent conductive layer is directly overlaid on the epitaxial stack of the high-concentration solar cell on which the grid-like metal nanoelectrode and the metal grid electrode have been prepared by an evaporation method.
  • the transparent conductive layer of the invention forms an ohmic contact with the surface of the epitaxial wafer of the battery in a large area, which greatly reduces the contact resistance between the electrode and the epitaxial wafer of the battery; and the transparent conductive layer is embedded by the grid-shaped metal nano-electrode to improve the conductivity of the transparent conductive layer.
  • the problem that the conductivity of the transparent conductive layer is insufficient under the condition of high-concentration light is solved.
  • forming a grid electrode on the grid-like metal nano-electrode shortens the flow distance of the photo-generated current in the transparent conductive layer, and further reduces the series resistance of the battery. Due to the improved conductivity of the transparent conductive layer, the grid electrode can be designed with a wider distance and improved solar utilization.
  • FIG. 9 are schematic diagrams showing the structure and main process flow of a high-concentration solar cell chip according to an embodiment of the present invention, wherein FIG. 1 and FIG. 3, Figure 5, Figure 7 is a front view of a high-concentration solar cell chip, Figure 2, Figure 4 (b), Figure 6, Figure 8, Figure 9 is the section A marked in Figure 4 (a) Schematic.
  • 003 a metal grid electrode
  • 004 a transparent conductive layer
  • the following embodiments disclose a high-concentration solar cell chip and a manufacturing method thereof, which use a transparent conductive material to form an ohmic contact with a semiconductor semiconductor layer over a large area, specifically forming a grid-like metal nanometer on the surface of the battery semiconductor layer.
  • the electrode is then covered with a transparent conductive layer, so that the metal nanoelectrode is embedded in the transparent conductive layer, which greatly improves the conductivity of the conductive layer.
  • a high-concentration solar cell epitaxial wafer 001 is provided.
  • a GaInP/GaAs/Ge triple junction solar cell as an example, a GaInP/GaAs/Ge triple junction can be epitaxially formed on a p-type Ge substrate.
  • the epitaxial layer of the battery is then epitaxially formed into an n-type GaAs ohmic contact layer with a doping concentration of 5 ⁇ 10 18 /cm 3 to finally obtain a GaInP/GaAs/Ge triple junction high-concentration solar cell on a conventional p-type Ge substrate.
  • Epitaxial wafer 001 Epitaxial wafer 001.
  • a nano-imprint technique is used to form a grid-like metal nanoelectrode on the epitaxial wafer 001 of the high-concentration solar cell.
  • the preparation steps thereof include:
  • the high-concentration solar cell epitaxial wafer 001 in which the grid-like metal nanoelectrode 002 is prepared A metal grid electrode 003 is formed thereon, and the preparation steps thereof include:
  • High-concentration solar cell epitaxial wafer 001 prepared by lithography process for grid metal nano-electrode 002 Forming a photoresist mask thereon;
  • the grid metal nanoelectrode 002 and the metal grid electrode 003 are prepared by evaporation method.
  • a transparent conductive layer 004 is formed on the epitaxial wafer 001 of the high-concentration solar cell, and preferably, an ITO or zinc oxide material is selected as the evaporation source.
  • the back electrode 005 is vapor-deposited on the back side of the high-concentration solar cell epitaxial wafer 001.
  • FIG 9 shows a side cross-sectional view of the high power concentrating solar cell chip obtained by the foregoing method.
  • the front electrode structure of the solar cell chip includes: a grid-like metal nanoelectrode 002, a metal grid electrode 003, and a transparent conductive layer 004.
  • the pattern of the grid-like metal nano-electrode 002 is shown in Fig. 3. It is shown as a regular hexagonal distribution. It should be noted that it is not limited to this pattern, and other patterns such as squares may be used.
  • the electrode width is preferably 20 to 500 nm, and the electrode spacing is preferably 1 to 10. Micrometers, in this embodiment, the pole width is 200 nm and the electrode spacing is 2 microns.
  • the metal grid electrode is distributed on the edge of the chip and directly covers the grid-like metal nanoelectrode 002, which can be as shown in FIG. The distribution is shown on both sides and a ring shape can be formed at the edge of the chip.
  • transparent conductive layer 004 Directly covering the epitaxial stack of the high-concentration solar cell on which the grid-like metal nanoelectrode and the metal grid electrode have been prepared, and forming an ohmic contact with the epitaxial stack of the solar cell, generally considering the transmittance factor
  • the thickness of the transparent conductive layer is limited to several hundred nanometers, and the preferred range is 100 to 500 nm, in this embodiment, 500 nm.
  • the grid electrode is also formed on the grid-like metal nanoelectrode, which shortens the flow distance of the photo-generated current in the transparent conductive layer embedded in the metal nano-electrode, and further reduces the series resistance of the battery.

Landscapes

  • Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

提供一种高倍聚光太阳电池芯片,包含:太阳电池外延叠层(001);网格状金属纳米电极(002),覆盖于太阳电池外延叠层(001)表面;栅状电极(003),形成于网格状金属纳米电极(002)上;透明导电层(004),形成于所述网格状金属纳米电极(002)之上,与太阳电池外延叠层(001)形成欧姆接触。该太阳电池芯片采用透明导电层大面积的与电池外延片表面形成欧姆接触,大大降低了电极与电池外延片的接触电阻;采用网格状金属纳米电极嵌入透明导电层,大大提高了透明导电层的导电能力,解决了高倍聚光条件下,透明导电层导电能力不足的问题;由于提高了透明导电层的电导率,栅状电极可设计为具有更宽的距离,由此提高了太阳光利用率。

Description

太阳电池芯片及其制作方法
本申请主张如下优先权:中国发明专利申请号201310007362.9,题为 ' 太阳电池芯片及其制作方法 ' ,于 2013从 年 1 月 9 日提交。上述申请的全部内容通过引用结合在本申请中。
技术领域
本发明涉及一种高倍聚光太阳电池芯片及其制作方法,属半导体光电子器件与技术领域。
背景技术
太阳能电池发电是未来新能源领域的重要组成部分,然而目前太阳能电池发电成本还较高,要降低成本,最直接有效地方法就是提高太阳能电池的光电转换效率。影响太阳能电池光电转换效率的因素很多,其中电池内部串联电阻的功率损耗是最重要的因素之一。
在太阳电池内部串联电阻的组成部分中,受光面电极与电池半导体层的接触电阻是重要的组成部分。传统的太阳电池通常采用栅状电极结构,电极栅线与半导体层形成欧姆接触,而为了最大限度地利用太阳光,一般栅状电极总面积只占电池芯片总面积的很少一部分(小于 10% ),这就大大限制了电极与半导体层的接触面积,进而提高了电极与半导体层之间的接触电阻。
发明内容
本发明公开了一种高倍聚光太阳电池芯片,包含:
太阳电池外延叠层;
网格状金属纳米电极,覆盖于所述太阳电池外延叠层表面;
栅状电极,形成于所述网格状金属纳米电极上;
透明导电层,形成于所述网格状金属纳米电极之上,与所述的太阳电池外延叠层形成欧姆接触。
在本发明的一些优选实施例中,所述栅状电极可以采用蒸镀、金属剥离等一系列常规工艺手段形成于网格状金属纳米电极之上,网格内空白区域的金属栅状电极直接与所述的高倍聚光太阳电池外延片表面接触。
所述透明导电层可以采用蒸镀方法直接覆盖于已制备好所述网格状金属纳米电极及金属栅状电极的高倍聚光太阳电池外延叠层之上。
优选地,所述网格状金属纳米电极宽度在 20 至 500 纳米之间,电极间距在 1 至 10 微米之间。
所述透明导电层与所述高倍聚光太阳电池外延片接触区域形成欧姆接触。
优选地,所述的透明导电层厚度在 100 至 500 纳米之间。
本发明还公开了一种高倍聚光太阳电池芯片的制作方法,包括步骤:
1 )提供太阳电池外延叠层;
2 )在所述太阳电池外延叠层表面形成网格状金属纳米电极;
3 )在所述网格状金属纳米电极上形成栅状电极;
4 )在所述网格状金属纳米电极之上形成透明导电层,其与所述的太阳电池外延叠层形成欧姆接触。
在一些实施例中,所述透明导电层采用蒸镀方法直接覆盖于已制备好所述网格状金属纳米电极及金属栅状电极的高倍聚光太阳电池外延叠层之上。
本发明采用透明导电层大面积地与电池外延片表面形成欧姆接触,大大降低了电极与电池外延片的接触电阻;采用网格状金属纳米电极嵌入透明导电层,提高了透明导电层的导电能力,解决了高倍聚光条件下,透明导电层导电能力不足的问题。
进一步地,在网格状金属纳米电极之上形成栅状电极,缩短了光生电流在透明导电层内的流通距离,进一步降低电池串联电阻。由于提高了透明导电层的电导率,所述栅状电极可设计更宽的距离,提高了太阳光利用率。
本发明的其它特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本发明而了解。本发明的目的和其他优点可通过在说明书、权利要求书以及附图中所特别指出的结构来实现和获得。
附图说明
附图用来提供对本发明的进一步理解,并且构成说明书的一部分,与本发明的实施例一起用于解释本发明,并不构成对本发明的限制。此外,附图数据是描述概要,不是按比例绘制。
图 1 ~图 9 为根据本发明实施的一种高倍聚光太阳电池芯片结构及主要制备工艺流程示意图,其中图 1 、图 3 、图 5 、图 7 为一种高倍聚光太阳电池芯片正面俯视图,图 2 、图 4 ( b )、图 6 、图 8 、图 9 为图 4 ( a )所标注的截面 A 示意图。
图中各标号表示:
001 :高倍聚光太阳电池外延片;
002 :网格状金属纳米电极;
003 :金属栅状电极;
004 :透明导电层;
005 :背电极。
具体实施方式
下面各实施例公开了一种高倍聚光太阳电池芯片及其制作方法,其采用透明导电材料与电池半导体层大面积地形成欧姆接触,具体为先在电池半导体层表面形成一网格状金属纳米电极,然后再覆盖透明导电层,如此将金属纳米电极嵌入透明导电层,大大提高了导电层的导电能力。
下面结合对本发明的实施作进一步描述,但不应以此限制本发明的保护范围。
如图 1 与图 2 所示,提供一高倍聚光太阳电池外延片 001 ,以 GaInP/GaAs/Ge 三结太阳能电池为例,可在 p 型 Ge 衬底上外延形成 GaInP/GaAs/Ge 三结电池外延层,之后继续外延形成 n 型 GaAs 欧姆接触层,其掺杂浓度为 5 × 1018/cm3 ,最终获得常规的 p 型 Ge 衬底上 GaInP/GaAs/Ge 三结高倍聚光太阳电池外延片 001 。
如图 3 与图 4 所示,采用纳米压印技术在高倍聚光太阳电池外延片 001 之上形成网格状金属纳米电极 002 ,其制备步骤包括:
1) 在高倍聚光太阳电池外延片 001 表面旋涂负性光刻胶;
2) 选择一正六边形氧化铝阳极氧化多孔膜压印在负性光刻胶之上;
3) 紫外光曝光;
4) 剥离氧化铝阳极氧化多孔膜;
5) 显影液显影将氧化铝阳极氧化多孔膜图形复制到负性光刻胶;
6) 蒸镀金属电极,优选地,选择银作为蒸镀金属源;
7) 剥离金属电极,形成网格状金属纳米电极 002 。
如图 5 与图 6 所示,在制备好网格状金属纳米电极 002 的高倍聚光太阳电池外延片 001 之上形成金属栅状电极 003 ,其制备步骤包括:
1) 采用光刻工艺在制备好网格状金属纳米电极 002 的高倍聚光太阳电池外延片 001 之上形成光刻胶掩膜;
2) 蒸镀金属,优选地,选择银作为蒸镀金属源;
3) 剥离金属电极,形成金属栅状电极 003 。
如图 7 与图 8 所示,采用蒸镀方法在制备好网格状金属纳米电极 002 及金属栅状电极 003 的高倍聚光太阳电池外延片 001 之上形成透明导电层 004 ,优选地,选择 ITO 或氧化锌材料作为蒸镀源。
如图 9 所示,在高倍聚光太阳电池外延片 001 背面蒸镀背电极 005 。
图 9 显示了采用前述方法获得的高倍聚光太阳电池芯片的侧面剖视图。请参考图 9 ,太阳电池芯片的正面电极结构包括:网格状金属纳米电极 002 、金属栅状电极 003 和透明导电层 004 。其中网格状金属纳米电极 002 的图案如图 3 所示呈正六边形分布,应当注意的是,其并不仅限于此图案,也可正方形等其他图案,电极宽度优选值为 20~500 纳米,电极间距优选值为 1~10 微米,在本实施例中极宽度取 200 纳米,电极间距取 2 微米。金属栅状电极分布在芯片的边缘,直接覆盖在网格状金属纳米电极 002 上,其可如图 6 所示分布在两侧,也可在芯片的边缘形成一个环状。如图 8 所示,透明导电层 004 直接覆盖于已制备好所述网格状金属纳米电极及金属栅状电极的高倍聚光太阳电池外延叠层之上,与太阳电池外延叠层形成欧姆接触,考虑到透光率的因素,通常透明导电层的厚度被限制在数百纳米,优选范围值为 100~500 纳米,在本实施例中,取 500 纳米。
在本实施例中,还在网格状金属纳米电极之上形成栅状电极,缩短了光生电流在被嵌入了金属纳米电极的透明导电层内的流通距离,进一步降低电池串联电阻。
很明显地,本发明的说明不应理解为仅仅限制在上述实施例,而是包括利用本发明构思的全部实施方式。

Claims (8)

  1. 太阳电池芯片,包含:
    太阳电池外延叠层;
    网格状金属纳米电极,覆盖于所述太阳电池外延叠层表面;
    栅状电极,形成于所述网格状金属纳米电极上;
    透明导电层,形成于所述网格状金属纳米电极之上,与所述的太阳电池外延叠层形成欧姆接触。
  2. 根据权利要求 1 所述的太阳电池芯片,其特征在于:所述栅状电极形成于网格状金属纳米电极之上,在网格内空白区域直接与所述太阳电池外延片表面接触。
  3. 根据权利要求 1 所述的太阳电池芯片,其特征在于:所述透明导电层覆盖所述栅状电极。
  4. 根据权利要求 1 所述的太阳电池芯片,其特征在于:所述网格状金属纳米电极宽度为 20~500 纳米。
  5. 根据权利要求 1 所述的太阳电池芯片,其特征在于:所述网格状金属纳米电极间距为 1~10 微米。
  6. 根据权利要求 1 所述的太阳电池芯片,其特征在于:所述透明导电层厚度为 100~500 纳米。
  7. 一种太阳电池芯片的制作方法,包括步骤:
    1 )提供太阳电池外延叠层;
    2 )在所述太阳电池外延叠层表面形成网格状金属纳米电极;
    3 )在所述网格状金属纳米电极上形成栅状电极;
    4 )在所述网格状金属纳米电极之上形成透明导电层,其与所述的太阳电池外延叠层形成欧姆接触。
  8. 根据权利要求 7 所述的太阳电池芯片的制作方法,其特征在于:所述透明导电层采用蒸镀方法直接覆盖于已制备好所述网格状金属纳米电极及金属栅状电极的高倍聚光太阳电池外延叠层之上。
PCT/CN2013/088917 2013-01-09 2013-12-10 太阳电池芯片及其制作方法 WO2014108008A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310007362.9A CN103077977B (zh) 2013-01-09 2013-01-09 太阳电池芯片及其制作方法
CN201310007362.9 2013-01-09

Publications (1)

Publication Number Publication Date
WO2014108008A1 true WO2014108008A1 (zh) 2014-07-17

Family

ID=48154455

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/088917 WO2014108008A1 (zh) 2013-01-09 2013-12-10 太阳电池芯片及其制作方法

Country Status (2)

Country Link
CN (1) CN103077977B (zh)
WO (1) WO2014108008A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111490109A (zh) * 2019-01-28 2020-08-04 神华(北京)光伏科技研发有限公司 一种太阳能薄膜电池及制造方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103077977B (zh) * 2013-01-09 2016-04-20 天津三安光电有限公司 太阳电池芯片及其制作方法
JP2015195341A (ja) * 2014-03-24 2015-11-05 三菱電機株式会社 光電変換素子および光電変換素子の製造方法
AT517404B1 (de) * 2015-02-13 2017-11-15 Guger Forschungs Gmbh Solarzelle mit metallischer Ladungsträger-Ableitstruktur
CN107046070A (zh) * 2017-03-24 2017-08-15 乐叶光伏科技有限公司 一种p型晶体硅电池结构及其制作方法
CN111128443B (zh) * 2019-12-30 2021-05-28 深圳市华科创智技术有限公司 一种透明导电膜及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4633033A (en) * 1985-02-08 1986-12-30 Energy Conversion Devices, Inc. Photovoltaic device and method
CN101246914A (zh) * 2007-02-14 2008-08-20 北京行者多媒体科技有限公司 薄膜太阳能电池的背反射层
CN101866961A (zh) * 2010-06-09 2010-10-20 中国科学院电工研究所 一种用于薄膜硅/晶体硅异质结太阳电池的陷光结构
CN102047434A (zh) * 2008-04-08 2011-05-04 荷兰原子和分子物理学研究所 具有产生表面等离子体共振的纳米结构的光伏电池
US20120180850A1 (en) * 2011-01-13 2012-07-19 Kim Sung-Su Photoelectric conversion module and method of manufacturing the same
CN103077977A (zh) * 2013-01-09 2013-05-01 天津三安光电有限公司 太阳电池芯片及其制作方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100764362B1 (ko) * 2005-11-01 2007-10-08 삼성전자주식회사 태양전지용 투명 전극, 그의 제조방법 및 그를 포함하는반도체 전극
CN101593791B (zh) * 2008-05-26 2012-03-21 福建钧石能源有限公司 光伏器件的制造方法
CN201252104Y (zh) * 2008-06-14 2009-06-03 大连七色光太阳能科技开发有限公司 复合透明导电基板

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4633033A (en) * 1985-02-08 1986-12-30 Energy Conversion Devices, Inc. Photovoltaic device and method
CN101246914A (zh) * 2007-02-14 2008-08-20 北京行者多媒体科技有限公司 薄膜太阳能电池的背反射层
CN102047434A (zh) * 2008-04-08 2011-05-04 荷兰原子和分子物理学研究所 具有产生表面等离子体共振的纳米结构的光伏电池
CN101866961A (zh) * 2010-06-09 2010-10-20 中国科学院电工研究所 一种用于薄膜硅/晶体硅异质结太阳电池的陷光结构
US20120180850A1 (en) * 2011-01-13 2012-07-19 Kim Sung-Su Photoelectric conversion module and method of manufacturing the same
CN103077977A (zh) * 2013-01-09 2013-05-01 天津三安光电有限公司 太阳电池芯片及其制作方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111490109A (zh) * 2019-01-28 2020-08-04 神华(北京)光伏科技研发有限公司 一种太阳能薄膜电池及制造方法

Also Published As

Publication number Publication date
CN103077977B (zh) 2016-04-20
CN103077977A (zh) 2013-05-01

Similar Documents

Publication Publication Date Title
WO2014108008A1 (zh) 太阳电池芯片及其制作方法
KR100847741B1 (ko) p-n접합 계면에 패시베이션층을 구비하는 점 접촉 이종접합 실리콘 태양전지 및 그의 제조방법
CN108666393B (zh) 太阳能电池的制备方法及太阳能电池
JP2008124381A (ja) 太陽電池
US8574951B1 (en) Process of manufacturing an interdigitated back-contact solar cell
JP2014075526A (ja) 光電変換素子および光電変換素子の製造方法
TW201104822A (en) Aligning method of patterned electrode in a selective emitter structure
CN103390657A (zh) 一种硅纳米柱阵列光电池的选择性栅极及其制作方法
JP2012524387A (ja) 薄膜太陽電池構造、薄膜太陽電池アレイ及びその製造方法
US20210074870A1 (en) Thin-film photovoltaic cell series structure and preparation process of thin-film photovoltaic cell series structure
JP6284522B2 (ja) 光電変換素子、光電変換モジュールおよび太陽光発電システム
JP3888860B2 (ja) 太陽電池セルの保護方法
WO2019144611A1 (zh) 异质结太阳能电池及其制备方法
JP2011009615A (ja) 太陽電池の製造方法
TW202027290A (zh) 太陽電池之製造方法、太陽電池、及太陽電池模組
CN205069647U (zh) 具有晶边收集结构的太阳能电池
US20140000689A1 (en) Nitride semiconductor-based solar cell and manufacturing method thereof
CN110808314B (zh) 一种改善异质结太阳电池光电性能的方法
TW201041172A (en) Manufacturing method of the solar cell
KR20120009682A (ko) 태양 전지 제조 방법
WO2019242550A1 (zh) 太阳能电池及其制作方法
WO2022052534A1 (zh) 一种太阳能电池及其制作方法
TW201431108A (zh) 指叉狀背部電極太陽能電池之製造方法及其元件
TWI455330B (zh) 太陽能電池結構及其製造方法
JP2710318B2 (ja) 半透光性太陽電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13871192

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13871192

Country of ref document: EP

Kind code of ref document: A1