WO2022230361A1 - 切削工具 - Google Patents

切削工具 Download PDF

Info

Publication number
WO2022230361A1
WO2022230361A1 PCT/JP2022/009462 JP2022009462W WO2022230361A1 WO 2022230361 A1 WO2022230361 A1 WO 2022230361A1 JP 2022009462 W JP2022009462 W JP 2022009462W WO 2022230361 A1 WO2022230361 A1 WO 2022230361A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
cutting tool
hard
gas
hard particle
Prior art date
Application number
PCT/JP2022/009462
Other languages
English (en)
French (fr)
Inventor
聡 小野
アノンサック パサート
克己 岡村
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to JP2023517108A priority Critical patent/JP7517599B2/ja
Priority to KR1020237029246A priority patent/KR20230132594A/ko
Priority to EP22795284.3A priority patent/EP4331756A4/en
Priority to US18/279,617 priority patent/US20240309514A1/en
Priority to CN202280017896.7A priority patent/CN117177828A/zh
Publication of WO2022230361A1 publication Critical patent/WO2022230361A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • C23C30/005Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process on hard metal substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/044Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material coatings specially adapted for cutting tools or wear applications
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B27/00Tools for turning or boring machines; Tools of a similar kind in general; Accessories therefor
    • B23B27/14Cutting tools of which the bits or tips or cutting inserts are of special material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0272Deposition of sub-layers, e.g. to promote the adhesion of the main coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/36Carbonitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/42Silicides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45502Flow conditions in reaction chamber
    • C23C16/45508Radial flow
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/042Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material including a refractory ceramic layer, e.g. refractory metal oxides, ZrO2, rare earth oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/048Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material with layers graded in composition or physical properties

Definitions

  • US Pat. No. 5,300,001 discloses a nanocomposite coating comprising a nanocrystalline layer of TiC x N 1-x and a second phase of amorphous SiC x N y produced by thermal CVD.
  • Non-Patent Document 1 discloses a TiSiCN film having a nanocomposite structure formed by the PVD method.
  • a cutting tool of the present disclosure comprises a substrate and a coating disposed on the substrate,
  • the coating comprises a hard particle layer
  • the hard particle layer consists of a plurality of hard particles containing titanium, silicon, carbon and nitrogen, In the hard particles, the concentration of the silicon periodically changes along a first direction set in the hard particles,
  • the orientation of the hard particle layer is the (220) orientation of the cutting tool.
  • FIG. 1 is a schematic diagram showing an example of a cross section of a cutting tool according to Embodiment 1.
  • FIG. FIG. 2 is a schematic diagram showing another example of the cross section of the cutting tool according to Embodiment 1.
  • FIG. 3 is a schematic diagram showing another example of the cross section of the cutting tool according to Embodiment 1.
  • FIG. 4 is a schematic diagram showing another example of the cross section of the cutting tool according to Embodiment 1.
  • FIG. 5 is a diagram schematically showing an example of a bright-field transmission electron microscope (BF-STEM) image (observation magnification: 100,000 times) of a cross section of the hard phase particle layer of the cutting tool according to Embodiment 1.
  • BF-STEM bright-field transmission electron microscope
  • FIG. 6 is a diagram schematically showing an example of a bright-field transmission electron microscope (BF-STEM) image (observation magnification: 2,000,000 times) of a cross section of the hard phase particle layer of the cutting tool according to Embodiment 1.
  • FIG. 7 is an example of a graph showing the results of line analysis of hard particles of the cutting tool according to Embodiment 1.
  • FIG. 8 is a schematic cross-sectional view of an example of a CVD apparatus used for manufacturing a cutting tool according to Embodiment 2.
  • FIG. BF-STEM bright-field transmission electron microscope
  • an object of the present disclosure is to provide a cutting tool having a long tool life.
  • a cutting tool of the present disclosure comprises a substrate and a coating disposed on the substrate,
  • the coating comprises a hard particle layer
  • the hard particle layer consists of a plurality of hard particles containing titanium, silicon, carbon and nitrogen, In the hard particles, the concentration of the silicon periodically changes along a first direction set in the hard particles,
  • the orientation of the hard particle layer is the (220) orientation of the cutting tool.
  • cutting tools can have a long tool life.
  • the average of 100 is preferably 1% or more and 20% or less.
  • the tool life of the cutting tool is further improved.
  • the average period width of the silicon concentration is preferably 3 nm or more and 50 nm or less. According to this, the tool life of the cutting tool is further improved.
  • the thickness of the hard particle layer is preferably 1 ⁇ m or more and 20 ⁇ m or less. According to this, the tool life of the cutting tool is further improved.
  • the substrate is made of a cemented carbide containing tungsten carbide and cobalt;
  • the content of cobalt in the cemented carbide is preferably 6% by mass or more and 11% by mass or less.
  • the tool life of the cutting tool is further improved.
  • the difference between the maximum value and the minimum value of 100 is preferably 1% or more and 38% or less.
  • the film hardness and toughness of the hard particle layer are improved.
  • the coating includes an underlying layer disposed immediately above the substrate;
  • the underlying layer is preferably made of at least one selected from the group consisting of a TiN layer, a TiC layer, a TiCN layer, a TiBN layer and an Al2O3 layer.
  • the adhesion between the substrate and the coating can be enhanced. Also, by using an Al 2 O 3 layer as the underlayer, the oxidation resistance of the coating can be enhanced.
  • the coating comprises an outermost layer arranged on the most surface side of the coating;
  • the outermost layer preferably comprises a layer containing 90% by mass or more of titanium carbide, titanium nitride or titanium boride, or an Al 2 O 3 layer.
  • a compound or the like when represented by a chemical formula, it shall include any conventionally known atomic ratio unless the atomic ratio is particularly limited, and should not necessarily be limited only to those within the stoichiometric range.
  • TiSiCN the ratio of the number of atoms constituting TiSiCN includes all conventionally known atomic ratios.
  • a cutting tool of one embodiment of the present disclosure (hereinafter also referred to as “this embodiment") is a cutting tool comprising a base material and a coating disposed on the base material,
  • the coating comprises a hard particle layer,
  • the hard particle layer consists of a plurality of hard particles containing titanium, silicon, carbon and nitrogen, In the hard particles, the silicon concentration varies periodically along a first direction set in the hard particles,
  • the orientation of the hard particle layer is the (220) orientation of the cutting tool.
  • the cutting tool of this embodiment can have a long tool life. The reason for this is presumed to be as follows (i) to (iii).
  • the coating includes a hard particle layer composed of a plurality of hard particles containing titanium, silicon, carbon and nitrogen.
  • Hard particles containing titanium, silicon, carbon and nitrogen have high hardness. Therefore, the hard particle layer composed of the hard particles has high hardness and excellent wear resistance.
  • the concentration of silicon periodically changes along the first direction set in the hard particles. According to this, strain occurs in the hard particles, the hardness of the hard particles and the hard particle layer increases, and the wear resistance of the cutting tool improves. In addition, the composition change in the hard particles suppresses the propagation of cracks and improves the chipping resistance of the cutting tool.
  • the orientation of the hard particle layer is (220) orientation.
  • the orientation of the hard particle layer is (220) orientation.
  • the elastic recovery rate of the hard particle layer is improved.
  • Cutting tools containing the hard particle layer exhibit excellent wear resistance, especially in cast iron cutting. This is a finding newly discovered by the inventors of the present invention.
  • the cutting tool 1 of this embodiment includes a substrate 10 and a coating 14 placed on the substrate 10 .
  • the coating 14 consists of the hard particle layer 11 only.
  • the coating 14 preferably covers at least a portion of the substrate involved in cutting, and more preferably covers the entire surface of the substrate.
  • the portion involved in cutting of the substrate means a region within 500 ⁇ m from the ridgeline of the cutting edge on the surface of the substrate. It would not depart from the scope of the present disclosure if portions of the substrate were not coated with this coating or if the composition of the coating varied.
  • coating 24 can contain other layers in addition to the hard particle layer.
  • coating 24 can further include underlayer 12 disposed between substrate 10 and hard-particle layer 11 in addition to hard-particle layer 11 . .
  • the coating 34 can include the outermost layer 13 arranged on the hard particle layer 11 in addition to the hard particle layer 11 and the base layer 12 .
  • the coating 45 can include the hard particle layer 11, the base layer 12 having a two-layer structure of the first base layer 12A and the second base layer 12B, and the outermost layer 13. .
  • Cutting tools of the present disclosure include, for example, drills, end mills (e.g., ball end mills), indexable cutting inserts for drills, indexable cutting inserts for end mills, indexable cutting inserts for milling, indexable cutting inserts for turning. It can be a cutting tip, metal saw, gear cutting tool, reamer, tap, or the like.
  • the substrate 10 includes a rake face and a flank, and any conventionally known substrate of this type can be used.
  • cemented carbide for example, WC-based cemented carbide containing tungsten carbide and cobalt, the cemented carbide may contain carbonitrides such as Ti, Ta, Nb), cermet (TiC, TiN, TiCN etc.), high speed steel, ceramics (titanium carbide, silicon carbide, silicon nitride, aluminum nitride, aluminum oxide, etc.), cubic boron nitride sintered body or diamond sintered body is preferred.
  • a substrate made of a cemented carbide containing tungsten carbide and cobalt, in which the content of cobalt in the cemented carbide is 6% by mass or more and 11% by mass or less, is preferable. According to this, it has an excellent balance of hardness and strength at high temperatures, and has excellent properties as a base material for cutting tools for the above applications.
  • a WC-based cemented carbide When a WC-based cemented carbide is used as the substrate, its structure may contain free carbon, an abnormal layer called ⁇ phase or ⁇ phase, and the like.
  • the base material may have its surface modified.
  • a ⁇ -free layer may be formed on the surface, and in the case of cermet, a hardened surface layer may be formed.
  • the substrate exhibits the desired effect even if its surface has been modified.
  • the substrate may or may not have a chip breaker.
  • the shape of the cutting edge ridgeline is sharp edge (the ridge where the rake face and the flank face intersect), honing (sharp edge with radius), negative land (chamfering), or a combination of honing and negative land. Any of them, such as a combination thereof, can be adopted.
  • the coating of this embodiment includes a hard particle layer.
  • the coating of this embodiment may contain other layers as long as it contains the hard particle layer.
  • Other layers include, for example, an underlying layer and an outermost layer. The details of the hard particle layer, underlayer and outermost layer will be described later.
  • the thickness of the entire coating of this embodiment is preferably 1 ⁇ m or more and 30 ⁇ m or less.
  • the thickness of the entire coating is 1 ⁇ m or more, excellent abrasion resistance can be obtained.
  • the thickness of the entire coating is 30 ⁇ m or less, it is possible to suppress the occurrence of peeling or breakage of the coating when a large stress is applied between the coating and the substrate during intermittent machining.
  • the thickness of the coating is measured, for example, by obtaining a cross-sectional sample parallel to the normal direction of the surface of the base material and observing this sample with a scanning transmission electron microscope (STEM).
  • the cross-sectional sample is a thin section sample processed using an ion slicer or the like.
  • Scanning transmission electron microscopes include JEM-2100F (trademark) manufactured by JEOL Ltd., for example.
  • the measurement conditions are an acceleration voltage of 200 kV and a current of 0.3 nA.
  • the thickness means the average thickness.
  • the observation magnification of the cross-sectional sample is 1000 times, and a rectangular measurement field of (100 ⁇ m in the direction parallel to the substrate surface) ⁇ (distance including the entire thickness of the coating) is set in the electron microscope image, Ten thickness widths are measured in the field of view, and the average value is defined as "thickness”.
  • the thickness (average thickness) of each layer described below is similarly measured and calculated.
  • the hard particle layer consists of a plurality of hard particles including titanium (Ti), silicon (Si), carbon (C) and nitrogen (N).
  • the hard particles include TiSiCN particles composed of titanium, silicon, carbon and nitrogen.
  • TiSiCN particles can contain unavoidable impurities other than titanium, silicon, carbon and nitrogen as long as they do not affect the effects of the present disclosure. Even if the inevitable impurities include, for example, amorphous phases and intermetallic compounds (eg, TiSi 2 , Co 2 Si, etc.), they do not deviate from the scope of the present disclosure as long as the effects of the present disclosure are exhibited.
  • the concentration of silicon varies periodically along the first direction set in the hard particles.
  • the first direction is defined as a direction specified by methods (A1) to (A4) below.
  • a cutting tool is cut out with a diamond wire along the normal line of the rake face of the substrate to expose the cross section of the hard particle layer.
  • the sample to be measured is prepared as a slice sample processed using an ion slicer or the like.
  • FIG. 5 is a diagram schematically showing an example of a BF-STEM image (observation magnification: 100,000 times) of the hard particle layer of this embodiment. Next, one identified hard particle is observed at a magnification of 2,000,000 times to obtain a BF-STEM image.
  • FIG. 6 is a diagram schematically showing an example of a BF-STEM image (observation magnification: 2,000,000 times) of one hard particle identified in FIG.
  • first unit layer the layer shown in black
  • second unit layer A region (hereinafter, also referred to as a “laminated region”) in which two unit layers” are alternately laminated substantially in parallel is specified.
  • the first unit layer shown in black is a region with a high silicon content
  • the second unit layer shown in gray is a region with a low silicon content.
  • (A4) Specify the lamination direction of the first unit layer (layer shown in black) and the second unit layer (layer shown in gray) in the lamination region specified above. Specifically, the stacking directions of the first unit layer and the second unit layer are superimposed on the electron beam diffraction pattern of the selected field region, and the stacking direction is specified using the orientation indicated by the diffraction spots.
  • the lamination direction of the first unit layer and the second unit layer is indicated by an arrow from a circle S to a circle E. As shown in FIG. In this specification, the stacking direction is defined as the first direction.
  • the first direction can also be defined as the direction along the stacking direction in the hard particles.
  • the line along the first direction intersects the interface between the substrate and the coating at a predetermined angle of 45° or more and 90° or less.
  • the concentration of silicon in the hard particles periodically changes along the first direction set in the hard particles.
  • B1 In the above BF-STEM image (observation magnification: 2,000,000 times), line analysis is performed along the first direction by EDX (Energy Dispersive X-ray Spectroscopy) attached to STEM. Then, the content A Ti of titanium based on the number of atoms and the content A Si of silicon based on the number of atoms are measured.
  • the beam diameter for line analysis is 0.5 nm or less, the scan interval is 0.5 nm, and the length of line analysis is 50 nm.
  • the X axis is the distance (nm) along the first direction from the starting point of the line analysis
  • the Y axis is the number of silicon atoms A Si and the number of titanium atoms A Ti .
  • a graph shown in a coordinate system of the percentage of silicon atoms A Si ( ⁇ A Si /(A Si +A Ti ) ⁇ 100) (%) is obtained.
  • the graph shows the percentage of the number of silicon atoms A Si to the sum of the number of silicon atoms A Si and the number of titanium atoms A Ti as the distance along the first direction (X-axis) increases from the starting point of the line analysis.
  • (Y-axis) changes.
  • FIG. 7 shows an example of a graph obtained by performing line analysis on the arrow from circle S to circle E in the BF-STEM image of FIG.
  • the first A region is, for example, c1 or more and c2 or less, c3 or more and c4 or less, c5 or more and c6 or less, c7 or more and c8 or less, c9 or more and c10 or less, or c11 along the first direction from the start point of the line analysis. It is an area of c12 or less (distance greater than c13 is omitted).
  • the 1B region is, for example, the distance along the first direction from the starting point of the line analysis is more than c2 and less than c3, more than c4 and less than c5, more than c6 and less than c7, more than c8 and less than c9, more than c10 and less than c11, c12 It is the area of super-c13 and below.
  • the value of ⁇ A Si / (A Si +A Ti ) ⁇ ⁇ 100 increases from the average value as the distance from the starting point of the line analysis increases. It is preferred to increase to a maximum value within the first A region and then decrease to an average value.
  • the above-mentioned increase in the 1st A region is not limited to a monotonous increase, and in the middle of the increase, the average value of the values of ⁇ A Si /(A Si +A Ti ) ⁇ 100 and the maximum value in the 1st A region There may be a reduction of up to 50% of the difference.
  • the above-mentioned decrease in the first A region is not limited to a monotonous decrease, and during the decrease, the average value of the values of ⁇ A Si /(A Si +A Ti ) ⁇ 100 and the maximum value in the first A region There may be an increase of up to 50% of the difference from
  • the value of ⁇ A Si / (A Si +A Ti ) ⁇ ⁇ 100 increases from the average value as the distance from the starting point of the line analysis increases. Preferably, it decreases to a minimum value within the 1B region and then increases to an average value.
  • the above decrease in the 1B region is not limited to a monotonous decrease, and in the middle of the decrease, the average value of the values of ⁇ A Si /(A Si +A Ti ) ⁇ 100 and the minimum value in the 1B region There may be an increase of up to 50% of the difference.
  • the above- mentioned increase in the 1B region is not limited to a monotonous increase. There may be a reduction of up to 50% of the difference between
  • the value a1 of ⁇ A Si /(A Si +A Ti ) ⁇ 100 at P1 is the first A Maximum value in the region.
  • the value of ⁇ A Si /(A Si +A Ti ) ⁇ 100 increases from the average e1 to It increases to the maximum value a1 and then decreases from the maximum value a1 to the average value e1.
  • the value b1 of ⁇ A Si / (A Si +A Ti ) ⁇ ⁇ 100 in B1 is within the 1B region is the minimum value of In the 1B region, the value of ⁇ A Si /(A Si +A Ti ) ⁇ 100 increases from the average value e1 to It decreases to the minimum value b1 and then increases from the minimum value b1 to the average value e1.
  • the average of the percentage ⁇ A Si /(A Si +A Ti ) ⁇ 100 of the number of silicon atoms A Si with respect to the sum of the number of titanium atoms A Ti and the number A Si of silicon atoms is preferably 1% or more and 20% or less. According to this, the wear resistance and chipping resistance of the cutting tool are further improved, and the tool life is further improved.
  • the above ⁇ A Si /(A Si +A Ti ) ⁇ 100 is more preferably 1% or more and 10% or less, still more preferably 1% or more and 5% or less, from the viewpoint of improving film hardness and toughness.
  • the average of ⁇ A Si /(A Si +A Ti ) ⁇ 100 in the hard particles means ⁇ A Si /(A Si +A Ti ) ⁇ mean of 100 values.
  • the maximum value of ⁇ A Si /(A Si +A Ti ) ⁇ 100 in the hard particles is preferably 1.5% or more and 40% or less, and 1.5% or more and 20% or less, from the viewpoint of improving film hardness and toughness. More preferably 1.5% or more and 10% or less.
  • the “maximum value of ⁇ A Si /(A Si +A Ti ) ⁇ 100 in hard particles” is a value calculated by the following method. First, the maximum value of ⁇ A Si /(A Si +A Ti ) ⁇ 100 in each first A region existing in the region where the line analysis was performed in the hard particles is measured. The average of the maximum values in the 1st A region existing in the line analysis region corresponds to the "maximum value of ⁇ A Si /(A Si +A Ti ) ⁇ 100 in the hard particles".
  • the minimum value of ⁇ A Si /(A Si +A Ti ) ⁇ 100 in the hard particles is more preferably 0% or more and 1.0% or less, and more preferably 0% or more and 0.5% or less, from the viewpoint of improving film hardness and toughness. is more preferred.
  • “the minimum value of ⁇ A Si /(A Si +A Ti ) ⁇ 100 in hard particles” is a value calculated by the following method. First, the minimum value of ⁇ A Si /(A Si +A Ti ) ⁇ 100 in each 1B region existing in the region where the line analysis was performed in the hard particles is measured. The average of the minimum values in the 1B region existing in the line analysis region corresponds to "the minimum value of ⁇ A Si /(A Si +A Ti ) ⁇ 100 in the hard particles".
  • the difference between the maximum value and the minimum value of ⁇ A Si /(A Si +A Ti ) ⁇ 100 is preferably 1% or more and 38% or less, more preferably 1% or more and 20% or less, from the viewpoint of improving film hardness and toughness. It is preferably 1% or more and 8% or less.
  • the concentration of silicon periodically changes along the first direction set in the hard particles.
  • the average period width of the concentration of silicon along the first direction is preferably 3 nm or more and 50 nm or less. According to this, the wear resistance and chipping resistance are improved, and the tool life is improved.
  • the lower limit of the period width of the silicon concentration is preferably 3 nm or more, more preferably 4 nm or more, and even more preferably 5 nm or more, from the viewpoint of improving chipping resistance.
  • the upper limit of the period width of the silicon concentration is preferably 50 nm or less, more preferably 30 nm or less, and even more preferably 10 nm or less from the viewpoint of improving wear resistance.
  • the periodic width of the silicon concentration is more preferably 4 nm or more and 30 nm or less, and further preferably 5 nm or more and 10 nm or less.
  • the method for measuring the periodic width of the silicon concentration is as follows.
  • a lamination region is set by the same method as (A1) to (A3) above.
  • a Fourier transform is performed on the laminated region to obtain a Fourier transform image.
  • the periodicity within the layered region appears as spots.
  • the period width is calculated by calculating the reciprocal of the distance between the spot and the center of the image showing maximum intensity in the Fourier transform image.
  • the periodic width obtained by the above Fourier transform corresponds to the distance along the first direction between the positions where ⁇ A Si /(A Si +A Ti ) ⁇ 100 existing in the adjacent first A region is the maximum value.
  • the distance along the first direction between positions where ⁇ A Si /(A Si +A Ti ) ⁇ 100 existing in the adjacent first A regions is the maximum value is the distance between P1 and P2 in FIG. d1, distance d2 between P2 and P3, distance d3 between P3 and P4, distance d4 between P4 and P5, distance d5 between P5 and P6, distance between P6 and P7. corresponds to d6.
  • the particle size of the hard particles of the present embodiment is preferably, for example, 10 nm or more and 1000 nm or less. According to this, excellent chipping resistance can be obtained.
  • the particle size of the hard particles is more preferably 10 nm or more and 700 nm or less, and even more preferably 10 nm or more and 500 nm or less.
  • the method for measuring the above particle size is as follows.
  • the substrate and the film formed on the substrate are processed with an FIB processing material so that the cross section can be seen, and the cross section is observed with an FE-SEM (Field Emission Scanning Electron Microscope).
  • FE-SEM Field Emission Scanning Electron Microscope
  • a straight line of arbitrary length (preferably corresponding to 400 ⁇ m) parallel to the substrate surface is drawn at an arbitrary point of the hard particle layer on the image thus obtained. Then, the number of hard particles included in the straight line is measured, and the diameter of the hard particles is obtained by dividing the length of the straight line by the number of hard particles.
  • the orientation of the hard particle layer is (220) orientation.
  • the orientation of the hard particle layer is (220) orientation
  • the orientation of the hard particle layer is (220) orientation
  • the orientation of the hard particle layer is (220) orientation
  • the orientation index TC (hkl) defined by the following formula (1) means that the orientation index TC (220) of is larger than the orientation indices of other crystal orientation planes.
  • the other crystal orientation planes are the (111) plane, (200) plane, (311) plane, (331) plane, (420) plane, (422) plane and (511) plane.
  • I( hkl ) and I( hxkylz ) are the measured diffraction intensity of the ( hkl ) plane and the measured diffraction of the ( hxkylz ) plane, respectively.
  • I 0 (hkl) and I 0 (h x k yl z ) are TiC (card number: 32-1383 ) and TiN of the (hkl) plane according to the JCPDS (Joint Committee on Powder Diffraction Standards) database, respectively.
  • the orientation index TC (220) of the hard particle layer of the present embodiment is preferably 3.5 or more, more preferably 5 or more, and 6 or more from the viewpoint of improving the elastic recovery rate and particularly improving wear resistance in cutting cast iron. More preferred. Although the upper limit of the value of the orientation index TC (220) is not limited, it may be set to 8 or less because the number of reflecting surfaces used in the calculation is 8. The value of the orientation index TC (220) is preferably 3.5 or more and 8 or less, more preferably 5 or more and 8 or less, and even more preferably 6 or more and 8 or less.
  • the orientation index TC (220) is obtained by X-ray diffraction measurement under the following conditions. Specifically, X-ray diffraction measurement (apparatus: SmartLab (registered trademark) manufactured by Rigaku Co., Ltd.) is performed on an arbitrary point in the hard particle layer, and the (220) plane obtained based on the above formula (1) is defined as the orientation index TC (220) in the hard particle layer. In selecting the above-mentioned "arbitrary one point", points that seem to show an abnormal value are excluded.
  • the coating can contain other layers besides the hard particle layer, as described above. As shown in FIGS. 2 to 4, the other layers include an underlying layer 12, an outermost layer 13, and the like.
  • the underlayer is positioned between the substrate and the hard particle layer.
  • the underlying layer include a TiN layer, a TiC layer, a TiCN layer, a TiBN layer, and an Al 2 O 3 layer.
  • the adhesion between the substrate and the coating can be enhanced.
  • an Al 2 O 3 layer as the underlayer, the oxidation resistance of the coating can be enhanced.
  • the average thickness of the underlayer is preferably 0.1 ⁇ m or more and 20 ⁇ m or less. According to this, the coating can have excellent wear resistance and chipping resistance.
  • the base layer can consist of one layer. Further, as shown in FIG. 4, the base layer 12 has a two-layer structure consisting of a first base layer 12A arranged on the base material side and a second base layer 12B arranged on the side opposite to the base material. be able to.
  • the underlayer has a two-layer structure, it is preferable to combine a TiN layer and a TiCN layer. Since the TiCN layer has excellent wear resistance, it can impart more suitable wear resistance to the coating.
  • the average thickness of the first underlayer is preferably 0.1 ⁇ m or more and 20 ⁇ m or less, more preferably 0.1 ⁇ m or more and 19 ⁇ m or less.
  • the average thickness of the second underlayer is preferably 1 ⁇ m or more and 20 ⁇ m or less, more preferably 1 ⁇ m or more and 19.9 ⁇ m or less.
  • the outermost layer is a layer arranged on the surface side of the coating. However, it may not be formed at the cutting edge ridge.
  • the outermost layer is arranged directly above the hard particle layer when no other layer is formed on the hard particle layer.
  • the outermost layer is preferably composed mainly of Ti (titanium) carbide, nitride or boride. Also, by using an Al 2 O 3 layer as the outermost layer, the oxidation resistance of the coating can be enhanced.
  • Consists mainly of Ti carbide, nitride, or boride means containing 90% by mass or more of Ti carbide, nitride, or boride. Moreover, it means that it preferably consists of any one of carbide, nitride and boride of Ti except for inevitable impurities.
  • Ti carbides nitrides, and carbonitrides
  • TiN has the clearest color (exhibits a gold color), so it has the advantage of facilitating identification of the corners of the cutting tip after use for cutting (identification of used portions).
  • the outermost layer is preferably a TiN layer.
  • the outermost layer preferably has an average thickness of 0.05 ⁇ m or more and 1 ⁇ m or less. According to this, the adhesion between the outermost layer and the adjacent layers is improved.
  • FIG. 8 is a schematic cross-sectional view of an example of a CVD apparatus used for manufacturing the cutting tool of this embodiment.
  • a coating is formed on the substrate using, for example, the CVD apparatus shown in FIG.
  • a plurality of substrate setting jigs 52 holding substrates 10 can be installed in the CVD apparatus 50, and these are covered with a reaction vessel 53 made of heat-resistant alloy steel.
  • a temperature control device 54 is arranged around the reaction container 53 , and the temperature inside the reaction container 53 can be controlled by the temperature control device 54 .
  • An introduction pipe 56 having two introduction ports 55 and 57 is arranged in the CVD apparatus 50 .
  • the introduction pipe 56 is arranged so as to pass through a region where the base material setting jig 52 is arranged, and a plurality of through holes are formed in a portion near the base material setting jig 52 .
  • the gases introduced into the pipe from the introduction ports 55 and 57 are introduced into the reaction vessel 53 through different through-holes without being mixed in the introduction pipe 56 .
  • This introduction tube 56 can rotate around its axis.
  • An exhaust pipe 59 is arranged in the CVD apparatus 50 , and the exhaust gas can be discharged to the outside from an exhaust port 60 of the exhaust pipe 59 .
  • the jigs and the like in the reaction vessel 53 are generally made of graphite.
  • these layers can be formed by conventionally known methods.
  • the hard particle layer can be formed by the following method using the above CVD apparatus. Specifically, a first raw material gas containing Ti and Si is introduced from the inlet 55 into the inlet pipe 56 , and a second raw material gas containing C and N is introduced from the inlet 57 into the inlet pipe 56 .
  • the first source gas can include, for example, TiCl4 gas and SiCl4 gas.
  • the second source gas can contain, for example, CH 3 CN gas. Note that each of the first source gas and the second source gas can contain a carrier gas (H 2 gas, N 2 gas, Ar gas, or the like).
  • reaction gas the total of the first raw material gas and the second raw material gas in the reaction vessel is referred to as reaction gas.
  • a plurality of through holes are opened on the upper side of the introduction pipe 56 in the figure.
  • the introduced first raw material gas (or first mixed gas consisting of first raw material gas and carrier gas) and second raw material gas (or second mixed gas consisting of second raw material gas and carrier gas) are different from each other. It is ejected into the reaction container 53 from the through hole. At this time, the introduction tube 56 rotates about its axis as indicated by the rotating arrow in the drawing. Therefore, the first raw material gas (or first mixed gas) and the second raw material gas (or second mixed gas) are uniformly mixed as a mixed gas, and the substrate 10 set on the substrate setting jig 52 is jetted toward the surface of
  • the total gas flow rate of the reaction gas during formation of the hard particle layer can be, for example, 10-80 L/min.
  • the “total gas flow rate” indicates the total volumetric flow rate introduced into the CVD furnace per unit time, assuming that the gas under standard conditions (0° C., 1 atm) is an ideal gas.
  • the ratio of TiCl 4 gas and CH 3 CN gas in the reaction gas is always constant during the formation of the hard particle layer.
  • the proportion of TiCl 4 gas in the reaction gas can be, for example, 0.35-1.30% by volume.
  • the proportion of CH 3 CN gas in the reaction gas can be, for example, 0.5 to 0.7% by volume.
  • the proportion of SiCl 4 gas in the reaction gas is changed periodically by adjusting the introduction amount of SiCl 4 gas. Specifically, the length of one cycle of change in the introduction amount of SiCl 4 gas is t (seconds), and the range of change in the proportion of SiCl 4 gas in the reaction gas is r1 (% by volume) to r2 (% by volume).
  • the ratio of SiCl 4 gas gradually increases from r1 (volume %) to r2 (volume %) from the start of film formation to the middle point of one cycle (t/2 (seconds)), followed by From the middle point (t/2 (seconds)) to the final point (t (seconds)) of one cycle, SiCl 4 gas is gradually reduced from r2 (vol%) to r1 ( vol %). Adjust the amount of gas introduced. This cycle is repeated until the hard particle layer reaches a desired thickness.
  • the proportion of carrier gas (eg, H 2 gas) in the reaction gas is varied so that the total gas flow rate remains constant according to the change in the proportion of SiCl 4 gas.
  • the period width (nm) of the concentration of silicon in the hard particles can be controlled.
  • the value of A Si /(A Si +A Ti ) in the hard particles can be controlled by adjusting the minimum value r1 and the maximum value r2 of the ratio range of SiCl 4 gas in the reaction gas.
  • the temperature of the substrate 10 is preferably in the range of 900-950° C.
  • the pressure inside the reaction vessel 53 is preferably in the range of 0.1-13.0 kPa.
  • the orientation of the hard particle layer becomes (220) orientation.
  • the substrate temperature during the film formation is higher than the substrate temperature (for example, 800 to 850° C.) employed in conventional TiSiCN layer formation.
  • the thickness of the hard particle layer can be controlled by adjusting the flow rate of the raw material gas and the film formation time.
  • the cooling rate does not exceed, for example, 5° C./min, and the cooling rate slows as the temperature of the substrate 10 decreases.
  • a heat treatment step such as annealing and a surface treatment step such as surface grinding and shot blasting can be performed.
  • the cutting tool of Embodiment 1 can be obtained by the manufacturing method described above.
  • the orientation number TC (220) of the hard particle layer is preferably 3.5 or more and 8 or less, more preferably 5 or more and 8 or less, and even more preferably 6 or more and 8 or less.
  • Base material K, base material L and base material M shown in Table 1 below were prepared. Specifically, first, raw material powders having the composition (% by mass) shown in Table 1 were uniformly mixed to obtain a mixed powder. "Remainder” in Table 1 indicates that WC accounts for the remainder of the composition (% by mass). Next, after pressure molding the mixed powder into the shape of CNMG120408 (exchangeable cutting tip manufactured by Sumitomo Electric Hardmetal Co., Ltd.), it is sintered at 1300 to 1500 ° C. for 1 to 2 hours to obtain a cemented carbide product. Base material K, base material L and base material M were obtained. Base material K, base material L and base material M all have a base material shape of CNMG120408.
  • a film was formed on the surface of the base material K, base material L, or base material M obtained above. Specifically, using the CVD apparatus shown in FIG. 8, the substrate was set in a substrate setting jig, and a thermal CVD method was performed to form a film on the substrate. Table 2 shows the composition of the coating of each sample.
  • the base layer is a layer that is in direct contact with the surface of the base material
  • the hard particle layer is a layer formed directly on the base layer
  • the outermost layer is a layer formed directly on the hard particle layer. This layer is exposed to the outside.
  • the descriptions of the compounds in the underlayer column and the outermost layer column in Table 2 are the compounds constituting the underlayer and outermost layer in Table 2, and the values in parentheses to the right of the compounds indicate the layer thickness. .
  • TiN (0.5)-TiCN (3.0) when two compounds (for example, "TiN (0.5)-TiCN (3.0)”) are described in one column of Table 2, the left side (“TiN (0.5) ”) means that the compound on the right side (“TiCN (3.0)”) constitutes the layer located on the far side from the substrate.
  • the values in parentheses indicate the thickness of each layer.
  • the descriptions of a to p and w to z of the hard particle layer in Table 2 indicate that the layers are formed under the formation conditions a to p and the formation conditions w to z in Table 4.
  • the numbers refer to layer thicknesses.
  • the column indicated by "-" in Table 2 means that no layer exists.
  • a TiN layer with a thickness of 0.5 ⁇ m and a TiCN layer with a thickness of 3.0 ⁇ m are laminated in this order directly on the surface of the base material K to form a base layer.
  • a hard particle layer having a thickness of 5.1 ⁇ m was formed directly on the underlayer under formation condition a described later, and the thickness of the entire coating was 8.6 ⁇ m.
  • the outermost layer was not formed directly above the hard particle layer.
  • the underlying layer and the outermost layer shown in Table 2 are layers formed by a conventionally known CVD method, and the formation conditions are as shown in Table 3.
  • the row of "TiN (underlying layer)" in Table 3 shows conditions for forming a TiN layer as an underlying layer.
  • the description of the TiN layer (underlying layer) in Table 3 is that the substrate is placed in the reaction vessel of the CVD apparatus (reaction vessel internal pressure 6.7 kPa), the substrate is heated to a substrate temperature of 915 ° C., and the inside of the reaction vessel is by ejecting a mixed gas consisting of 2.0 vol% TiCl4 gas, 39.7 vol% N2 gas and the rest (58.3 vol%) H2 gas at a flow rate of 63.8 L/min into the meant to be formed.
  • the thickness of each layer was controlled by the time during which each reaction gas was ejected.
  • the hard particle layer shown in Table 2 is formed under any one of formation conditions a to p and formation conditions w to z shown in Table 4.
  • Formation condition a to formation condition p and formation condition z In formation conditions a to formation conditions p and formation conditions z, first, the pressure in the reaction vessel of the CVD apparatus is set to the pressure described in the "pressure in the reaction vessel (kPa)" column of Table 4, and the substrate temperature. Set to the temperature described in the column of "Substrate temperature (°C)" in Table 4. For example, in the formation condition a, the pressure inside the reaction vessel of the CVD apparatus is set to 9.0 kPa, and the substrate temperature is set to 920.degree.
  • reaction gas containing the components listed in the "Reaction gas composition” column of Table 4 is introduced into the reaction vessel to form a hard particle layer (TiSiCN layer) on the substrate.
  • the total gas flow rate of the reaction gas is as shown in Table 4, “total gas flow rate (L/min)” column. "Total gas flow rate” indicates the total volumetric flow rate introduced into the CVD furnace per unit time, assuming that the gas under standard conditions (0° C., 1 atm) is an ideal gas.
  • the proportions of TiCl4 gas, CH3CN gas and N2 gas in the reaction gas are always constant during the formation of the hard particle layer.
  • the ratio of SiCl 4 gas in the reaction gas changes within the ratio (% by volume) shown in the “Range” column, with the time (seconds) shown in the “Cycle” column of “SiCl 4 ” in Table 4 as one cycle.
  • the proportion of SiCl 4 gas at the start of film formation is set to the minimum value shown in the “Range” column, and the middle point (( 1/2) period (sec)), the proportion of SiCl4 gas is gradually increased to the maximum value indicated in the "Range” column, followed by 1 cycle from the intermediate time point ((1/2) cycle (sec)).
  • the amount of SiCl 4 gas introduced is adjusted so that the percentage of SiCl 4 gas gradually decreases to the minimum value indicated in the “Range” column until the end of (1 cycle (seconds)). This cycle is repeated until the hard particle layer reaches a desired thickness.
  • the proportion of H2 gas is varied so that the total gas flow rate remains constant as the proportion of SiCl4 gas is varied.
  • the total gas flow rate of the reaction gas is 60.0 L/min.
  • the proportion of TiCl4 gas in the reaction gas is 0.70 vol%
  • the proportion of CH3CN gas is 0.60 vol%
  • the proportion of N2 gas is 8.90 vol%
  • the proportion of these gases is hard constant during the formation of the particle layer.
  • the ratio of SiCl 4 gas in the reaction gas is varied in the range of 0.1 to 1.7% by volume with 7 seconds as one cycle. More specifically, the ratio of SiCl 4 gas at the start of film formation is 0.1 vol%, and the ratio of SiCl 4 gas is changed from 0.1 vol% to 1.7 vol% for 3.5 seconds from the start of film formation.
  • SiCl 4 gas was gradually increased to vol % and then gradually decreased from 1.7 vol% to 0.1 vol% from 3.5 seconds to 7 seconds after the start of film formation. Adjust the amount of introduction of This is regarded as one cycle, and this cycle is repeated until the thickness of the hard particle layer reaches the thickness described in the "Hard particle layer" column of Table 1.
  • the volume fraction of H2 gas is varied so that the total gas flow rate remains constant according to the variation of the SiCl4 gas fraction.
  • the average proportion of SiCl4 gas in the reaction gas is 0.90 vol%.
  • the base material is cooled at a cooling rate of 5°C/min.
  • a formation condition w is a conventional TiCN layer formation condition. Specifically, first, the pressure inside the reaction vessel of the CVD apparatus is set to 9.0 kPa, and the substrate temperature is set to 920.degree.
  • reaction gas TiCl 4 : 2.00% by volume, CH 3 CN: 0.60% by volume, H 2 gas: rest
  • TiCN layer hard particle layer
  • the composition of the reaction gas is constant during film formation.
  • the total gas flow rate of the reaction gases is 60.0 L/min.
  • the substrate is then cooled at a cooling rate of 5°C/min.
  • the formation condition x is a condition for forming a hard particle layer (TiSiCN layer) using the PVD method disclosed in Patent Document 1.
  • Formation condition y is a condition for forming a hard particle layer (TiSiCN layer) using the CVD method disclosed in Patent Document 2.
  • the hard particle layer obtained under the forming conditions a to p and the forming condition z is composed of a plurality of hard particles made of TiSiCN, and along the first direction set in the hard particles, the concentration of silicon is It was confirmed that it changed periodically. Since a specific confirmation method is described in Embodiment 1, the description thereof will not be repeated.
  • the hard particle layer was (200) oriented.
  • orientation The orientation of the hard particle layer obtained under each forming condition was measured. A specific method for measuring the orientation of the hard particle layer is described in Embodiment 1, so description thereof will not be repeated.
  • the orientation plane with the largest orientation index is shown in the "orientation plane” column of Table 5, and the orientation index TC (hkl) of the orientation plane is indicated as " Orientation Index TC (hkl) of Oriented Surface” column.
  • the orientation index TC(220) of the (220) plane was the largest. Therefore, the orientation of the hard particle layers obtained under formation conditions a to p and w was (220) orientation.
  • the orientation index TC (220) of the hard particle layer obtained under the forming condition a was 4.3.
  • the orientation index TC(200) of the (200) plane was the largest. Therefore, the orientation of the hard particle layer obtained under formation conditions x to z was (200) orientation.
  • Sample 1-Sample 27 (Example) is superior in wear resistance in continuous cutting of cast iron and has a longer tool life than Sample 1-1 through Sample 1-5 (Comparative Example).
  • Samples 1 to 27 exhibited normal wear in the final wear state and maintained excellent fracture resistance equivalent to that of conventional hard particle layers (Samples 1-1 to 1-5). was done.
  • ⁇ Cutting test 2> Using the cutting tools of Samples 1 to 27 and Samples 1-1 to 1-5, cast iron (FC250) is cut intermittently under the following cutting conditions, and the number of impacts until the cutting tool breaks is measured. Fracture resistance of the cutting tool was evaluated. Here, a defect means a defect of 300 ⁇ m or more. The greater the number of impacts until fracture, the better the fracture resistance. Table 7 shows the results. In Table 7, "no chipping" means that cutting was performed up to 3000 impacts, but no chipping occurred.
  • Sample 1-Sample 27 (Example) is superior in chipping resistance in interrupted cutting of cast iron and has a longer tool life than Sample 1-1 through Sample 1-5 (Comparative Example).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)

Abstract

基材と、前記基材上に配置された被膜と、を備える切削工具であって、前記被膜は、硬質粒子層を含み、前記硬質粒子層は、チタン、珪素、炭素及び窒素を含む複数の硬質粒子からなり、前記硬質粒子において、前記硬質粒子内に設定される第1方向に沿って、前記珪素の濃度が周期的に変化し、前記硬質粒子層の配向は、(220)配向である。

Description

切削工具
 本開示は、切削工具に関する。本出願は、2021年4月30日に出願した日本特許出願である特願2021-078024号に基づく優先権を主張する。当該日本特許出願に記載された全ての記載内容は、参照によって本明細書に援用される。
 従来、切削工具の耐摩耗性を向上させるために、基材上にTiSiCN膜が形成された切削工具が開発されている。
 特許文献1には、熱CVD法により製造されたTiC1-xのナノ結晶層及び非晶質SiCの第二の相を含むナノ複合被膜が開示されている。
 非特許文献1には、PVD法により形成されたナノコンポジット構造からなるTiSiCN被膜が開示されている。
特表2015-505902号公報
Shinya Imamura et al.,"Properties and cutting performance of AlTiCrN/TiSiCN bilayer coatings deposited by cathodic-arc ion plating",Surface and Coatings Technology,202,(2007),820-825
 本開示の切削工具は、基材と、前記基材上に配置された被膜と、を備える切削工具であって、
 前記被膜は、硬質粒子層を含み、
 前記硬質粒子層は、チタン、珪素、炭素及び窒素を含む複数の硬質粒子からなり、
 前記硬質粒子において、前記硬質粒子内に設定される第1方向に沿って、前記珪素の濃度が周期的に変化し、
 前記硬質粒子層の配向は、(220)配向である、切削工具である。
図1は、実施形態1に係る切削工具の断面の一例を示す模式図である。 図2は、実施形態1に係る切削工具の断面の他の一例を示す模式図である。 図3は、実施形態1に係る切削工具の断面の他の一例を示す模式図である。 図4は、実施形態1に係る切削工具の断面の他の一例を示す模式図である。 図5は、実施形態1に係る切削工具の硬質相粒子層の断面の明視野透過電子顕微鏡(BF-STEM)像(観察倍率:10万倍)の一例を模式的に示す図である。 図6は、実施形態1に係る切削工具の硬質相粒子層の断面の明視野透過電子顕微鏡(BF-STEM)像(観察倍率:200万倍)の一例を模式的に示す図である。 図7は、実施形態1に係る切削工具の硬質粒子についてライン分析を行った結果を示すグラフの一例である。 図8は、実施形態2に係る切削工具の製造に用いられるCVD装置の一例の模式的な断面図である。
[本開示が解決しようとする課題]
 近年、製造コスト低減の要求が益々高まり、長い工具寿命を有する切削工具が求められている。
 そこで、本開示は、長い工具寿命を有する切削工具を提供することを目的とする。
[本開示の効果]
 本開示によれば、長い工具寿命を有する切削工具を提供することが可能となる。
 [本開示の実施形態の説明]
 最初に本開示の実施態様を列記して説明する。
 (1)本開示の切削工具は、基材と、前記基材上に配置された被膜と、を備える切削工具であって、
 前記被膜は、硬質粒子層を含み、
 前記硬質粒子層は、チタン、珪素、炭素及び窒素を含む複数の硬質粒子からなり、
 前記硬質粒子において、前記硬質粒子内に設定される第1方向に沿って、前記珪素の濃度が周期的に変化し、
 前記硬質粒子層の配向は、(220)配向である、切削工具である。
 本開示によれば、切削工具は長い工具寿命を有することができる。
 (2)前記硬質粒子において、前記チタンの原子数ATiと、前記珪素の原子数ASiとの合計に対する、前記珪素の原子数ASiの百分率{ASi/(ASi+ATi)}×100の平均は、1%以上20%以下であることが好ましい。
 これによると、切削工具の工具寿命が更に向上する。
 (3)前記珪素の濃度の平均周期幅は、3nm以上50nm以下であることが好ましい。これによると、切削工具の工具寿命が更に向上する。
 (4)前記硬質粒子層の厚さは、1μm以上20μm以下であることが好ましい。これによると、切削工具の工具寿命が更に向上する。
 (5)前記基材は、炭化タングステンとコバルトとを含む超硬合金からなり、
 前記超硬合金中の前記コバルトの含有率は、6質量%以上11質量%以下であることが好ましい。
 これによると、切削工具の工具寿命が更に向上する。
 (6)前記硬質粒子において、前記チタンの原子数ATiと、前記珪素の原子数ASiとの合計に対する、前記珪素の原子数ASiの百分率{ASi/(ASi+ATi)}×100の最大値と最小値との差は、1%以上38%以下であることが好ましい。
 これによると、硬質粒子層の膜硬度及び靱性が向上する。
 (7)前記被膜は、前記基材の直上に配置される下地層を含み、
 前記下地層は、TiN層、TiC層、TiCN層、TiBN層及びAl層からなる群より選択される少なくとも1種からなることが好ましい。
 下地層として基材の直上にTiN層、TiC層、TiCN層、TiBN層を配置することにより、基材と被膜との密着性を高めることができる。また、下地層としてAl層を用いることにより、被膜の耐酸化性を高めることができる。
 (8)前記被膜は、前記被膜において最も表面側に配置される最外層を含み、
 前記最外層は、チタンの炭化物、チタンの窒化物又はチタンの硼化物を90質量%以上含む層、又は、Al層からなることが好ましい。
 最外層として、チタンの炭化物、チタンの窒化物又はチタンの硼化物を90質量%以上含む層を用いることにより、切削使用後の切削チップのコーナー識別(使用済み部位の識別)が容易であるという利点がある。最外層としてAl層を用いることにより、被膜の耐酸化性を高めることができる。
 [本開示の実施形態の詳細]
 本開示の切削工具の具体例を、以下に図面を参照しつつ説明する。本開示の図面において、同一の参照符号は、同一部分または相当部分を表すものである。また、長さ、幅、厚さ、深さなどの寸法関係は図面の明瞭化と簡略化のために適宜変更されており、必ずしも実際の寸法関係を表すものではない。
 本明細書において「A~B」という形式の表記は、範囲の上限下限(すなわちA以上B以下)を意味し、Aにおいて単位の記載がなく、Bにおいてのみ単位が記載されている場合、Aの単位とBの単位とは同じである。
 本明細書において化合物などを化学式で表す場合、原子比を特に限定しないときは従来公知のあらゆる原子比を含むものとし、必ずしも化学量論的範囲のもののみに限定されるべきではない。たとえば「TiSiCN」と記載されている場合、TiSiCNを構成する原子数の比は、従来公知のあらゆる原子比が含まれる。
 [実施形態1:切削工具]
 本開示の一実施形態(以下、「本実施形態」とも記す。)の切削工具は、基材と、該基材上に配置された被膜と、を備える切削工具であって、
 該被膜は、硬質粒子層を含み、
 該硬質粒子層は、チタン、珪素、炭素及び窒素を含む複数の硬質粒子からなり、
 該硬質粒子において、該硬質粒子内に設定される第1方向に沿って、該珪素の濃度が周期的に変化し、
 該硬質粒子層の配向は、(220)配向である、切削工具である。
 本実施形態の切削工具は、長い工具寿命を有することができる。この理由は、以下(i)~(iii)の通りと推察される。
 (i)本実施形態の切削工具において、被膜は、チタン、珪素、炭素及び窒素を含む複数の硬質粒子からなる硬質粒子層を含む。チタン、珪素、炭素及び窒素を含む硬質粒子は硬度が高い。よって、該硬質粒子からなる硬質粒子層は硬度が高く、優れた耐摩耗性を有する。
 (ii)本実施形態の切削工具の硬質粒子において、該硬質粒子内に設定される第1方向に沿って、珪素の濃度が周期的に変化する。これによると、硬質粒子内に歪みが生じ、硬質粒子及び硬質粒子層の硬度が高くなり、切削工具の耐摩耗性が向上する。また、硬質粒子内の組成変化により、クラックの伝播が抑制され、切削工具の耐欠損性が向上する。
 (iii)本実施形態の切削工具において、硬質粒子層の配向は、(220)配向である。硬質粒子層の配向が(220)配向であると、該硬質粒子層の弾性回復率が向上する。該硬質粒子層を含む切削工具は、特に鋳鉄切削において、優れた耐摩耗性を示す。これは、本発明者等が新たに見出した知見である。
 <切削工具の構成>
 図1に示されるように、本実施形態の切削工具1は、基材10と、該基材10上に配置された被膜14とを備える。図1では、該被膜14は、硬質粒子層11のみから構成される。被膜14は、基材の切削に関与する部分の少なくとも一部を被覆することが好ましく、基材の全面を被覆することが更に好ましい。基材の切削に関与する部分とは、基材表面において、刃先稜線からの距離が500μm以内の領域を意味する。基材の一部がこの被膜で被覆されていなかったり被膜の構成が部分的に異なっていたりしていたとしても、本開示の範囲を逸脱するものではない。
 被膜は、硬質粒子層に加えて、他の層を含むことができる。例えば、図2の切削工具21に示されるように、被膜24は、硬質粒子層11に加えて、基材10と硬質粒子層11との間に配置される下地層12を更に含むことができる。
 図3の切削工具31に示されるように、被膜34は、硬質粒子層11及び下地層12に加えて、硬質粒子層11上に配置される最外層13を含むことができる。
 図4の切削工具41に示されるように、被膜45は、硬質粒子層11、第1下地層12A及び第2下地層12Bの2層構造からなる下地層12並びに最外層13を含むことができる。
 <切削工具の種類>
 本開示の切削工具は、例えば、ドリル、エンドミル(例えば、ボールエンドミル)、ドリル用刃先交換型切削チップ、エンドミル用刃先交換型切削チップ、フライス加工用刃先交換型切削チップ、旋削加工用刃先交換型切削チップ、メタルソー、歯切工具、リーマ、タップ等であり得る。
 <基材>
 基材10は、すくい面と逃げ面とを含み、この種の基材として従来公知のものであればいずれも使用することができる。例えば、超硬合金(例えば、炭化タングステンとコバルトとを含むWC基超硬合金、該超硬合金はTi、Ta、Nbなどの炭窒化物を含むことができる)、サーメット(TiC、TiN、TiCNなどを主成分とするもの)、高速度鋼、セラミックス(炭化チタン、炭化ケイ素、窒化ケイ素、窒化アルミニウム、酸化アルミニウムなど)、立方晶型窒化ホウ素焼結体またはダイヤモンド焼結体のいずれかであることが好ましい。
 これらの各種基材の中でも、炭化タングステンとコバルトとを含む超硬合金からなり、該超硬合金中のコバルトの含有率は、6質量%以上11質量%以下である基材が好ましい。これによると、高温における硬度と強度のバランスに優れ、上記用途の切削工具の基材として優れた特性を有している。基材としてWC基超硬合金を用いる場合、その組織中に遊離炭素、ならびにη相またはε相と呼ばれる異常層などを含んでいてもよい。
 さらに基材は、その表面が改質されていてもよい。例えば超硬合金の場合、その表面に脱β層が形成されていたり、サーメットの場合に表面硬化層が形成されていてもよい。基材は、その表面が改質されていても所望の効果が示される。
 切削工具が刃先交換型切削チップなどである場合、基材は、チップブレーカーを有しても、有さなくてもよい。刃先稜線部の形状は、シャープエッジ(すくい面と逃げ面とが交差する稜)、ホーニング(シャープエッジに対してアールを付与したもの)、ネガランド(面取りをしたもの)、又は、ホーニングとネガランドを組み合わせたもの等、いずれも採用できる。
 <被膜の構成>
 本実施形態の被膜は、硬質粒子層を含む。本実施形態の被膜は、硬質粒子層を含む限り、他の層を含んでいてもよい。他の層としては、例えば、下地層及び最外層が挙げられる。硬質粒子層、下地層及び最外層の詳細については後述する。
 本実施形態の被膜全体の厚さは、1μm以上30μm以下が好ましい。被膜全体の厚さが1μm以上であると、優れた耐摩耗性を有することができる。一方、被膜全体の厚さが30μm以下であると、断続加工において被膜と基材との間に大きな応力が加わった際の被膜の剥離または破壊の発生を抑制することができる。
 上記被膜の厚さは、例えば基材の表面の法線方向に平行な断面サンプルを得て、このサンプルを走査透過型電子顕微鏡(STEM:Scanning Transmission Electron Microscopy)で観察することにより測定される。該断面サンプルは、イオンスライサーなどを用いて加工された薄片サンプルである。走査透過型電子顕微鏡としては、例えば、日本電子株式会社製のJEM-2100F(商標)が挙げられる。測定条件は加速電圧200kV及び電流量0.3nAとする。
 本明細書において「厚さ」といった場合、その厚さは平均厚さを意味する。具体的には、断面サンプルの観察倍率を1000倍とし、電子顕微鏡像中に(基材表面に平行な方向100μm)×(被膜の厚さ全体を含む距離)の矩形の測定視野を設定し、該視野において10箇所の厚み幅を測定し、その平均値を「厚さ」とする。下記に記載される各層の厚さ(平均厚さ)についても、同様に測定し、算出される。
 同一の試料において測定する限りにおいては、測定視野の選択個所を変更して複数回行っても、測定結果のばらつきはほとんどなく、任意に測定視野を設定しても恣意的にはならないことが確認されている。
 <硬質粒子層>
 硬質粒子層は、チタン(Ti)、珪素(Si)、炭素(C)及び窒素(N)を含む複数の硬質粒子からなる。該硬質粒子としては、チタン、珪素、炭素及び窒素からなるTiSiCN粒子が挙げられる。TiSiCN粒子は、チタン、珪素、炭素及び窒素以外に、本開示の効果に影響を与えない限り、不可避不純物を含むことができる。不可避不純物として、たとえば、アモルファス相、金属間化合物(例えばTiSi、CoSi等)を含んでいたとしても、本開示の効果を発揮する限りにおいて本開示の範囲を逸脱するものではない。
 (硬質粒子)
 上記硬質粒子において、該硬質粒子内に設定される第1方向に沿って、珪素の濃度が周期的に変化する。本明細書において、第1方向は、以下(A1)~(A4)の方法で特定される方向と定義される。
 (A1)基材のすくい面の法線に沿って切削工具をダイヤモンドワイヤーで切り出し、硬質粒子層の断面を露出させる。このとき、測定サンプルはイオンスライサーなどを用いて加工した薄片サンプルを作成する。
 (A2)加工された薄片サンプルを、明視野走査透過電子顕微鏡(BF-STEM)を用いて10万倍で観察し、1つの硬質粒子を特定する。図5は、本実施形態の硬質粒子層のBF-STEM像(観察倍率:10万倍)の一例を模式的に示す図である。次に、特定された1つの硬質粒子を、200万倍で観察し、BF-STEM像を得る。図6は、図5中に特定された1つの硬質粒子のBF-STEM像(観察倍率:200万倍)の一例を模式的に示す図である。
 (A3)上記BF-STEM像(観察倍率:200万倍)の中で、黒色で示される層(以下、「第1単位層」とも記す。)と、灰色で示される層(以下、「第2単位層」とも記す。)とが交互に略平行に積層している領域(以下、「積層領域」とも記す。)を特定する。黒色で示される第1単位層は、珪素の含有量の多い領域であり、灰色で示される第2単位層は珪素の含有量の少ない領域である。
 (A4)上記で特定された積層領域において、第1単位層(黒色で示される層)と第2単位層(灰色で示される層)との積層方向を特定する。具体的には、制限視野領域の電子線回折パターンと、第1単位層と第2単位層の積層方向を重ね合わせ、回折スポットが示す方位を用いて積層方向を特定する。図6において、第1単位層と第2単位層の積層方向は、丸印Sから丸印Eへの矢印で示される。本明細書において、該積層方向が第1方向と定義される。
 上記より、本明細書において、第1方向とは、硬質粒子内の積層方向に沿う方向とも定義することができる。
 本実施形態の硬質粒子層において、上記の第1方向に沿う線は、基材と被膜との界面に対して45°以上90°以下の所定の角度で交差する。
 本明細書において、硬質粒子において、硬質粒子内に設定される第1方向に沿って、珪素の濃度が周期的に変化することは、以下の方法で確認される。
 (B1)上記のBF-STEM像(観察倍率:200万倍)において、第1方向に沿って、STEM付帯のEDX(エネルギー分散型X線分光法:Energy Dispersive X-ray Spectroscopy)によりライン分析を行い、チタンの原子数基準の含有率ATi及び珪素の原子数基準の含有率ASiを測定する。ライン分析のビーム径は0.5nm以下とし、スキャン間隔は0.5nmとし、ライン分析の長さは50nmとする。
 (B2)ライン分析結果を、X軸をライン分析の開始点から第1方向に沿う距離(nm)とし、Y軸を珪素の原子数ASiと、チタンの原子数ATiとの合計に対する、珪素の原子数ASiの百分率({ASi/(ASi+ATi)}×100)(%)とする座標系に示したグラフを得る。該グラフは、ライン分析の開始点から第1方向に沿う距離(X軸)の増加に伴う、珪素の原子数ASiとチタンの原子数ATiとの合計に対する珪素の原子数ASiの百分率(Y軸)の変化を示す。
 図6のBF-STEM像の丸印Sから丸印Eへの矢印に対してライン分析を行って得られるグラフの一例を図7に示す。
 (B3)上記のグラフに{ASi/(ASi+ATi)}×100の平均値を示す線L1を引く。図7において、{ASi/(ASi+ATi)}×100の平均値はe1である。該平均値e1は線L1で示される。
 (B4)上記のグラフにおいて、線L1よりも{ASi/(ASi+ATi)}×100の値が大きい領域(以下、「第1A領域」とも記す。)と、線L1よりも{ASi/(ASi+ATi)}×100の値が小さい領域(以下、「第1B領域」とも記す。)とが、第1方向に沿って、交互に連続的に存在する場合、硬質粒子において、硬質粒子内に設定される第1方向に沿って、珪素の濃度が周期的に変化すると判定される。ここで、{ASi/(ASi+ATi)}×100がその平均値と同一である領域は、第1A領域とする。
 図7において、第1A領域は、例えば、ライン分析の開始点から第1方向に沿う距離がc1以上c2以下、c3以上c4以下、c5以上c6以下、c7以上c8以下、c9以上c10以下、c11以上c12以下の領域である(c13より大きい距離は記載を省略)。図7において、第1B領域は、例えば、ライン分析の開始点から第1方向に沿う距離がc2超c3未満、c4超c5未満、c6超c7未満、c8超c9未満、c10超c11未満、c12超c13未満の領域である。
 各第1A領域において、ライン分析の開始点に最も近い地点から、ライン分析の開始点からの距離の増加に伴い、{ASi/(ASi+ATi)}×100の値が平均値から該第1A領域内の最大値まで増加し、その後、平均値まで減少することが好ましい。
 第1A領域における上記の増加とは、単調増加に限られず、増加の途中で、{ASi/(ASi+ATi)}×100の値の平均値と該第1A領域内の最大値との差の50%以内の減少が存在していてもよい。また、第1A領域における上記の減少とは、単調減少に限られず、減少の途中で、{ASi/(ASi+ATi)}×100の値の平均値と該第1A領域内の最大値との差の50%以内の増加が存在していてもよい。
 各第1B領域において、ライン分析の開始点に最も近い地点から、ライン分析の開始点からの距離の増加に伴い、{ASi/(ASi+ATi)}×100の値が平均値から該第1B領域内の最小値まで減少し、その後、平均値まで増加することが好ましい。
 第1B領域における上記の減少とは、単調減少に限られず、減少の途中で、{ASi/(ASi+ATi)}×100の値の平均値と該第1B領域内の最小値との差の50%以内の増加が存在していてもよい。また、第1B領域における上記の増加とは、単調増加に限られず、増加の途中で、{ASi/(ASi+ATi)}×100の値の平均値と該第1B領域内の最小値との差の50%以内の減少が存在していてもよい。
 例えば、図7において、ライン分析の開始点から第1方向に沿う距離がc1以上c2以下の第1A領域では、P1における{ASi/(ASi+ATi)}×100の値a1が第1A領域内の最大値である。該第1A領域では、ライン分析の開始点から第1方向に沿う距離のc1からc2への増加に伴って、{ASi/(ASi+ATi)}×100の値が、平均値e1から最大値a1まで増加し、その後、最大値a1から平均値e1まで減少する。図7において、ライン分析の開始点から第1方向に沿う距離がc2超c3未満の第1B領域では、B1における{ASi/(ASi+ATi)}×100の値b1が第1B領域内の最小値である。該第1B領域では、ライン分析の開始点から第1方向に沿う距離のc2からc3への増加に伴って、{ASi/(ASi+ATi)}×100の値は、平均値e1から最小値b1まで減少し、その後、最小値b1から平均値e1まで増加する。
 上記の方法により、硬質粒子において、硬質粒子内に設定される第1方向に沿って、珪素の濃度が周期的に変化することが確認される限り、本開示の効果が示されることが確認されている。
 ({ASi/(ASi+ATi)}×100)
 本実施形態の硬質粒子において、チタンの原子数ATiと、珪素の原子数ASiとの合計に対する、珪素の原子数ASiの百分率{ASi/(ASi+ATi)}×100の平均は、1%以上20%以下であることが好ましい。
 これによると、切削工具の耐摩耗性と耐欠損性が更に向上し、工具寿命が更に向上する。
 上記{ASi/(ASi+ATi)}×100は、膜硬度及び靱性向上の観点から、1%以上10%以下がより好ましく、1%以上5%以下が更に好ましい。
 本明細書において、硬質粒子における上記{ASi/(ASi+ATi)}×100の平均とは、硬質粒子中のライン分析を行った領域における{ASi/(ASi+ATi)}×100の値の平均を意味する。
 硬質粒子における{ASi/(ASi+ATi)}×100の最大値は、膜硬度及び靱性向上の観点から、1.5%以上40%以下が好ましく、1.5%以上20%以下がより好ましく、1.5%以上10%以下がより好ましい。本明細書において、「硬質粒子における{ASi/(ASi+ATi)}×100の最大値」は、以下の方法で算出される値である。まず、硬質粒子中のライン分析を行った領域に存在する各第1A領域において、該第1A領域内における{ASi/(ASi+ATi)}×100の最大値を測定する。ライン分析を行った領域に存在する第1A領域における最大値の平均が「硬質粒子における{ASi/(ASi+ATi)}×100の値の最大値」に該当する。
 硬質粒子における{ASi/(ASi+ATi)}×100の最小値は、膜硬度及び靱性向上の観点から、0%以上1.0%以下がより好ましく、0%以上0.5%以下が更に好ましい。本明細書において、「硬質粒子における{ASi/(ASi+ATi)}×100の最小値」は、以下の方法で算出される値である。まず、硬質粒子中のライン分析を行った領域に存在する各第1B領域において、各第1B領域内における{ASi/(ASi+ATi)}×100の最小値を測定する。ライン分析を行った領域に存在する第1B領域における最小値の平均が「硬質粒子における{ASi/(ASi+ATi)}×100の最小値」に該当する。
 {ASi/(ASi+ATi)}×100の最大値と最小値との差は、膜硬度及び靱性向上の観点から、1%以上38%以下が好ましく、1%以上20%以下がより好ましく、1%以上8%以下がより好ましい。
 同一の試料において測定する限りにおいては、硬質粒子中のライン分析の測定箇所を変更して複数回行っても、測定結果のばらつきはほとんどなく、任意に測定箇所を設定しても恣意的にはならないことが確認されている。
 (珪素の濃度の平均周期幅)
 本実施形態の硬質粒子において、硬質粒子内に設定される第1方向に沿って、珪素の濃度が周期的に変化する。該第1方向に沿う珪素の濃度の平均周期幅は、3nm以上50nm以下が好ましい。これによると、耐摩耗性及び耐欠損性が向上し、工具寿命が向上する。珪素の濃度の周期幅の下限は、耐欠損性向上の観点から、3nm以上が好ましく、4nm以上がより好ましく、5nm以上が更に好ましい。珪素の濃度の周期幅の上限は、耐摩耗性向上の観点から50nm以下が好ましく、30nm以下がより好ましく、10nm以下が更に好ましい。珪素の濃度の周期幅は、4nm以上30nm以下がより好ましく、5nm以上10nm以下が更に好ましい。
 本明細書において、上記の珪素の濃度の周期幅の測定方法は以下の通りである。上記(A1)~(A3)と同様の方法で積層領域を設定する。該積層領域に対してフーリエ変換を行い、フーリエ変換像を得る。該フーリエ変換像において、積層領域内の周期性はスポットとして現れる。周期幅は、上記スポットと、フーリエ変換像において最大強度を示す画像中央との間の距離の逆数を計算することにより算出される。
 同一の試料において測定する限りにおいては、硬質粒子の積層領域内において測定箇所を変更して複数回行っても、測定結果のばらつきはほとんどなく、任意に測定箇所を設定しても恣意的にはならないことが確認されている。
 上記のフーリエ変換で求められる周期幅は、隣り合う第1A領域内に存在する{ASi/(ASi+ATi)}×100が最大値である位置間の第1方向に沿う距離に相当する。隣り合う第1A領域内に存在する{ASi/(ASi+ATi)}×100が最大値である位置間の第1方向に沿う距離は、図7において、P1とP2との間の距離d1、P2とP3との間の距離d2、P3とP4との間の距離d3、P4とP5との間の距離d4、P5とP6との間の距離d5、P6とP7との間の距離d6に相当する。
 (硬質粒子の粒径)
 本実施形態の硬質粒子の粒径は、例えば、10nm以上1000nm以下が好ましい。これによると、優れた耐欠損性を有することができる。硬質粒子の粒径は、10nm以上700nm以下がより好ましく、10nm以上500nm以下が更に好ましい。
 上記の粒径の測定方法は以下の通りである。基材と基材上に形成された被膜とをFIB加工材にて断面が見えるように加工し、その断面をFE-SEM(電界放出型走査型電子顕微鏡)によって観察する。その際、反射電子像として観察することによって、同じ結晶方位を有した部分は同じコントラストで観察され、この同一コントラスト部分を一つの硬質粒子とみなす。
 次いで、このようにして得られた画像に対して、硬質粒子層の任意の箇所において基材表面に対して平行な任意長さ(好ましくは400μm相当)の直線を引く。そして、その直線に含まれる硬質粒子の個数を測定し、その直線の長さを硬質粒子の個数で除したものを、硬質粒子の粒径とする。
 (硬質粒子層の配向)
 本実施形態において、硬質粒子層の配向は、(220)配向である。本明細書において「硬質粒子層の配向は、(220)配向である」とは、以下の式(1)で定義される配向性指数TC(hkl)のうち、硬質粒子層における(220)面の配向性指数TC(220)が、他の結晶配向面の配向性指数よりも大きいことを意味する。ここで、他の結晶配向面とは、(111)面、(200)面、(311)面、(331)面、(420)面、(422)面及び(511)面である。
Figure JPOXMLDOC01-appb-M000001
 式(1)中、I(hkl)及びI(h)は、それぞれ測定された(hkl)面の回折強度、及び、測定された(h)面の回折強度を示し、I(hkl)及びI(h)は、それぞれJCPDS(Joint Committee on Powder Diffraction Standards)データベースによる(hkl)面のTiC(カード番号:32-1383)及びTiN(カード番号:38-1420)の粉末回折強度の平均値、並びに、JCPDSデータベースによる(h)面のTiC及びTiNの粉末回折強度の平均値を示し、(hkl)及び(h)は、それぞれ(111)面、(200)面、(220)面、(311)面、(331)面、(420)面、(422)面及び(511)面の8面のいずれかを示す。
 本実施形態の硬質粒子層の配向性指数TC(220)は、弾性回復率向上及び特に鋳鉄切削における耐摩耗性向上の観点から、3.5以上が好ましく、5以上がより好ましく、6以上が更に好ましい。配向性指数TC(220)の値の上限は制限されないが、計算に用いた反射面が8つであるから、8以下とすればよい。配向性指数TC(220)の値は、3.5以上8以下が好ましく、5以上8以下がより好ましく、6以上8以下が更に好ましい。
 配向性指数TC(220)は、以下の条件で行うX線回折測定によって求められる。具体的には、硬質粒子層における任意の1箇所について、X線回折測定(装置:リガク株式会社製SmartLab(登録商標))を行い、上記式(1)に基づいて求められた(220)面の配向性指数を、該硬質粒子層における配向性指数TC(220)とする。上述の「任意の1箇所」を選択するにあたり、一見して異常値を示す点は除外する。
 ≪X線回折測定の条件≫
X線出力:45kV,200mA
X線源、波長:CuKα、1.541862Å
検出器:D/teX Ultra 250
スキャン軸:2θ/θ
長手制限スリット幅:2.0mm
スキャンモード:CONTINUOUS
スキャンスピード:20°/min
 同一の試料において測定する限りにおいては、硬質粒子層中の測定箇所を変更して複数回行っても、測定結果のばらつきはほとんどなく、任意に測定箇所を設定しても恣意的にはならないことが確認されている。
 <他の層>
 被膜は上述のとおり、硬質粒子層以外に他の層を含むことができる。図2~図4に示されるように、他の層としては、下地層12及び最外層13等が挙げられる。
 (下地層)
 下地層は、基材と硬質粒子層との間に配置される。下地層としては、例えば、TiN層、TiC層、TiCN層、TiBN層、Al層を挙げることができる。下地層として基材の直上にTiN層、TiC層、TiCN層、TiBN層を配置することにより、基材と被膜との密着性を高めることができる。また、下地層としてAl層を用いることにより、被膜の耐酸化性を高めることができる。下地層の平均厚さは0.1μm以上20μm以下であることが好ましい。これによると、被膜は優れた耐摩耗性及び耐欠損性を有することができる。
 下地層は1層からなることができる。また、図4に示されるように、下地層12は基材側に配置される第1下地層12Aと、基材と反対側に配置される第2下地層12Bとからなる2層構造を有することができる。下地層が2層構造の場合、TiN層とTiCN層とを組み合わせることが好ましい。TiCN層は耐摩耗性に優れるため、被膜により好適な耐摩耗性を付与することができる。第1下地層の平均厚さは0.1μm以上20μm以下が好ましく、0.1μm以上19μm以下がより好ましい。第2下地層の平均厚さは1μm以上20μm以下が好ましく、1μm以上19.9μm以下が更に好ましい。
 (最外層)
 最外層は、被膜において最も表面側に配置される層である。ただし、刃先稜線部においては形成されない場合もある。最外層は、硬質粒子層上に他の層が形成されていない場合、硬質粒子層の直上に配置される。最外層としては、Ti(チタン)の炭化物、窒化物または硼化物のいずれかを主成分とすることが好ましい。また、最外層としてAl層を用いることにより、被膜の耐酸化性を高めることができる。
 「Tiの炭化物、窒化物または硼化物のいずれかを主成分とする」とは、Tiの炭化物、窒化物および硼化物のいずれかを90質量%以上含むことを意味する。また、好ましくは不可避不純物を除きTiの炭化物、窒化物および硼化物のいずれかからなることを意味する。
 Tiの炭化物、窒化物および炭窒化物のいずれかのうち、特に好ましいのはTiの窒化物(すなわちTiNで表される化合物)を主成分として最外層を構成することである。TiNはこれらの化合物のうち色彩が最も明瞭(金色を呈する)であるため、切削使用後の切削チップのコーナー識別(使用済み部位の識別)が容易であるという利点がある。最外層はTiN層からなることが好ましい。
 最外層は、平均厚さが0.05μm以上1μm以下であることが好ましい。これによると、最外層と、隣接する層との密着性が向上する。
 <実施形態2:切削工具の製造方法>
 本実施形態の切削工具の製造方法の一例について図8を用いて説明する。図8は、本実施形態の切削工具の製造に用いられるCVD装置の一例の概略的な断面図である。
 (基材の準備)
 基材を準備する。基材の詳細は、上記に記載されているため、その説明は繰り返さない。
 (被膜の形成)
 次に、上記基材上に、例えば図8に示されるCVD装置を用いて被膜を形成する。CVD装置50内には、基材10を保持した基材セット治具52を複数設置することができ、これらは耐熱合金鋼製の反応容器53でカバーされる。また、反応容器53の周囲には調温装置54が配置されており、この調温装置54により、反応容器53内の温度を制御することができる。
 CVD装置50には、2つの導入口55、57を有する導入管56が配置されている。導入管56は、基材セット治具52が配置される領域を貫通するように配置されており、基材セット治具52近傍の部分には複数の貫通孔が形成されている。導入管56において、導入口55、57から管内に導入された各ガスは、導入管56内においても混合されることなく、それぞれ異なる貫通孔を経て、反応容器53内に導入される。この導入管56は、その軸を中心軸として回転することができる。また、CVD装置50には排気管59が配置されており、排気ガスは排気管59の排気口60から外部へ排出することができる。なお、反応容器53内の治具類等は、通常黒鉛により構成される。
 被膜が下地層及び/又は最外層を含む場合は、これらの層は従来公知の方法で形成することができる。
 硬質粒子層は、上記CVD装置を用いて、以下の方法で形成することができる。具体的には、Ti及びSiを含む第1原料ガスを導入口55から導入管56内に導入し、C及びNを含む第2原料ガスを導入口57から導入管56内に導入する。第1原料ガスは、例えば、TiClガス及びSiClガスを含むことができる。第2原料ガスは、例えば、CHCNガスを含むことができる。なお、第1原料ガス及び第2原料ガスは、それぞれキャリアガス(Hガス、Nガス又はArガス等)を含むことができる。以下、反応容器内の第1原料ガス及び第2原料ガスの合計を、反応ガスと記す。
 導入管56の図中上側には複数の貫通孔が開いている。導入された第1原料ガス(または第1原料ガスとキャリアガスとからなる第1混合ガス)および第2原料ガス(または第2原料ガスとキャリアガスとからなる第2混合ガス)は、それぞれ異なる貫通孔から反応容器53内に噴出される。このとき、導入管56は、図中回転矢印で示すようにその軸を中心として回転する。このため、第1原料ガス(または第1混合ガス)と第2原料ガス(または第2混合ガス)とは均一に混合された混合ガスとして、基材セット治具52にセットされた基材10の表面に向かって噴出される。
 硬質粒子層の形成中、反応ガスの総ガス流量は、例えば、10~80L/分とすることができる。ここで「総ガス流量」とは、標準状態(0℃、1気圧)における気体を理想気体とし、単位時間当たりにCVD炉に導入された全容積流量を示す。
 硬質粒子層の形成中、反応ガス中のTiClガス及びCHCNガスの割合は、常に一定である。反応ガス中のTiClガスの割合は、例えば、0.35~1.30体積%とすることができる。反応ガス中のCHCNガスの割合は、例えば、0.5~0.7体積%とすることができる。
 反応ガス中のSiClガスの割合は、SiClガスの導入量を調節することにより周期的に変化させる。具体的には、SiClガスの導入量の変化の1周期の長さをt(秒)とし、反応ガス中のSiClガスの割合の変化の範囲をr1(体積%)~r2(体積%)とした場合、成膜開始時から1周期の中間時点(t/2(秒))までは、SiClガスの割合がr1(体積%)からr2(体積%)まで漸増し、続いて、中間時点(t/2(秒))から1周期の最終時点(t(秒))までは、SiClガスの割合をr2(体積%)からr1(体積%)まで漸減するように、SiClガスの導入量を調節する。これを1周期として、硬質粒子層が所望の厚さになるまで、該周期を繰り返す。反応ガス中のキャリアガス(例えば、Hガス)の割合は、SiClガスの割合の変化に応じて、総ガス流量が一定となるように変化させる。上記の1周期の長さt(秒)を調整することにより、硬質粒子における珪素の濃度の周期幅(nm)を制御することができる。上記の反応ガス中のSiClガスの割合の範囲の最小値r1と最大値r2とを調整することにより、硬質粒子におけるASi/(ASi+ATi)の値を制御することができる。
 本工程において、基材10の温度は900~950℃の範囲が好ましく、反応容器53内の圧力は0.1~13.0kPaであることが好ましい。成膜時の基材の温度を上記の範囲とすることにより、硬質粒子層の配向が(220)配向となる。上記成膜時の基材の温度は、従来のTiSiCN層の形成で採用されていた基材の温度(例えば、800~850℃)よりも高い。硬質粒子層の厚さは、原料ガスの流量と、成膜時間とを調節することによって制御することができる。
 次に、被膜が形成された基材10を冷却する。冷却速度は、例えば、5℃/minを超えることはなく、また、その冷却速度は基材10の温度が低下するにつれて遅くなる。
 なお、上記の工程に加えて、アニーリングなどの熱処理工程、表面研削、ショットブラストなどの表面処理工程を行うことができる。
 上述の製造方法により、実施形態1の切削工具を得ることができる。
 [付記1]
 本開示の切削工具において、硬質粒子層の配向性数TC(220)は、3.5以上8以下が好ましく、5以上8以下がより好ましく、6以上8以下が更に好ましい。
 本実施の形態を実施例によりさらに具体的に説明する。ただし、これらの実施例により本実施の形態が限定されるものではない。
 <基材の準備>
 以下の表1に記載の基材K、基材L及び基材Mを準備した。具体的には、まず、表1に記載の配合組成(質量%)からなる原料粉末を均一に混合して混合粉末を得た。表1中の「残り」とは、WCが配合組成(質量%)の残部を占めることを示している。次に、混合粉末をCNMG120408(住友電工ハードメタル社製の刃先交換型切削チップ)の形状に加圧成形した後、1300~1500℃で1~2時間焼結することにより、超硬合金製の基材K、基材L及び基材Mを得た。基材K、基材L及び基材Mは、全て基材形状はCNMG120408である。
Figure JPOXMLDOC01-appb-T000002
 <被膜の形成>
 上記で得られた基材K、基材L又は基材Mに対してその表面に被膜を形成した。具体的には、図8に示されるCVD装置を用い、基材を基材セット治具にセットし、熱CVD法を行うことにより、基材上に被膜を形成した。各試料の被膜の構成を表2に示す。
Figure JPOXMLDOC01-appb-T000003
 表2において、下地層は基材の表面と直接接する層であり、硬質粒子層は下地層の直上に形成された層であり、最外層は硬質粒子層の直上に形成された層であって外部に露出する層である。また、表2の下地層欄および最外層欄の化合物の記載は、表2の下地層および最外層を構成する化合物であり、化合物の右の括弧内の数値は層の厚さを示している。また、表2の1つの欄内に2つの化合物(たとえば、「TiN(0.5)-TiCN(3.0)」)が記載されている場合には、左側(「TiN(0.5)」)の化合物が基材に近い側に位置する層を構成する化合物であることを意味し、右側(「TiCN(3.0)」)の化合物が基材から遠い側に位置する層を構成する化合物であることを意味しており、括弧の中の数値はそれぞれの層の厚さを意味している。表2の硬質粒子層のa~p及びw~zの記載は、表4の形成条件a~形成条件p及び形成条件w~形成条件zで形成された層であることを示し、括弧内の数値は層の厚さを意味している。また、表2の「-」で示される欄は、層が存在しないことを意味する。
 たとえば、表2の試料1の切削工具では、基材Kの表面の直上に0.5μmの厚さのTiN層および3.0μmの厚さのTiCN層がこの順序に積層されて下地層が形成され、該下地層の直上に後述する形成条件aで形成された5.1μmの厚さの硬質粒子層が形成されており、被膜全体の厚さが8.6μmである。試料1では、硬質粒子層の直上には最外層が形成されていない。
 表2に示される下地層および最外層は、従来公知のCVD法によって形成された層であり、その形成条件は表3に示す通りである。たとえば、表3の「TiN(下地層)」の行には、下地層としてのTiN層の形成条件が示されている。表3のTiN層(下地層)の記載は、CVD装置の反応容器内(反応容器内圧力6.7kPa)に基材を配置し、基材を基材温度915℃まで加熱し、反応容器内に2.0体積%のTiClガス、39.7体積%のNガスおよび残り(58.3体積%)のHガスからなる混合ガスを63.8L/分の流量で噴出することにより形成されることを意味している。なお、各層の厚さは、各反応ガスを噴出する時間によって制御した。
Figure JPOXMLDOC01-appb-T000004
 表2に示される硬質粒子層は、表4に示される形成条件a~形成条件p及び形成条件w~形成条件zのいずれかの条件で形成される。
 (形成条件a~形成条件p、及び、形成条件z)
 形成条件a~形成条件p、及び、形成条件zでは、初めに、CVD装置の反応容器内圧力を表4の「反応容器内圧力(kPa)」欄に記載の圧力、及び、基材温度を表4の「基材温度(℃)」欄に記載の温度に設定する。例えば、形成条件aでは、CVD装置の反応容器内圧力を9.0kPa、及び、基材温度を920℃に設定する。
 次に、反応容器内に表4の「反応ガス組成」欄に記載の成分を含む反応ガスを導入して、基材上に硬質粒子層(TiSiCN層)を形成する。反応ガスの総ガス流量は、表4の「総ガス流量(L/分)」欄に記載の通りである。「総ガス流量」とは、標準状態(0℃、1気圧)における気体を理想気体とし、単位時間当たりにCVD炉に導入された全容積流量を示す。
 反応ガス中のTiClガス、CHCNガス及びNガスの割合は、硬質粒子層の形成中、常に一定である。反応ガス中のSiClガスの割合は、表4の「SiCl」の「周期」欄に示す時間(秒)を1周期として、「範囲」欄に示される割合(体積%)の範囲で変化させる。具体的には、成膜開始時のSiClガスの割合を「範囲」欄に示される最小値とし、成膜開始から表4の「周期」欄に示される時間(秒)の中間時点((1/2)周期(秒))までは、SiClガスの割合が「範囲」欄に示される最大値まで漸増し、続いて、中間時点((1/2)周期(秒))から1周期の最終時点(1周期(秒))までは、SiClガスの割合が「範囲」欄に示される最小値まで漸減するようにSiClガスの導入量を調節する。これを1周期として、硬質粒子層が所望の厚さになるまで、該周期を繰り返す。Hガスの割合は、SiClガスの割合の変化に応じて、総ガス流量が一定となるように変化させる。
 例えば、形成条件aでは、反応ガスの総ガス流量は60.0L/分である。反応ガス中のTiClガスの割合は0.70体積%、CHCNガスの割合は0.60体積%、Nガスの割合は8.90体積%であり、これらのガスの割合は硬質粒子層の形成中、一定である。反応ガス中のSiClガスの割合は、7秒を1周期として、0.1~1.7体積%の範囲で変化させる。より具体的には、成膜開始時のSiClガスの割合を0.1体積%とし、成膜開始から3.5秒までは、SiClガスの割合が0.1体積%から1.7体積%まで漸増し、続いて、成膜開始3.5秒後から7秒後までは、SiClガスの割合が1.7体積%から0.1体積%まで漸減するように、SiClガスの導入量を調節する。これを1周期として、硬質粒子層の厚さが表1の「硬質粒子層」欄に記載の厚さになるまで、該周期を繰り返す。Hガスの体積割合は、SiClガスの割合の変化に応じて、総ガス流量が一定となるように変化させる。形成条件aでは、反応ガス中のSiClガスの割合の平均は0.90体積%である。
 その後、基材を5℃/分の冷却速度で冷却する。
 (形成条件w)
 形成条件wは、従来のTiCN層の形成条件である。具体的には、初めに、CVD装置の反応容器内圧力を9.0kPa、及び、基材温度を920℃に設定する。
 次に、反応容器内に表4の「反応ガス組成(体積%)」欄に記載の成分を含む反応ガス(TiCl:2.00体積%、CHCN:0.60体積%、Hガス:残り)を導入して、基材上にTiCN層(硬質粒子層)を形成する。反応ガスの組成は、成膜中一定である。反応ガスの総ガス流量は、総ガス流量60.0L/分である。その後、基材を5℃/分の冷却速度で冷却する。
 (形成条件x)
 形成条件xは、特許文献1に開示されるPVD法を用いて硬質粒子層(TiSiCN層)を形成する条件である。
 (形成条件y)
 形成条件yは、特許文献2に開示されるCVD法を用いて硬質粒子層(TiSiCN層)を形成する条件である。
 上記により、試料1~試料27(実施例に該当)及び試料1-1~試料1-5(比較例に該当)の切削工具を得た。
Figure JPOXMLDOC01-appb-T000005
 <硬質粒子層の特徴>
 (硬質粒子層の構成)
 形成条件a~形成条件p、及び、形成条件zより得られた硬質粒子層は、TiSiCNからなる複数の硬質粒子からなり、硬質粒子内に設定される第1方向に沿って、珪素の濃度が周期的に変化することが確認された。具体的な確認方法は実施形態1に記載されているため、その説明は繰り返さない。
 形成条件wにより得られた硬質粒子(TiCN)層を明視野走査透過電子顕微鏡(BF-STEM)で観察したところ、均一な組織であり、周期的な変化は確認されなかった。
 形成条件x及び形成条件yにより得られた硬質粒子層を明視野走査透過電子顕微鏡(BF-STEM)で観察したところ、ナノコンポジット構造が確認された。該硬質粒子層は(200)配向であった。
 ({ASi/(ASi+ATi)}×100)
 各形成条件により得られた硬質粒子において、{ASi/(ASi+ATi)}×100の最大値、最小値及び平均を測定した。具体的な測定方法は実施形態1に記載の通りであるため、その説明は繰り返さない。結果を表5の「最大{ASi/(ASi+ATi)}×100(%)」、「最小{ASi/(ASi+ATi)}×100(%)」及び「平均{ASi/(ASi+ATi)}(%)」欄に示す。なお、「-」の表記は、測定を行わなかったことを示す。
 (珪素の濃度の周期幅)
 各形成条件により得られた硬質粒子において、硬質粒子内に設定される第1方向における珪素の濃度の平均周期幅を測定した。具体的な測定方法は実施形態1に記載の通りであるため、その説明は繰り返さない。結果を表5の「平均周期幅(nm)」欄に示す。なお、「-」の表記は、測定を行わなかったことを示す。
 (配向)
 各形成条件により得られた硬質粒子層の配向を測定した。硬質粒子層の配向の具体的な測定方法は実施形態1に記載されているため、その説明は繰り返さない。各硬質粒子層において、配向性指数TC(hkl)のうち、最も大きい配向性指数の配向面を、表5の「配向面」欄に示し、該配向面の配向性指数TC(hkl)を「配向面の配向性指数TC(hkl)」欄に示す。
 形成条件a~形成条件p、及び、形成条件wにより得られた硬質粒子層では、(220)面の配向性指数TC(220)が最も大きかった。従って、形成条件a~形成条件p、及び、形成条件wにより得られた硬質粒子層の配向は、(220)配向であった。例えば、形成条件aにより得られた硬質粒子層の配向性指数TC(220)は、4.3であった。
 形成条件x~形成条件zにより得られた硬質粒子層では、(200)面の配向性指数TC(200)が最も大きかった。従って、形成条件x~形成条件zにより得られた硬質粒子層の配向は、(200)配向であった。
Figure JPOXMLDOC01-appb-T000006
 <切削試験1>
 試料1~試料27及び試料1-1~試料1-5の切削工具を用いて、以下の切削条件にて鋳鉄(FCD450)の連続切削を行い、逃げ面摩耗量(Vb)が0.3mmとなるまでの切削時間を測定した。切削時間が長いもの程、耐摩耗性に優れ、工具寿命が長いことを示す。また、刃先の最終損傷形態を観察した。最終損傷形態において、「正常摩耗」とはチッピング、欠けなどを生じず、摩耗のみで構成される損傷形態(平滑な摩耗面を有する)を意味し、耐欠損性に優れていることを示す。結果を表6に示す。
 <切削条件>
 被削材:FCD450丸棒外周切削
 周速:150m/min
 送り速度:0.15mm/rev
 切込み量:1.0mm
 切削液:無し
Figure JPOXMLDOC01-appb-T000007
 (評価1)
 試料1-試料27(実施例)は、試料1-1~試料1-5(比較例)に比べて、鋳鉄の連続切削において耐摩耗性に優れ、工具寿命が長いことが確認された。また、試料1-試料27は、最終摩耗形態が正常摩耗であり、従来の硬質粒子層(試料1-1~試料1-5)と同等の優れた耐欠損性を維持していることが確認された。
 <切削試験2>
 試料1~試料27及び試料1-1~試料1-5の切削工具を用いて、以下の切削条件により鋳鉄(FC250)の断続切削を行い、切削工具が欠損するまでの衝撃回数を測定し、当該切削工具の耐欠損性を評価した。ここで、欠損とは、300μm以上の欠損を意味する。欠損までの衝撃回数が多いほど耐欠損性に優れることを示す。結果を表7に示す。なお、表7において「欠損無し」とは、衝撃回数3000回まで切削を行ったが、欠損が生じなかったことを示す。
 <切削条件>
 被削材:FC250板材外周切削
 周速:300m/min
 送り速度:0.2mm/rev
 切込み量:1.5mm
 切削液:無し
Figure JPOXMLDOC01-appb-T000008
 (評価2)
 試料1-試料27(実施例)は、試料1-1~試料1-5(比較例)に比べて、鋳鉄の断続切削において耐欠損性に優れ、工具寿命が長いことが確認された。
 以上のように本開示の実施の形態および実施例について説明を行なったが、上述の各実施の形態および実施例の構成を適宜組み合わせたり、様々に変形することも当初から予定している。
 今回開示された実施の形態および実施例はすべての点で例示であって、制限的なものではないと考えられるべきである。本発明の範囲は上記した実施の形態および実施例ではなく請求の範囲によって示され、請求の範囲と均等の意味、および範囲内でのすべての変更が含まれることが意図される。
1,21,31,41 切削工具、10 基材、11 硬質粒子層、12,12A,12B 下地層、13 最外層、14,24,34,45 被膜、50 CVD装置、52 基材セット治具、53 反応容器、54 調温装置、55,57 導入口、56 導入管、59 排気管、60 排気口

Claims (8)

  1.  基材と、前記基材上に配置された被膜と、を備える切削工具であって、
     前記被膜は、硬質粒子層を含み、
     前記硬質粒子層は、チタン、珪素、炭素及び窒素を含む複数の硬質粒子からなり、
     前記硬質粒子において、前記硬質粒子内に設定される第1方向に沿って、前記珪素の濃度が周期的に変化し、
     前記硬質粒子層の配向は、(220)配向である、切削工具。
  2.  前記硬質粒子において、前記チタンの原子数ATiと、前記珪素の原子数ASiとの合計に対する、前記珪素の原子数ASiの百分率{ASi/(ASi+ATi)}×100の平均は、1%以上20%以下である、
     請求項1に記載の切削工具。
  3.  前記珪素の濃度の平均周期幅は、3nm以上50nm以下である、請求項1又は請求項2に記載の切削工具。
  4.  前記硬質粒子層の厚さは、1μm以上20μm以下である、請求項1から請求項3のいずれか1項に記載の切削工具。
  5.  前記基材は、炭化タングステンとコバルトとを含む超硬合金からなり、
     前記超硬合金中の前記コバルトの含有率は、6質量%以上11質量%以下である、請求項1から請求項4のいずれか1項に記載の切削工具。
  6.  前記硬質粒子において、前記チタンの原子数ATiと、前記珪素の原子数ASiとの合計に対する、前記珪素の原子数ASiの百分率{ASi/(ASi+ATi)}×100の最大値と最小値との差は、1%以上38%以下である、請求項1から請求項5のいずれか1項に記載の切削工具。
  7.  前記被膜は、前記基材の直上に配置される下地層を含み、
     前記下地層は、TiN層、TiC層、TiCN層、TiBN層及びAl層からなる群より選択される少なくとも1種からなる、請求項1から請求項6のいずれか1項に記載の切削工具。
  8.  前記被膜は、前記被膜において最も表面側に配置される最外層を含み、
     前記最外層は、チタンの炭化物、チタンの窒化物又はチタンの硼化物を90質量%以上含む層、又は、Al層からなる、請求項1から請求項7のいずれか1項に記載の切削工具。
PCT/JP2022/009462 2021-04-30 2022-03-04 切削工具 WO2022230361A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2023517108A JP7517599B2 (ja) 2021-04-30 2022-03-04 切削工具
KR1020237029246A KR20230132594A (ko) 2021-04-30 2022-03-04 절삭 공구
EP22795284.3A EP4331756A4 (en) 2022-03-04 Cutting tool
US18/279,617 US20240309514A1 (en) 2021-04-30 2022-03-04 Cutting tool
CN202280017896.7A CN117177828A (zh) 2021-04-30 2022-03-04 切削工具

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021078024 2021-04-30
JP2021-078024 2021-04-30

Publications (1)

Publication Number Publication Date
WO2022230361A1 true WO2022230361A1 (ja) 2022-11-03

Family

ID=83848286

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/009462 WO2022230361A1 (ja) 2021-04-30 2022-03-04 切削工具

Country Status (5)

Country Link
US (1) US20240309514A1 (ja)
JP (1) JP7517599B2 (ja)
KR (1) KR20230132594A (ja)
CN (1) CN117177828A (ja)
WO (1) WO2022230361A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004090150A (ja) * 2002-08-30 2004-03-25 Sumitomo Electric Ind Ltd 表面被覆切削工具
JP2005138209A (ja) * 2003-11-05 2005-06-02 Sumitomo Electric Hardmetal Corp 耐摩耗性部材
JP2009197268A (ja) * 2008-02-20 2009-09-03 Tungaloy Corp 被覆部材
JP2015505902A (ja) 2011-12-05 2015-02-26 フラウンホーファー−ゲゼルシャフト ツル フェルデルング デル アンゲヴァンテン フォルシュング エー ファウFraunhofer−Gesellschaft zur Foerderung der angewandten Forschung e.V. 金属、硬質金属、サーメット又はセラミックの硬質材料被覆体並びにこのような物体の製造法
JP2021078024A (ja) 2019-11-11 2021-05-20 株式会社ビデオリサーチ ポイントシステム

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007030098A (ja) 2005-07-27 2007-02-08 Mitsubishi Materials Corp 難削材の高速切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆超硬合金製切削工具
EP3808477B1 (en) 2018-06-15 2022-11-30 Sumitomo Electric Hardmetal Corp. Surface-coated cutting tool and process for producing same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004090150A (ja) * 2002-08-30 2004-03-25 Sumitomo Electric Ind Ltd 表面被覆切削工具
JP2005138209A (ja) * 2003-11-05 2005-06-02 Sumitomo Electric Hardmetal Corp 耐摩耗性部材
JP2009197268A (ja) * 2008-02-20 2009-09-03 Tungaloy Corp 被覆部材
JP2015505902A (ja) 2011-12-05 2015-02-26 フラウンホーファー−ゲゼルシャフト ツル フェルデルング デル アンゲヴァンテン フォルシュング エー ファウFraunhofer−Gesellschaft zur Foerderung der angewandten Forschung e.V. 金属、硬質金属、サーメット又はセラミックの硬質材料被覆体並びにこのような物体の製造法
JP2021078024A (ja) 2019-11-11 2021-05-20 株式会社ビデオリサーチ ポイントシステム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SHINYA IMAMURA ET AL.: "Properties and cutting performance of AlTiCrN/TiSiCN bilayer coatings deposited by cathodic-arc ion plating", SURFACE AND COATINGS TECHNOLOGY, vol. 202, 2007, pages 820 - 825, XP022342021, DOI: 10.1016/j.surfcoat.2007.05.087

Also Published As

Publication number Publication date
JP7517599B2 (ja) 2024-07-17
EP4331756A1 (en) 2024-03-06
KR20230132594A (ko) 2023-09-15
CN117177828A (zh) 2023-12-05
US20240309514A1 (en) 2024-09-19
JPWO2022230361A1 (ja) 2022-11-03

Similar Documents

Publication Publication Date Title
WO2022230362A1 (ja) 切削工具
JP6238131B2 (ja) 被膜および切削工具
WO2017122448A1 (ja) 表面被覆切削工具およびその製造方法
EP3008225A1 (en) Coated cutting tool
WO2018037625A1 (ja) 表面被覆切削工具およびその製造方法
JP7533347B2 (ja) 切削工具
WO2022230363A1 (ja) 切削工具及びその製造方法
WO2022230361A1 (ja) 切削工具
WO2022230360A1 (ja) 切削工具
JP6834111B1 (ja) 切削工具
JP7543975B2 (ja) 切削工具
JP7533346B2 (ja) 切削工具
JP7533344B2 (ja) 切削工具
JP7533345B2 (ja) 切削工具
JP7559979B1 (ja) 切削工具
JP7559981B1 (ja) 切削工具
JP7332048B1 (ja) 切削工具及びその製造方法
JP7205039B1 (ja) 切削工具
WO2022201230A1 (ja) 切削工具
JP6926387B2 (ja) 切削工具
JPWO2020213259A1 (ja) 切削工具
JPWO2020213258A1 (ja) 切削工具
CN117120191A (zh) 切削工具

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22795284

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023517108

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20237029246

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020237029246

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 18279617

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2022795284

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022795284

Country of ref document: EP

Effective date: 20231130

NENP Non-entry into the national phase

Ref country code: DE