CN103985782A - 双面电极太阳能电池的制备方法 - Google Patents

双面电极太阳能电池的制备方法 Download PDF

Info

Publication number
CN103985782A
CN103985782A CN201410126821.XA CN201410126821A CN103985782A CN 103985782 A CN103985782 A CN 103985782A CN 201410126821 A CN201410126821 A CN 201410126821A CN 103985782 A CN103985782 A CN 103985782A
Authority
CN
China
Prior art keywords
silicon substrate
electrode
solar cell
double
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201410126821.XA
Other languages
English (en)
Other versions
CN103985782B (zh
Inventor
花国然
王强
朱海峰
仲蓓鑫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nantong University
Original Assignee
Nantong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nantong University filed Critical Nantong University
Priority to CN201410126821.XA priority Critical patent/CN103985782B/zh
Publication of CN103985782A publication Critical patent/CN103985782A/zh
Application granted granted Critical
Publication of CN103985782B publication Critical patent/CN103985782B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • H01L31/03529Shape of the potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • H01L31/0684Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells double emitter cells, e.g. bifacial solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • H01L31/0687Multiple junction or tandem solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/544Solar cells from Group III-V materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明提供了一种双面电极太阳能电池的制备方法,包括:提供P型硅基板;在硅基板上层形成氧化层;保留硅基板上部分氧化层、并刻蚀其他部位的氧化层,保留的氧化层作为硅基板上层的正电极通道;在硅基板表面扩散一N层,形成PN结;去除硅基板上保留的氧化层,并在硅基板上层印刷金属电极,所述金属电极包括正电极和顶电极;在硅基板下层形成底电极,形成双面电极太阳能电池。本发明通过两次扩散和增加一个金属电极,减少了加工步骤并将载流子均匀分布形成环形PN结,同时减少了电流的损失。

Description

双面电极太阳能电池的制备方法
技术领域
本发明涉及太阳能电池,尤其涉及一种双面电极太阳能电池的制备方法。
背景技术
随着经济的发展,人们的生活水平越来越高,对能源的需求越来越多,同时由于全球能源的持续短缺以及近年来环保意识逐渐抬头,因此目前如何提供环保、干净又不失效能的能源是人们最关心的议题。在各种替代性能源中,利用太阳光经由光电能量的转换而产生电能的太阳能电池,是目前所广泛应用且积极研发的技术。
随着相关产业持续投入研发太阳能电池,开发出了双面太阳能电池,通过双面受光的设计,使太阳能电池的两个表面皆可接收光线,并将太阳能转换为电能,进而可以更有效率的提升太阳能电池的能量。但是,传统的双面太阳能电池需要通过蚀刻、打孔等工艺方法形成正负电极,工艺复杂,正面和背面电极通过PN结相连,电流损耗较大,并且无法在大面积的电池上制备。
本发明提供的双面电极太阳能电池的制备方法不需要通过打孔等工艺形成电极,并且相对与现有太阳能电池的制造工艺来说步骤精简,并且电流损耗较小,可以在大面积的电池上制备。
发明内容
在下文中给出关于本发明的简要概述,以便提供关于本发明的某些方面的基本理解。应当理解,这个概述并不是关于本发明的穷举性概述。它并不是意图确定本发明的关键或重要部分,也不是意图限定本发明的范围。其目的仅仅是以简化的形式给出某些概念,以此作为稍后论述的更详细描述的前序。
本发明提供了一种双面电极太阳能电池的制备方法,相对于现有工艺,本方案不需要通过打孔等方法形成电极,增加一个电极减少了制备过程中的其它一些步骤,工艺简单并且能够大面积制备。
本发明提供一种双面电极太阳能电池的制备方法,包括步骤:
S101:提供P型硅基板;
S102:在硅基板上层形成氧化层;
S103:保留硅基板上部分氧化层、并刻蚀其他部位的氧化层,保留的氧化层作为硅基板上层的正电极通道;
S104:在硅基板上表面扩散一N层,形成PN结;
S105:去除硅基板上保留的氧化层,并在硅基板上层印刷金属电极,
所述金属电极包括正电极和顶电极;
S106:在硅基板下层形成底电极,形成双面电极太阳能电池。
上述方案中,所述步骤S101中,将所述硅基板上下层表面制作绒面;
可选的,所述氧化层材料的掺杂浓度高于所述P型硅基板的掺杂浓度;
所述步骤S104所述扩散为将上下两面均有绒面结构的硅基板放置入扩散炉中进行扩散,扩散源采用液态POCl3,形成包覆所述硅基板的扩散层,扩散出的PN结其结深在200~500微米之间;所述步骤S104中,先对硅基板正反面中的一面进行扩散,之后将硅基板翻转180度,对硅基板的另一面进行扩散。
上述方案中,步骤S105前还包括步骤:去除硅基板表面的磷硅玻璃;在所述硅基板两面进行钝化并镀减反射膜。
可选的,所述减反射膜为Si3N4膜。
可选的,步骤S105和步骤S106中,所述正电极和顶电极为银电极,底电极为铝电极。
可选的,所述银电极印刷方法为:丝网印刷方法。
可选的,硅基板的下层整面印刷有铝电极。
上述方案相对于现有工艺,减少了等离子刻边和去除背结两个步骤,工艺简单;同时,在硅基板上表面增加了一个电极,减少了电流的损耗,在大面积制备和使用的时候,更加的方便和节省材料。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本方案双面电极太阳能电池制备方法的流程图;
图2至图6为本方案双面电极太阳能电池制备过程结构图。
附图标记:
1-P型硅基板;   2-N型导体;   3-氧化层;     4-减反射膜;
5-正电极;      6-底电极;    7-顶电极;
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。在本发明的一个附图或一种实施方式中描述的元素和特征可以与一个或更多个其它附图或实施方式中示出的元素和特征相结合。应当注意,为了清楚的目的,附图和说明中省略了与本发明无关的、本领域普通技术人员已知的部件和处理的表示和描述。基于本发明中的实施例,本领域普通技术人员在没有付出创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
如图1所示为本方案双面电极太阳能电池制备方法的流程图,包括步骤:
S101:提供P型硅基板;
如图2所示,本方案中首先提供P型硅基板1,通过化学方法去除硅基板表面的油污、金属杂质和损伤层,然后在所述硅基板上下层表面制作绒面,所述绒面包覆整个硅基板,形成减反射结构,目的是减少入射光在硅表面的反射,增加硅基板对入射光的吸收。制作绒面利用了硅在稀NaOH溶液中的各向异性腐蚀这一特性。
S102:在硅基板上层形成氧化层;
S103:保留硅基板上部分氧化层、并刻蚀其他部位的氧化层,保留的氧化层3作为硅基板上层的正电极通道;
如图3所示,在硅基板上形成氧化层,并且对所述氧化层进行刻蚀,保留硅基板上层正电极通道区的氧化层3。
可选的,所述氧化层材料的掺杂浓度高于所述P型硅基板的掺杂浓度;
S103:在硅基板表面扩散一N层,形成PN结;
如图4所示,在硅基板表面扩散一N层,上述步骤与现有工艺的区别在于进行两次扩散,首先将所述基板的上表面对着风口,对硅基板的上表面进行扩散,再将所述硅基板翻转180度,将所述硅基板的下表面对着风口,对硅基板的下表面进行扩散;上述两次扩散是为了使载流子扩散均匀,同时也可以看到未完成的电池被一个环形的PN结包围,上下两个面都有PN结,实现了对不同波长的光线的吸收,波长较短的光被上表面的PN结吸收,波长较长的光被下表面的PN结吸收。
上述步骤所述的扩散为将正反两面均有绒面结构的硅基板放置入扩散炉中进行扩散,扩散源采用液态POCl3,形成包覆所述硅基板的扩散层,扩散出的PN结其结深在200~500微米之间。
S105:去除硅基板上保留的氧化层,并在硅基板上层印刷金属电极,所述金属电极包括正电极5和顶电极6;
上述步骤S105前还包括:去除硅基板表面的磷硅玻璃;在所述硅基板两面进行钝化并镀减反射膜;
在步骤S102和S104进行的氧化和扩散会在硅基板表面生成磷硅玻璃,即掺有P2O5的SiO2层,需将其去除,并且需要将之前保留的氧化层去除,生成一个通道,这个通道即用来印刷金属电极;如图5所示。
在所述硅基板表面钝化并渡镀反射膜4采用化学气相淀积技术,钝化为了减少载流子在硅表面的复合,镀减反射膜目的是减少入射光的反射,增加对入射光的吸收,增加对光能的利用率。
可选的,所述减反射膜为Si3N4膜,所述膜的厚度应不超过80nm。
如图6所示,所述金属电极印刷在硅基板上层,采用丝网印刷的方法,将电极印刷在硅基板上层,并且上层的正电极和顶电极一次性印刷形成,正电极印刷在氧化层去除的的通道中,顶电极印刷在除通道处的其他位置,并且正电极和顶电极不能相连接或者相接触。在留有氧化层的地方印刷金属电极,印刷的所述正电极与P型硅基板导通,本方案不需要通过将硅基板打孔再加上电极,只需要将需要的氧化层在蚀刻的时候留下,再利用化学溶剂将其洗去即可留有正电极的通道。
可选的,所述正电极6和顶电极8金属为银,底电极7金属为铝;硅基板上表面的电极通过丝网印刷的方法将银金属印刷在所述硅基板的上表面,通常印成栅线状,实现良好接触的同时使光线有较高的透过率;金属铝印刷满整个下表面,目的是为了克服由于电池串联而引起的电阻,并且减少下表面的复合。给硅基板表面印刷金属电极形成欧姆接触,使电流能够有效输出。
S106:在硅基板下层形成底电极,形成双面电极太阳能电池。
如图6所示,在上表面增加了顶电极8,所述顶电极8为负电极,所以所述太阳能电池上表面有两个电极,既有正电极又有负电极,下表面有一个负电极,在使用的过程中可以直接连接所述上表面的正负两个电极,或者在大面积使用的时候可以将上表面的正负电极分别与其他电极相连。比较现有的双面PN结太阳能电池的电极需要通过一个或者多个PN结相连接,电流的损耗较大,本方案通过增加一个顶电极,在电池的使用过程中电流的损耗减少;并且在多个太阳能电池相连接使用时,电极相连接的方式可以多种多样,并且上表面同时存在正负电极线连接方便也节省资源。
上述步骤为本发明提供的双面电极太阳能电池的制造工艺,相比现有的太阳能电池的制造方法,本方案提出的制造工艺步骤精简,使用效率提高并且节省材料,在大面积的制备和使用中都有很大的优势。
最后应说明的是:虽然以上已经详细说明了本发明及其优点,但是应当理解在不超出由所附的权利要求所限定的本发明的精神和范围的情况下可以进行各种改变、替代和变换。而且,本发明的范围不仅限于说明书所描述的过程、设备、手段、方法和步骤的具体实施例。本领域内的普通技术人员从本发明的公开内容将容易理解,根据本发明可以使用执行与在此所述的相应实施例基本相同的功能或者获得与其基本相同的结果的、现有和将来要被开发的过程、设备、手段、方法或者步骤。因此,所附的权利要求旨在在它们的范围内包括这样的过程、设备、手段、方法或者步骤。

Claims (10)

1.一种双面电极太阳能电池的制备方法,其特征在于,包括步骤:
S101:提供P型硅基板;
S102:在硅基板上层形成氧化层;
S103:保留硅基板上部分氧化层、并刻蚀其他部位的氧化层,保留的氧化层作为硅基板上层的正电极通道;
S104:在硅基板表面扩散一N层,形成PN结;
S105:去除硅基板上保留的氧化层,并在硅基板上层印刷金属电极,所述金属电极包括正电极和顶电极;
S106:在硅基板下层形成底电极,形成双面电极太阳能电池。
2.根据权利要求1所述的双面电极太阳能电池的制备方法,其特征在于,所述步骤S101中,将所述硅基板上下层表面制作绒面。
3.根据权利要求1所述的双面电极太阳能电池的制备方法,其特征在于,所述氧化层材料的掺杂浓度高于所述P型硅基板的掺杂浓度。
4.根据权利要求1所述的双面电极太阳能电池的制备方法,其特征在于,所述步骤S104具体包括:将上下两面均有绒面结构的硅基板放置入扩散炉中进行扩散,扩散源采用液态POCl3,形成包覆所述硅基板的扩散层,扩散出的PN结其结深在200~500微米之间。
5.根据权利要求4所述的双面电极太阳能电池的制备方法,其特征在于,所述步骤S104中,先对硅基板正反面中的一面进行扩散,之后将硅基板翻转180度,对硅基板的另一面进行扩散。
6.根据权利要求1所述的双面电极太阳能电池的制备方法,其特征在于,步骤S105前还包括步骤:去除硅基板表面的磷硅玻璃,之后,在硅基板上、下层进行钝化并镀减反射膜。
7.根据权利要求6所述的双面电极太阳能电池的制备方法,其特征在于,所述减反射膜为Si3N4膜。
8.根据权利要求1所述的双面电极太阳能电池的制备方法,其特征在于,步骤S105和步骤S106中,所述正电极和顶电极为银电极,底电极为铝电极。
9.根据权利要求8所述的一种双面电极太阳能电池的制备方法,其特征在于,所述银电极的印刷方法为:丝网印刷的方法。
10.根据权利要求8所述的双面电极太阳能电池的制备方法,其特征在于,硅基板的下层整面印刷有铝电极。
CN201410126821.XA 2014-03-31 2014-03-31 双面电极太阳能电池的制备方法 Expired - Fee Related CN103985782B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410126821.XA CN103985782B (zh) 2014-03-31 2014-03-31 双面电极太阳能电池的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410126821.XA CN103985782B (zh) 2014-03-31 2014-03-31 双面电极太阳能电池的制备方法

Publications (2)

Publication Number Publication Date
CN103985782A true CN103985782A (zh) 2014-08-13
CN103985782B CN103985782B (zh) 2016-08-17

Family

ID=51277681

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410126821.XA Expired - Fee Related CN103985782B (zh) 2014-03-31 2014-03-31 双面电极太阳能电池的制备方法

Country Status (1)

Country Link
CN (1) CN103985782B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112054094A (zh) * 2020-09-08 2020-12-08 中国科学院苏州纳米技术与纳米仿生研究所 一种太阳能电池及其制作方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010157654A (ja) * 2009-01-05 2010-07-15 Sharp Corp 半導体装置の製造方法
CN102544235A (zh) * 2012-02-24 2012-07-04 上饶光电高科技有限公司 一种mwt太阳能电池电极的制备方法
CN103178163A (zh) * 2011-08-02 2013-06-26 南通大学 一种硅基埋栅薄膜太阳能电池的制作方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010157654A (ja) * 2009-01-05 2010-07-15 Sharp Corp 半導体装置の製造方法
CN103178163A (zh) * 2011-08-02 2013-06-26 南通大学 一种硅基埋栅薄膜太阳能电池的制作方法
CN102544235A (zh) * 2012-02-24 2012-07-04 上饶光电高科技有限公司 一种mwt太阳能电池电极的制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112054094A (zh) * 2020-09-08 2020-12-08 中国科学院苏州纳米技术与纳米仿生研究所 一种太阳能电池及其制作方法
WO2022052534A1 (zh) * 2020-09-08 2022-03-17 中国科学院苏州纳米技术与纳米仿生研究所 一种太阳能电池及其制作方法

Also Published As

Publication number Publication date
CN103985782B (zh) 2016-08-17

Similar Documents

Publication Publication Date Title
JP6553731B2 (ja) N型両面電池のウェットエッチング方法
CN102468365B (zh) 双面太阳能电池的制造方法
JP2021061395A (ja) 太陽電池及びその製造方法
CN102212885A (zh) 多晶硅太阳能电池片的制绒方法
Es et al. Metal-assisted nano-textured solar cells with SiO2/Si3N4 passivation
CN101339966A (zh) 太阳能电池的后制绒生产工艺
CN105655424A (zh) 全背场扩散n型硅基电池及其制备方法
CN103094417A (zh) 低高低掺杂浓度的发射极结构的太阳能电池制作方法
CN102945892B (zh) 一种太阳能电池制造方法
CN104134706B (zh) 一种石墨烯硅太阳电池及其制作方法
CN202076297U (zh) 基于p型硅片的背接触式hit太阳能电池结构
CN205959994U (zh) 一种单面抛光的异质结太阳能电池
CN103094414B (zh) 背钝化太阳能电池背电场的制备方法以及具有该背电场的背钝化太阳能电池
CN103280492A (zh) 一种高方阻太阳能电池的制作方法
CN204102912U (zh) 一种石墨烯硅太阳电池
CN103985782A (zh) 双面电极太阳能电池的制备方法
CN102361050A (zh) 一种太阳能电池制作方法
CN103035771B (zh) N型mwt太阳能电池结构及其制造工艺
CN102820375B (zh) 一种背接触太阳能电池的制备方法
CN107910398A (zh) P型perc双面太阳电池的制作方法
CN107394008A (zh) 一种n型双面太阳能电池片及其制作方法
CN104538502A (zh) 一种晶体硅mwt太阳能电池的制作方法
CN102185031B (zh) 基于p型硅片的背接触式hit太阳能电池制备方法
CN107039538B (zh) 一种高光电转换效率太阳能电池及其制备方法
CN103985771A (zh) 双面电极太阳能电池及太阳能电池阵列

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
CB03 Change of inventor or designer information

Inventor after: Zhu Haifeng

Inventor after: Wang Qiang

Inventor after: Zhong Beixin

Inventor after: Hua Guoran

Inventor before: Hua Guoran

Inventor before: Wang Qiang

Inventor before: Zhu Haifeng

Inventor before: Zhong Beixin

COR Change of bibliographic data
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20160817

Termination date: 20170331

CF01 Termination of patent right due to non-payment of annual fee