WO2014103507A1 - 表面被覆部材およびその製造方法 - Google Patents

表面被覆部材およびその製造方法 Download PDF

Info

Publication number
WO2014103507A1
WO2014103507A1 PCT/JP2013/079700 JP2013079700W WO2014103507A1 WO 2014103507 A1 WO2014103507 A1 WO 2014103507A1 JP 2013079700 W JP2013079700 W JP 2013079700W WO 2014103507 A1 WO2014103507 A1 WO 2014103507A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
gas
compound
covering member
unit layer
Prior art date
Application number
PCT/JP2013/079700
Other languages
English (en)
French (fr)
Inventor
アノンサック パサート
山縣 一夫
晋 奥野
秀明 金岡
浩之 森本
伊藤 実
Original Assignee
住友電工ハードメタル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電工ハードメタル株式会社 filed Critical 住友電工ハードメタル株式会社
Priority to US14/654,924 priority Critical patent/US9777367B2/en
Priority to EP13868993.0A priority patent/EP2939769B1/en
Priority to KR1020157015267A priority patent/KR102094055B1/ko
Priority to CN201380068373.6A priority patent/CN104884200B/zh
Publication of WO2014103507A1 publication Critical patent/WO2014103507A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/32Carbides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/38Borides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/042Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material including a refractory ceramic layer, e.g. refractory metal oxides, ZrO2, rare earth oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/044Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material coatings specially adapted for cutting tools or wear applications

Definitions

  • the present invention relates to a surface covering member including a substrate and a hard coating formed on the surface, and a method of manufacturing the same.
  • Patent Document 1 discloses two or more kinds of hard coatings for covering the surface of a substrate of a surface covering member, which are selected from Group 4, 5, 6 elements, Al and Si.
  • a hard film is disclosed in which the composition of the element nitride, carbide, carbonitride or boride is continuously changed in a cycle of 0.4 nm to 50 nm.
  • the hard coating is formed by PVD (Physical Vapor Deposition). Specifically, a solid Ti, a solid Al, N 2 gas is used, and a Ti ion, an Al ion, and an N 2 gas generated by vacuum discharge are brought into contact with a substrate heated to 500 ° C. A TiN layer and an AlN layer are continuously formed on the surface of the material. Since the hard film formed by this method has a large strain in the structure, the surface-coated cutting tool having the hard film can have excellent wear resistance and toughness.
  • Patent Document 2 discloses a member having a Ti 1-x Al x N film as a surface covering member.
  • This Ti 1 -x Al x N film has a stoichiometry coefficient of 0.75 ⁇ x ⁇ 0.93, and a single cubic NaCl structure having a lattice constant afcc of 0.412 nm to 0.405 nm. It has a layered structure.
  • the Ti 1-x Al x N film is formed by a CVD (Chemical Vapor Deposition) method.
  • a hot wall type CVD reactor containing a substrate, it comprises a first gas mixture consisting of AlCl 3 , TiCl 4 , H 2 and argon, and NH 3 and N 2 as nitrogen sources.
  • a thermal CVD method is performed by introducing a second gas mixture.
  • the above-described film formed by this method has a high content of Al in the film, as compared to a Ti 1 -xAl x N film formed by a generally known PVD method. For this reason, the surface coating member which has this film has high oxidation resistance and high hardness, and can exhibit the outstanding abrasion resistance in high temperature.
  • the hard film formed by the PVD method may contain impurities such as metallic Ti, Al, and alloys thereof. Such impurities are said to be droplets, which not only inhibit the formation of the hard film, but also cause the detachment of the hard film during metal processing.
  • chipping, breakage and the like of the hard coating are easily generated starting from the portion where the hard coating has fallen, and as a result, it becomes difficult to prolong the life of the surface coated member, and the processing quality of the work material, The surface roughness may deteriorate.
  • the Ti 1 -xAl x N film has a stoichiometry coefficient of 0.75 ⁇ x ⁇ 0.93, but generally, in this composition, x is less than 0.7. If it is large, a large strain tends to occur in the crystal structure. In order to alleviate this strain, it is known that Ti 1 -xAl x N crystals of cubic NaCl structure transform to a hexagonal wurtzite structure. In particular, this transformation tends to be further promoted at high temperatures.
  • the present invention has been made in view of the above-described present conditions, and an object thereof is to provide a surface covering member stabilized and having a long life and a method of manufacturing the same.
  • the present invention is a surface covering member comprising a substrate and a hard coating formed on the surface, wherein the hard coating is composed of one or more layers, and at least one of the layers is a CVD method. And one or more selected from the group consisting of Ti, B, C, N, and O, including a multilayer structure in which first unit layers and second unit layers are alternately stacked. And the second unit layer includes a second compound including Al and one or more elements selected from the group consisting of B, C, N, and O. It is.
  • the surface covering member preferably includes an intermediate layer between the first unit layer and the second unit layer, and the composition of the intermediate layer is from the composition of the first compound to the composition of the second compound in the thickness direction thereof. It changes continuously.
  • the first compound has an fcc type crystal structure
  • the second compound has an hcp type crystal structure
  • the first compound further contains Al.
  • the present invention is also a method for producing a surface covering member comprising a substrate and a hard coating formed on the surface of the substrate, the hard coating comprising at least one layer of the layer Including a CVD process formed by a method, the CVD process ejecting a first gas containing Ti and one or more elements selected from the group consisting of B, C, N and O toward the surface of the substrate And a second step of injecting a second gas containing Al and at least one element selected from the group consisting of B, C, N and O toward the surface of the substrate. The first and second steps are alternately repeated.
  • the first gas contains one or more selected from the group consisting of N 2 , NH 3 and N 2 H 4 .
  • the second gas contains one or more selected from the group consisting of N 2 , NH 3 and N 2 H 4 .
  • the first gas further contains Al.
  • various properties such as wear resistance, welding resistance and thermal shock resistance are improved, and stabilization and long life can be achieved.
  • various properties such as wear resistance, welding resistance and thermal shock resistance are improved, thereby producing a surface covering member stabilized and having a long life. be able to.
  • the surface covering member of the present invention has a configuration including a substrate and a hard coating formed on the surface thereof.
  • a hard coating is preferably coated on the entire surface of the substrate, but the present invention is applicable even if a part of the substrate is not coated with this hard coating or the configuration of the hard coating is partially different. It does not deviate from the scope of
  • Such surface covering members of the present invention include cutting tools, wear resistant tools, mold parts, automobile parts and the like.
  • drills, end mills, indexable inserts for drills, indexable inserts for end mills, indexable inserts for milling, indexable inserts for turning, indexable inserts for turning, metal saws, gear cutting tools, reamers, taps Etc. can be suitably used as a cutting tool.
  • any substrate conventionally known as this kind of substrate can be used.
  • cemented carbide for example, WC base cemented carbide, WC, Co containing, or addition of carbonitrides such as Ti, Ta, Nb etc. included), cermet (TiC, TiN, TiCN etc.) Component
  • high-speed steel ceramics (titanium carbide, silicon carbide, silicon nitride, aluminum nitride, aluminum oxide, etc.), cubic boron nitride sintered body, or diamond sintered body preferable.
  • WC-based cemented carbide and cermet especially TiCN-based cermet. This is because these substrates are particularly excellent in the balance between hardness and strength at high temperatures, and have excellent properties as a substrate of the surface-coated member for the above-mentioned applications.
  • such a base material includes those with and without a chip breaker, and the edge line has a sharp shape. Also included are edges (a rake face and flank face crossing), honing (a sharp edge is added to a sharp edge), negative land (chamfered), or a combination of honing and a negative land .
  • the hard film of the present invention is composed of one or more layers, and at least one of the layers is formed by a CVD method, and has a multilayer structure in which first unit layers and second unit layers are alternately stacked. including.
  • the hard coating of the present invention may contain other layers as long as it contains at least one layer containing the above-mentioned multilayer structure.
  • Other layers include, for example, Al 2 O 3 layer, TiB 2 layer, TiBN layer, AlN layer (wurtzite type), TiN layer, TiCN layer, TiBNO layer, TiCNO layer, TiAlNO layer, TiAlCN layer, TiAlON layer, TiAlONC Layers can be mentioned.
  • the adhesion between the substrate and the hard film can be enhanced.
  • the Al 2 O 3 layer it is possible to improve the oxidation resistance of the hard coating.
  • the outermost layer formed of a TiN layer, a TiC layer, a TiCN layer, a TiBN layer or the like it is possible to have the identification of whether or not the cutting edge of the surface covering member has been used.
  • each layer constituting the hard coating is represented using a chemical formula such as "TiN” or "TiCN"
  • the atomic ratio is not particularly specified in the chemical formula, the atomic ratio of each element Does not indicate that only “1” is included, and all conventionally known atomic ratios are included.
  • the hard coating of the present invention preferably has a thickness of 3 to 30 ⁇ m. If the thickness is less than 3 ⁇ m, the wear resistance may be insufficient, and if it exceeds 30 ⁇ m, peeling or breakage of the hard coating may occur when a large stress is applied between the hard coating and the substrate in intermittent processing. It may occur frequently.
  • the layers other than the layer containing the multilayer structure of the present invention can be generally formed with a thickness of 0.1 to 10 ⁇ m.
  • the hard film of the present invention is composed of one or more layers, and at least one of the layers is formed by a CVD method, and has a multilayer structure in which first unit layers and second unit layers are alternately stacked. including.
  • the first unit layer includes Ti and one or more elements selected from the group consisting of B, C, N, and O.
  • the second unit layer includes the second compound including Al and at least one element selected from the group consisting of B, C, N, and O.
  • the first compound examples include TiC, TiN, TiCN, TiNO, TiCNO, TiB 2 , TiO 2 , TiBN, TiBNO, TiCBN, etc.
  • the second compound includes Al 2 O 3 , AlN, AlCN, AlCNO, AlNO etc. can be mentioned.
  • the first compound containing Ti has high hardness, and the second compound containing Al has excellent sliding properties.
  • the multilayer structure-containing layer of the present invention the occurrence of chipping, defects and the like due to transformation is suppressed, and the high hardness of the first compound and the high sliding property of the second compound are sufficiently obtained.
  • various properties such as abrasion resistance, welding resistance and thermal shock resistance in the surface-coated member of the present invention are improved.
  • the multilayer structure-containing layer of the present invention preferably has a thickness of 0.5 ⁇ m to 20 ⁇ m, more preferably 2 ⁇ m to 18 ⁇ m. If the thickness is less than 0.5 ⁇ m, the abrasion resistance may be insufficient, and if it exceeds 20 ⁇ m, distortion between unit layers may be alleviated, and the excellent properties as a hard layer may be lost. In addition, even if the multilayer structure-containing layer partially includes a configuration other than the multilayer structure, for example, an amorphous phase, Ti 1-x Al x N (0 ⁇ x ⁇ 1) having an fcc type crystal structure, and the like. It does not depart from the scope of the present invention as long as the effects of the present invention are exhibited.
  • the thickness of the lamination cycle is preferably 20 nm or more and 500 nm or less, and more preferably 100 nm or more and 300 nm or less. It is difficult in terms of manufacturing technology to make the lamination cycle less than 20 nm, and when the lamination cycle exceeds 500 nm, the adhesion strength between the first unit layer and the second unit layer is reduced to cause peeling, resulting in the above Characteristics of the The above-mentioned adhesion strength increases as the thickness of each layer of the first unit layer and the second unit layer decreases, but it is difficult in terms of manufacturing technology to set the thickness of each layer to 0.01 ⁇ m or less.
  • the thickness of the lamination cycle means the second unit layer adjacent to one first unit layer from one first unit layer (intermediate layer to be described later between the first unit layer and the second unit layer)
  • the distance to the adjacent first unit layer is included.
  • this distance is taken as the distance which ties the middle point of the thickness direction of each layer of a 1st unit layer and another 1st unit layer.
  • the number of laminated layers (total laminated number) of the layers constituting the multilayer structure-containing layer is not particularly limited, but is preferably 10 or more and 1000 or less. If the number of layers is less than 10, the hardness of the multilayer structure-containing layer may decrease due to coarsening of each unit layer, and if it exceeds 1000 layers, the thickness of each unit layer becomes too thin and the layers tend to mix. is there.
  • the multilayer structure-containing layer of the present invention can include an intermediate layer between the first unit layer and the second unit layer.
  • the composition of the intermediate layer of the present invention is continuously changed from the composition of the first compound to the composition of the second compound in the thickness direction from the side in contact with the first unit layer to the side in contact with the second unit layer.
  • the intermediate layer interposed therebetween has an atomic ratio of Ti from the side in contact with the first unit layer to the side in contact with the second unit layer It can have a configuration in which the atomic ratio of Al continuously increases as Y decreases continuously.
  • the intermediate layer has a continuous atomic ratio of at least Ti from the side in contact with the first unit layer to the side in contact with the second unit layer Can have a configuration that decreases significantly.
  • the intermediate layer in the multilayer structure-containing layer. That is, by having the intermediate layer between the first unit layer and the second unit layer, the composition continuously changes between the first unit layer and the second unit layer, so Large distortion is accumulated. In addition, since a thermally more stable layer is formed, transformation due to thermal shock is more difficult to occur. In addition, the presence of the intermediate layer increases the adhesion strength between the first unit layer and the second unit layer. Thereby, the multilayer structure-containing layer having the intermediate layer can more effectively maintain the high hardness of the first compound and the high sliding property of the second compound, and as a result, the wear resistance, Various properties such as welding resistance and thermal shock resistance are further improved.
  • the thickness of the intermediate layer of the present invention is not particularly limited.
  • the thickness may be about the same as the thickness of the first unit layer and / or the second unit layer, or may be extremely thin. Also, it is extremely thick compared to the respective thicknesses of the first unit layer or the second unit layer, in other words, even if the thickness of the first unit layer and / or the second unit layer is extremely thin compared to the intermediate layer Good.
  • the intermediate layer can also be regarded as a first unit layer and / or a second unit layer.
  • the first compound is TiN
  • the second compound is AlN
  • the composition of the intermediate layer is Ti x Al y N, from the side in contact with the first unit layer to the side in contact with the second unit layer
  • the atomic ratio x of Ti continuously decreases from 1 to 0
  • the atomic ratio y of Al continuously increases from 0 to 1.
  • a region where the atomic ratio x / y of Ti to Al is 1 or more is regarded as a first unit layer
  • a region where the atomic ratio x / y is less than 1 is a second unit layer I can catch it.
  • the first unit layer and the second unit layer do not have clear boundaries.
  • the region containing the first compound in the first unit layer has the Ti concentration in the thickness direction of the lamination cycle.
  • the local maximum point, and the region containing the second compound in the second unit layer is the local maximum point of the Al concentration in the thickness direction of the stacking cycle.
  • the first compound has an fcc type crystal structure and the second compound has an hcp type crystal structure.
  • a compound having an fcc crystal structure can have higher hardness than a compound having an hcp crystal structure.
  • a compound having Al such as AlN exhibits high sliding properties even in a compound having any structure of fcc type crystal structure and hcp type crystal structure, hcp when formed by the CVD method The formation of the compound having a crystalline structure is easier.
  • the multilayer structure-containing layer in which the first compound has the fcc type crystal structure and the second compound has the hcp type crystal structure can not only have higher hardness, but can be more easily manufactured with high yield.
  • the multilayer structure-containing layer of the present invention when there is an intermediate layer between the first unit layer and the second unit layer, or the first unit layer and the second unit layer do not have a clear boundary.
  • the first compound has the fcc type crystal structure and the second compound has the hcp type crystal structure, the above effect can be exhibited without reducing the adhesion of each layer. it can.
  • the first compound may further contain Al.
  • TiAlN, TiAlC, TiAlCN, TiAlCNO, TiAlNO etc. can be mentioned as the first compound. Oxidation resistance is improved by the first unit layer further containing Al.
  • composition of the first unit layer, the second unit layer, the intermediate layer and the like in the multilayer structure-containing layer of the present invention, the lamination cycle, the crystal structure of the first compound and the second compound, etc. are scanning electron microscopes (SEM; Scanning The electron microscope can be confirmed by an electron microscope, wavelength dispersive X-ray analysis (EPMA; electron probe micro analysis), X-ray diffraction method or the like.
  • the abrasion resistance, the welding resistance and the thermal shock resistance of the surface covering member can be obtained by being covered with the hard coating including the above-mentioned multilayer structure containing layer. And other characteristics are improved. Therefore, the present invention can provide a surface covering member stabilized and extended in life.
  • the method for producing a surface covering member according to the present invention is a method for producing a surface covering member comprising a substrate and a hard coating formed on the surface of the substrate and comprising one or more layers.
  • the CVD process which forms at least one layer of these by CVD method is included.
  • the CVD step comprises: a first step of ejecting a first gas containing Ti and one or more elements selected from the group consisting of B, C, N and O toward the surface of the substrate; Al; And b) injecting a second gas containing one or more elements selected from the group consisting of B, C, N and O toward the surface of the substrate, the first and second steps comprising It repeats alternately.
  • the manufacturing method of the surface coating member of this invention can include another process, as long as the above-mentioned CVD process is performed.
  • cleaning process etc. can be mentioned, for example.
  • each process in the second embodiment will be described in detail.
  • the CVD process of the present invention is a process of forming at least one of the layers constituting the hard film of the present invention by the CVD method.
  • the CVD apparatus shown in FIG. 1 can be used.
  • a plurality of base material setting jigs 3 holding base materials 2 can be installed in the CVD apparatus 1, and these are covered with a reaction vessel 4 made of a heat resistant alloy steel.
  • a heater 5 is disposed around the reaction container 4, and the temperature in the reaction container 4 can be controlled by the heater 5.
  • an introduction pipe 6 having a plurality of through holes formed therein is disposed in the CVD apparatus 1, and the gas introduced into the introduction pipe 6 from the introduction port 7 is spouted into the reaction vessel 4 through the through holes. Ru.
  • the introduction pipe 6 can be rotated about its axis (see the rotation arrow in the figure).
  • An exhaust pipe 8 is further disposed in the reaction vessel 4, and the gas jetted into the reaction vessel 4 is exhausted from the exhaust port 9 of the exhaust pipe 8 to the outside.
  • the jigs and the like in the reaction vessel 4 are usually made of graphite.
  • the above-described multilayer structure-containing layer can be formed by alternately repeating the following first step and second step using a CVD apparatus 1 as shown in FIG.
  • a first gas containing Ti and one or more elements selected from the group consisting of B, C, N and O is jetted toward the surface of the substrate using the above-mentioned CVD apparatus 1 .
  • a first gas containing Ti and one or more elements selected from the group consisting of B, C, N and O is introduced into the introduction pipe 6 from the introduction port 7.
  • the first gas introduced from the introduction port 7 is jetted from the plurality of through holes of the introduction pipe 6 into the reaction vessel 4.
  • the introduction pipe 6 is rotating about its axis, the first gas is uniformly ejected toward the surface of the substrate 2 disposed around the introduction pipe 6.
  • the first gas containing Ti and one or more elements selected from the group consisting of B, C, N and O is selected from the group consisting of a metal-based gas containing Ti, B, C, N and O
  • a metal-based gas containing Ti examples include titanium chloride gas such as TiCl 4 .
  • the nonmetallic gas containing B boron chloride gas such as BCl 3 and the like
  • the nonmetallic gas containing C hydrocarbon gas such as CH 2 CH 2 and the like
  • nitrogen-containing gas such as NH 3 , N 2 H 4 and N 2, and H 2 O (water vapor) etc.
  • the non-metallic gas containing O can be mentioned as the non-metallic gas containing O.
  • a mixed gas of TiCl 4 as a metal-based gas and BCl 3 and CH 2 CH 2 as a nonmetal-based gas may be used. it can.
  • the hydrocarbon gas as the nonmetallic gas containing C is preferably a hydrocarbon gas composed of unsaturated hydrocarbons.
  • the temperature in the reaction vessel 4 is preferably in the range of 700 to 900 ° C., and the pressure in the reaction vessel 4 is preferably 0.1 to 10 kPa.
  • a carrier gas such as N 2 , H 2 or Ar can also be introduced from the inlet 7.
  • Second step In this step, a second gas containing Al and one or more elements selected from the group consisting of B, C, N and O is jetted toward the surface of the substrate using the above-mentioned CVD apparatus 1 .
  • a second gas containing Al and one or more elements selected from the group consisting of B, C, N and O is introduced into the introduction pipe 6 from the introduction port 7.
  • the second gas introduced from the introduction port 7 is jetted out of the plurality of through holes of the introduction pipe 6 into the reaction vessel 4.
  • the second gas is uniformly ejected toward the surface of the base material 2 disposed around the introduction pipe 6.
  • the second gas containing Al and one or more elements selected from the group consisting of B, C, N and O is selected from the group consisting of a metal-based gas containing Al, B, C, N and O
  • a mixed gas with a nonmetallic gas containing one or more elements can be used.
  • a metal gas containing Al aluminum chloride gas such as AlCl 3 can be mentioned.
  • the nonmetallic gas containing any of B, C, N, and O is the same as the gas enumerated at the above-mentioned 1st process, the description is not repeated. Therefore, for example, when using the second gas containing Al, B and C, a mixed gas of AlCl 3 as the metal-based gas and BCl 3 and CH 2 CH 2 as the nonmetal-based gas is used. be able to.
  • the temperature in the reaction vessel 4 is preferably in the range of 700 to 900 ° C., and the pressure in the reaction vessel 4 is preferably 0.1 to 10 kPa. It is also possible to introduce the carrier gas such as N 2, H 2, Ar through the inlet 7 with the second gas.
  • the first step and the second step are alternately repeated. That is, the first gas and the second gas are alternately introduced into the introduction pipe 6, whereby the first gas and the second gas are alternately ejected toward the surface of the base material 2. .
  • a multilayer structure containing on the surface of the base material 2 a first unit layer originating in the first gas and a second unit layer originating in the second gas are alternately laminated.
  • Layers can be formed.
  • a multilayer structure-containing layer can be formed in which a second unit layer containing a second compound containing one or more elements selected from the group consisting of Therefore, a surface covering member having improved properties such as abrasion resistance, welding resistance and thermal shock resistance by forming a hard film including at least one multilayer structure-containing layer by using the manufacturing method It is possible to manufacture a surface covering member which can be manufactured with stability and long life.
  • the composition of the first unit layer and the second unit layer can be controlled by the mixing ratio of the metal-based gas and the nonmetal-based gas, and the thickness of the first unit layer and the second unit layer is controlled by the film formation time.
  • the lamination period and the number of layers can be controlled by the rotational speed of the introduction pipe 6. Further, by controlling the film forming temperature, it is possible to control the crystal structure (fcc crystal structure or hcp crystal structure) of each of the first compound and the second compound.
  • the composition and thickness of the intermediate layer can be controlled by controlling the introduction rates of the metal-based gas and the nonmetal-based gas.
  • a thick intermediate layer can be formed by introducing the metal-based gas and the nonmetal-based gas at a relatively slow rate in the above-described CVD process, and the metal-based gas and the nonmetal-based gas can be formed. Can be formed at a relatively high rate to form a thin intermediate layer.
  • the first gas may further contain Al. That is, while the first step and the second step are alternately repeated, the metal-based gas containing Al may have a constant introduction amount (mol / min) or may change. It will always be introduced into at least the reaction vessel 4 at all times.
  • the metal-based gas containing Al and the nonmetal-based gas containing one or more elements selected from the group consisting of B, C, N and O are always introduced into the reaction vessel 4
  • the metal-based gas containing Ti is intermittently introduced into the reaction vessel 4 into the reaction vessel 4.
  • the first unit layer contains the first compound containing Ti, Al, and one or more elements selected from the group consisting of B, C, N and O.
  • the second unit layer is a layer containing a second compound containing Al and one or more elements selected from the group consisting of B, C, N and O.
  • the method for producing a surface covering member according to the present invention is a method for producing a surface covering member comprising a substrate and a hard coating formed on the surface of the substrate and comprising one or more layers.
  • the CVD process which forms at least one layer of these by CVD method is included.
  • the CVD step comprises: a first step of ejecting a first gas containing Ti and one or more elements selected from the group consisting of B, C, N and O toward the surface of the substrate; Al; And b) injecting a second gas containing one or more elements selected from the group consisting of B, C, N and O toward the surface of the substrate, the first and second steps comprising It repeats alternately.
  • a first gas containing Ti and one or more elements selected from the group consisting of B, C, N and O toward the surface of the substrate Al
  • And b) injecting a second gas containing one or more elements selected from the group consisting of B, C, N and O toward the surface of the substrate the first and second steps comprising It
  • the CVD process of the present invention is a process of forming at least one of the layers constituting the hard film of the present invention by the CVD method.
  • the CVD apparatus shown in FIG. 2 can be used.
  • a plurality of base material setting jigs 13 holding the base material 12 can be installed in the CVD apparatus 11, and these are covered with a reaction container 14 made of heat resistant alloy steel.
  • a heater 15 is disposed around the reaction vessel 14, and the heater 15 can control the temperature in the reaction vessel 14.
  • an introducing pipe 16 in which a plurality of through holes are formed is disposed in the CVD apparatus 11, and the introducing pipe 16 has two introducing ports 17 and 18. The gases introduced from the inlets 17 and 18 into the inlet pipe 16 are not mixed in the inlet pipe 16 and are ejected into the reaction vessel 14 through different through holes. Further, the introduction pipe 16 can be rotated about its axis (see the rotation arrow in the figure).
  • An exhaust pipe 19 is further disposed in the reaction vessel 14, and the gas jetted into the reaction vessel 14 is exhausted from the exhaust port 20 of the exhaust pipe 19 to the outside.
  • the jigs and the like in the reaction vessel 14 are usually made of graphite.
  • the hard coating for covering the surface of the surface covering member of the present invention is formed by alternately repeating the following first step and second step using a CVD apparatus 11 as shown in FIG.
  • a multilayer containing layer can be formed as one of the layers.
  • a first gas containing Ti and one or more elements selected from the group consisting of B, C, N and O is jetted toward the surface of the substrate using the above-mentioned CVD apparatus 11 .
  • a metal-based gas containing Ti is introduced into the introduction pipe 16 from the introduction port 17.
  • a nonmetallic gas containing one or more elements selected from the group consisting of B, C, N and O is introduced into the introduction pipe 16 from the introduction port 18.
  • the metal-based gas introduced from the inlet 17 and the nonmetal-based gas introduced from the inlet 18 are ejected into the reaction vessel 14 from a plurality of different through holes.
  • the introduction pipe 16 rotates about its axis, the metal-based gas and the nonmetal-based gas are mixed immediately after being ejected into the reaction vessel 14. Then, the mixed gas is uniformly ejected toward the surface of the base 12 disposed around the introduction pipe 16 as a first gas.
  • the non-metallic gas containing one or more elements selected from the group consisting of metallic gas containing Ti, B, C, N and O the same gas as the gas listed in the second embodiment is used Can.
  • the temperature in the reaction vessel 14 is preferably in the range of 600 to 900 ° C., and the pressure in the reaction vessel 14 is preferably 0.1 to 10 kPa.
  • a carrier gas such as N 2 , H 2 or Ar can be introduced from each of the inlets 17 and 18.
  • Second step In this step, a second gas containing Al and one or more elements selected from the group consisting of B, C, N and O is jetted toward the surface of the substrate using the above-mentioned CVD apparatus 11 .
  • the second gas containing Al is introduced into the inlet pipe 16 from the inlet 18.
  • a nonmetallic gas containing one or more elements selected from the group consisting of B, C, N and O is introduced into the introduction pipe 16 from the introduction port 18.
  • the metal-based gas introduced from the inlet 17 and the nonmetal-based gas introduced from the inlet 18 are ejected into the reaction vessel 14 from a plurality of different through holes.
  • the introduction pipe 16 rotates about its axis, the metal-based gas and the nonmetal-based gas are mixed immediately after being ejected into the reaction vessel 14. Then, the mixed gas is uniformly ejected toward the surface of the base 12 disposed around the introduction pipe 16 as a second gas.
  • the non-metallic gas containing at least one element selected from the group consisting of metal-based gas containing Al, B, C, N and O the same gas as the gas listed in the second embodiment is used Can.
  • the temperature in the reaction vessel 14 is preferably in the range of 600 to 900 ° C., and the pressure in the reaction vessel 14 is preferably 0.1 to 10 kPa.
  • a carrier gas such as N 2 , H 2 or Ar may be introduced from each of the inlets 17 and 18.
  • the first step and the second step are alternately repeated. That is, one or more elements selected from the group consisting of B, C, N, and O are introduced alternately from the metal-based gas containing Ti and the metal-based gas containing Al from the introduction port 17. Is continuously introduced. At this time, when the metal-based gas containing Ti is introduced from the introduction port 17 by the rotation of the introduction pipe 16, the first gas is dispersed in the reaction container 14, and Al is contained from the introduction port 17. When the metal-based gas is introduced, the second gas is dispersed in the reaction vessel 14.
  • a multilayer structure containing on the surface of the base material 2 a first unit layer originating in the first gas and a second unit layer originating in the second gas are alternately laminated.
  • Layers can be formed.
  • a multilayer structure-containing layer can be formed in which a second unit layer containing a second compound containing one or more elements selected from the group consisting of Therefore, by using the manufacturing method, by forming a hard film including at least one multilayer structure-containing layer, a surface-coated member having improved various properties such as abrasion resistance, welding resistance and thermal shock resistance is manufactured.
  • a surface covering member stabilized and having a long life is possible to manufacture a surface covering member stabilized and having a long life.
  • the composition of the first unit layer and the second unit layer can be controlled by the mixing ratio of the metal-based gas and the nonmetal-based gas, and the thickness of the first unit layer and the second unit layer is controlled by the film formation time.
  • the lamination period and the number of layers can be controlled by the rotational speed of the introduction pipe 6. Further, by controlling the film forming temperature, it is possible to control the crystal structure (fcc crystal structure or hcp crystal structure) of each of the first compound and the second compound.
  • the composition and thickness of the intermediate layer can be controlled by controlling the introduction rates of the metal-based gas and the nonmetal-based gas.
  • a thick intermediate layer can be formed by introducing the metal-based gas and the nonmetal-based gas at a relatively slow rate in the above-described CVD process, and the metal-based gas and the nonmetal-based gas can be formed. Can be formed at a relatively high rate to form a thin intermediate layer.
  • the manufacturing method according to the present embodiment uses the first gas and / or the second gas containing at least one selected from the group consisting of N 2 , NH 3 , and N 2 H 4 as the nonmetallic gas. It can be suitably used when forming a multilayer structure-containing layer, and in particular, it is preferable to use at least one of NH 3 and N 2 H 4 as the nonmetallic gas. The reason is as follows.
  • NH 3 and N 2 H 4 have high reactivity with halogen compounds such as TiCl 4 and AlCl 3 , a titanium nitride layer more homogeneous in a short time and aluminum nitride can be obtained in a short time by using them as nonmetallic gases. It has the advantage of being able to form a layer.
  • the high reactivity it has the disadvantage of causing an unwanted reaction with the above-mentioned halogen compound. It is a fact that these gases are difficult to handle in the CVD method because the reaction substances accompanying the unnecessary reaction cause clogging of the introduction pipe and the through hole of the CVD apparatus.
  • the manufacturing method according to the present embodiment since the metal-based gas and the nonmetal-based gas are mixed immediately after being ejected into the reaction container, unnecessary reaction occurs when passing through the introduction pipe and the through hole. It does not happen. Therefore, according to the manufacturing method according to the present embodiment, it is possible to form a more homogeneous multilayer structure-containing layer in a short time by using at least one of NH 3 and N 2 H 4 .
  • non-metallic gas it is preferable to use NH 3 and N 2 H 4 in at least one N 2 and the mixture gas.
  • NH 3 and N 2 H 4 By mixing at least one of NH 3 and N 2 H 4 with N 2 , formation of a multilayer structure-containing layer in a temperature environment lower by 200 to 300 ° C. becomes possible as compared with the case without mixing. .
  • the first gas may further contain Al. That is, while the first step and the second step are alternately repeated, the metal-based gas containing Al may have a constant introduction amount (mol / min) or may change. It will always be introduced into at least the reaction vessel 4 at all times.
  • the metal-based gas containing Al and the nonmetal-based gas containing one or more elements selected from the group consisting of B, C, N and O are always introduced into the reaction vessel 4
  • the metal-based gas containing Ti is intermittently introduced into the reaction vessel 4 into the reaction vessel 4.
  • Substrate A and substrate B described in Table 1 below were prepared. Specifically, the raw material powder having the composition described in Table 1 is uniformly mixed, pressure-formed into a predetermined shape, and sintered at 1300 to 1500 ° C. for 1 to 2 hours to obtain a shape of CNMG120408NUX. A base material made of cemented carbide of two types of shape, that is, SEET 13 T 3 AG SN-G was obtained. That is, two different shapes were produced for each substrate. In addition, "the remainder" of Table 1 has shown that WC occupies the remainder of a compounding composition (mass%).
  • CNMG120408NUX is the shape of an indexable cutting insert for turning
  • SEET 13T3AGSN-G is an indexable cutting insert for milling (milling) Shape of
  • a multilayer structure-containing layer was formed on the surface of the substrate obtained above. Specifically, using the CVD apparatus 11 shown in FIG. 2, the base material was set in the reaction vessel 14, and the CVD method was performed to form a multilayer structure-containing layer on the base material.
  • the conditions for forming each multilayer structure-containing layer are as described in Table 2 below.
  • the conditions for forming the multilayer structure-containing layer are seven kinds of a to g.
  • TiCl 4 is used as the metal-based gas containing Ti
  • AlCl 3 is used as the metal-based gas containing Al
  • these metal-based gases are introduced together with the carrier gas consisting of H 2 and N 2 17 To the introduction tube 16.
  • NH 3 and N 2 were used as the nonmetallic gas containing N, and the nonmetallic gas was introduced into the introducing pipe 16 from the introducing port 18.
  • TiCl 4 is introduced from the introduction port 17 by rotating the introduction pipe 16 to eject the metal-based gas and the nonmetal-based gas from different through holes, TiCl 4 , NH 3 and N 2 are introduced. Is injected onto the surface of the substrate, and when AlCl 3 is introduced from the inlet 17, the second gas mixed with AlCl 3 , NH 3 and N 2 is the surface of the substrate It was set up to be spouted.
  • 0.1 mol / min AlCl 3 , 2.9 mol / min H 2 , and 1.0 mol / min N 2 are introduced into the reaction vessel 14 from the inlet 17. While introducing, 0.025 mol / min of TiCl 4 was introduced from the inlet 17 at intervals of 10 seconds. A nonmetallic gas mixed such that NH 3 and N 2 were 0.09 mol / min and 0.9 mol / min was introduced into the reaction vessel 14 through the inlet 18.
  • TiCl 4 flow rate (mol / min) column in Table 2 means that TiCl 4 is introduced for 10 seconds at a flow rate of 0.025 mol / min and then stopped for 10 seconds. And then repeatedly introduced at a flow rate of 0.025 mol / min for 10 seconds. Then, the respective gases are introduced from the inlet 17 and the inlet 18 and the first gas mixed with TiCl 4 , NH 3 and N 2 by rotating the inlet pipe 16 at 5 rpm, AlCl 3 , NH 3 And a second gas mixed with N 2 were alternately jetted onto the surface of the substrate.
  • the inside of the reaction vessel 14 at this time was maintained at a pressure of 1.3 kPa and a temperature of 800 ° C. By performing this for 30 minutes, a 5.0 ⁇ m-thick multilayer laminate containing layer was formed.
  • the thickness of the multilayer structure containing layer is controlled by the film forming time, and the lamination cycle of TiN and AlN in the multilayer structure containing layer is the rotational speed (rpm) of the introduction tube 16 and the introduction amount of nonmetallic gas It controlled by (mol / min).
  • the “stacking period” is the distance from the middle point in the thickness direction of the TiN layer to the middle point in the thickness direction of the adjacent TiN layer via one AlN layer, ie, the thickness of one TiN layer and one The sum with the thickness of the AlN layer is shown, and "Thickness ( ⁇ m)" indicates the thickness of the multilayer structure-containing layer.
  • Table 3 shows layers formed under the forming conditions x and y as a comparative example.
  • a hard film was formed using the PVD method disclosed in Patent Document 1, and under the forming condition y, the hard film was formed using the CVD method disclosed in Patent Document 2.
  • a layer AlN / TiN layer
  • TiN layer of 4 nm thick fcc crystal structure
  • AlN layer of 4 nm thick fcc crystal structure
  • It has a y in fcc crystal structure, and a layer composed of a single layer comprising mainly composition of Ti 0.1 Al 0.9 N (Ti 0.1 Al 0.9 N layer) is formed.
  • ⁇ Sliding characteristics of multilayer structure containing layer> For the multilayer structure-containing layer formed under each of the formation conditions a to g, and the layer formed under each of the formation conditions x and y, a pin-on-disk test is performed under the following conditions to determine the frictional force, and thereby the coefficient of friction The (frictional force / load) was calculated. In addition, each surface of each layer after the pin-on-disk test is measured four times each with a stylus type surface roughness meter across the sliding groove after the test, whereby the amount of welding to the sliding portion ( ⁇ m 2 ) was determined. The welding amount ( ⁇ m 2 ) is the area of the portion convex above the outermost surface of the film, that is, the upper convex area in the sliding groove cross section is taken as the welding amount.
  • the total gas amount (L / min) shown in Table 4 is the mixed gas obtained by mixing the gases shown in Table 4 so as to have the ratio of volume% shown in Table 4. As described above, it was formed from the introduction port 17 by performing the CVD process under the environment shown in Table 4. Note that the "rest" in the table 4, show that H 2 occupies the remainder of the raw material gas (reactive gas). Further, “total gas amount” refers to the total volumetric flow rate introduced into the reaction vessel 14 per unit time, with the gas in the standard state (0 ° C., 1 atm) as an ideal gas.
  • the cutting tool of Example 13 adopts substrate B described in Table 1 as a substrate, and a TiN layer (underlayer) having a thickness of 1.0 ⁇ m as an underlayer on the surface of the substrate B under the conditions of Table 4
  • the TiCN layer with a thickness of 3.0 ⁇ m is formed on the TiN layer (underlayer) under the conditions of Table 4
  • the multilayer structure-containing layer with a thickness of 3.0 ⁇ m is formed under the conditions of Table 2
  • a hard film having a total thickness of 7.5 ⁇ m is formed on the substrate. It shows that there is. Blank (hyphen) in Table 5 indicates that the corresponding layer is not formed.
  • the underlayer and the multilayer structure-containing layer may be layers having the same composition but different in thickness.
  • the multilayer structure-containing layer of Example 1 is a layer having a thickness of 10 ⁇ m formed under the forming condition e
  • the multilayer structure-containing layer of Example 8 is a layer having a thickness of 15 ⁇ m formed under the forming condition e.
  • the difference in thickness of these layers was controlled by adjusting the formation time of the layers, that is, the total time of alternately blowing the first gas and the second gas onto the surface of the substrate.
  • the cutting tool according to the embodiment of the present invention is superior in both abrasion resistance and welding resistance to the cutting tool according to the comparative example, thereby achieving stabilization and long life. It was In the final damage form of Table 6, "normal wear” means a damage form (having a smooth wear surface) consisting of only wear without chipping, chipping and the like, and “chipping” means breakage It means a minute chip on the blade.
  • the cutting tool of the embodiment of the present invention is superior to both of the wear resistance and the welding resistance as compared with the cutting tool of the comparative example, and is stabilized and has a long life. It was In the final damage form of Table 7, “normal wear” means a damage form (having a smooth wear surface) consisting of only wear without chipping, chipping, etc. “defect” is broken This means a large chip on the blade.
  • the cutting tool of the embodiment of the present invention is superior to both the welding resistance and the thermal shock resistance as compared with the cutting tool of the comparative example, and is stabilized and has a long life.
  • "normal wear” means a damage form (having a smooth wear surface) consisting of only wear without chipping, chipping, etc., and "defect” is broken
  • “chipping” is meant a small chip at the cutting edge, which means a large chip at the cutting edge.
  • the cutting tool of the example of the present invention is at least excellent in welding resistance as compared with the cutting tool of the comparative example, and is stabilized and has a long life.
  • "normal wear” does not produce chipping, a chipping, etc. and means the damage form (it has a smooth wear surface) comprised only by wear.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Vapour Deposition (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)

Abstract

 安定化、長寿命化された表面被覆部材を提供する。本発明の表面被覆部材は、基材と、その表面に形成された硬質被膜とを含む表面被覆部材であって、硬質被膜は、1または2以上の層により構成され、層のうち少なくとも1層は、CVD法により形成され、第1単位層と第2単位層とが交互に積層された多層構造を含み、第1単位層は、Tiと、B、C、NおよびOからなる群より選ばれる1種以上の元素とを含む第1化合物を含み、第2単位層は、Alと、B、C、NおよびOからなる群より選ばれる1種以上の元素とを含む第2化合物を含む。

Description

表面被覆部材およびその製造方法
 本発明は、基材と、その表面に形成された硬質被膜とを含む表面被覆部材およびその製造方法に関する。
 最近の技術動向として、地球環境への負荷低減、資源の効率的な活用などを目的に、切削工具などの表面被覆部材の軽薄短小化が主流になってきている。これに伴い、表面被覆部材の寿命を確保し、かつその信頼性を維持するために、表面被覆部材に用いられる金属材料の高強度化、高硬度化が進められている。一方で、金属加工現場では新興国へ対抗すべく、加工部品の高精度化と加工費の低減が強く要求されている。さらに、工作機械の性能向上もあいまって、表面被覆部材によるさらなる高速加工の期待が高まっている。高速加工において、表面被覆部材の刃先は、高温、高圧環境に曝されるため、過酷な環境下においても長寿命を有することのできる表面被覆部材が今後さらに求められる。
 例えば、特開平07-205362号公報(特許文献1)には、表面被覆部材の基材の表面を被覆する硬質被膜として、4、5、6族元素、AlおよびSiから選んだ2種類以上の元素の窒化物、炭化物、炭窒化物あるいはホウ化物を、0.4nm~50nmの周期で組成を連続的に変化させた硬質被膜が開示されている。上記硬質被膜は、PVD(Physical Vapor Deposition)法により形成される。具体的には、固体のTi、固体のAl、N2ガスを用い、真空放電により発生したTiイオン、Alイオン、およびN2ガスと、500℃に加熱した基材とを接触させて、基材表面に連続的にTiN層とAlN層とを形成させる。この方法で形成された硬質被膜は構造内に大きな歪を有しているため、該硬質被膜を有する表面被覆切削工具は、優れた耐摩耗性と靭性を有することができる。
 また、例えば、特表2008-545063号公報(特許文献2)には、表面被覆部材として、Ti1-xAlxN被膜を有する部材が開示されている。このTi1-xAlxN被膜は、0.75<x≦0.93の化学量論係数を有し、かつ、0.412nm~0.405nmの格子定数afccを有する立方晶NaCl構造の単層構造を有する。上記Ti1-xAlxN被膜は、CVD(Chemical Vapor Deposition)法により形成される。具体的には、基材を収容したホットウォールタイプのCVD反応器中に、AlCl3、TiCl4、H2、アルゴンからなる第1の気体混合物と、窒素源としてのNH3およびN2からなる第2の気体混合物とを導入して、熱CVD法を行う。この方法で形成された上記被膜は、一般的に公知のPVD法で作成されたTi1-xAlxN被膜に比べ、被膜中のAlの含有率が高い。このため、該被膜を有する表面被覆部材は、高い耐酸化性および高い硬度を有し、高温において優れた耐摩耗性を発揮することができる。
特開平07-205362号公報 特表2008-545063号公報
 しかしながら、特許文献1に関し、PVD法で形成された硬質被膜には、金属性のTi、Al、これらの合金といった不純物が含まれる場合がある。このような不純物はドロップレットといわれており、硬質被膜の形成を阻害するのみならず、金属加工を行う際の硬質被膜の脱落の原因となる。また、硬質被膜が脱落した部分を起点として、硬質被膜のチッピング、欠損等が発生し易いため、結果的に、表面被覆部材の長寿命化が困難になり、また、被削材の加工品質、面粗度などが悪化する場合がある。
 また、特許文献2に関し、Ti1-xAlxN被膜は0.75<x≦0.93の化学量論係数を有しているが、一般的に、この組成においてxが0.7より大きい場合は結晶構造内に大きな歪が生じる傾向にある。この歪を緩和すべく、立方晶NaCl構造のTi1-xAlxN結晶が六方晶ウルツ鉱構造へ変態することは公知である。特に、この変態は高温においてさらに促進される傾向にある。
 金属加工時、表面被覆部材と被削材とは接触、解放を繰返しており、表面被覆部材の刃先の表面には常に加熱、冷却のサイクルで負荷が掛けられている。このため、金属加工時の表面被覆部材には常に大きな熱衝撃がかけられており、熱疲労が生じている。この熱疲労によって上記の変態が促進され、さらに、繰り返される切削加工に伴い、一旦変態した硬質被膜においては、チッピング、欠損等が発生し易くなる。このため、特許文献2に開示される技術においても、高速加工における表面被覆部材の長寿命化には限界がある。
 本発明は、上記のような現状に鑑みなされたものであって、その目的とするところは、安定化、長寿命化された表面被覆部材およびその製造方法を提供することにある。
 本発明は、基材と、その表面に形成された硬質被膜とを含む表面被覆部材であって、硬質被膜は、1または2以上の層により構成され、層のうち少なくとも1層は、CVD法により形成され、第1単位層と第2単位層とが交互に積層された多層構造を含み、第1単位層は、Tiと、B、C、NおよびOからなる群より選ばれる1種以上の元素とを含む第1化合物を含み、第2単位層は、Alと、B、C、NおよびOからなる群より選ばれる1種以上の元素とを含む第2化合物を含む、表面被覆部材である。
 上記表面被覆部材において、好ましくは、第1単位層と第2単位層との間に中間層を含み、中間層の組成は、その厚み方向において、第1化合物の組成から第2化合物の組成に連続的に変化する。
 上記表面被覆部材において、好ましくは、第1化合物はfcc型結晶構造を有し、第2化合物はhcp型結晶構造を有する。
 上記表面被覆部材において、好ましくは、第1化合物はAlをさらに含む。
 また、本発明は、基材と、その表面に形成された、1または2以上の層により構成される硬質被膜とを含む表面被覆部材の製造方法であって、層のうち少なくとも1層をCVD法により形成するCVD工程を含み、該CVD工程は、Tiと、B、C、NおよびOからなる群より選ばれる1種以上の元素とを含む第1ガスを基材の表面に向かって噴出する第1工程と、Alと、B、C、NおよびOからなる群より選ばれる1種以上の元素とを含む第2ガスを基材の表面に向かって噴出する第2工程と、を含み、第1工程および第2工程は交互に繰り返される、表面被覆部材の製造方法である。
 上記製造方法において、好ましくは、第1ガスはN2、NH3、N24からなる群より選ばれる1種以上を含む。
 上記製造方法において、好ましくは、第2ガスはN2、NH3、N24からなる群より選ばれる1種以上を含む。
 上記製造方法において、好ましくは、第1ガスはAlをさらに含む。
 本発明の表面被覆部材によれば、耐摩耗性、耐溶着性および耐熱衝撃性等の諸特性が向上し、もって、安定化、長寿命化が可能となる。また、本発明の表面被覆部材の製造方法によれば、耐摩耗性、耐溶着性および耐熱衝撃性等の諸特性が向上し、もって、安定化、長寿命化された表面被覆部材を製造することができる。
本発明のCVD工程に用いられるCVD装置の概略的な断面図である。 本発明のCVD工程に用いられる他のCVD装置の概略的な断面図である。
 以下、本発明の表面被覆部材について第1の実施形態を用いて詳細に説明し、本発明の表面被覆部材の製造方法について第2の実施形態および第3の実施形態を用いて詳細に説明する。
 ≪第1の実施形態≫
 <表面被覆部材>
 本発明の表面被覆部材は、基材と、その表面に形成された硬質被膜とを含む構成を有する。このような硬質被膜は、基材の全面を被覆することが好ましいが、基材の一部がこの硬質被膜で被覆されていなかったり、硬質被膜の構成が部分的に異なっていたとしても本発明の範囲を逸脱するものではない。
 このような本発明の表面被覆部材としては、切削工具、耐摩工具、金型部品、自動車部品などが挙げられる。なかでも、ドリル、エンドミル、ドリル用刃先交換型切削チップ、エンドミル用刃先交換型切削チップ、フライス加工用刃先交換型切削チップ、旋削加工用刃先交換型切削チップ、メタルソー、歯切工具、リーマ、タップなどの切削工具として好適に使用することができる。
 <基材>
 本発明の表面被覆部材に用いられる基材は、この種の基材として従来公知のものであればいずれのものも使用することができる。たとえば、超硬合金(たとえばWC基超硬合金、WCの他、Coを含み、あるいはTi、Ta、Nb等の炭窒化物を添加したものも含む)、サーメット(TiC、TiN、TiCN等を主成分とするもの)、高速度鋼、セラミックス(炭化チタン、炭化珪素、窒化珪素、窒化アルミニウム、酸化アルミニウムなど)、立方晶型窒化硼素焼結体、又はダイヤモンド焼結体のいずれかであることが好ましい。
 これらの各種基材の中でも、特にWC基超硬合金、サーメット(特にTiCN基サーメット)を選択することが好ましい。これは、これらの基材が特に高温における硬度と強度とのバランスに優れ、上記用途の表面被覆部材の基材として優れた特性を有するためである。
 なお、表面被覆部材が刃先交換型切削チップ等である場合、このような基材には、チップブレーカを有するものも、有さないものも含まれ、また、刃先稜線部は、その形状がシャープエッジ(すくい面と逃げ面とが交差する稜)、ホーニング(シャープエッジに対してアールを付与したもの)、ネガランド(面取りをしたもの)、ホーニングとネガランドとを組み合せたもののいずれのものも含まれる。
 <硬質被膜>
 本発明の硬質被膜は、1または2以上の層により構成され、該層のうち少なくとも1層は、CVD法により形成され、第1単位層と第2単位層とが交互に積層された多層構造を含む。本発明の硬質被膜は、上記の多層構造を含む層を少なくとも1層含む限り、他の層を含んでいてもよい。他の層としては、たとえばAl23層、TiB2層、TiBN層、AlN層(ウルツ鉱型)、TiN層、TiCN層、TiBNO層、TiCNO層、TiAlN層、TiAlCN層、TiAlON層、TiAlONC層等を挙げることができる。
 たとえば、下地層としてTiN層、TiC層、TiCN層、TiBN層を基材の直上に含むことにより、基材と硬質被膜との密着性を高めることができる。また、Al23層を含むことにより、硬質被膜の耐酸化性を高めることができる。また、TiN層、TiC層、TiCN層、TiBN層等からなる最外層を含むことにより、表面被覆部材の刃先が使用済か否かの識別性を有することができる。なお、本発明において、硬質被膜を構成する各層の組成を「TiN」、「TiCN」等の化学式を用いて表わす場合、その化学式において特に原子比を特定していないものは、各元素の原子比が「1」のみであることを示すものではなく、従来公知の原子比が全て含まれるものとする。
 本発明の硬質被膜は、3~30μmの厚みを有することが好ましい。その厚みが3μm未満では、耐摩耗性が不十分となる場合があり、30μmを超えると、断続加工において硬質被膜と基材との間に大きな応力が加わった際に硬質被膜の剥離または破壊が高頻度に発生する場合がある。なお、本発明の多層構造を含む層以外の他の層は、通常0.1~10μmの厚みで形成することができる。
 <多層構造を含む層>
 本発明の硬質被膜は、1または2以上の層により構成され、該層のうち少なくとも1層は、CVD法により形成され、第1単位層と第2単位層とが交互に積層された多層構造を含む。この多層構造を含む層(以下、「多層構造含有層」ともいう。)において、第1単位層は、Tiと、B、C、NおよびOからなる群より選ばれる1種以上の元素とを含む第1化合物を含み、第2単位層は、Alと、B、C、NおよびOからなる群より選ばれる1種以上の元素とを含む第2化合物を含む。
 具体的には、第1化合物として、TiC、TiN、TiCN、TiNO、TiCNO、TiB2、TiO2、TiBN、TiBNO、TiCBNなどを挙げることができ、第2化合物として、Al23、AlN、AlCN、AlCNO、AlNOなどを挙げることができる。Tiを含む第1化合物は高い硬度を有し、Alを含む第2化合物は優れた摺動特性を有する。
 本発明において、多層構造含有層が基材を被覆することによって表面被覆部材の耐摩耗性、耐溶着性および耐熱衝撃性等の諸特性が向上する理由については明確ではないが、たとえば、次のことが考えられる。すなわち、多層構造含有層において、第1単位層と第2単位層との間で各層を構成する組成が急激に変化することにより、構造中には大きな歪が蓄積される。さらに、特許文献2に開示されるような均一な組成を有するTi1-xAlxN被膜と比べ、熱的に安定な層として存在することができるため、熱衝撃による変態が起こり難い。したがって、本発明の多層構造含有層においては、変態に起因するチッピング、欠損等の発生が抑制されるとともに、第1化合物の有する高い硬度と、第2化合物の有する高い摺動特性とを十分に維持することができ、結果的に、本発明の表面被覆部材における耐摩耗性、耐溶着性および耐熱衝撃性等の諸特性が向上する。
 本発明の多層構造含有層は、0.5μm以上20μm以下の厚みを有することが好適であり、より好ましくは2μm以上18μm以下である。その厚みが0.5μm未満では、耐摩耗性が不十分となる場合があり、20μmを超えると単位層間の歪みが緩和されてしまい、硬質層としての優れた性質を失う場合がある。なお、多層構造含有層は、部分的に多層構造以外の構成、たとえばアモルファス相、fcc型結晶構造を有するTi1-xAlxN(0≦x≦1)などの構成を含んでいたとしても、本発明の効果を発揮する限りにおいて本発明の範囲を逸脱するものではない。
 上記多層構造含有層の多層構造において、その積層周期の厚みは20nm以上500nm以下であることが好ましく、より好ましくは100nm以上300nm以下である。積層周期を20nm未満にすることは製造技術上困難であり、積層周期が500nmを超える場合は第1単位層と第2単位層との密着強度が低下して剥離が生じてしまい、結果として上記の諸特性が低下する。なお、第1単位層および第2単位層の各層の厚みを薄くするほど上記の密着強度が高くなるが、各層の厚みを0.01μm以下とすることは製造技術上困難である。
 ここで、積層周期の厚みとは、1つの第1単位層から、該1つの第1単位層に隣接する第2単位層(第1単位層と第2単位層との間に後述する中間層を含む場合は、第2単位層に隣接する中間層を含む)を挟んで隣接する他の第1単位層までの距離をいう。なお、この距離は、第1単位層および他の第1単位層の各層の厚み方向の中点を結ぶ距離とする。
 なお、多層構造含有層を構成する層の積層数(合計積層数)は、特に限定されるものではないが、10層以上1000層以下とすることが好ましい。10層未満の場合は、各単位層が粗大化することから多層構造含有層の硬度が低下する場合があり、1000層を超えると各単位層が薄くなり過ぎ各層が混合する傾向を示すためである。
 また、本発明の多層構造含有層は、第1単位層と第2単位層との間に中間層を含むことができる。本発明の中間層の組成は、その厚み方向において、第1単位層と接する側から第2単位層と接する側に向けて、第1化合物の組成から第2化合物の組成へと連続的に変化する。
 たとえば、第1化合物がTiNであり、第2化合物がAlNである場合、その間に介在する中間層は、第1単位層と接する側から第2単位層と接する側に向けて、Tiの原子比が連続的に減少するとともにAlの原子比が連続的に増加する構成を有することができる。また、たとえば、第1化合物がTiAlNであり、第2化合物がAlNである場合、中間層は第1単位層と接する側から第2単位層と接する側に向けて、少なくともTiの原子比が連続的に減少する構成を有することができる。
 多層構造含有層が中間層を含むことにより上記の諸特性が向上する理由については明確ではないが、次のことが考えられる。すなわち、第1単位層と第2単位層との間に中間層を有することによって、第1単位層と第2単位層との間で組成が連続的に変化するため、多層構造含有層にさらに大きな歪が蓄積される。また、熱的により安定な層となるため、熱衝撃による変態がさらに起こり難くなる。加えて、中間層が存在することにより、第1単位層と第2単位層との密着強度が高くなる。これにより、中間層を有する多層構造含有層は、第1化合物が有する高い硬度と、第2化合物が有する高い摺動特性をさらに効果的に維持することができ、結果的に、耐摩耗性、耐溶着性および耐熱衝撃性等の諸特性がさらに向上する。
 本発明の中間層の厚みは特に限定されない。たとえば、第1単位層および/または第2単位層の厚みと同程度でもよく、それよりも極めて薄くてもよい。また、第1単位層または第2単位層のそれぞれの厚みに比して極めて厚い、換言すれば、第1単位層および/または第2単位層の厚みが中間層に比して極めて薄くてもよい。
 また、中間層を第1単位層および/または第2単位層と捉えることもできる。たとえば、第1化合物がTiNであり、第2化合物がAlNであり、中間層の組成がTixAlyNであって、第1単位層と接する側から第2単位層と接する側に向けて、Tiの原子比xが1から0まで連続的に減少するとともにAlの原子比yが0から1まで連続的に増加する場合を仮定する。この場合、たとえば、中間層のうち、TiとAlとの原子比x/yが1以上の領域を第1単位層と捉え、該原子比x/yが1未満の領域を第2単位層と捉えることができる。この場合には、第1単位層と第2単位層とは明確な境界を有さないこととなる。なお、第1単位層および/または第2単位層の厚みが中間層に比して極めて薄い場合、第1単位層中の第1化合物が含まれる領域は、積層周期の厚み方向に関するTi濃度の極大点となり、第2単位層中の第2化合物が含まれる領域は、積層周期の厚み方向に関するAl濃度の極大点となる。
 また、本発明の多層構造含有層において、第1化合物がfcc型結晶構造を有し、第2化合物がhcp型結晶構造を有することが好ましい。TiNなどのTiを含む化合物に関し、hcp型結晶構造を有する化合物に比べ、fcc型結晶構造を有する化合物の方がより高い硬度を有することができる。また、AlNなどのAlを含む化合物は、fcc型結晶構造、hcp型結晶構造のいずれの構造を有する化合物においても高い摺動特性が発揮されるものの、CVD法によって形成される場合には、hcp型結晶構造を有する化合物のほうがその形成が容易である。このため、第1化合物がfcc型結晶構造を有し、第2化合物がhcp型結晶構造を有する多層構造含有層は、より高い硬度を有することができるだけでなく、より簡便に高い歩留まりでの製造が可能となり、もって、上記の諸特性がさらに向上した表面被覆部材を安価に市場に提供することができる。
 また、一般的に、CVD法によって組成の異なる層を積層する際に、各層の結晶構造が異なる場合、各層間での密着力が低下することが知られている。しかしながら、本発明者らは、鋭意検討の結果、第1単位層と第2単位層との間に中間層が存在する場合、または第1単位層と第2単位層とが明確な境界を有さない場合、すなわち、1つの積層周期の厚み方向において、第1化合物から第2化合物へとその組成が連続的に変化する構成を有する場合、各層の結晶構造が異なることに起因する密着力の低下が抑制されることを知見した。したがって、本発明の多層構造含有層において、第1単位層と第2単位層との間に中間層が存在する場合、または第1単位層と第2単位層とが明確な境界を有さない場合であって、かつ、第1化合物がfcc型結晶構造を有し、第2化合物がhcp型結晶構造を有する場合に、各層の密着力を低下させることなく、上述の効果を発揮することができる。
 また、第1化合物は、Alをさらに含んでもよい。この場合、第1化合物として、TiAlN、TiAlC、TiAlCN、TiAlCNO、TiAlNOなどを挙げることができる。第1単位層がAlをさらに含むことにより耐酸化性が向上するためである。
 なお、本発明の多層構造含有層における第1単位層、第2単位層、中間層等の組成、積層周期、第1化合物および第2化合物の結晶構造等は、走査型電子顕微鏡(SEM;Scanning Electron Microscope)、波長分散型X線分析(EPMA;Electron Probe Micro Analysis)、X線回折法などによって確認することができる。
 以上、詳述したように、本発明の表面被覆部材によれば、上述の多層構造含有層を含む硬質被膜で被覆されることによって、表面被覆部材の耐摩耗性、耐溶着性および耐熱衝撃性等の諸特性が向上する。したがって、本発明によって、安定化、長寿命化された表面被覆部材を提供することができる。
 ≪第2の実施形態≫
 <表面被覆部材の製造方法>
 本発明の表面被覆部材の製造方法は、基材と、その表面に形成された、1または2以上の層により構成される硬質被膜とを含む表面被覆部材の製造方法であって、該層のうちの少なくとも1層をCVD法により形成するCVD工程を含む。該CVD工程は、Tiと、B、C、NおよびOからなる群より選ばれる1種以上の元素とを含む第1ガスを基材の表面に向かって噴出する第1工程と、Alと、B、C、NおよびOからなる群より選ばれる1種以上の元素とを含む第2ガスを基材の表面に向かって噴出する第2工程と、を含み、第1工程および第2工程は交互に繰り返される。なお、本発明の表面被覆部材の製造方法は、上記のCVD工程を行なう限り、他の工程を含むことができる。他の工程としては、たとえば、多層構造含有層以外の層を形成する工程、洗浄工程などを挙げることができる。以下、第2の実施形態における各工程について詳述する。
 <CVD工程>
 本発明のCVD工程は、本発明の硬質被膜を構成する層のうちの少なくとも1層をCVD法により形成する工程である。このCVD工程においては、図1に示すCVD装置を用いることができる。
 図1において、CVD装置1内には、基材2を保持した基材セット治具3を複数設置することができ、これらは耐熱合金鋼製の反応容器4でカバーされる。また、反応容器4の周囲にはヒータ5が配置されており、このヒータ5により、反応容器4内の温度を制御することができる。また、CVD装置1内には複数の貫通孔が形成された導入管6が配置されており、導入口7から導入管6内に導入されたガスは貫通孔を経て反応容器4内に噴出される。また、この導入管6はその軸を中心として回転することができる(図中回転矢印参照。)。反応容器4にはさらに排気管8が配置されており、反応容器4内に噴出されたガスは、排気管8の排気口9から外部へ排出される。なお、反応容器4内の治具類等は、通常黒鉛により構成される。
 本工程において、図1に示すようなCVD装置1を用いて、以下の第1工程および第2工程を交互に繰り返すことによって、上述の多層構造含有層を形成することができる。
 <第1工程>
 本工程では、上記のCVD装置1を用いて、Tiと、B、C、NおよびOからなる群より選ばれる1種以上の元素とを含む第1ガスを基材の表面に向かって噴出する。
 具体的には、図1において、Tiと、B、C、NおよびOからなる群より選ばれる1種以上の元素とを含む第1ガスを導入口7から導入管6内に導入する。導入口7から導入された第1ガスは、導入管6の複数の貫通孔から反応容器4内に噴出される。このとき、導入管6はその軸を中心として回転しているため、第1ガスは、導入管6の周囲に配置された基材2の表面に向かって均一に噴出される。
 Tiと、B、C、NおよびOからなる群より選ばれる1種以上の元素とを含む第1ガスとしては、Tiを含む金属系ガスと、B、C、NおよびOからなる群より選ばれる1種以上の元素を含む非金属系ガスとの混合ガスを用いることができる。Tiを含む金属系ガスとしては、TiCl4などの塩化チタンガスを挙げることができる。また、B含む非金属系ガスとしては、BCl3などの塩化ホウ素ガスを、Cを含む非金属系ガスとしては、CH2CH2などの炭化水素ガスを、Nを含む非金属系ガスとしては、NH3、N24、N2などの窒素含有ガスを、Oを含む非金属系ガスとしてはH2O(水蒸気)などを挙げることができる。たとえば、TiとBとCとを含む第1ガスを用いる場合、金属系ガスとしてのTiCl4と、非金属系ガスとしてのBCl3およびCH2CH2とが混合された混合ガスを用いることができる。なお、Cを含む非金属系ガスとしての炭化水素ガスは、好ましくは不飽和炭化水素からなる炭化水素ガスである。
 本工程において、反応容器4内の温度は700~900℃の範囲が好ましく、反応容器4内の圧力は0.1~10kPaであることが好ましい。また、第1ガスとともにN2、H2、Arなどのキャリアガスを導入口7から導入することもできる。
 <第2工程>
 本工程では、上記のCVD装置1を用いて、Alと、B、C、NおよびOからなる群より選ばれる1種以上の元素とを含む第2ガスを基材の表面に向かって噴出する。
 具体的には、図1において、Alと、B、C、NおよびOからなる群より選ばれる1種以上の元素とを含む第2ガスを導入口7から導入管6内に導入する。導入口7から導入された第2ガスは、導入管6の複数の貫通孔から反応容器4内に噴出される。このとき、導入管6はその軸を中心として回転しているため、第2ガスは、導入管6を中心とした周囲に配置された基材2の表面に向かって均一に噴出される。
 Alと、B、C、NおよびOからなる群より選ばれる1種以上の元素とを含む第2ガスとしては、Alを含む金属系ガスと、B、C、NおよびOからなる群より選ばれる1種以上の元素を含む非金属系ガスとの混合ガスを用いることができる。Alを含む金属系ガスとしては、AlCl3などの塩化アルミニウムガスを挙げることができる。なお、B、C、NおよびOのいずれかを含む非金属系ガスは上述の第1工程で列挙されるガスと同様であるため、その説明は繰り返さない。したがって、たとえば、AlとBとCとを含む第2ガスを用いる場合、金属系ガスとしてのAlCl3と、非金属系ガスとしてのBCl3およびCH2CH2とが混合された混合ガスを用いることができる。
 本工程において、反応容器4内の温度は700~900℃の範囲が好ましく、反応容器4内の圧力は0.1~10kPaであることが好ましい。また、第2ガスとともにN2、H2、Arなどのキャリアガスを導入口7から導入することもできる。
 <第1工程および第2工程の繰り返し>
 本発明の製造方法において、上記第1工程および上記第2工程は交互に繰り返される。すなわち、導入管6には、第1ガスと第2ガスとが交互に導入され、これにより、基材2の表面に向かって第1ガスと第2ガスとが交互に噴出されることになる。
 以上詳述した工程を行うことにより、基材2の表面には、第1ガスに起因する第1単位層と、第2ガスに起因する第2単位層とが交互に積層された多層構造含有層を形成することができる。具体的には、Tiと、B、C、NおよびOからなる群より選ばれる1種以上の元素とを含む第1化合物を含む第1単位層と、Alと、B、C、NおよびOからなる群より選ばれる1種以上の元素とを含む第2化合物を含む第2単位層とが交互に積層された多層構造含有層を形成することができる。したがって、当該製造方法を用いることにより、少なくとも1層の多層構造含有層を含む硬質被膜を形成することにより、耐摩耗性、耐溶着性および耐熱衝撃性等の諸特性が向上した表面被覆部材を製造することができ、もって、安定化、長寿命化された表面被覆部材を製造することができる。
 なお、第1単位層および第2単位層の組成は、金属系ガスおよび非金属系ガスの混合割合によって制御することができ、第1単位層および第2単位層の厚みは成膜時間によって制御することができ、積層周期および層数は導入管6の回転速度によって制御することができる。また、成膜温度を制御することによって、第1化合物および第2化合物のそれぞれの結晶構造(fcc型結晶構造またはhcp型結晶構造)を制御することができる。また、中間層の組成、厚みは、金属系ガスおよび非金属系ガスの導入速度を制御することによって制御できる。具体的には、上述のCVD工程において、金属系ガスおよび非金属系ガスを比較的遅い速度で導入することにより、厚みの大きい中間層を形成することができ、金属系ガスおよび非金属系ガスを比較的早い速度で導入することにより厚みの小さい中間層を形成することができる。
 <変形例>
 本発明の第1工程において、第1ガスはAlをさらに含んでもよい。すなわち、上記第1工程および第2工程が交互に繰り返されている間、Alを含む金属系ガスは、その導入量(mol/min)については一定である場合と変化する場合とがあるものの、少なくとも反応容器4内に常時導入されることになる。換言すれば、CVD工程において、Alを含む金属系ガスと、B、C、NおよびOからなる群より選ばれる1種以上の元素を含む非金属系ガスとが反応容器4内に常時導入され、Tiを含む金属系ガスが反応容器4内に間欠的に反応容器4内に導入されることになる。
 この場合、形成される多層構造含有層において、第1単位層は、Tiと、Alと、B、C、NおよびOからなる群より選ばれる1種以上の元素とを含む第1化合物を含み、第2単位層は、Alと、B、C、NおよびOからなる群より選ばれる1種以上の元素とを含む第2化合物を含む層となる。
 ≪第3の実施形態≫
 <表面被覆部材の製造方法>
 本発明の表面被覆部材の製造方法は、基材と、その表面に形成された、1または2以上の層により構成される硬質被膜とを含む表面被覆部材の製造方法であって、該層のうちの少なくとも1層をCVD法により形成するCVD工程を含む。該CVD工程は、Tiと、B、C、NおよびOからなる群より選ばれる1種以上の元素とを含む第1ガスを基材の表面に向かって噴出する第1工程と、Alと、B、C、NおよびOからなる群より選ばれる1種以上の元素とを含む第2ガスを基材の表面に向かって噴出する第2工程と、を含み、第1工程および第2工程は交互に繰り返される。以下、本実施形態においては、上述した第2の実施形態と異なる部分を主に説明する。
 <CVD工程>
 本発明のCVD工程は、本発明の硬質被膜を構成する層のうちの少なくとも1層をCVD法により形成する工程である。このCVD工程においては、図2に示すCVD装置を用いることができる。
 図2において、CVD装置11内には、基材12を保持した基材セット治具13を複数設置することができ、これらは耐熱合金鋼製の反応容器14でカバーされる。また、反応容器14の周囲にはヒータ15が配置されており、このヒータ15により、反応容器14内の温度を制御することができる。また、CVD装置11内には複数の貫通孔が形成された導入管16が配置されており、該導入管16は二つの導入口17、18を有する。導入口17、18のそれぞれから導入管16内に導入されたガスは、導入管16内においても混合されることなく、それぞれ異なる貫通孔を経て反応容器14内に噴出される。また、この導入管16はその軸を中心として回転することができる(図中回転矢印参照。)。反応容器14にはさらに排気管19が配置されており、反応容器14内に噴出されたガスは、排気管19の排気口20から外部へ排出される。なお、反応容器14内の治具類等は、通常黒鉛により構成される。
 本工程において、図2に示すようなCVD装置11を用いて、以下の第1工程および第2工程を交互に繰り返すことによって、本発明の、表面被覆部材の表面を被覆する硬質被膜を構成する層の1つとしての多層構造含有層を形成することができる。
 <第1工程>
 本工程では、上記のCVD装置11を用いて、Tiと、B、C、NおよびOからなる群より選ばれる1種以上の元素とを含む第1ガスを基材の表面に向かって噴出する。
 具体的には、図2において、Tiを含む金属系ガスを導入口17から導入管16内に導入する。これと同時に、B、C、NおよびOからなる群より選ばれる1種以上の元素を含む非金属系ガスを導入口18から導入管16内に導入する。導入口17から導入された金属系ガスと、導入口18から導入された非金属系ガスとは、それぞれ異なる複数の貫通孔から反応容器14内に噴出される。このとき、導入管16はその軸を中心として回転しているため、金属系ガスと非金属系ガスとは反応容器14内に噴出された直後に混合される。そして、この混合されたガスは、第1ガスとして導入管16の周囲に配置された基材12の表面に向かって均一に噴出される。
 Tiを含む金属系ガス、B、C、NおよびOからなる群より選ばれる1種以上の元素を含む非金属系ガスとしては、第2の実施形態において列挙したガスと同様のガスを用いることができる。また、本工程において、反応容器14内の温度は600~900℃の範囲が好ましく、反応容器14内の圧力は0.1~10kPaであることが好ましい。また、第1ガスとともにN2、H2、Arなどのキャリアガスを導入口17、18のそれぞれから導入することもできる。
 <第2工程>
 本工程では、上記のCVD装置11を用いて、Alと、B、C、NおよびOからなる群より選ばれる1種以上の元素とを含む第2ガスを基材の表面に向かって噴出する。
 具体的には、図2において、Alを含む第2ガスを導入口18から導入管16内に導入する。これと同時に、B、C、NおよびOからなる群より選ばれる1種以上の元素を含む非金属系ガスを導入口18から導入管16内に導入する。導入口17から導入された金属系ガスと、導入口18から導入された非金属系ガスとは、それぞれ異なる複数の貫通孔から反応容器14内に噴出される。このとき、導入管16はその軸を中心として回転しているため、金属系ガスと非金属系ガスとは反応容器14内に噴出された直後に混合される。そして、この混合されたガスは、第2ガスとして導入管16の周囲に配置された基材12の表面に向かって均一に噴出される。
 Alを含む金属系ガス、B、C、NおよびOからなる群より選ばれる1種以上の元素を含む非金属系ガスとしては、第2の実施形態において列挙したガスと同様のガスを用いることができる。また、本工程において、反応容器14内の温度は600~900℃の範囲が好ましく、反応容器14内の圧力は0.1~10kPaであることが好ましい。また、第2ガスとともにN2、H2、Arなどのキャリアガスを導入口17、18のそれぞれから導入することもできる。
 <第1工程および第2工程の繰り返し>
 本発明の製造方法において、上記第1工程および上記第2工程は交互に繰り返される。すなわち、導入口17より、Tiを含む金属系ガスとAlを含む金属系ガスとが交互に導入され、導入口18より、B、C、NおよびOからなる群より選ばれる1種以上の元素を含む非金属系ガスが連続的に導入される。このとき、導入管16が回転することにより、導入口17からTiを含む金属系ガスが導入されている場合には、反応容器14内に第1ガスが分散され、導入口17からAlを含む金属系ガスが導入されている場合には、反応容器14内に第2ガスが分散されることになる。
 以上詳述した工程を行うことにより、基材2の表面には、第1ガスに起因する第1単位層と、第2ガスに起因する第2単位層とが交互に積層された多層構造含有層を形成することができる。具体的には、Tiと、B、C、NおよびOからなる群より選ばれる1種以上の元素とを含む第1化合物を含む第1単位層と、Alと、B、C、NおよびOからなる群より選ばれる1種以上の元素とを含む第2化合物を含む第2単位層とが交互に積層された多層構造含有層を形成することができる。したがって、当該製造方法を用いることにより、少なくとも1層の多層構造含有層を含む硬質被膜を形成することにより、摩耗性、耐溶着性および耐熱衝撃性等の諸特性が向上した表面被覆部材を製造することができ、もって、安定化、長寿命化された表面被覆部材を製造することができる。
 なお、第1単位層および第2単位層の組成は、金属系ガスおよび非金属系ガスの混合割合によって制御することができ、第1単位層および第2単位層の厚みは成膜時間によって制御することができ、積層周期および層数は導入管6の回転速度によって制御することができる。また、成膜温度を制御することによって、第1化合物および第2化合物のそれぞれの結晶構造(fcc型結晶構造またはhcp型結晶構造)を制御することができる。また、中間層の組成、厚みは、金属系ガスおよび非金属系ガスの導入速度を制御することによって制御できる。具体的には、上述のCVD工程において、金属系ガスおよび非金属系ガスを比較的遅い速度で導入することにより、厚みの大きい中間層を形成することができ、金属系ガスおよび非金属系ガスを比較的早い速度で導入することにより厚みの小さい中間層を形成することができる。
 また、本実施形態に係る製造方法は、非金属系ガスとして、N2、NH3、N24からなる群より選ばれる1種以上を含む第1ガスおよび/または第2ガスを用いて多層構造含有層を形成する場合に好適に用いることができ、なかでも、非金属系ガスとして、NH3およびN24の少なくともいずれか一方を用いることが好ましい。その理由は次の通りである。
 すなわち、NH3およびN24はTiCl4、AlCl3などのハロゲン化合物との反応性が高いため、非金属系ガスとしてこれらを用いることによって、短時間でより均質な窒化チタニウム層、窒化アルミニウム層を形成することができるという利点を有する。しかし、その一方で、その反応性の高さ故に、上記のハロゲン化合物と不要な反応を起こすという欠点を有する。この不要な反応に伴う反応物が、CVD装置の導入管や貫通孔の詰まりの原因となるために、これらのガスはCVD法における取り扱いが困難なのが実情であった。これに対し、本実施形態に係る製造方法によれば、金属系ガスと非金属系ガスとは反応容器内に噴出された直後に混合されるため、導入管、貫通孔通過時に不要な反応が起こることがない。したがって、本実施形態に係る製造方法によれば、NH3およびN24の少なくともいずれか一方を用いて、短時間でより均質な多層構造含有層を形成することができる。
 また、本実施形態に係る製造方法は、非金属系ガスとして、NH3およびN24の少なくともいずれか一方とN2とを混合したガスを用いることが好ましい。NH3およびN24の少なくともいずれか一方とN2とを混合することにより、混合しない場合と比較して、200~300℃低い温度環境下での多層構造含有層の形成が可能となる。
 <変形例>
 本発明の第1工程において、第1ガスはAlをさらに含んでもよい。すなわち、上記第1工程および第2工程が交互に繰り返されている間、Alを含む金属系ガスは、その導入量(mol/min)については一定である場合と変化する場合とがあるものの、少なくとも反応容器4内に常時導入されることになる。換言すれば、CVD工程において、Alを含む金属系ガスと、B、C、NおよびOからなる群より選ばれる1種以上の元素を含む非金属系ガスとが反応容器4内に常時導入され、Tiを含む金属系ガスが反応容器4内に間欠的に反応容器4内に導入されることになる。
 以下、実施例を挙げて本発明をより詳細に説明するが、本発明はこれらに限定されるものではない。
 <基材の調製>
 以下の表1に記載の基材Aおよび基材Bを準備した。具体的には、表1に記載の配合組成からなる原料粉末を均一に混合し、所定の形状に加圧成形した後、1300~1500℃で1~2時間焼結することにより、形状がCNMG120408NUXとSEET13T3AGSN-Gとの2種類の形状の超硬合金製の基材を得た。すなわち、各基材毎に2種の異なった形状のものを作製した。なお、表1の「残り」とは、WCが配合組成(質量%)の残部を占めることを示している。
 上記2種の形状はいずれも住友電工ハードメタル社製のものであり、CNMG120408NUXは旋削用の刃先交換型切削チップの形状であり、SEET13T3AGSN-Gは転削(フライス)用の刃先交換型切削チップの形状である。
Figure JPOXMLDOC01-appb-T000001
 <多層構造含有層の形成>
 上記で得られた基材に対してその表面に多層構造含有層を形成した。具体的には、図2に示すCVD装置11を用い、基材を反応容器14内にセットし、CVD法を行うことにより、基材上に多層構造含有層を形成した。各多層構造含有層の形成条件は以下の表2に記載した通りである。
 表2を参照し、多層構造含有層の形成条件はa~gの7通りである。形成条件a~gにおいては、Tiを含む金属系ガスとしてTiCl4を、Alを含む金属系ガスとしてAlCl3を用い、これらの金属系ガスをH2およびN2からなるキャリアガスとともに導入口17から導入管16に導入した。また、Nを含む非金属系ガスとしてNH3およびN2を用い、該非金属系ガスを導入口18より導入管16に導入した。そして、導入管16を回転させて金属系ガスおよび非金属系ガスをそれぞれ異なる貫通孔から噴出させることによって、導入口17からTiCl4が導入されている際にはTiCl4、NH3およびN2が混合された第1ガスが基材の表面に噴出され、導入口17からAlCl3が導入されている際にはAlCl3、NH3およびN2が混合された第2ガスが基材の表面に噴出される構成とした。
 具体的には、たとえば、形成条件aにおいては、0.1mol/minのAlCl3、2.9mol/minのH2、および1.0mol/minのN2を導入口17から反応容器14内に導入するとともに、0.025mol/minのTiCl4を10秒のインターバルをもって導入口17から導入した。また、NH3およびN2が0.09mol/minおよび0.9mol/minとなるように混合した非金属系ガスを導入口18から反応容器14内に導入した。なお、表2における「TiCl4流量(mol/min)」の欄の「0→0.025」とは、TiCl4を0.025mol/minの流量で10秒間導入した後、10秒間導入を停止し、その後、再度0.025mol/minの流量で10秒間導入する、という繰り返しを行ったことを示している。そして、導入口17および導入口18から各ガスを導入するとともに、導入管16を5rpmで回転させることによって、TiCl4、NH3およびN2が混合された第1ガスと、AlCl3、NH3およびN2が混合された第2ガスとを基材の表面に交互に噴出させた。このときの反応容器14内は圧力1.3kPa、温度800℃の条件に保持されていた。これを30分間行うことにより、厚み5.0μmの多層積層含有層を形成した。
 各形成条件において、多層構造含有層の厚みは成膜時間でもって制御し、多層構造含有層におけるTiNとAlNとの積層周期は導入管16の回転速度(rpm)および非金属系ガスの導入量(mol/min)でもって制御した。
Figure JPOXMLDOC01-appb-T000002
 <多層構造含有層の確認>
 形成された各多層構造含有層の構成を、SEM、EPMAおよびX線回折法を用いて確認した。この結果を表3に示す。表3中、形成条件aにおいて、「fcc-TiN(50nm)/hcp-AlN(100nm)」とあるが、これは、第1単位層を構成する第1化合物がfcc結晶構造のTiNであってその厚みが50nmであり、第2単位層を構成する第2化合物がhcp結晶構造のAlNであってその厚みが100nmであり、各層が交互に積層されていることを示している。また、「積層周期」とは、TiN層の厚み方向の中点から1つのAlN層を介して隣接するTiN層の厚み方向の中点までの距離、すなわち、1つのTiN層の厚みと1つのAlN層の厚みとの和を示しており、「厚み(μm)」は多層構造含有層の厚みを示している。
 また、表3に、比較例として形成条件x、yにより形成した層を示した。形成条件xにおいては特許文献1に開示されるPVD法を用いて硬質被膜を形成し、形成条件yにおいては特許文献2に開示されるCVD法を用いて硬質被膜を形成した。形成条件xでは、4nmの厚みのfcc結晶構造のTiN層と4nmの厚みのfcc結晶構造のAlN層とが交互に積層された積層構造からなる層(AlN/TiN層)が形成され、形成条件yではfcc結晶構造を有し、かつTi0.1Al0.9Nの組成を主とする単層からなる層(Ti0.1Al0.9N層)が形成された。
Figure JPOXMLDOC01-appb-T000003
 <多層構造含有層の摺動特性>
 形成条件a~gのそれぞれで形成された多層構造含有層、形成条件x、yのそれぞれで形成された層について、以下の条件でピンオンディスク試験を行って摩擦力を求め、これにより摩擦係数(摩擦力/荷重)を算出した。また、ピンオンディスク試験後の各層の各表面について、試験後の摺動溝を横切る形で触針式表面粗さ計にて各々4回ずつ測定し、これにより、摺動部への溶着量(μm2)を求めた。なお、溶着量(μm2)は被膜最表面よりも上に凸となった部分の面積、すなわち、摺動溝断面での上凸部面積を溶着量とした。
 <ピンオンディスク試験条件>
 ボール材質:SUS304
 ボール半径:2mm
 荷重:1N
 回転速度:3m/min
 摺動距離:3m
 環境:大気圧環境下
 摩擦係数および溶着量の結果を表3に示す。表3から明らかなように、形成条件a~gにより形成された本発明の多層構造含有層は、形成条件xおよびyにより形成された従来の各層に比し、摩擦係数が小さく、また、溶着量が少ない、すなわち耐溶着性が高く、もって、高い摺動特性を有していた。
 <表面被覆部材の作製>
 上記の表2および下記の表4の条件により基材上に硬質被膜を形成することにより、以下の表5に示した実施例1~15および比較例1~6の表面被覆部材としての切削工具を作製した。表4に記載した各層については、表4に示す各ガスを表4に示した容積%の比となるように混合した混合ガスを、表4に示した全ガス量(L/min)となるように導入口17から導入し、表4に示す環境下でCVD工程を行うことにより形成した。なお、表4中の「残り」とは、H2が原料ガス(反応ガス)の残部を占めることを示している。また、「全ガス量」とは、標準状態(0℃、1気圧)における気体を理想気体とし、単位時間当たりに反応容器14内に導入された全容積流量を示す。
 たとえば実施例13の切削工具は、基材として表1に記載の基材Bを採用し、その基材Bの表面に下地層として厚み1.0μmのTiN層(下地層)を表4の条件で形成し、そのTiN層(下地層)上に厚み3.0μmのTiCN層を表4の条件で形成し、そのTiCN層上に厚み3.0μmの多層構造含有層を表2の形成条件fで形成し、その多層構造含有層上に厚み0.5μmのTiN層(最外層)を表4の条件で形成することにより、基材上に合計厚み7.5μmの硬質被膜を形成した構成であることを示している。表5中の空欄(ハイフン)は、該当する層が形成されていないことを示す。
 なお、下地層および多層構造含有層に関し、同組成からなる層でありながら、その厚みが異なるものがある。たとえば、実施例1の多層構造含有層は形成条件eによって形成された厚み10μmの層であるのに対し、実施例8の多層構造含有層は形成条件eによって形成された厚み15μmの層である。これらの層の厚みの違いは、層の形成時間、すなわち、第1ガスと第2ガスとを基材の表面に交互に噴出させた合計時間を調整することによって制御した。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
 <切削試験>
 上記で得られた切削工具のそれぞれを用いて、以下の4種類の切削試験を行った。
 <切削試験1>
 以下の表6に記載した実施例および比較例の切削工具(基材の形状がCNMG120408NUXであるものを使用)について、以下の切削条件により逃げ面摩耗量(Vb)が0.20mmとなるまでの切削時間を測定するとともに刃先の最終損傷形態を観察した。その結果を表6に示す。切削時間が長いもの程、耐摩耗性に優れていることを示す。また、最終損傷形態が正常摩耗に近いもの程、耐溶着性に優れていることを示す。
 <切削条件>
 被削材:SUS316丸棒外周切削
 周速:180m/min
 送り速度:0.15mm/rev
 切込み量:1.0mm
 切削液:あり
Figure JPOXMLDOC01-appb-T000006
 表6より明らかなように、本発明の実施例の切削工具は、比較例の切削工具に比し、耐摩耗性および耐溶着性の両者に優れており、もって、安定化、長寿命化されていた。なお、表6の最終損傷形態において、「正常摩耗」とはチッピング、欠けなどを生じず、摩耗のみで構成される損傷形態(平滑な摩耗面を有する)を意味し、「チッピング」とは切れ刃部に生じた微小な欠けを意味する。
 <切削試験2>
 以下の表7に記載した実施例および比較例の切削工具(基材の形状がCNMG120408NUXであるものを使用)について、以下の切削条件により逃げ面摩耗量(Vb)が0.20mmとなるまでの切削時間を測定するとともに刃先の最終損傷形態を観察した。その結果を表7に示す。切削時間が長いもの程、耐摩耗性に優れていることを示す。また、最終損傷形態が正常摩耗に近いもの程、耐溶着性に優れていることを示す。
 <切削条件>
 被削材:FCD700丸棒外周切削
 周速:200m/min
 送り速度:0.15mm/rev
 切込み量:1.0mm
 切削液:あり
Figure JPOXMLDOC01-appb-T000007
 表7より明らかなように、本発明の実施例の切削工具は、比較例の切削工具に比し、耐摩耗性および耐溶着性の両者に優れており、もって、安定化、長寿命化されていた。なお、表7の最終損傷形態において、「正常摩耗」とはチッピング、欠けなどを生じず、摩耗のみで構成される損傷形態(平滑な摩耗面を有する)を意味し、「欠損」とは切れ刃部に生じた大きな欠けを意味する。
 <切削試験3>
 以下の表8に記載した実施例および比較例の切削工具(基材の形状がSEET13T3AGSN-Gであるものを使用)について、以下の切削条件により欠損または逃げ面摩耗量(Vb)が0.20mmになるまでの切削距離を測定するとともに刃先の最終損傷形態を観察した。その結果を表8に示す。切削距離が長いもの程、耐溶着性に優れていることを示す。また、最終損傷形態が正常摩耗に近いもの程、耐熱衝撃性に優れていることを示す。
 <切削条件>
 被削材:SUS304ブロック材
 周速:200m/min
 送り速度:0.3mm/s
 切込み量:2.0mm
 切削液:なし
 カッタ:WGC4160R(住友電工ハードメタル社製)
Figure JPOXMLDOC01-appb-T000008
 表8より明らかなように本発明の実施例の切削工具は、比較例の切削工具に比し、耐溶着性および耐熱衝撃性の両者に優れており、もって、安定化、長寿命化されていた。なお、表8の最終損傷形態において、「正常摩耗」とはチッピング、欠けなどを生じず、摩耗のみで構成される損傷形態(平滑な摩耗面を有する)を意味し、「欠損」とは切れ刃部に生じた大きな欠けを意味し、「チッピング」とは、切れ刃部に生じた微小な欠けを意味する。
 <切削試験4>
 以下の表9に記載した実施例および比較例の切削工具(形状がSEET13T3AGSN-Gであるものを使用)について、以下の切削条件により欠損または逃げ面摩耗量(Vb)が0.20mmになるまでの切削距離を測定するとともに刃先の最終損傷形態を観察した。その結果を表9に示す。切削距離が長いもの程、耐溶着性に優れていることを示す。また、最終損傷形態が正常摩耗に近いもの程、耐熱衝撃性に優れていることを示す。
 <切削条件>
 被削材:SCM435ブロック材
 周速:300m/min
 送り速度:0.3mm/s
 切込み量:2.0mm
 切削液:あり
 カッタ:WGC4160R(住友電工ハードメタル社製)
Figure JPOXMLDOC01-appb-T000009
 表9より明らかなように本発明の実施例の切削工具は、比較例の切削工具に比し、少なくとも耐溶着性に優れており、もって、安定化、長寿命化されていた。なお、表9の最終損傷形態において、「正常摩耗」とはチッピング、欠けなどを生じず、摩耗のみで構成される損傷形態(平滑な摩耗面を有する)を意味する。
 以上のように本発明の実施の形態および実施例について説明を行なったが、上述の各実施の形態および実施例の構成を適宜組み合わせることも当初から予定している。
 今回開示された実施の形態および実施例はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 1,11 CVD装置、2,12 基材、3,13 基材セット治具、4,14 反応容器、5,15 ヒータ、6,16 導入管、7,17,18 導入口、8,19 排気管、9,20 排気口。

Claims (8)

  1.  基材と、その表面に形成された硬質被膜とを含む表面被覆部材であって、
     前記硬質被膜は、1または2以上の層により構成され、
     前記層のうち少なくとも1層は、CVD法により形成され、第1単位層と第2単位層とが交互に積層された多層構造を含み、
     前記第1単位層は、Tiと、B、C、NおよびOからなる群より選ばれる1種以上の元素とを含む第1化合物を含み、
     前記第2単位層は、Alと、B、C、NおよびOからなる群より選ばれる1種以上の元素とを含む第2化合物を含む、表面被覆部材。
  2.  前記第1単位層と前記第2単位層との間に中間層を含み、
     前記中間層の組成は、その厚み方向において、前記第1化合物の組成から前記第2化合物の組成に連続的に変化する、請求項1に記載の表面被覆部材。
  3.  前記第1化合物はfcc型結晶構造を有し、前記第2化合物はhcp型結晶構造を有する、請求項1または2に記載の表面被覆部材。
  4.  前記第1化合物はAlをさらに含む、請求項1から3のいずれかに記載の表面被覆部材。
  5.  基材と、その表面に形成された、1または2以上の層により構成される硬質被膜とを含む表面被覆部材の製造方法であって、
     前記層のうち少なくとも1層をCVD法により形成するCVD工程を含み、
     前記CVD工程は、
     Tiと、B、C、NおよびOからなる群より選ばれる1種以上の元素とを含む第1ガスを前記基材の表面に向かって噴出する第1工程と、
     Alと、B、C、NおよびOからなる群より選ばれる1種以上の元素とを含む第2ガスを前記基材の表面に向かって噴出する第2工程と、を含み、
     前記第1工程および前記第2工程は交互に繰り返される、表面被覆部材の製造方法。
  6.  前記第1ガスはN2、NH3、N24からなる群より選ばれる1種以上を含む、請求項5に記載の表面被覆部材の製造方法。
  7.  前記第2ガスは、N2、NH3、N24からなる群より選ばれる1種以上を含む、請求項5または6に記載の表面被覆部材の製造方法。
  8.  前記第1ガスは、Alをさらに含む、請求項5から7のいずれかに記載の表面被覆部材の製造方法。
PCT/JP2013/079700 2012-12-28 2013-11-01 表面被覆部材およびその製造方法 WO2014103507A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/654,924 US9777367B2 (en) 2012-12-28 2013-11-01 Surface coated member and method for manufacturing same
EP13868993.0A EP2939769B1 (en) 2012-12-28 2013-11-01 Manufacturing method for surface coated member
KR1020157015267A KR102094055B1 (ko) 2012-12-28 2013-11-01 표면 피복 부재 및 그 제조 방법
CN201380068373.6A CN104884200B (zh) 2012-12-28 2013-11-01 表面被覆部件及其制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-287500 2012-12-28
JP2012287500A JP6143158B2 (ja) 2012-12-28 2012-12-28 表面被覆部材およびその製造方法

Publications (1)

Publication Number Publication Date
WO2014103507A1 true WO2014103507A1 (ja) 2014-07-03

Family

ID=51020606

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/079700 WO2014103507A1 (ja) 2012-12-28 2013-11-01 表面被覆部材およびその製造方法

Country Status (6)

Country Link
US (1) US9777367B2 (ja)
EP (1) EP2939769B1 (ja)
JP (1) JP6143158B2 (ja)
KR (1) KR102094055B1 (ja)
CN (1) CN104884200B (ja)
WO (1) WO2014103507A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015105177A1 (ja) * 2014-01-10 2015-07-16 三菱マテリアル株式会社 化学蒸着装置、および化学蒸着方法
JP6511798B2 (ja) * 2014-12-22 2019-05-15 三菱マテリアル株式会社 化学蒸着装置、化学蒸着方法
JP6507458B2 (ja) * 2016-02-24 2019-05-08 住友電工ハードメタル株式会社 表面被覆切削工具の製造方法
CN109161845B (zh) * 2018-09-18 2020-06-05 岭南师范学院 一种海洋环境耐磨自润滑纳米复合涂层及其制备方法和应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07205362A (ja) 1994-01-21 1995-08-08 Sumitomo Electric Ind Ltd 耐摩耗性に優れた表面被覆部材
JPH08118163A (ja) * 1994-10-21 1996-05-14 Hitachi Tool Eng Ltd 被覆超硬合金切削用工具の製造方法
JP2001513709A (ja) * 1997-12-10 2001-09-04 サンドビック アクティエボラーグ(プブル) 多層pvd被覆切削工具
JP2003225808A (ja) * 2002-01-31 2003-08-12 Mitsubishi Materials Corp 高速断続切削で硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆超硬合金製切削工具
JP2007168032A (ja) * 2005-12-22 2007-07-05 Mitsubishi Materials Corp 高速重切削条件で硬質被覆層がすぐれた耐摩耗性および耐チッピング性を発揮する表面被覆切削工具
JP2008545063A (ja) 2005-07-04 2008-12-11 フラウンホーファー−ゲゼルシャフト ツル フェルデルング デル アンゲヴァンテン フォルシュング エー ファウ 硬質膜被覆された物体およびその製造方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60258462A (ja) * 1984-06-05 1985-12-20 Nippon Kogaku Kk <Nikon> 表面硬化された軟質金属基材
DE69319531T2 (de) * 1992-10-12 1999-04-15 Sumitomo Electric Industries Ultradünnes Filmlaminat
JPH06173009A (ja) 1992-12-04 1994-06-21 Sumitomo Electric Ind Ltd 耐摩耗性に優れた被覆超硬合金及びその製造方法
DE69527236T2 (de) * 1994-09-16 2003-03-20 Sumitomo Electric Industries Mehrschichtfilm aus ultrafeinen Partikeln und harter Verbundwerkstoff für Werkzeuge, die diesen Film enthalten
JPH08134629A (ja) * 1994-09-16 1996-05-28 Sumitomo Electric Ind Ltd 超微粒積層膜と、それを有する工具用複合高硬度材料
DE69526301T2 (de) * 1994-10-28 2002-12-05 Sumitomo Electric Industries Mehrschichtiges Material
GB9712400D0 (en) * 1997-06-16 1997-08-13 Trikon Equip Ltd Shower head
FR2767841B1 (fr) * 1997-08-29 1999-10-01 Commissariat Energie Atomique PROCEDE DE PREPARATION PAR DEPOT CHIMIQUE EN PHASE VAPEUR (CVD) D'UN REVETEMENT MULTICOUCHE A BASE DE Ti-Al-N
US20040040502A1 (en) * 2002-08-29 2004-03-04 Micron Technology, Inc. Micromachines for delivering precursors and gases for film deposition
KR20070087059A (ko) 2004-12-27 2007-08-27 스미또모 덴꼬오 하드메탈 가부시끼가이샤 표면 피복 절삭 공구
JP5027491B2 (ja) 2006-12-06 2012-09-19 住友電気工業株式会社 表面被覆切削工具
DE102008013966A1 (de) 2008-03-12 2009-09-17 Kennametal Inc. Hartstoffbeschichteter Körper
WO2012144574A1 (ja) * 2011-04-20 2012-10-26 株式会社タンガロイ 被覆切削工具
JP2013000773A (ja) * 2011-06-16 2013-01-07 Sumitomo Electric Ind Ltd 被覆回転ツール
AT511950B1 (de) 2012-03-14 2013-04-15 Boehlerit Gmbh & Co Kg Beschichteter Körper und Verfahren zum Beschichten eines Körpers
JP6090063B2 (ja) 2012-08-28 2017-03-08 三菱マテリアル株式会社 表面被覆切削工具

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07205362A (ja) 1994-01-21 1995-08-08 Sumitomo Electric Ind Ltd 耐摩耗性に優れた表面被覆部材
JPH08118163A (ja) * 1994-10-21 1996-05-14 Hitachi Tool Eng Ltd 被覆超硬合金切削用工具の製造方法
JP2001513709A (ja) * 1997-12-10 2001-09-04 サンドビック アクティエボラーグ(プブル) 多層pvd被覆切削工具
JP2003225808A (ja) * 2002-01-31 2003-08-12 Mitsubishi Materials Corp 高速断続切削で硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆超硬合金製切削工具
JP2008545063A (ja) 2005-07-04 2008-12-11 フラウンホーファー−ゲゼルシャフト ツル フェルデルング デル アンゲヴァンテン フォルシュング エー ファウ 硬質膜被覆された物体およびその製造方法
JP2007168032A (ja) * 2005-12-22 2007-07-05 Mitsubishi Materials Corp 高速重切削条件で硬質被覆層がすぐれた耐摩耗性および耐チッピング性を発揮する表面被覆切削工具

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2939769A4

Also Published As

Publication number Publication date
US20150345012A1 (en) 2015-12-03
EP2939769A1 (en) 2015-11-04
JP2014128848A (ja) 2014-07-10
JP6143158B2 (ja) 2017-06-07
KR20150101449A (ko) 2015-09-03
CN104884200B (zh) 2019-08-16
KR102094055B1 (ko) 2020-03-26
EP2939769A4 (en) 2016-08-03
EP2939769B1 (en) 2019-05-08
US9777367B2 (en) 2017-10-03
CN104884200A (zh) 2015-09-02

Similar Documents

Publication Publication Date Title
US11591695B2 (en) Surface coated member and method for manufacturing same
JP5866650B2 (ja) 表面被覆切削工具
CN108367363B (zh) 表面被覆切削工具及其制造方法
WO2013087848A1 (en) Coated cutting tool and method of manufacturing the same
WO2012144088A1 (ja) 表面被覆切削工具およびその製造方法
JP5768308B2 (ja) 表面被覆切削工具
JP6349581B2 (ja) 硬質被膜、切削工具および硬質被膜の製造方法
WO2014103507A1 (ja) 表面被覆部材およびその製造方法
JP7035296B2 (ja) 表面被覆切削工具及びその製造方法
JP5240607B2 (ja) 表面被覆切削工具
WO2022230361A1 (ja) 切削工具
WO2022230362A1 (ja) 切削工具
WO2022230363A1 (ja) 切削工具及びその製造方法
JP2022171411A (ja) 切削工具
JP2022171412A (ja) 切削工具
JP5240608B2 (ja) 表面被覆切削工具

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13868993

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20157015267

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14654924

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013868993

Country of ref document: EP