WO2022052534A1 - 一种太阳能电池及其制作方法 - Google Patents

一种太阳能电池及其制作方法 Download PDF

Info

Publication number
WO2022052534A1
WO2022052534A1 PCT/CN2021/099062 CN2021099062W WO2022052534A1 WO 2022052534 A1 WO2022052534 A1 WO 2022052534A1 CN 2021099062 W CN2021099062 W CN 2021099062W WO 2022052534 A1 WO2022052534 A1 WO 2022052534A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
manufacturing
forming
power generation
substrate
Prior art date
Application number
PCT/CN2021/099062
Other languages
English (en)
French (fr)
Inventor
孙强健
陆书龙
龙军华
李雪飞
代盼
Original Assignee
中国科学院苏州纳米技术与纳米仿生研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院苏州纳米技术与纳米仿生研究所 filed Critical 中国科学院苏州纳米技术与纳米仿生研究所
Priority to JP2022580319A priority Critical patent/JP2023531744A/ja
Priority to EP21865593.4A priority patent/EP4213226A1/en
Priority to US18/011,654 priority patent/US20230335654A1/en
Publication of WO2022052534A1 publication Critical patent/WO2022052534A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/022433Particular geometry of the grid contacts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1876Particular processes or apparatus for batch treatment of the devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/02168Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells the coatings being antireflective or having enhancing optical properties for the solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • H01L31/1864Annealing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the invention relates to the technical field of photovoltaic devices, in particular to a solar cell and a manufacturing method thereof.
  • Solar cells are semiconductor devices that directly generate electricity from sunlight.
  • the electrodes provided on the light-receiving surface of the solar cell are in the shape of a grid. Sunlight is incident on the light-receiving surface of the solar cell through the slit of the top electrode, and is then converted into electrical energy under the photovoltaic action of the solar cell.
  • an electron beam evaporation process or a magnetron sputtering process is usually used to form it.
  • it before using the electron beam evaporation process or the magnetron sputtering process to evaporate the metal material, it includes the process of forming a gate-shaped mask through the photoresist exposure and development process; after the metal material is evaporated, it also includes using a special etching solution A process of dissolving the photoresist mask, and a cleaning process is included after dissolving the photoresist mask, so as to remove the metal material formed on the photoresist mask, so as to realize a complete top electrode.
  • the electron beam evaporation process or the magnetron sputtering process is used to form the top electrode of the solar cell, the process is too complicated, which limits the production capacity of the solar cell, so that the solar cell can only be used in limited fields. .
  • a method for fabricating a solar cell comprising:
  • a top electrode is formed on the surface of the ohmic contact layer facing away from the power generation layer using a printing process.
  • the method for forming the top electrode specifically includes:
  • a printed screen plate is arranged on the ohmic contact layer
  • the printing screen mesh number of the printing screen plate is 300 meshes to 500 meshes.
  • the method for forming the back electrode specifically includes:
  • the stacked Ti layer, Pt layer, and Au layer are annealed in an Ar gas atmosphere to form the back electrode.
  • the manufacturing method further includes:
  • top electrode as a mask to etch the ohmic contact layer to expose a part of the power generation layer
  • An anti-reflection film is formed on the partial area.
  • the method for forming the anti-reflection film specifically includes: sequentially stacking and forming a Ti 3 O 5 layer and a SiO 2 layer on the partial region.
  • the method of forming the power generation layer on the substrate includes:
  • a window layer is formed on the photovoltaic layer.
  • the substrate is made of InP material.
  • the power generation layer and the ohmic contact layer are made of Group III and V semiconductor materials.
  • the manufacturing method before forming the ohmic contact layer, further includes: before forming the top electrode, the manufacturing method further includes: cleaning the surface of the ohmic contact layer with a cleaning solution.
  • a solar cell manufactured by the manufacturing method as described above.
  • the top electrode manufacturing process only includes printing and curing processes, the top electrode manufacturing process is effectively simplified, thereby improving the solar cell productivity.
  • FIG. 1 is a flow chart of a method for fabricating a solar cell according to an embodiment of the present invention
  • FIGS. 2a to 2d are process diagrams of a solar cell according to an embodiment of the present invention.
  • 3a and 3b are process diagrams of a solar cell according to another embodiment of the present invention.
  • the top electrode of a solar cell As described in the background art, currently, when forming the top electrode of a solar cell, it is usually formed by an electron beam evaporation process or a magnetron sputtering process. However, due to the excessive complexity of the actual operation process of the above two processes, the yield of solar cells is limited, so that solar cells can only be used in limited fields.
  • embodiments of the present invention provide a method for fabricating a solar cell capable of reducing the fabrication steps of the top electrode, thereby simplifying the fabrication process of the solar cell and improving the productivity of the solar cell.
  • the present embodiment provides a manufacturing method of a solar cell, as shown in Figure 1 and Figure 2a to Figure 2d, the manufacturing method includes:
  • Step S1 forming a power generation layer 2 on the substrate 1 .
  • a back field layer 21 , a photovoltaic layer 22 and a window layer 23 are sequentially formed on the substrate 1 .
  • the back field layer 21 is connected to the photovoltaic layer 22 to form a higher potential barrier, which reflects the minority carriers flowing to the back field layer 21, and can also reduce the photovoltaic layer 22.
  • the surface state of the photo-generated carriers reduces the recombination rate of photo-generated carriers and improves the collection efficiency of photo-generated carriers; the photovoltaic layer 22 can generate photo-generated carriers in an environment irradiated by sunlight; the window layer 23 and the back field
  • the layer 21 is the same, and after being connected with the photovoltaic layer 22, a higher potential barrier is formed, which reflects the minority carriers flowing to the window layer 23, thereby reducing the recombination rate of photo-generated carriers and improving the photo-generated carriers.
  • the power generation layer 2 is made of Group III and V semiconductor materials.
  • Step S2 forming an ohmic contact layer 3 on the surface of the power generation layer 2 facing away from the substrate 1 .
  • the ohmic contact layer 3 is used to form an ohmic contact with the metal material, which can reduce the power loss caused by the series resistance.
  • the ohmic contact layer 3 is made of III-V semiconductor material.
  • Step S3 forming a back electrode 4 on the surface of the substrate 1 facing away from the power generation layer 2 .
  • a Ti layer, a Pt layer and an Au layer are formed in sequence.
  • the stacked Ti layer, Pt layer and Au layer are then annealed in an Ar gas atmosphere to form the back electrode 4 .
  • Step S4 using a printing process to form a top electrode 5 on the surface of the ohmic contact layer 3 facing away from the power generation layer 2 .
  • a printing screen plate is arranged on the ohmic contact layer 3, and then the nano-silver paste layer is printed at a printing speed of 130 mm/s ⁇ 160 mm/s.
  • the nano-silver paste layer is annealed and solidified to form the top electrode 5 .
  • the printing screen mesh number of the printing screen plate is 300 meshes to 500 meshes.
  • the manufacturing process of the top electrode 5 since the manufacturing process of the top electrode 5 only includes the printing and curing processes, the manufacturing process of the top electrode 5 is effectively simplified, and the solar energy can be improved. battery capacity.
  • the top electrode 5 is a grid-shaped electrode, and the grid-shaped electrode includes a plurality of metal strips arranged in parallel, and a connection portion is provided between each adjacent two metal strips. Conductive connection is achieved between two adjacent metal strips through the connecting portion.
  • the top electrode 5 may also be a grid electrode.
  • the substrate 1 is made of InP material.
  • the manufacturing method further includes cleaning the surface of the ohmic contact layer 3 with a cleaning solution.
  • the cleaning solution is an acidic solution, which is used to clean the oxide film formed on the surface of the ohmic contact layer 3, thereby opening the dangling bonds on the surface of the ohmic contact layer 3, so as to improve the relationship between the top electrode 5 and the surface of the ohmic contact layer 3.
  • Ohmic contact between the ohmic contact layers 3 is an acidic solution, which is used to clean the oxide film formed on the surface of the ohmic contact layer 3, thereby opening the dangling bonds on the surface of the ohmic contact layer 3, so as to improve the relationship between the top electrode 5 and the surface of the ohmic contact layer 3.
  • the manufacturing method in this embodiment further includes the step of forming an anti-reflection film 6 .
  • the steps include:
  • Step S5 etching the ohmic contact layer 3 with the top electrode 5 as a mask, thereby exposing a part of the power generation layer 2 .
  • Step S6 forming an anti-reflection film 6 on the partial area.
  • the anti-reflection film 6 includes forming a Ti 3 O 5 layer and a SiO 2 layer in sequence on the partial region.
  • This embodiment provides a solar cell, as shown in FIG. 2d or FIG. 3b, the solar cell is manufactured by the manufacturing method described in Embodiment 1 or Embodiment 2.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)
  • Manufacturing Of Printed Wiring (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

本发明公开了一种太阳能电池的制作方法,该制作方法包括:在衬底上形成发电层;在发电层的背向衬底的表面上形成欧姆接触层;在衬底的背向发电层的表面上形成背电极;采用印刷工艺在欧姆接触层的背向发电层的表面上形成顶电极。本发明还公开了一种太阳能电池。本发明解决了目前太阳能电池的产能较低的问题。

Description

一种太阳能电池及其制作方法 技术领域
本发明涉及光伏器件技术领域,尤其涉及一种太阳能电池及其制作方法。
背景技术
太阳能电池是利用太阳光直接发电的半导体器件。为了能够接受阳光,在太阳能电池的受光面上设置的电极呈栅形。阳光通过顶电极的缝隙入射到太阳能电池的受光面上,之后在太阳能电池的光伏作用下被转化为电能。
目前形成太阳能电池的顶电极时,通常采用电子束蒸发工艺或者磁控溅射工艺来形成。其中,采用电子束蒸发工艺或者磁控溅射工艺来蒸镀金属材料之前包括,通过光刻胶曝光显影工艺来形成栅形掩模板的过程;蒸镀金属材料之后还包括,使用特殊的腐蚀液来溶解光刻胶掩模板的过程,而且溶解光刻胶掩模板之后还包括清洗过程,以便于去除形成在光刻胶掩模板上的金属材料,从而实现完整的顶电极。
如上所述,由于采用电子束蒸发工艺或者磁控溅射工艺来形成太阳能电池的顶电极时,其过程过于复杂,限制了太阳能电池的产能,从而导致了太阳能电池只能在限定的领域中使用。
发明内容
鉴于现有技术存在的不足,本发明提供了如下的技术方案:
根据本发明的一方面提供了一种太阳能电池的制作方法,所述制作方法包括:
在衬底上形成发电层;
在所述发电层的背向所述衬底的表面上形成欧姆接触层;
在所述衬底的背向所述发电层的表面上形成背电极;
采用印刷工艺在所述欧姆接触层的背向所述发电层的表面上形成顶电极。
可选地,形成所述顶电极的方法具体包括:
在所述欧姆接触层上设置印刷丝网板;
以130mm/s~160mm/s的印刷速度印刷纳米银浆层;
对所述纳米银浆层进行退火固化,以形成所述顶电极;
其中,所述印刷丝网板的印刷丝网目数为300目~500目。
可选地,形成所述背电极的方法具体包括:
在所述衬底的背向所述发电层的表面上依序层叠形成Ti层、Pt层和Au层;
在Ar气体环境中对所述层叠的Ti层、Pt层和Au层进行退火,以形成所述背电极。
可选地,形成所述顶电极之后,所述制作方法还包括:
以所述顶电极为掩模对所述欧姆接触层进行刻蚀,以此露出所述发电层的部分区域;
在所述部分区域上形成抗反射膜。
可选地,形成所述抗反射膜的方法具体包括:在所述部分区域上依序层叠形成Ti 3O 5层和SiO 2层。
可选地,在所述衬底上形成所述发电层的方法包括:
在所述衬底上形成背场层;
在所述背场层上形成光伏层;
在所述光伏层上形成窗口层。
可选地,所述衬底由InP材料制成。
可选地,所述发电层和所述欧姆接触层由三五族半导体材料制成。
可选地,形成所述欧姆接触层之前,所述制作方法还包括:形成所述顶电极之前,所述制作方法还包括:采用清洗液清洗所述欧姆接触层的表面。
根据本发明的另一方面提供了一种太阳能电池,所述太阳能电池通过如上所述的制作方法来制成。
采用本发明提供的太阳能电池的制作方法来制作太阳能电池时,由于顶电 极的制作过程仅包括印刷和固化过程,从而有效地简化了顶电极的制作过程,进而提升了太阳能电池的产能。
附图说明
图1是根据本发明的实施例的太阳能电池的制作方法的流程图;
图2a至图2d是根据本发明的实施例的太阳能电池的制程图;
图3a和图3b是根据本发明的另一实施例的太阳能电池的制程图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面结合附图对本发明的具体实施方式进行详细说明。这些优选实施方式的示例在附图中进行了例示。附图中所示和根据附图描述的本发明的实施方式仅仅是示例性的,并且本发明并不限于这些实施方式。在此,还需要说明的是,为了避免因不必要的细节而模糊了本发明,在附图中仅仅示出了与根据本发明的方案密切相关的结构和/或处理步骤,而省略了与本发明关系不大的其他细节。
此外,将理解的是,当诸如层、膜、区域或衬底等的元件被称作“在”另一元件或另一元件的表面“上”时,该元件可以直接在所述另一元件或所述另一元件的表面上,或者也可以存在中间元件。可选择地,当元件被称作“直接在”另一元件或另一元件的表面“上”时,不存在中间元件。
如背景技术中所述,目前形成太阳能电池的顶电极时,通常采用电子束蒸发工艺或者磁控溅射工艺来形成。但是,由于上述两种工艺的实际操作过程过度复杂,从而限制了太阳能电池的产量,导致太阳能电池只能在限定的领域中使用。
为了改善上述的现有技术问题,根据本发明的实施例提供了一种能够减少顶电极的制作步骤的太阳能电池的制作方法,以此来简化太阳能电池的制作过程,提高太阳能电池的产能。
以下将结合附图来详细描述根据本发明的实施例的太阳能电池的制作方法。
实施例1
本实施例提供了一种太阳能电池的制作方法,如图1以及图2a至图2d所 示,所述制作方法包括:
步骤S1、在衬底1上形成发电层2。具体地,在所述衬底1上依序形成背场层21、光伏层22和窗口层23。其中,所述背场层21与所述光伏层22相连后形成较高的势垒,对流向所述背场层21的少数载流子起到反射作用,而且还可以降低所述光伏层22的表面态,降低光生载流子的复合速率,提高光生载流子的收集效率;所述光伏层22在阳光照射的环境下可以生成光生载流子;所述窗口层23与所述背场层21相同,与所述光伏层22相连后形成较高的势垒,对流向所述窗口层23的少数载流子起到反射作用,以此降低光生载流子的复合速率,提高光生载流子的收集效率。优选地,所述发电层2由三五族半导体材料制成。
步骤S2、在所述发电层2的背向所述衬底1的表面上形成欧姆接触层3。所述欧姆接触层3用于与金属材料形成欧姆接触,能够降低因串联电阻引起的电能损失。优选地,所述欧姆接触层3由三五族半导体材料制成。
步骤S3、在所述衬底1的背向所述发电层2的表面上形成背电极4。具体地,在所述衬底1的背向所述发电层2的表面上依序层叠形成Ti层、Pt层和Au层。之后在Ar气体环境中对所述层叠的Ti层、Pt层和Au层进行退火,以形成所述背电极4。
步骤S4、采用印刷工艺在所述欧姆接触层3的背向所述发电层2的表面上形成顶电极5。具体地,在所述欧姆接触层3上设置印刷丝网板,之后以130mm/s~160mm/s的印刷速度印刷纳米银浆层。对所述纳米银浆层进行退火固化,以形成所述顶电极5。其中,所述印刷丝网板的印刷丝网目数为300目~500目。
如上所述,采用本实施例的太阳能电池的制作方法来制作太阳能电池时,由于顶电极5的制作过程仅包括印刷和固化过程,从而有效地简化了顶电极5的制作过程,进而能够提升太阳能电池的产能。
具体地,在本实施例中,所述顶电极5为栅形电极,所述栅形电极包括平行排列的多个金属条,每相邻的两个金属条之间设置有连接部。相邻的两个金属条之间通过所述连接部来实现彼此的导通连接。作为另一种示例,所述顶电极5还可以是格栅状电极。
优选地,在本实施例中,为了保障发电层2的外延生长,所述衬底1由InP材料制成。
较佳地,为了所述顶电极5与所述欧姆接触层3之间良好的欧姆接触,形成所述顶电极5之前,所述制作方法还包括采用清洗液清洗所述欧姆接触层3的表面的步骤。其中,所述清洗液为酸性溶液,用于清洗形成在所述欧姆接触层3表面上的氧化膜,从而打开所述欧姆接触层3表面的悬挂键,以此来提高所述顶电极5与所述欧姆接触层3之间的欧姆接触。
实施例2
与实施例1不同的是,为了提高太阳能电池的光伏效率,本实施例中的制作方法还包括形成抗反射膜6的步骤。具体地,如图3a和图3b所示,所述步骤包括:
步骤S5、以所述顶电极5为掩模对所述欧姆接触层3进行刻蚀,以此露出所述发电层2的部分区域。
步骤S6、在所述部分区域上形成抗反射膜6。具体地,所述抗反射膜6包括在所述部分区域上依序层叠形成Ti 3O 5层和SiO 2层。
实施例3
本实施例提供了一种太阳能电池,如图2d或图3b所示,所述太阳能电池通过实施例1或实施例2所述的制作方法来制成。
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
尽管已经示出和描述了本发明的实施例,对于本领域的普通技术人员而言,可以理解在不脱离本发明的原理和精神的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由所附权利要求及其等同物限定。

Claims (20)

  1. 一种太阳能电池的制作方法,其中,所述制作方法包括:
    在衬底上形成发电层;
    在所述发电层的背向所述衬底的表面上形成欧姆接触层;
    在所述衬底的背向所述发电层的表面上形成背电极;
    采用印刷工艺在所述欧姆接触层的背向所述发电层的表面上形成顶电极。
  2. 根据权利要求1所述的制作方法,其中,形成所述顶电极的方法具体包括:
    在所述欧姆接触层上设置印刷丝网板;
    以130mm/s~160mm/s的印刷速度印刷纳米银浆层;
    对所述纳米银浆层进行退火固化,以形成所述顶电极;
    其中,所述印刷丝网板的印刷丝网目数为300目~500目。
  3. 根据权利要求2所述的制作方法,其中,形成所述背电极的方法具体包括:
    在所述衬底的背向所述发电层的表面上依序层叠形成Ti层、Pt层和Au层;
    在Ar气体环境中对所述层叠的Ti层、Pt层和Au层进行退火,以形成所述背电极。
  4. 根据权利要求1所述的制作方法,其中,形成所述顶电极之后,所述制作方法还包括:
    以所述顶电极为掩模对所述欧姆接触层进行刻蚀,以此露出所述发电层的部分区域;
    在所述部分区域上形成抗反射膜。
  5. 根据权利要求2所述的制作方法,其中,形成所述顶电极之后,所述制作方法还包括:
    以所述顶电极为掩模对所述欧姆接触层进行刻蚀,以此露出所述发电层的部分区域;
    在所述部分区域上形成抗反射膜。
  6. 根据权利要求3所述的制作方法,其中,形成所述顶电极之后,所述制作方法还包括:
    以所述顶电极为掩模对所述欧姆接触层进行刻蚀,以此露出所述发电层的部分区域;
    在所述部分区域上形成抗反射膜。
  7. 根据权利要求4所述的制作方法,其中,形成所述抗反射膜的方法具体包括:在所述部分区域上依序层叠形成Ti 3O 5层和SiO 2层。
  8. 根据权利要求5所述的制作方法,其中,形成所述抗反射膜的方法具体包括:在所述部分区域上依序层叠形成Ti 3O 5层和SiO 2层。
  9. 根据权利要求6所述的制作方法,其中,形成所述抗反射膜的方法具体包括:在所述部分区域上依序层叠形成Ti 3O 5层和SiO 2层。
  10. 根据权利要求7所述的制作方法,其中,在所述衬底上形成所述发电层的方法包括:
    在所述衬底上形成背场层;
    在所述背场层上形成光伏层;
    在所述光伏层上形成窗口层。
  11. 根据权利要求8所述的制作方法,其中,在所述衬底上形成所述发电层的方法包括:
    在所述衬底上形成背场层;
    在所述背场层上形成光伏层;
    在所述光伏层上形成窗口层。
  12. 根据权利要求9所述的制作方法,其中,在所述衬底上形成所述发电层的方法包括:
    在所述衬底上形成背场层;
    在所述背场层上形成光伏层;
    在所述光伏层上形成窗口层。
  13. 根据权利要求10所述的制作方法,其中,所述衬底由InP材料制成。
  14. 根据权利要求11所述的制作方法,其中,所述衬底由InP材料制成。
  15. 根据权利要求12所述的制作方法,其中,所述衬底由InP材料制成。
  16. 根据权利要求13所述的制作方法,其中,所述发电层和所述欧姆接触层由三五族半导体材料制成。
  17. 根据权利要求14所述的制作方法,其中,所述发电层和所述欧姆接触层由三五族半导体材料制成。
  18. 根据权利要求15所述的制作方法,其中,所述发电层和所述欧姆接触层由三五族半导体材料制成。
  19. 根据权利要求1所述的制作方法,其中,形成所述顶电极之前,所述制作方法还包括:采用清洗液清洗所述欧姆接触层的表面。
  20. 一种太阳能电池,其中,所述太阳能电池通过如权利要求1所述的制作方法来制成。
PCT/CN2021/099062 2020-09-08 2021-06-09 一种太阳能电池及其制作方法 WO2022052534A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2022580319A JP2023531744A (ja) 2020-09-08 2021-06-09 太陽電池及びその製造方法
EP21865593.4A EP4213226A1 (en) 2020-09-08 2021-06-09 Solar cell and manufacturing method therefor
US18/011,654 US20230335654A1 (en) 2020-09-08 2021-06-09 Solar cell and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010933895.X 2020-09-08
CN202010933895.XA CN112054094A (zh) 2020-09-08 2020-09-08 一种太阳能电池及其制作方法

Publications (1)

Publication Number Publication Date
WO2022052534A1 true WO2022052534A1 (zh) 2022-03-17

Family

ID=73611251

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/099062 WO2022052534A1 (zh) 2020-09-08 2021-06-09 一种太阳能电池及其制作方法

Country Status (5)

Country Link
US (1) US20230335654A1 (zh)
EP (1) EP4213226A1 (zh)
JP (1) JP2023531744A (zh)
CN (1) CN112054094A (zh)
WO (1) WO2022052534A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112054094A (zh) * 2020-09-08 2020-12-08 中国科学院苏州纳米技术与纳米仿生研究所 一种太阳能电池及其制作方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101562207A (zh) * 2008-04-14 2009-10-21 黄麟 晶体硅太阳能电池
KR20090123554A (ko) * 2008-05-28 2009-12-02 (재)나노소자특화팹센터 태양전지 제조방법
CN103618030A (zh) * 2013-11-28 2014-03-05 上海空间电源研究所 柔性pi衬底cigs薄膜电池激光刻蚀单体集成组件的方法
CN103985782A (zh) * 2014-03-31 2014-08-13 南通大学 双面电极太阳能电池的制备方法
CN104362216A (zh) * 2014-10-23 2015-02-18 云南大学 一种晶体硅太阳能电池前栅线电极的制备方法
CN204315591U (zh) * 2014-12-05 2015-05-06 广东爱康太阳能科技有限公司 一种选择性发射极晶硅太阳能电池
US20180301576A1 (en) * 2017-04-12 2018-10-18 Lg Electronics Inc. Compound semiconductor solar cell and method for manufacturing the same
CN112054094A (zh) * 2020-09-08 2020-12-08 中国科学院苏州纳米技术与纳米仿生研究所 一种太阳能电池及其制作方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7285720B2 (en) * 2003-07-21 2007-10-23 The Boeing Company, Inc. Solar cell with high-temperature front electrical contact, and its fabrication
KR101110304B1 (ko) * 2009-02-27 2012-02-15 주식회사 효성 반응성 이온식각을 이용한 태양전지의 제조방법
JP5927027B2 (ja) * 2011-10-05 2016-05-25 株式会社半導体エネルギー研究所 光電変換装置
CN103489499B (zh) * 2013-09-04 2017-01-25 苏州金瑞晨科技有限公司 一种纳米硅银浆及其制备方法以及应用
CN105445820A (zh) * 2014-08-21 2016-03-30 宸鸿科技(厦门)有限公司 光学膜组件

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101562207A (zh) * 2008-04-14 2009-10-21 黄麟 晶体硅太阳能电池
KR20090123554A (ko) * 2008-05-28 2009-12-02 (재)나노소자특화팹센터 태양전지 제조방법
CN103618030A (zh) * 2013-11-28 2014-03-05 上海空间电源研究所 柔性pi衬底cigs薄膜电池激光刻蚀单体集成组件的方法
CN103985782A (zh) * 2014-03-31 2014-08-13 南通大学 双面电极太阳能电池的制备方法
CN104362216A (zh) * 2014-10-23 2015-02-18 云南大学 一种晶体硅太阳能电池前栅线电极的制备方法
CN204315591U (zh) * 2014-12-05 2015-05-06 广东爱康太阳能科技有限公司 一种选择性发射极晶硅太阳能电池
US20180301576A1 (en) * 2017-04-12 2018-10-18 Lg Electronics Inc. Compound semiconductor solar cell and method for manufacturing the same
CN112054094A (zh) * 2020-09-08 2020-12-08 中国科学院苏州纳米技术与纳米仿生研究所 一种太阳能电池及其制作方法

Also Published As

Publication number Publication date
JP2023531744A (ja) 2023-07-25
CN112054094A (zh) 2020-12-08
EP4213226A1 (en) 2023-07-19
US20230335654A1 (en) 2023-10-19

Similar Documents

Publication Publication Date Title
JP4767110B2 (ja) 太陽電池、および太陽電池の製造方法
KR20190055716A (ko) 이질 접합 태양 전지 및 그 제조 방법
KR100847741B1 (ko) p-n접합 계면에 패시베이션층을 구비하는 점 접촉 이종접합 실리콘 태양전지 및 그의 제조방법
JP6422426B2 (ja) 太陽電池
WO2022095511A1 (zh) 一种晶体硅太阳能电池、组件及其制作方法
TW201135949A (en) Holey electrode grids for photovoltaic cells with subwavelength and superwavelength feature sizes
TWI727728B (zh) 薄膜光伏電池串聯結構及薄膜光伏電池串聯的製備工藝
TW200910618A (en) Solar cell and method for manufacturing the same
EP4270494A1 (en) Solar cell, and textured surface structure and method for preparing same
JP2014103259A (ja) 太陽電池、太陽電池モジュールおよびその製造方法
TWI424582B (zh) 太陽能電池的製造方法
WO2019144611A1 (zh) 异质结太阳能电池及其制备方法
CN113471337A (zh) 异质结太阳能电池片的制备方法
CN114678430A (zh) 一种电子选择性钝化接触结构、太阳能电池及制备方法
WO2022052534A1 (zh) 一种太阳能电池及其制作方法
JP2001044470A (ja) 太陽電池および太陽電池の製造方法並びに集光型太陽電池モジュール
CN113380950A (zh) 一种背接触钙钛矿太阳能电池及其制备方法
JP6564447B2 (ja) ヘテロ接合型太陽電池の製造方法
US9761752B2 (en) Solar cell, solar cell module, method for manufacturing solar cell, and method for manufacturing solar cell module
WO2023098038A1 (zh) 一种钙钛矿太阳能电池的柱状电极结构的制备方法
WO2011118685A1 (ja) 太陽電池及びその製造方法
WO2019227804A1 (zh) 一种太阳能电池及其制备方法
JP2001257371A (ja) 太陽電池作製方法及び太陽電池並びに集光型太陽電池モジュール
JP4169463B2 (ja) 光起電力素子の製造方法
JP2014072209A (ja) 光電変換素子および光電変換素子の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21865593

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022580319

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021865593

Country of ref document: EP

Effective date: 20230411