WO2014103698A1 - スロットルバルブ装置 - Google Patents

スロットルバルブ装置 Download PDF

Info

Publication number
WO2014103698A1
WO2014103698A1 PCT/JP2013/083056 JP2013083056W WO2014103698A1 WO 2014103698 A1 WO2014103698 A1 WO 2014103698A1 JP 2013083056 W JP2013083056 W JP 2013083056W WO 2014103698 A1 WO2014103698 A1 WO 2014103698A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve body
throttle valve
magnetic field
valve device
hall
Prior art date
Application number
PCT/JP2013/083056
Other languages
English (en)
French (fr)
Inventor
眞一 関口
Original Assignee
株式会社ミクニ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ミクニ filed Critical 株式会社ミクニ
Publication of WO2014103698A1 publication Critical patent/WO2014103698A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D9/00Controlling engines by throttling air or fuel-and-air induction conduits or exhaust conduits
    • F02D9/08Throttle valves specially adapted therefor; Arrangements of such valves in conduits
    • F02D9/10Throttle valves specially adapted therefor; Arrangements of such valves in conduits having pivotally-mounted flaps
    • F02D9/1035Details of the valve housing
    • F02D9/105Details of the valve housing having a throttle position sensor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D11/00Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated
    • F02D11/06Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance
    • F02D11/10Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance of the electric type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D11/00Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated
    • F02D11/06Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance
    • F02D11/10Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance of the electric type
    • F02D11/106Detection of demand or actuation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D31/00Use of speed-sensing governors to control combustion engines, not otherwise provided for
    • F02D31/001Electric control of rotation speed
    • F02D31/002Electric control of rotation speed controlling air supply
    • F02D31/003Electric control of rotation speed controlling air supply for idle speed control
    • F02D31/005Electric control of rotation speed controlling air supply for idle speed control by controlling a throttle by-pass
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K1/00Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces
    • F16K1/16Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces with pivoted closure-members
    • F16K1/18Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces with pivoted closure-members with pivoted discs or flaps
    • F16K1/22Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces with pivoted closure-members with pivoted discs or flaps with axis of rotation crossing the valve member, e.g. butterfly valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K37/00Special means in or on valves or other cut-off apparatus for indicating or recording operation thereof, or for enabling an alarm to be given
    • F16K37/0025Electrical or magnetic means
    • F16K37/0033Electrical or magnetic means using a permanent magnet, e.g. in combination with a reed relays
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D11/00Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated
    • F02D11/06Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance
    • F02D11/10Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance of the electric type
    • F02D2011/101Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance of the electric type characterised by the means for actuating the throttles
    • F02D2011/102Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance of the electric type characterised by the means for actuating the throttles at least one throttle being moved only by an electric actuator

Definitions

  • the present invention relates to a throttle valve device.
  • a throttle valve device that adjusts the amount of air taken into an engine by rotating a valve element disposed in a flow path is widely used.
  • a magnet is attached to a shaft to which a valve body is attached, a magnetic field generated by the magnet is detected by a magnetic sensor, and a change in magnetic flux density is detected.
  • the rotation angle of the valve body is generally detected in a non-contact manner.
  • a bypass flow path that bypasses the flow path in which the valve body is disposed is provided, and an actuator controls the flow rate of air that passes through the bypass flow path, thereby adjusting the rotational speed during engine idling.
  • an actuator controls the flow rate of air that passes through the bypass flow path, thereby adjusting the rotational speed during engine idling.
  • a throttle valve device In such a throttle valve device, the actuator that generates a magnetic field is disposed near the magnetic sensor, and thus is particularly susceptible to the influence of the magnetic field. Furthermore, since the throttle valve device has recently been miniaturized, the distance between the actuator and the magnetic sensor tends to approach, and the influence is further increased.
  • the present invention has been made in view of the above-described problems, and an object of the present invention is to provide a throttle valve device that can accurately detect the rotation angle of a valve body regardless of the influence of an external magnetic field.
  • one aspect of the present invention is a throttle valve device that adjusts the amount of air taken into an engine by rotating a valve body disposed in a flow path.
  • a bypass channel that bypasses the bypass channel, and the actuator controls the flow rate of air passing through the bypass channel to adjust the rotational speed when the engine is idling, and the valve body rotates.
  • the rotation angle detection device detects a change in magnetic flux density of a magnet that rotates according to the rotation of a valve body and a magnetic field generated by the magnet.
  • a magnetic sensor that detects the rotation angle of the valve body and the magnetic sensor has a direction of the sensing surface that senses the magnetic flux density and a direction of the magnetic field generated by the actuator. , Characterized in that it is arranged in a manner to be non-parallel.
  • the magnetic sensor is arranged in such a manner that the direction of the sensing surface for sensing the magnetic flux density is orthogonal to the direction of the magnetic field generated by the actuator.
  • FIG. 2 is a cross-sectional view of the embodiment shown in FIG. 1 taken along an arrow B-B ′.
  • FIG. 2 is a cross-sectional view of the embodiment shown in FIG. 1 taken along an arrow B-B ′.
  • FIG. 9 is an output waveform of the Hall IC when the solenoid valve is operated in the case of the positional relationship shown in FIG. It is a figure which shows the magnetic flux density in the positional relationship shown to FIG.
  • FIG. 1 is a perspective view showing a schematic configuration example of a throttle valve device according to an embodiment of the present invention.
  • the throttle valve device 1 according to the present embodiment has a main body portion 10 in which a flow path 11 through which air to be sent to an intake port of an engine passes is formed.
  • a valve body 12 having a shape substantially the same as the cross-sectional shape of the flow path is disposed in the middle of the flow path 11.
  • the valve body 12 rotates about the shaft 13 and blocks the flow path 11 according to the angle, thereby adjusting the amount of air flowing through the flow path 11.
  • One of the flow paths 11 (for example, the right side in FIG.
  • a rotation angle detection device 20 is connected to one end of the shaft 13. More specifically, a magnet 21 having a cylindrical shape that rotates according to the rotation of the shaft 13 is provided at one end of the shaft 13. In the hollow portion of the magnet 21, a Hall IC (IntegratedIntegrCircuit) 22 that is a magnetic sensor is disposed.
  • the magnet 21 has a cylindrical inner surface alternately magnetized in S and N poles, and the magnetic flux density penetrating the Hall IC 22 changes as the magnet 21 rotates according to the shaft 13.
  • the Hall IC 22 is fixed to a substrate (not shown) and detects the angle (opening) of the valve body 12 by detecting a change in magnetic flux density generated by the magnet 21 that rotates according to the shaft 13. Notify (Engine Control Unit).
  • FIG. 2 is a diagram showing a detailed configuration example of the Hall IC 22.
  • the Hall IC has a main body portion 221 in which a Hall element for detecting a change in magnetic flux density is incorporated, and terminals 222 to 224.
  • the Hall IC 22 has sensing surfaces 221a and 221b, detects a change in magnetic flux in a direction parallel to the Y direction shown in FIG. 2, and has low sensitivity in other directions.
  • FIG. 3 is a diagram showing the effect on output fluctuation when an external magnetic field is applied in the X, Y, and Z directions of FIG.
  • the influence of the external magnetic field in the X direction and the Z direction is small, and the influence of the external magnetic field in the Y direction is large. That is, the influence of the external magnetic field parallel to the X direction or the Z direction in FIG. 2 is small, and the influence of the external magnetic field in the direction parallel to the Y direction is large.
  • FIG. 4 is a side view of FIG. 1 viewed from the arrow A.
  • the Hall IC 22 is disposed substantially at the center of the hollow portion of the magnet 21.
  • the Hall IC 22 is arranged such that the sensing surfaces 221a and 221b face in the left-right direction in the figure. The reason why the Hall IC 22 is arranged in such a direction will be described later.
  • FIG. 5 shows a cross-sectional view of the throttle valve device 1 taken along the arrow B-B ′ shown in FIG.
  • the air flow is bypassed by the flow path 11 closed by the valve body 12 when the valve body 12 is closed (the engine is idling or stopped). Is formed.
  • a solenoid valve 30 is disposed above the bypass flow path 110. The solenoid valve 30 is inserted into the bypass channel 110 and moves in the vertical direction in FIG. 5 to change the cross-sectional area of the channel and adjust the amount of air flowing in the bypass channel 110.
  • a plunger 311 connected to the valve body 312 and configured by a magnetic body disposed inside the coil 313, and a coil 313 that generates a magnetic field by passing an electric current and applies a driving force in the vertical direction to the plunger 311.
  • a coil 313 that generates a magnetic field by passing an electric current and applies a driving force in the vertical direction to the plunger 311.
  • Such a solenoid valve 30 is controlled by an ECU (not shown), for example, and when the engine is in an idling state, a current is passed through the coil 313 in accordance with the rotational speed of the engine so that the rotational speed becomes constant. (To stabilize idling). Specifically, when the rotational speed is low, the cross-sectional area of the bypass flow path 110 is adjusted so as to increase, and the rotational speed is controlled to be high. When the rotational speed is high, the cross-sectional area of the bypass flow path 110 is controlled. Is adjusted so as to be small, and the rotational speed is controlled to be low. By adjusting the rotational speed during idling using such a solenoid valve 30, the rotational speed can be stabilized without using the valve body 12 in which fine adjustment of the flow rate is difficult.
  • FIG. 6 shows an example of an output waveform of the Hall IC 22 when the solenoid valve 30 is operated in such an arrangement state. As shown in FIG. 7, when the solenoid valve 30 is operated, the waveform greatly fluctuates in accordance with the operation, which causes erroneous detection.
  • FIG. 8 shows an example of the output waveform of the Hall IC 22 when the solenoid valve 30 is operated in such an arrangement state. As shown in FIG. 9, even when the solenoid valve 30 is operated, the fluctuation of the output waveform is very small as compared with FIG. 7, so that the occurrence of erroneous detection can be prevented.
  • FIG. 10 shows analysis values obtained by magnetic field analysis showing changes in magnetic flux density detected by the Hall IC 22 in the arrangement state of FIGS. 6 and 8.
  • the upper stage of FIG. 10 has the position shown in FIG. 6 as the reference position (0 mm) in the arrangement state of FIG. 6, and moves the Hall IC 22 from this position in the direction indicated by the arrow in FIG. 6 (right direction in FIG. 6).
  • the relationship between the movement distance in the case of a magnetic field and the change in magnetic flux density detected by the Hall IC 22 is shown.
  • the change in magnetic flux density is 3 mT, 0.4 mT at 10 mm, 0.15 mT at 20 mm, and 0.04 mT at 30 mm. It has become.
  • the lower part of FIG. 10 shows an actual measurement value of a change in magnetic flux density detected by the Hall IC 22 in the state shown in FIG. 8 (a state in which it is arranged at the same position as the reference position in FIG. 6).
  • the change in magnetic flux density detected in the arrangement shown in FIG. 8 is 0.5 mT, which is attenuated to about 1/6 compared to the reference position in FIG. In the state of FIG. 8, the experiment of moving away from the reference position is not performed. However, from the comparison with FIG. 6, it is expected that the change in the magnetic flux density decreases as the distance from the reference position increases.
  • the Hall IC 22 is installed so that the magnetic field generated by the solenoid valve 30 and the sensing surfaces 221a and 221b are substantially orthogonal to each other and as far as possible. .
  • the direction of the sensing surface of the Hall IC 22 is arranged in a manner substantially perpendicular to the direction of the magnetic field generated by the solenoid valve 30, so that the solenoid valve Even when 30 is operated, the influence on the Hall IC 22 can be reduced.
  • the present invention is not limited to the case described above.
  • the rotational speed during idling is adjusted using the solenoid valve 30, but other actuators can be used.
  • an electric motor such as a stepping motor can be used.
  • the direction of the magnetic field generated by the electric motor and the direction of the sensing surface of the Hall IC 22 are arranged so as to be substantially orthogonal to each other, it can be made less susceptible to the influence of the magnetic field. Can be suppressed.
  • the direction of the magnetic field generated by the solenoid valve 30 as an actuator and the direction of the sensing surfaces 221a and 221b of the Hall IC 22 are arranged so as to be substantially orthogonal to each other. It suffices if it is a mode that is not affected by the magnetic field, and it may be arranged in a mode that these are not parallel. Desirably, the direction of the magnetic field generated by the solenoid valve 30 and the sensing surfaces 221a and 221b of the Hall IC 22 can be set within a range of 90 ° ⁇ 10 °.
  • the configuration of the solenoid valve 30 in the above embodiment is an example, and the present invention is not limited to such a configuration.
  • the configuration of the bypass channel 110 may be a configuration other than that shown in FIG. 5, and the configuration of the valve body 312 may be a configuration other than that shown in FIG. 5.
  • the bypass flow path 110 is provided on the upper surface of FIG. 1.
  • the direction of the magnetic field and the direction of the sensing surface of the Hall IC 22 can satisfy the above-described relationship, You may make it provide in surfaces other than. Specifically, it may be provided on the same surface as the rotation angle detection device 20.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Control Of Throttle Valves Provided In The Intake System Or In The Exhaust System (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

 スロットルバルブ装置を提供すること。 流路11内に配置された弁体12を回動させることでエンジンに取り込まれる空気の量を調整するスロットルバルブ装置1であって、弁体が配置された流路をバイパスするバイパス流路を備え、バイパス流路を通過する空気の流量をアクチュエータ30により制御することで、エンジンのアイドリング時の回転速度を調整する機能を有するとともに、弁体の回動角度を検出する回動角度検出装置20を有するスロットルバルブ装置において、回動角度検出装置は、弁体の回動に応じて回動するマグネット21と、マグネットが発生する磁界の磁束密度の変化を検出することで弁体の回動角度を検出する磁気センサ22と、を有し、磁気センサは、磁束密度を感知する感知面の方向が、アクチュエータが発生する磁界の方向と、非平行となる態様で配置されている。

Description

スロットルバルブ装置
 本発明は、スロットルバルブ装置に関するものである。
 流路内に配置された弁体を回動させることでエンジンに取り込まれる空気の量を調整するスロットルバルブ装置が広く用いられている。
 このようなスロットルバルブ装置では、例えば、特許文献1に開示されているように、弁体が取り付けられたシャフトにマグネットを取り付け、このマグネットが発生する磁界を磁気センサで検出し、磁束密度の変化により、弁体の回動角度を非接触で検出することが一般的に行われている。
特開平11-264711号公報
 ところで、特許文献1に開示された技術のように、磁束密度の変化によって回動角度を検出する場合、外部磁界の影響によって磁気センサが影響を受け、検出された角度に誤差が生じたり、角度を正確に検出できなかったりする場合が生じる。
 近年、弁体が配置された流路をバイパスするバイパス流路を設け、このバイパス流路を通過する空気の流量をアクチュエータにより制御することで、エンジンのアイドリング時の回転速度を調整する機能を有するスロットルバルブ装置が存在する。このようなスロットルバルブ装置では、磁界を発生するアクチュエータが磁気センサの近くに配置されることから、特に磁界の影響を受けやすい。さらに、最近では、スロットルバルブ装置の小型化が進んでいるため、アクチュエータと磁気センサとの距離が接近する傾向にあるため、影響が一層大きくなっている。
 本発明は、上記のような課題を鑑みて行われたものであり、外部磁界の影響によらず、弁体の回動角度を正確に検出できるスロットルバルブ装置を提供することを目的としている。
 上記課題を解決するために、本発明の一面は、流路内に配置された弁体を回動させることでエンジンに取り込まれる空気の量を調整するスロットルバルブ装置であって、弁体が配置された流路をバイパスするバイパス流路を備え、バイパス流路を通過する空気の流量をアクチュエータにより制御することで、エンジンのアイドリング時の回転速度を調整する機能を有するとともに、弁体の回動角度を検出する回動角度検出装置を有するスロットルバルブ装置において、回動角度検出装置は、弁体の回動に応じて回動するマグネットと、マグネットが発生する磁界の磁束密度の変化を検出することで弁体の回動角度を検出する磁気センサと、を有し、磁気センサは、磁束密度を感知する感知面の方向が、アクチュエータが発生する磁界の方向と、非平行となる態様で配置されていることを特徴とする。
 また、磁気センサは、磁束密度を感知する感知面の方向が、アクチュエータが発生する磁界の方向と、直交する態様で配置することが望ましい。
 本発明によれば、外部磁界の影響によらず、弁体の回動角度を正確に検出できるスロットルバルブ装置を提供することが可能となる。
本発明の実施形態の構成例を示す斜視図である。 図1に示すホールICの詳細を示す図である。 図2に示すホールICの方向による外部磁界の影響を示す図である。 図1に示す実施形態を矢印Aの方向から見た側面図である。 図1に示す実施形態を矢印B-B’で切断した場合の断面図である。 ソレノイドバルブとホールICの位置関係を示す図である。 図6に示す位置関係の場合においてソレノイドバルブを動作させたときのホールICの出力波形である。 ソレノイドバルブとホールICの他の位置関係を示す図である。 図8に示す位置関係の場合においてソレノイドバルブを動作させたときのホールICの出力波形である。 図6,8に示す位置関係における磁束密度を示す図である。
 次に、本発明の実施形態について説明する。
[実施形態の構成の説明]
 図1は本発明の実施形態に係るスロットルバルブ装置の概略構成例を示す斜視図である。この図に示すように、本実施形態に係るスロットルバルブ装置1は、エンジンの吸気口に送る空気が通過する流路11が形成された本体部10を有している。流路11の途中には、流路の断面形状と略同じ形状を有する弁体12が配置されている。この弁体12は、シャフト13を軸として回動し、その角度に応じて流路11を遮ることで、流路11を流れる空気の量を調整する。流路11の一方(例えば、図1の右側)には、空気中のダスト等を濾過するためのエアフィルタが設けられており、他方にはエンジンの吸気口が接続される。弁体12を回動させることで、エアフィルタから吸気口に流れる空気の流量を調整し、エンジンの回転速度を制御する。
 シャフト13の一端には、回動角度検出装置20が接続されている。より詳細には、シャフト13の一端にはシャフト13の回動に応じて回転する円筒形状を有するマグネット21が設けられている。マグネット21の中空部には、磁気センサであるホールIC(Integrated Circuit)22が配置されている。マグネット21は、円筒形の内側面がS極、N極に交互に帯磁されており、マグネット21がシャフト13に従って回動することで、ホールIC22を貫通する磁束密度が変化する。ホールIC22は、図示しない基板に固定され、シャフト13に応じて回動するマグネット21が発生する磁束密度の変化を検出することで、弁体12の角度(開度)を検出し、図示しないECU(Engine Control Unit)に通知する。
 図2は、ホールIC22の詳細な構成例を示す図である。この図2に示すように、ホールICは、磁束密度の変化を検出するホール素子が内蔵された本体部221および端子222~224を有している。ホールIC22は感知面221a,221bを有しており、図2に示すY方向と平行な方向の磁束の変化を検出し、それ以外の方向に対する感度は低い。
 図3は、図2のX,Y,Z方向に外部磁界が印加された場合の出力変動に与える影響を示す図である。この図3に示すように、X方向とZ方向の外部磁界の影響は小さく、Y方向の外部磁界の影響は大きい。すなわち、図2のX方向またはZ方向と平行な外部磁界の影響は小さく、Y方向に平行な方向の外部磁界の影響は大きい。
 図4は、図1を矢印Aから見た場合の側面図である。この図4に示すように、ホールIC22は、マグネット21の中空部の略中央に配置されている。また、ホールIC22は、感知面221a,221bが図の左右方向に向くように配置されている。なお、ホールIC22をこのような方向で配置する理由については後述する。
 図5は、スロットルバルブ装置1を図1に示す矢印B-B’で切断した断面図を示している。この図に示すように、本体部10の弁体12上部には、弁体12が閉じた状態(エンジンがアイドリングまたは停止状態)において、弁体12によって閉じられた流路11をバイパスして空気が流れるバイパス流路110が形成されている。また、バイパス流路110の上部には、ソレノイドバルブ30が配置されている。このソレノイドバルブ30は、バイパス流路110内に挿入され、図5の上下方向に移動することで、流路の断面積を可変し、バイパス流路110内を流れる空気の量を調整する弁体312、弁体312に接続され、コイル313の内部に配置された磁性体によって構成されるプランジャ311、および、電流を通じることで磁界を発生してプランジャ311に上下方向の駆動力を与えるコイル313を有している。なお、図5では、プランジャ311を原点位置に復帰させるスプリングは図示を省略している。
 このようなソレノイドバルブ30は、例えば、図示しないECUによって制御され、エンジンがアイドリング状態になった場合には、エンジンの回転速度に応じてコイル313に電流が通じられて回転速度が一定になるように(アイドリングが安定するように)制御される。具体的には、回転速度が低い場合にはバイパス流路110の断面積が大きくなるように調整されて回転速度が高く制御され、また、回転速度が高い場合にはバイパス流路110の断面積が小さくなるように調整されて回転速度が低く制御される。このようなソレノイドバルブ30を用いてアイドリング時の回転速度を調整することで、流量の微調整が困難な弁体12を用いることなく、回転速度を安定化することができる。
 ところで、ソレノイドバルブ30は、コイル313によって生じる磁力によって動作することから、このソレノイドバルブ30を動作させると磁界が生じる。このため、図6に示すように、ホールIC22の感知面221a,221bの方向(Y方向)が、ソレノイドバルブ30が発生する磁界の方向(図6中に破線矢印で示す方向)と平行である場合には、磁界の影響を大きく受ける。なお、感知面221a,221bの方向とは、ホールIC22に様々な方向の磁界を入力した場合に、最も感度が高い方向の磁界の方向を示すものとする。図7は、このような配置状態において、ソレノイドバルブ30を動作させた場合における、ホールIC22の出力波形の一例を示している。この図7に示すように、ソレノイドバルブ30を動作させると、動作に応じて波形が大きく変動するため、これが誤検出の原因となる。
 一方、図8では、本実施形態と同様に、ホールIC22の感知面221a,221bの方向(Y方向)が、ソレノイドバルブ30が発生する磁界の方向(図6中に破線矢印で示す方向)と、略直交するように設定されている。このような位置関係を有する場合、ホールIC22は、ソレノイドバルブ30が発生する磁界の影響を受けにくい。図9は、このような配置状態において、ソレノイドバルブ30を動作させた場合における、ホールIC22の出力波形の一例を示している。この図9に示すように、ソレノイドバルブ30を動作させた場合でも、図7に比較すると出力波形の変動は非常に小さいことから、誤検出の発生を防ぐことができる。
 図10は、図6および図8の配置状態においてホールIC22によって検出される磁束密度の変化を示す磁場解析による解析値を示している。図10の上段は、図6の配置状態において、図6に示す位置を基準位置(0mm)とし、この位置から図6に矢印で示す方向(図6の右方向)に、ホールIC22を移動させた場合の移動距離と、ホールIC22で検出される磁束密度の変化との関係を示している。この図6では、距離が0mmである場合(図6の状態)では、磁束密度の変化は3mTであり、10mmでは0.4mTであり、20mmでは0.15mTであり、30mmでは0.04mTとなっている。
 一方、図10の下段は、図8に示す状態(図6の基準位置と同じ位置に配置した状態)においてホールIC22によって検出される磁束密度の変化の実測値を示している。図8に示す配置状態で検出される磁束密度の変化は0.5mTであり、図6の基準位置に比較すると、1/6程度に減衰している。なお、図8の状態で、基準位置から遠ざける実験は行っていないが、図6との比較から、基準位置から遠ざければ、磁束密度の変化が減少することが予想される。このため、スロットルバルブ装置1のサイズが許せば、ホールIC22は、ソレノイドバルブ30が発生する磁界と、感知面221a,221bが略直交するようにするとともに、これらをできるだけ離して設置することが望ましい。
 以上に説明したように、本発明の実施形態によれば、ホールIC22の感知面の方向を、ソレノイドバルブ30が発生する磁界の方向と、略直交する態様で配置するようにしたので、ソレノイドバルブ30を動作させた場合であっても、ホールIC22に与える影響を少なくすることができる。
 また、図10に示すように、ソレノイドバルブ30とホールIC22を近接して配置することができるので、スロットルバルブ装置1を小型化した場合でも、弁体12の開度の検出精度が低下することを防止できる。
[変形実施形態の説明]
 以上の実施形態は一例であって、本発明が上述したような場合のみに限定されるものでないことはいうまでもない。例えば、以上の実施形態では、ソレノイドバルブ30を用いてアイドリング時の回転速度を調整するようにしたが、これ以外のアクチュエータを用いることもできる。例えば、ステッピングモータ等の電動モータを用いることも可能である。その場合であっても、電動モータが生じる磁界の方向と、ホールIC22の感知面の方向とを、略直交するように配置することで、磁界の影響を受けにくくすることができることから、誤検出の発生を抑制することができる。
 また、以上の実施形態では、アクチュエータであるソレノイドバルブ30が発生する磁界の方向と、ホールIC22の感知面221a,221bの方向とが略直交する態様で配置するようにしたが、ホールIC22がアクチュエータの磁界の影響を受けない態様であればよく、これらが平行にならない態様で配置すればよい。望ましくは、ソレノイドバルブ30が発生する磁界の方向と、ホールIC22の感知面221a,221bが90°±10°の範囲以内となるように設定することができる。
 また、以上の実施形態におけるソレノイドバルブ30の構成は一例であって、このような構成にのみ本発明が限定されるものではない。例えば、バイパス流路110の構成は、図5に示す以外の構成でもよく、また、弁体312の構成は、図5に示す以外の構成でもよい。
 また、以上の実施形態では、バイパス流路110は、図1の上面に設けるようにしたが、磁界の方向と、ホールIC22の感知面との方向が、前述した関係を満たすことができれば、これ以外の面に設けるようにしてもよい。具体的には、回動角度検出装置20と同じ面に設けるようにしてもよい。
 1 スロットルバルブ装置
 10 本体部
 11 流路
 12 弁体
 13 シャフト
 20 回動角度検出装置
 21 マグネット
 22 ホールIC(磁気センサ)
 30 ソレノイドバルブ
 110 バイパス流路

Claims (2)

  1.  流路内に配置された弁体を回動させることでエンジンに取り込まれる空気の量を調整するスロットルバルブ装置であって、前記弁体が配置された前記流路をバイパスするバイパス流路を備え、前記バイパス流路を通過する空気の流量をアクチュエータにより制御することで、前記エンジンのアイドリング時の回転速度を調整する機能を有するとともに、前記弁体の回動角度を検出する回動角度検出装置を有するスロットルバルブ装置において、
     前記回動角度検出装置は、
     前記弁体の回動に応じて回動するマグネットと、
     前記マグネットが発生する磁界の磁束密度の変化を検出することで前記弁体の回動角度を検出する磁気センサと、を有し、
     前記磁気センサは、前記磁束密度を感知する感知面の方向が、前記アクチュエータが発生する磁界の方向と、非平行となる態様で配置されている、
     ことを特徴とするスロットルバルブ装置。
  2.  前記磁気センサは、前記磁束密度を感知する感知面の方向が、前記アクチュエータが発生する磁界の方向と、直交する態様で配置されていることを特徴とする請求項1に記載のスロットルバルブ装置。
PCT/JP2013/083056 2012-12-25 2013-12-10 スロットルバルブ装置 WO2014103698A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-281670 2012-12-25
JP2012281670A JP6157850B2 (ja) 2012-12-25 2012-12-25 スロットルバルブ装置

Publications (1)

Publication Number Publication Date
WO2014103698A1 true WO2014103698A1 (ja) 2014-07-03

Family

ID=51020789

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/083056 WO2014103698A1 (ja) 2012-12-25 2013-12-10 スロットルバルブ装置

Country Status (2)

Country Link
JP (1) JP6157850B2 (ja)
WO (1) WO2014103698A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09287495A (ja) * 1996-04-18 1997-11-04 Fuji Heavy Ind Ltd 制御装置及び車両用エンジンの制御装置
JP2001059702A (ja) * 1999-06-17 2001-03-06 Denso Corp 回転角検出装置
WO2005040730A1 (ja) * 2003-10-29 2005-05-06 Mitsuba Corporation 回転角検出装置
JP2008203272A (ja) * 2008-05-09 2008-09-04 Aisan Ind Co Ltd スロットル開度検出装置の製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05195825A (ja) * 1991-07-29 1993-08-03 Asmo Co Ltd エンジンアイドリング制御機構のアクチュエータ
JP5195610B2 (ja) * 2009-04-22 2013-05-08 株式会社デンソー 回転角度検出装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09287495A (ja) * 1996-04-18 1997-11-04 Fuji Heavy Ind Ltd 制御装置及び車両用エンジンの制御装置
JP2001059702A (ja) * 1999-06-17 2001-03-06 Denso Corp 回転角検出装置
WO2005040730A1 (ja) * 2003-10-29 2005-05-06 Mitsuba Corporation 回転角検出装置
JP2008203272A (ja) * 2008-05-09 2008-09-04 Aisan Ind Co Ltd スロットル開度検出装置の製造方法

Also Published As

Publication number Publication date
JP6157850B2 (ja) 2017-07-05
JP2014125917A (ja) 2014-07-07

Similar Documents

Publication Publication Date Title
KR101388043B1 (ko) 밸브와, 가동형 부재의 변위 측정 장치 및 방법
JP4824023B2 (ja) 磁気式位置センサ
JP5535139B2 (ja) 近接センサ
JP2005054654A (ja) エンジン用吸気制御装置
JP2005048671A (ja) エンジン用吸気制御装置
JP6632333B2 (ja) 回転角度検出装置およびこれに用いる角度センサユニット
US7671584B2 (en) Rotation angle detection device
US7071683B2 (en) Rotation angle sensing device having enlarged detectable angle range
US20180066964A1 (en) Position detector with a minimum magnetic flux density position shifted from a center of a gap
TWI612319B (zh) 相對位置檢測裝置、加速位置感測器及車輛
JP2005233768A (ja) 回転角検出装置
JP6157850B2 (ja) スロットルバルブ装置
JP2014126553A (ja) 位置検出装置
JP3324382B2 (ja) 磁気式ポテンショメータ
US20140184203A1 (en) Position detector
US9574906B2 (en) Magnetic medium for magnetic encoder, magnetic encoder and method for manufacturing magnetic medium
US10060760B2 (en) Magnetix flux position detector that detects the magnetic flux at minimum position along a magnetic circuit
JP2004332603A (ja) 回転角検出装置,電子制御スロットル弁装置,スロットル弁軸の回転角度を検出するセンサの製造方法及び内燃機関
JP3855763B2 (ja) 回転角検出装置
WO2019159698A1 (ja) 流体制御弁
WO2018193738A1 (ja) 位置検出装置およびその製造方法
JP2010185854A (ja) 位置検出センサ及び位置検出装置
JP2002228405A (ja) 変位検出装置
WO2015194316A1 (ja) 変位検出装置
WO2014073055A1 (ja) 位置検出装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13869691

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: IDP00201504189

Country of ref document: ID

122 Ep: pct application non-entry in european phase

Ref document number: 13869691

Country of ref document: EP

Kind code of ref document: A1