WO2014102142A1 - Vorrichtung zum aufschneiden von lebensmittelprodukten - Google Patents

Vorrichtung zum aufschneiden von lebensmittelprodukten Download PDF

Info

Publication number
WO2014102142A1
WO2014102142A1 PCT/EP2013/077432 EP2013077432W WO2014102142A1 WO 2014102142 A1 WO2014102142 A1 WO 2014102142A1 EP 2013077432 W EP2013077432 W EP 2013077432W WO 2014102142 A1 WO2014102142 A1 WO 2014102142A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
shaft
blade
cutting blade
drive
Prior art date
Application number
PCT/EP2013/077432
Other languages
English (en)
French (fr)
Inventor
Jörg SCHMEISER
Josef Mayer
Original Assignee
Textor Maschinenbau GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Textor Maschinenbau GmbH filed Critical Textor Maschinenbau GmbH
Priority to ES13815730.0T priority Critical patent/ES2628977T3/es
Priority to EP13815730.0A priority patent/EP2919950B1/de
Priority to US14/654,982 priority patent/US10538009B2/en
Publication of WO2014102142A1 publication Critical patent/WO2014102142A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B26HAND CUTTING TOOLS; CUTTING; SEVERING
    • B26DCUTTING; DETAILS COMMON TO MACHINES FOR PERFORATING, PUNCHING, CUTTING-OUT, STAMPING-OUT OR SEVERING
    • B26D1/00Cutting through work characterised by the nature or movement of the cutting member or particular materials not otherwise provided for; Apparatus or machines therefor; Cutting members therefor
    • B26D1/01Cutting through work characterised by the nature or movement of the cutting member or particular materials not otherwise provided for; Apparatus or machines therefor; Cutting members therefor involving a cutting member which does not travel with the work
    • B26D1/12Cutting through work characterised by the nature or movement of the cutting member or particular materials not otherwise provided for; Apparatus or machines therefor; Cutting members therefor involving a cutting member which does not travel with the work having a cutting member moving about an axis
    • B26D1/14Cutting through work characterised by the nature or movement of the cutting member or particular materials not otherwise provided for; Apparatus or machines therefor; Cutting members therefor involving a cutting member which does not travel with the work having a cutting member moving about an axis with a circular cutting member, e.g. disc cutter
    • B26D1/157Cutting through work characterised by the nature or movement of the cutting member or particular materials not otherwise provided for; Apparatus or machines therefor; Cutting members therefor involving a cutting member which does not travel with the work having a cutting member moving about an axis with a circular cutting member, e.g. disc cutter rotating about a movable axis
    • B26D1/16Cutting through work characterised by the nature or movement of the cutting member or particular materials not otherwise provided for; Apparatus or machines therefor; Cutting members therefor involving a cutting member which does not travel with the work having a cutting member moving about an axis with a circular cutting member, e.g. disc cutter rotating about a movable axis mounted on a movable arm or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B26HAND CUTTING TOOLS; CUTTING; SEVERING
    • B26DCUTTING; DETAILS COMMON TO MACHINES FOR PERFORATING, PUNCHING, CUTTING-OUT, STAMPING-OUT OR SEVERING
    • B26D1/00Cutting through work characterised by the nature or movement of the cutting member or particular materials not otherwise provided for; Apparatus or machines therefor; Cutting members therefor
    • B26D1/01Cutting through work characterised by the nature or movement of the cutting member or particular materials not otherwise provided for; Apparatus or machines therefor; Cutting members therefor involving a cutting member which does not travel with the work
    • B26D1/12Cutting through work characterised by the nature or movement of the cutting member or particular materials not otherwise provided for; Apparatus or machines therefor; Cutting members therefor involving a cutting member which does not travel with the work having a cutting member moving about an axis
    • B26D1/14Cutting through work characterised by the nature or movement of the cutting member or particular materials not otherwise provided for; Apparatus or machines therefor; Cutting members therefor involving a cutting member which does not travel with the work having a cutting member moving about an axis with a circular cutting member, e.g. disc cutter
    • B26D1/157Cutting through work characterised by the nature or movement of the cutting member or particular materials not otherwise provided for; Apparatus or machines therefor; Cutting members therefor involving a cutting member which does not travel with the work having a cutting member moving about an axis with a circular cutting member, e.g. disc cutter rotating about a movable axis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B26HAND CUTTING TOOLS; CUTTING; SEVERING
    • B26DCUTTING; DETAILS COMMON TO MACHINES FOR PERFORATING, PUNCHING, CUTTING-OUT, STAMPING-OUT OR SEVERING
    • B26D2210/00Machines or methods used for cutting special materials
    • B26D2210/02Machines or methods used for cutting special materials for cutting food products, e.g. food slicers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B26HAND CUTTING TOOLS; CUTTING; SEVERING
    • B26DCUTTING; DETAILS COMMON TO MACHINES FOR PERFORATING, PUNCHING, CUTTING-OUT, STAMPING-OUT OR SEVERING
    • B26D2210/00Machines or methods used for cutting special materials
    • B26D2210/02Machines or methods used for cutting special materials for cutting food products, e.g. food slicers
    • B26D2210/08Idle cutting
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T83/00Cutting
    • Y10T83/768Rotatable disc tool pair or tool and carrier
    • Y10T83/7755Carrier for rotatable tool movable during cutting
    • Y10T83/7788Tool carrier oscillated or rotated

Definitions

  • the invention relates to a device for slicing food products, in particular high-performance slicers. Furthermore, the invention relates to a system with such a slicing device and with at least two differently shaped cutting blade carriers, which are each releasably attachable to a rotor shaft.
  • Such slicing devices are basically known and serve to slice food products such as sausage, meat and cheese into slices at high speed. Typical cutting speeds are between several hundred to several thousand cuts per minute.
  • Modern high-performance slicers differ, inter alia, in the design of the cutting blade and in the manner of the rotary drive for the cutting blade. So-called sickle or spiral cutters merely rotate around a knife axis, whereby this knife axis itself does not perform any additional movement.
  • the circular blade rotating about a knife axis circulate in a planetary manner in addition to this self-rotation about a further axis spaced apart from the knife axis-here called a rotation axis.
  • Which blade type or type of drive is to be preferred depends on the respective application.
  • the invention relates to slicing with a planetary rotating circular blade.
  • Typical cutting speeds are in the range of about 350 to 800 revolutions per minute, ie with such a slicer about 350 to 800 discs per minute can be separated from a product.
  • the circular blade containing cutting head has a relatively complex structure and is axially adjustable as a whole.
  • the cutting head has a non-rotatable axis, wherein about this rotationally fixed axis of a rotational drive rotationally driven hub, which simultaneously represents the blade holder, can be rotated.
  • This known circular knife slicer discloses a general basic problem, which in principle precludes a tactile design of a circular blade slicer, namely the requirement not only to circulate the circular blade planetary, but also to provide a self-rotation. Consequently, the circular blade not only has to be driven in a planetary orbit, but also has to be set in rotation around its own knife axis. This results in an already complex drive technology, which requires a much higher design effort, if in addition the circular blade should be adjusted quickly and precisely axially in order to perform idle cuts can.
  • Circular knife slicers are thus, in principle, significantly less time-critical in terms of axial adjustment. However, so far has hardly been trying to develop practical concepts for tactile circular knife slicer.
  • the object of the invention is to provide a slicing device, which is based on the principle of a planetary rotating circular knife and is capable of a blank cutting operation, which also should be given a simple, compact and hygienic design and in particular the full functionality of modern high-performance slicer ,
  • the slicing device comprises a rotor shaft which rotates about an axis of rotation and is axially adjustable during operation, a rotor driven by the rotor shaft, a rotor carried by the cutting blade which rotates planetary about the axis of rotation and additionally rotates relative to the rotor about a knife axis parallel to the rotation axis, and a rotary drive for the rotor shaft.
  • the invention is based on the idea, in departure from the above-explained concept according to WO 2008/034513 Al not to adjust the entire cutting head in the axial direction, but to axially displace a rotor shaft supporting the cutting blade via a rotor, ie to provide an axially adjustable rotor shaft.
  • This concept makes possible, surprisingly, a simple, almost minimalistic design of a tactile circular blade slicer, which is also compact, meets the highest hygiene requirements and, in particular, in certain specific embodiments, as explained in more detail below. despite omitting components of comparable performance on other high performance slicers - yet fulfilling a very high level of functionality.
  • the concept according to the invention also and indeed allows a concentration on an optimal axial adjustment of the knife, whereby important functions such as e.g. the cutting gap setting can be taken over, so that e.g. no axially adjustable cutting edge is needed. It is also not necessary to retract the product since the blade can be adjusted axially for a blank cutting operation. Finally, for this reason, even expensive tractors or conveyor belts for the product can be omitted.
  • a peculiarity of the invention is that a circular-slicer, which actually requires no Messeraxialver ein due to the cutting speed, is nevertheless optimized in terms of Messeraxialvergna, since it was recognized that in a clever basic design and a circular knife slicer with a fast and reliably functioning axial adjustment are provided for the knife and this axial adjustment can also take over essential functions, which in turn otherwise necessary components can be omitted, which - and so closes the circle - the optimization of the axial adjustment at least relieved.
  • Possible embodiments of the slicing device according to the invention are specified in the dependent claims, the description and the drawings.
  • a combined axial and rotary bearing for the rotor shaft is provided, relative to which the rotor shaft is rotatable and can be adjusted axially.
  • the axial and pivot bearing may comprise a fixed hub or be associated with a stationary hub.
  • the hub can consequently form part of the axial and pivot bearing or be considered as a component interacting with the axial and pivot bearing.
  • a fixed hub for the thrust and pivot bearing is provided, then this hub can be used for a plurality of functions.
  • the rotor shaft can be supported on a fixed frame or frame part, for example a housing wall, of the device.
  • the hub can serve as a support for further components, for example for components which cooperate with a rotary drive for the self-rotation of the cutting blade or form a stationary part of such a rotary drive.
  • a particularly compact, in particular in the axial direction comparatively short construction arrangement can be achieved if, according to another embodiment, a front portion of a hub for the rotor shaft and at least one rotary bearing for the cutting blade comprehensive range of the rotor axially engage, and if also a on Rear portion of the hub arranged stationary part of a
  • Rotary drive for the cutting blade and a rotor-side part of the rotary drive axially engage each other.
  • the fact is utilized that the rotary shaft providing the rotor shaft and the blade axis defining the blade for the self-rotation of the rotary drive are radially spaced.
  • This arrangement thus enables the respective axial engagement of the components and overall provides for a somewhat “nested" structure or a high packing density of the respective components.
  • the available space, especially in the axial direction is thereby used optimally.
  • the relatively short length of such a construction also reduces the required supporting forces, which in particular must be absorbed by the hub.
  • a hub provided for the rotor shaft which ensures the axial and rotational mounting of the rotor shaft, can be carried by a fixed frame or frame part of the device.
  • a hub for the rotor shaft is exposed to the outside and a combined axial and rotary bearing for the rotor shaft between the hub and the rotor shaft from the environment is sealed.
  • the rotor shaft is in particular passed through a fixed frame or frame part, on one side of the rotary drive and on the other side of the rotor is arranged.
  • the drive region of the rotor shaft is separated from the cutting region by means of the frame part of the frame part designed in particular as a housing or housing wall, which is advantageous in particular from a hygienic point of view.
  • a rotary drive which is responsible for the self-rotation of the cutting blade is decoupled from the rotor shaft.
  • Of- Half it is possible to avoid structurally complex belt or gear arrangements, which would otherwise have to be provided to provide the rotary drive for the self-rotation of the blade directly through the rotor shaft.
  • the rotary drive for the cutting blade is derived from the rotational movement of the rotor.
  • the rotational movement of the rotor which in any case takes place, can thus be used to additionally set the blade, which rotates planetaryly due to the rotational movement of the rotor, into a self-rotation relative to the rotor.
  • the relative movement of the blade due to the planetary rotation of the circular blade, in particular a blade shaft releasably connected to the blade can be exploited in order to impart a self-rotation to the blade or the blade shaft.
  • the rotary drive for the cutting blade may comprise a stationary part and a rotor-side part, wherein the stationary part and the rotor-side part cooperate with the rotor mounted on the rotor shaft.
  • the given due to the planetary circulation relative movement of the rotor-side part of the rotary drive with respect to the stationary part can thereby be converted into a rotational movement of the rotor-side part and thus the blade or the blade shaft.
  • the interaction between the stationary part and the rotor-side part is in particular designed such that relative movements in the axial direction between the two parts are permitted. This makes it possible, in particular for the implementation of blank sections and / or for cutting gap adjustment and / or assembly or disassembly of the rotor, the rotor shaft together with knife and rotor wornem part to adjust the rotary drive axially, without the rotary drive would oppose.
  • the rotor shaft prefferably be axially adjustable relative to the stationary part of the rotary drive for the cutting blade.
  • the stationary part of the rotary drive for the cutting blade may be carried by a combined axial and rotary bearings and / or by a hub for the rotor shaft. In this way, the hub can contribute to the self-rotation of the cutting blade.
  • a rotor-side part of the rotary drive which carries out the rotary movement together with the rotor, may be formed by a blade shaft of the cutting blade, so that it is the blade shaft, which cooperates with the stationary part of the rotary drive.
  • the stationary part of the rotary drive may comprise a ring on which the blade shaft rolls. It is particularly provided that the ring is designed as a toothed ring, which cooperates with a gear of the knife shaft.
  • a separate rotary drive is provided for the drive shaft.
  • the axis can be a fixed, ie non-rotating, drive axis relative to which the rotor rotates, this relative movement being converted into the intrinsic rotation of the blade or of the blade shaft.
  • the drive shaft or the drive shaft may be telescopic, in order to allow in this way an axial adjustment, in particular for performing blank cuts and / or for cutting gap adjustment.
  • the drive shaft or the drive axle as a whole can be axially adjustable.
  • the rotor shaft is designed as a hollow shaft through which the drive shaft or the drive axle extends.
  • the interaction between the drive shaft or drive shaft for the self-rotation of the cutting blade with the blade shaft can be carried out within the rotor in a further embodiment, wherein the drive shaft or drive shaft extends into the rotor.
  • both the rotor shaft and the drive shaft or drive shaft are at least partially axially adjustable.
  • the rotor shaft and the drive shaft or drive axle are simultaneously or jointly axially adjustable.
  • the cutting blade is offset radially outward relative to the rotor shaft which sets the rotor in rotation and thus radially outwards relative to the axis of rotation of the rotor, ie the cutting blade is arranged eccentrically. net.
  • the rotor has an imbalance caused by the cutting blade.
  • the slicing must be balanced in all planes.
  • the slicing device according to the invention in particular in one embodiment, as has been explained above with reference to possible embodiments, enables a particularly simple and effective balancing concept which satisfies the mentioned requirements.
  • the invention in particular comes without complex constructions and without expensive materials such as e.g. Tungsten for the balancing masses out.
  • the term "imbalance” in the following also generally depending on the context of an imbalance mass, an imbalance position and / or effective in the rotation due to the imbalance mass force in terms of magnitude and direction to understand.
  • Axial distances that is, along the axis of rotation or the knife axis measured distances relative to a cutting blade relate here, unless otherwise stated, to a defined by the blade or the cutting edge cutting plane, while the axial position of a balancing mass or imbalance refers to a plane which is perpendicular to the axis of rotation or knife axis and in which the center of mass of the balancing mass or imbalance.
  • a balancing mass or imbalance refers to a plane which is perpendicular to the axis of rotation or knife axis and in which the center of mass of the balancing mass or imbalance.
  • here statements relating to the position or direction of action of a balancing mass also apply to the imbalance produced by the balancing mass or by the component or assembly in which the balancing mass in question is integrated.
  • At least two balancing masses are provided for compensating for an imbalance of the rotor caused by the cutting blade, all balancing masses being arranged on the side of the cutting blade opposite the dismounting side of the cutting blade, and preferably axially spaced from one another.
  • this concept makes it possible to manage without complex constructions and without expensive materials for the balancing masses.
  • the rotor forms a balancing mass and the rotor has an asymmetrical rotational geometry with respect to the axis of rotation.
  • the rotor itself which forms a balancing mass serving for balancing the blade, ie the rotor itself at least partially compensates for its imbalance caused by the eccentrically arranged blade.
  • This makes it possible to position the required balancing mass on the one hand axially close to the knife and on the other hand radially relatively far outward.
  • a particularly efficient balancing concept can be realized overall. Due to the asymmetric design of the rotor can At a relatively low total weight of the rotor, a sufficiently large imbalance can be generated.
  • the rotor in favor of as far as possible radially outward balancing mass, can deviate extremely from a circular outer contour and, to a certain extent, highly top-heavy - with respect to the radial direction - be formed, i. be associated with a relatively large unbalance or imbalance mass, for example - figuratively speaking - like a rotating hammer.
  • the construction is particularly simple.
  • the balancing mass is also in this way axially particularly close to the cutting plane. Another, separate balancing mass in the axial vicinity of the cutting blade is therefore not necessary.
  • the slicing device is thus particularly easy to adapt to various applications. This makes it easy to use different weight knives.
  • a further balancing mass can be formed by the rotary drive, in particular by a drive pulley or by a hub which can be set in rotation by means of a drive motor via a drive belt.
  • the rotary drive fulfills a further function by not only Torwelle is set in rotation, but also a part of the imbalance of the rotor is compensated.
  • the rotational drive forms due to the balancing mass or unbalance together with the rotor and circular blade a mass system that can be designed in terms of dimensioning and arrangement such that the overall center of gravity of the rotating system is located on that side of the cutting blade on which also the rotary drive located is.
  • this focus is "pulled” by the imbalance in the rotary drive on its side. Consequently, it is possible, the other balancing mass also on this side of the
  • the balancing mass formed by the rotary drive in combination with the balancing mass formed by the rotor and thus axially extremely close to the cutting plane optimal balancing of the entire rotating system in all planes and cause both static and dynamic, and this in an extremely compact design overall arrangement.
  • Another advantage is that by modifying the rotary drive, for example, by replacing the drive pulley or the hub, a knife with a different weight and thus a different weight.
  • balancing knife can be balanced.
  • the rotor itself serving as a balancing mass in addition to the rotary drive does not necessarily have to be replaced, but it is possible to change both the rotor and the drive disk or the hub in a blade change, the latter in particular if it is not possible or not desired is to compensate for the change associated with a blade change of the unbalance to be compensated exclusively by replacing the rotor.
  • the first balancing mass is formed by the rotor and the second balancing mass is integrated in the rotary drive, then it is provided in particular that the two balancing masses are arranged on different sides of a fixed frame or frame part.
  • the arrangement of the two balancing masses takes place in particular such that the first balancing mass and the imbalance of the rotor are at least approximately effective in opposite radial directions, while the second balancing mass is at least approximately effective in the same radial direction as the imbalance of the rotor.
  • Cutting knife is arranged as the second balancing mass.
  • the first balancing mass in the axial direction at least approximately in the amount of a combined axial and rotary bearing for the rotor shaft and / or integrated in the rotor pivot bearing for the cutting blade is arranged.
  • Balancing masses can thus be realized in all levels and both statically and dynamically balanced system even with a comparatively compact and relatively simple slicer.
  • the solution of the object underlying the invention is also carried out by the above-mentioned system comprising a slicing device and at least two differently shaped cutting blade carrier, which are each releasably attachable to a rotor shaft of Aufschneidevor- direction.
  • the one support is designed as a blade receptacle rotating in operation about the axis of rotation for a cutting blade, in particular for a sickle or spiral blade, which performs only a self-rotation about the axis of rotation, whereas the other support than in the operation
  • Rotary axis rotating rotor for a cutting blade in particular circular blade, is formed, which rotates planetary about the rotation axis and additionally rotates relative to the rotor about a parallel offset from the axis of rotation blade axis.
  • This concept creates a universally applicable slicing device that can be used either as a sickle knife slicer or as a circular knife slicer. It therefore becomes one and the same
  • Basic structure which includes in particular the axially adjustable rotor shaft including rotary drive for the rotor shaft and the fixed hub including axial and pivot bearing, either with a blade holder for a sickle blade or with a rotor for a circular blade used.
  • the rotor shaft on the one hand and the blade receptacle or the rotor on the other hand in each case comprise a coordinated interface which allows a change from a sickle blade operation to a circular blade operation, and vice versa, in the simplest possible way.
  • a rotary drive provided for the self-rotation of the circular blade is designed according to the principle explained above with reference to an embodiment, according to which the slicing device comprises a stationary part of the rotary drive which, when the rotor is mounted, thus in circular knife operation a rotor-side part of the rotary drive cooperates and with attached blade holder, so in sickle blade operation, ineffective on the device remains.
  • both concepts can advantageously be combined with one another if in each case the first balancing mass is integrated into the relevant support or is formed by the support, i. if both the blade holder for the sickle blade and the rotor for the circular blade includes a first balancing mass matched to the respective blade and to the second balancing mass integrated into the basic structure of the slicing device.
  • Fig. 8 is a sectional side view of a portion of a slicing device according to the invention according to another embodiment
  • Fig. 9 is a sectional side view of a portion of a slicing device according to the invention according to another embodiment.
  • slicing device also referred to as a knife or cutting head, for slicing food products, in particular sausages, ham or cheese, in a sectioned side view.
  • a hub 23 is fixed to a housing or a fixed housing wall 31. Inside the hub 23, a combined axial and rotary bearing 21 is arranged for a rotor shaft 13, which defines a rotation axis 1 1 of the slicer. The rotor shaft 13 is thus rotatable about the axis of rotation 1 1 and axially adjustable within the hub 23 in the direction of the axis of rotation 1 1 stored.
  • a not-shown axial drive 71 is provided, which engages the rear end of the rotor shaft 13.
  • a rotary drive 33 for the rotor shaft 13 In a region located behind the housing wall 31 is a rotary drive 33 for the rotor shaft 13.
  • the rotary drive 33 comprises an externally toothed drive pulley 51, which is mounted in the rear region of the rotor shaft 13 and cooperates with a drive toothed belt 53, which a drive motor, not shown, is driven to enable the rotor shaft 13 in rotation about the axis of rotation 1 1.
  • a rotor 15 is fixed. Radially spaced from the axis of rotation 1 1, the rotor 15 includes a pivot bearing 25 for a blade shaft 35 which defines a blade axis 19 which is parallel to the axis of rotation 1 1.
  • the front, located outside of the rotor 15 end of the cutter shaft 35 is as formed a knife receptacle on which a trained as a circular knife cutting blade 17 is releasably attached.
  • the rearwardly projecting end of the blade shaft 35 is formed as a gear 29, which forms a rotor-side part of a rotary drive for the blade shaft 35 and thus for the cutting blade 17.
  • a stationary part 27 of this rotary drive is a fixed sprocket, which is supported by the fixed hub 23 or attached to the housing wall 31.
  • the annular, concentric with the axis of rotation 1 1 arranged ring gear 27 is provided with an internal toothing, which cooperates with the external toothing of the gear 29 of the cutter shaft 35.
  • the cutting blade 17 consequently performs a planetary orbital motion about the axis of rotation 1 1 and additionally an internal rotation around the blade axis 19 defined by the blade shaft 35.
  • the eccentric arrangement of the cutting blade 17 with respect to the axis of rotation 11 of the rotor shaft 13 results in an imbalance UM of the rotor 15.
  • this imbalance UM is compensated by a counterweight comprising two balancing masses 47, 49.
  • a first balance mass 47 is formed by the rotor 15.
  • the first balancing mass 47 generates an unbalance Ul, which is the unbalance force UM is at least approximately opposite in the radial direction.
  • the second balancing mass 49 is formed by the drive pulley 51 and is at least approximately effective in the same radial direction as the imbalance UM (see also Fig. 5).
  • the lengths and directions of the vector UM, U1 and U2 in FIGS. 1 and 5 are illustrative only and are not intended to represent specific absolute or relative values. Due to this geometric arrangement of the balancing masses, the rotating overall system is statically and dynamically balanced in all planes.
  • the slicing device according to the invention has a simple, compact and extremely hygienic design.
  • the housing wall 31 separates the drive area from the cutting area.
  • a seal 55 seals the axial and pivot bearing 21 from the environment.
  • the axial "nesting" of lying outside the housing wall 31 components provides an extremely compact structure with low axial length: With its rear, located on the housing wall 31 area, the hub 23 is located within the ring gear 27, in which the cutter shaft 35 with the gear 29 engages axially. The hub 23 itself and the rotor 15 also engage axially with each other.
  • the pivot bearing 25 for the cutting blade 17 is located axially in the amount of the front portion of the hub 23 and in the amount of the axial and pivot bearing 21st
  • the rotor shaft 13 together with the rotor 15 and cutting blade 17 and cutter shaft 35 and gear 29 is adjusted in the axial direction.
  • the rotary drive for the cutting blade 17 formed by the fixed ring gear 27 and the gear 29 of the blade shaft 35 allows such axial adjustment movement while maintaining the rotary drive by cooperation of the ring gear 27 and gear 29.
  • this embodiment of the rotary drive allows the rotor 15 together with the cutting blade 17 and blade shaft 35 to be removed simply by loosening the screw connection between the rotor 15 and the front end of the rotor shaft 13, i. can be deducted in the axial direction, can.
  • Cutting blade 17 caused imbalance UM of the rotor 15 are matched to each other and on the integrated into the rotary drive 33 unbalance U2 of the balancing mass 49.
  • the blade holder (not shown) carrying the sickle blade is likewise provided with a balancing mass which is tuned to the respective imbalance of the sickle blade such that, in cooperation with the unbalance integrated in the rotary drive 33 U2 the balancing mass 49 is again given in all levels and statically and dynamically balanced rotating overall system.
  • the imbalance U 1 of the rotor 15 is located substantially closer to the cutting plane 61 defined by the cutting blade 17 than the imbalance U 2 of the rotary drive 33.
  • the imbalance U L of the rotor 15 also lies relatively far radially outward. This geometric arrangement of the balancing masses 47, 49 thus makes it possible to use relatively small balancing masses.
  • Fig. 2 shows the slicing device according to the invention without the housing wall 31 and without cutting blade 17. It is again the particular compactness of both radially and axially around the fixed hub 23 around grouping components to recognize.
  • FIG. 3 The side view of Fig. 3, in turn, the housing wall 31 is not shown, in particular shows the advantageous under hygienic aspects open design of the located in the cutting area components.
  • the rotary bearing for the knife shaft 35 protruding into the sprocket 27 in the rear is provided with a housing 63.
  • FIGS. 5 and 7 show the relatively small dimensions having rotary bearing for the cutting blade 17, of which in turn the housing 63 is shown here, which has relatively large dimensions.
  • Fig. 5 shows in particular the heavy top-heavy configuration of the rotor 17 with a relatively heavy portion formed by the first balance mass 47, which is connected via a comparatively light central portion with a diametrically opposite portion, on which the rotary bearing for the blade shaft of the cutting blade 17 is mounted, wherein of the pivot bearing in turn the housing 63 is shown.
  • FIGS. 6 and 7 show front views with (FIG. 6) and without (FIG. 7) cutting blade 17.
  • FIG. 7 shows, in particular, the anchor-like shape of the rotor 15.
  • the internal toothing of the stationary ring gear 27 is shown.
  • FIGS. 8 and 9 each show a further embodiment of a slicing device according to the invention, in which a fixed axis 39 (FIG. 8) or a rotationally driven drive shaft 40 (FIG. 9) is provided for the rotary drive of the circular blade 17.
  • the rotor shaft 13 for the rotor 15 is formed as a hollow shaft which carries at a rear portion a drive pulley 51 which is displaceable via a drive belt 53 by means of a motor, not shown in rotation about the axis of rotation 1 1.
  • the axle 39 or shaft 40 extends through the hollow shaft 13 and into the rotor 15.
  • the axle 39 carries a toothed belt wheel 41, which is also fixed with respect to rotation and on which, when the rotor 15 rotates, a toothed belt 43 rolls, which cooperates with a toothing 45 which is formed on the blade shaft 35 carrying the circular blade 17.
  • the planetary orbital motion of the blade shaft 35 due to the rotational movement of the rotor 15 relative to the fixed toothed belt wheel 41 is thus used to set the blade shaft 35 and thus the circular blade 17 in rotation about the blade axis 19 relative to the rotor 15.
  • the rotor 15 is formed in two parts. This also applies to the embodiment of FIG. 9.
  • the hub 23, including the combined axial and rotary bearing 21 for the rotor shaft 13 designed as a hollow shaft, is located within a housing, ie is not open to the outside.
  • the hub 23 is fixed to a wall 31 of the housing.
  • the rotor shaft 13 is provided with a Anlenkabêt 65 for a turn again only indicated axial drive 71, which serves to axially adjust the rotor shaft 13 together with the rotor 15 and circular blade 17. This is again indicated by double arrows.
  • the fixed axis 39 is not axially adjustable as a whole, but telescopically formed, so that the toothed belt 41 bearing front portion of the shaft 39 can be adjusted axially together with the rotor shaft 13, in particular to carry out idle cuts or make a cutting gap setting.
  • the hub 23 is formed by a fixed housing wall 31, wherein alternatively the hub 23 may be formed as a separate component which is fixed to the housing wall 31.
  • the drive shaft 40 extending through the rotor shaft 13 designed as a hollow shaft is provided with a toothed belt wheel 67 at its rear end and can be set in rotation by means of a toothed belt 69 by a separate drive motor, not shown, independently of the rotary drive 33 for the rotor shaft 13.
  • the transmission of the rotational movement of the drive shaft 40 to the blade shaft 35 takes place within the rotor 15 via a toothed belt 43 which cooperates with a toothing 45 of the cutter shaft 35 and with a toothed belt wheel 41 of the drive shaft 40.
  • a common drive motor be provided with intermediate gear, whereby the belts 53 and 69 are driven.
  • a common axial adjustment of the rotor shaft 13 and the drive shaft 40 is effected by an axial drive 71, again not shown, which acts on an articulation section 65 of the rotor shaft 13.
  • the balancing concept explained above in the introductory part and in connection with the embodiment of FIGS. 1 to 7 is also realized in the embodiments according to FIGS. 8 and 9:
  • the rotor 15 is in each case provided with a first balancing mass 47, while a second balancing mass 49 each integrated into the drive pulley 51 of the rotary drive 33 for the here designed as a hollow shaft rotor shaft 13.
  • the belt drives for the rotor shafts 15 and for the drive shaft 40 of the axial adjustment does not oppose, since in this case only relatively short axial travel are required and consequently the drive belt 53, 69 can be deflected accordingly.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Forests & Forestry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Food-Manufacturing Devices (AREA)
  • Crushing And Pulverization Processes (AREA)
  • Nozzles For Electric Vacuum Cleaners (AREA)

Abstract

Die Erfindung betrifft eine Vorrichtung zum Aufschneiden von Lebensmittelprodukten, insbesondere Hochleistungs-Slicer, mit einer im Betrieb um eine Drehachse rotierenden und, insbesondere zur Durchführung von Leerschnitten und/oder zur Schneidspalteinstellung, axial verstellbaren Rotorwelle, einem von der Rotorwelle angetriebenen Rotor, einem vom Rotor getragenen Schneidmesser, insbesondere Kreismesser, das um die Drehachse planetarisch umläuft und zusätzlich relativ zum Rotor um eine parallel versetzt zur Drehachse verlaufende Messerachse rotiert, und einem Rotationsantrieb für die Rotorwelle.

Description

VORRICHTUNG ZUM AUFSCHNEIDEN VON
LEBENSMITTELPRODUKTEN Die Erfindung betrifft eine Vorrichtung zum Aufschneiden von Lebensmittelprodukten, insbesondere Hochleistungs-Slicer. Des Weiteren betrifft die Erfindung ein System mit einer derartigen Aufschneidevorrichtung und mit wenigstens zwei unterschiedlich ausgebildeten Schneidmesserträgern, die jeweils lösbar an einer Rotorwelle anbringbar sind.
Derartige Aufschneidevorrichtungen sind grundsätzlich bekannt und dienen dazu, Lebensmittelprodukte wie beispielsweise Wurst, Fleisch und Käse mit hoher Geschwindigkeit in Scheiben zu schneiden. Typische Schnittgeschwindigkeiten liegen zwischen mehreren 100 bis einigen 1.000 Schnitten pro Minute.
Moderne Hochleistungs-Slicer unterscheiden sich unter anderem in der Ausgestaltung des Schneidmessers sowie in der Art und Weise des Rotationsantriebs für das Schneidmesser. So genannte Sichel- oder Spiralmes- ser rotieren lediglich um eine Messerachse, wobei diese Messerachse selbst keine zusätzliche Bewegung ausführt. Bei Slicern mit Kreis- oder Orbitalmessern ist dagegen vorgesehen, das um eine Messerachse rotierende Kreismesser zusätzlich zu dieser Eigenrotation um eine von der Messerachse beabstandete weitere Achse - hier als Drehachse bezeichnet - planetarisch umlaufen zu lassen. Welchem Messertyp bzw. welcher Antriebsart der Vorzug zu geben ist, ist von der jeweiligen Anwendung abhängig. Generell lässt sich sagen, dass mit lediglich rotierenden Sichelmessern höhere Schnittgeschwindigkeiten erzielt werden können, wohingegen rotierende und zusätzlich planetarisch umlaufende Kreismesser ohne Einbußen bei der Schneidqualität universeller einsetzbar sind. Die Erfindung betrifft Aufschneidevorrichtungen mit einem planetarisch umlaufenden Kreismesser. Typische Schnittgeschwindigkeiten liegen hier im Bereich von etwa 350 bis 800 Umdrehungen pro Minute, d.h. mit einem solchen Slicer können etwa 350 bis 800 Scheiben pro Minute von einem Produkt abgetrennt werden.
Etwa ab derartigen Schnittgeschwindigkeiten wird es erforderlich, dass bei einem portionsweisen Aufschneiden von Produkten so genannte Leerschnitte durchgeführt werden, in denen sich das Messer weiterhin bewegt, d.h. seine Schneidbewegung ausführt, dabei jedoch nicht in das Produkt, sondern ins "Leere" schneidet, damit vorübergehend keine Scheiben vom Produkt abgetrennt werden und diese "Schneidpausen" dazu genutzt werden können, eine mit den zuvor abgetrennten Scheiben gebildete Portion, beispielsweise einen Scheibenstapel oder geschindelt angeordnete Schei- ben, abzutransportieren. Die zwischen zwei aufeinanderfolgend abgetrennten Scheiben verstreichende Zeit reicht ab einer bestimmten Schneidleistung bzw. Schnittgeschwindigkeit für einen ordnungsgemäßen Abtransport der Scheibenportionen nicht mehr aus. Die Länge dieser "Schneidpausen" und die Anzahl der Leerschnitte pro "Schneidpause" sind von der jeweiligen Anwendung abhängig.
Wie bereits erwähnt, wird in der Praxis ein solcher Leerschnittbetrieb ab einer gewissen Grenzschnittgeschwindigkeit oder Grenzdrehzahl des Messers erforderlich, die typischerweise zwischen etwa 350 und 600 Umläufen pro Minute beträgt. Dies ist der Grund dafür, dass moderne Sichelmesser- Slicer, mit denen weitaus höhere Schnittgeschwindigkeiten erzielt werden können, generell mit einem Axialantrieb versehen sind, mit dem das Messer ausreichend schnell vom Produkt wegbewegt werden kann, um Leerschnitte auszuführen. Man spricht in diesem Zusammenhang auch von einem "Wegtakten" des Messers bzw. der das Messer tragenden Messeraufnahme, und derartige Slicer werden auch als "taktbare" Slicer bezeichnet. Obwohl moderne Kreismesser-Slicer - wie erwähnt - meist in einem Drehzahlbereich arbeiten, in welchem ein Wegtakten des Messers zur Durchführung von Leerschnitten zumindest für die meisten Anwendungen nicht zwingend erforderlich ist, wurden derartige taktbare Kreismesser-Slicer bereits vorgeschlagen. Eine Möglichkeit, einen solchen taktbaren Kreismesser-Slicer zu realisieren, ist in WO 2008/034513 AI beschrieben. Der das Kreismesser beinhaltende Schneidkopf weist einen relativ komplexen Aufbau auf und ist als Ganzes axial verstellbar. Der Schneidkopf weist eine drehfeste Achse auf, wobei um diese drehfeste Achse eine von einem Rotationsantrieb drehangetriebene Nabe, die gleichzeitig die Messeraufnahme darstellt, gedreht werden kann.
Dieser bekannte Kreismesser-Slicer offenbart ein generelles Grundproblem, welches einer taktbaren Ausgestaltung eines Kreismesser-Slicers prinzipiell entgegensteht, nämlich das Erfordernis, das Kreismesser nicht nur planetarisch umlaufen zu lassen, sondern außerdem mit einer Eigenrotation zu versehen. Das Kreismesser muss folglich nicht nur planetarisch umlaufend angetrieben, sondern außerdem in Rotation um die eigene Messerachse versetzt werden. Hieraus resultiert eine ohnehin schon komplexe Antriebstechnik, die einen ungleich höheren konstruktiven Aufwand erfordert, wenn zusätzlich das Kreismesser schnell und präzise axial verstellt werden soll, um Leerschnitte durchführen zu können.
Die Anforderungen an eine axiale Verstellbarkeit bei Kreismesser-Slicern werden darüber hinaus noch weiter dadurch erhöht, dass Kreismesser - anders als Sichelmesser - auf einem anderen Schneidprinzip basieren: Während bei Sichelmessern die für das Schneiden erforderliche Relativbewegung zwischen Messerschneide und Produkt durch die Sichel- oder Spiralform des lediglich um die Messerachse rotierenden Messers erzeugt wird, ist es bei Kreismessern die planetarische Umlaufbewegung, welche die erforderliche Schneidebewegung erzeugt. Dies hat zur Folge, dass bei Kreismessern im Vergleich zu Sichelmessern pro Umlauf mehr Zeit zur Verfügung steht, in welcher sich das Messer außerhalb des Produktberei- ches befindet und somit axial verstellt werden kann. Bei Kreismessern beträgt der entsprechende Drehwinkelbereich, der auch als Freiwinkel bezeichnet wird, oft mehr als 180°, wohingegen bei Sichelmessern, die zudem mit einer höheren Drehzahl betrieben werden, nur ein Freiwinkel von typischerweise knapp 100° zu Verfügung steht.
Kreismesser-Slicer sind folglich, was eine Axialverstellung angeht, im Prinzip insgesamt deutlich weniger zeitkritisch. Gleichwohl ist bislang kaum versucht worden, für die Praxis taugliche Konzepte für taktbare Kreismesser-Slicer zu entwickeln.
Ergänzend sei auf DE 100 30 691 AI und WO 2005/009695 AI verwiesen, die Konzepte für Kreismesser-Slicer zeigen, bei denen eine Axialverstellung des Kreismessers nicht vorgesehen sind und die somit nicht zur Gattung der mit der vorliegenden Offenbarung beschriebenen Aufschneidevorrichtungen gehören.
Aufgabe der Erfindung ist es, eine Aufschneidevorrichtung zu schaffen, die auf dem Prinzip eines planetarisch umlaufenden Kreismessers beruht und zu einem Leerschnittbetrieb in der Lage ist, wobei außerdem ein einfacher, kompakter und hygienischer Aufbau sowie insbesondere die volle Funktionalität moderner Hochleistungs-Slicer gegeben sein soll.
Die Lösung dieser Aufgabe erfolgt durch die Merkmale des Anspruchs 1.
Erfindungsgemäß umfasst die Aufschneidevorrichtung eine im Betrieb um eine Drehachse rotierende und axial verstellbare Rotorwelle, einen von der Rotorwelle angetriebenen Rotor, ein vom Rotor getragenes Schneidmesser, das um die Drehachse planetarisch umläuft und zusätzlich relativ zum Rotor um eine parallel versetzt zur Drehachse verlaufende Messerachse rotiert, und einen Rotationsantrieb für die Rotorwelle. Die Erfindung basiert auf dem Gedanken, in Abkehr von dem vorstehend erläuterten Konzept gemäß WO 2008/034513 AI nicht den gesamten Schneidkopf in axialer Richtung zu verstellen, sondern eine das Schneidmesser über einen Rotor tragende Rotorwelle axial zu verstellen, d.h. eine axial verstellbare Rotorwelle vorzusehen.
Dieses Konzept ermöglicht - vor allem bei bestimmten konkreten Ausgestaltungen, wie sie nachstehend näher erläutert werden - in überraschender Weise einen einfachen, geradezu minimalistischen Aufbau eines takt- baren Kreismesser-Slicers, der zudem kompakt ist, höchsten Anforderungen an die Hygiene entspricht und darüber hinaus - trotz Weglassens von an anderen Hochleistungs-Slicern mit vergleichbarer Leistungsfähigkeit vorhandenen Komponenten - gleichwohl ein sehr hohes Maß an Funktionalität erfüllt. Das erfindungsgemäße Konzept ermöglicht auch und gera- de eine Konzentration auf eine optimale Axialverstellung des Messers, wodurch wichtige Funktionen wie z.B. die Schneidspalteinstellung mit übernommen werden können, so dass z.B. keine axial verstellbare Schneidkante benötigt wird. Auch ein Zurückziehen des Produktes ist nicht erforderlich, da für einen Leerschnittbetrieb das Messer axial verstellt werden kann. Schließlich können aus diesem Grund auch aufwendige Traktoren bzw. Förderbänder für das Produkt weggelassen werden.
Mit anderen Worten ist eine Besonderheit der Erfindung, dass ein Kreis- messer-Slicer, der aufgrund der Schnittgeschwindigkeit eigentlich keine Messeraxialverstellung benötigt, gleichwohl hinsichtlich einer Messeraxialverstellung optimiert wird, da erkannt wurde, dass bei geschicktem Grundaufbau auch ein Kreismesser-Slicer mit einer schnell und zuverlässig funktionierenden Axialverstellung für das Messer versehen werden und diese Axialverstellung zudem wesentliche Funktionen mit übernehmen kann, wodurch wiederum ansonsten notwendige Komponenten weggelassen werden können, was - und so schließt sich der Kreis - die Optimierung der Axialverstellung zumindest erleichtert. Mögliche Ausgestaltungen der erfindungsgemäßen Aufschneidevorrichtung sind in den abhängigen Ansprüchen, der Beschreibung sowie der Zeichnung angegeben. In einem Ausführungsbeispiel ist ein kombiniertes Axial- und Drehlager für die Rotorwelle vorgesehen, relativ zu welchem die Rotorwelle drehbar ist und axial verstellt werden kann. Dabei kann insbesondere das Axial - und Drehlager eine feststehende Nabe umfassen oder einer feststehenden Nabe zugeordnet sein. Die Nabe kann folglich einen Bestandteil des Axial - und Drehlagers bilden oder als ein mit dem Axial- und Drehlager zusammenwirkendes Bauteil angesehen werden. Ein derartiges kombiniertes Lager für die Drehbewegung der Rotorwelle einerseits und die Axialbewegung der Rotorwelle andererseits ermöglicht einen einfachen und kompakten Aufbau.
Wenn eine feststehende Nabe für das Axial- und Drehlager vorgesehen ist, dann kann diese Nabe für eine Mehrzahl von Funktionen genutzt werden. Mittels der Nabe kann die Rotorwelle an einem feststehenden Gestell- oder Rahmenteil, beispielsweise einer Gehäusewand, der Vorrichtung abge- stützt werden. Alternativ oder zusätzlich kann die Nabe als Stütze für wie- tere Komponenten dienen, beispielsweise für Komponenten, die mit einem Drehantrieb für die Eigenrotation des Schneidmessers zusammenwirken oder einen stationären Teil eines solchen Drehantriebs bilden. Eine besonders kompakte, insbesondere in axialer Richtung vergleichsweise kurz bauende Anordnung kann erzielt werden, wenn gemäß einem weiteren Ausführungsbeispiel ein vorderer Bereich einer Nabe für die Rotorwelle und zumindest ein ein Drehlager für das Schneidmesser umfassender Bereich des Rotors axial ineinander greifen, und wenn außerdem ein am hinteren Bereich der Nabe angeordneter stationärer Teil eines
Drehantriebs für das Schneidmesser und ein rotorseitiger Teil des Drehantriebs axial ineinander greifen. Hierbei wird der Umstand ausgenutzt, dass die die Drehachse für den Rotor bereitstellende Rotorwelle und der die Messerachse für die Eigenrotation des Messers definierende Drehantrieb radial beabstandet sind. Diese Anordnung ermöglicht folglich das jeweilige axiale Ineinandergreifen der Bauteile und sorgt insgesamt für einen gewissermaßen "verschachtelten" Aufbau bzw. eine hohe Packungsdichte der betreffenden Komponenten. Der zur Verfügung stehende Bauraum insbesondere in axialer Richtung wird hierdurch optimal genutzt. Die relativ kurze Baulänge einer derartigen Konstruktion verringert außerdem die erforderlichen Stützkräfte, die insbesondere von der Nabe aufgenommen werden müssen.
Wie bereits erwähnt, kann eine für die Rotorwelle vorgesehene Nabe, die für die Axial- und Drehlagerung der Rotorwelle sorgt, von einem feststehenden Gestell- oder Rahmenteil der Vorrichtung getragen sein.
Insbesondere unter hygienischen Gesichtspunkten besonders vorteilhaft ist eine bevorzugte Anordnung, wonach eine Nabe für die Rotorwelle nach außen offen liegt und ein kombiniertes Axial- und Drehlager für die Rotorwelle zwischen der Nabe und der Rotorwelle gegenüber der Umgebung ab- gedichtet ist.
Die Rotorwelle ist insbesondere durch ein feststehendes Gestell- oder Rahmenteil hindurchgeführt, auf dessen einer Seite der Rotationsantrieb und auf dessen anderer Seite der Rotor angeordnet ist. Hierdurch wird mittels des insbesondere als Gehäuse oder Gehäusewand ausgebildeten Gestelloder Rahmenteils der Antriebsbereich der Rotorwelle vom Schneidebereich getrennt, was insbesondere unter hygienischen Gesichtspunkten vorteilhaft ist. In einem besonders vorteilhaften Ausführungsbeispiel der Erfindung ist ein für die Eigenrotation des Schneidmessers sorgender Drehantrieb von der Rotorwelle entkoppelt. Hierdurch ist es nicht erforderlich, den Drehantrieb für das Messer unmittelbar durch die Rotorwelle zu bewirken. Des- halb ist es möglich, konstruktiv aufwendige Riemen- oder Zahnradanordnungen zu vermeiden, die anderenfalls vorgesehen sein müssten, um den Drehantrieb für die Eigenrotation des Messers unmittelbar durch die Rotorwelle bereitzustellen.
Besonders bevorzugt ist es, wenn der Drehantrieb für das Schneidmesser von der Drehbewegung des Rotors abgeleitet wird.
Die ohnehin erfolgende Umlaufbewegung des Rotors kann so dazu benutzt werden, das aufgrund der Drehbewegung des Rotors planetarisch umlaufende Messer zusätzlich relativ zum Rotor in eine Eigenrotation zu versetzen. Mit anderen Worten kann die aufgrund des planetarischen Umlaufs des Kreismessers gegebene Relativbewegung des Messers, insbesondere einer mit dem Messer lösbar verbundenen Messerwelle, ausgenutzt wer- den, um dem Messer bzw. der Messerwelle eine Eigenrotation zu verleihen.
In einem Ausführungsbeispiel kann der Drehantrieb für das Schneidmesser einen stationären Teil und einen rotorseitigen Teil umfassen, wobei der stationäre Teil und der rotorseitige Teil bei an der Rotorwelle angebrachtem Rotor zusammenwirken. Die aufgrund des planetarischen Umlaufs gegebene Relativbewegung des rotorseitigen Teils des Drehantriebs bezüglich des stationären Teils kann hierdurch in eine Drehbewegung des rotorseitigen Teils und somit des Messers bzw. der Messerwelle umgesetzt werden.
Das Zusammenwirken zwischen dem stationären Teil und dem rotorseitigen Teil ist insbesondere derart ausgestaltet, dass Relativbewegungen in axialer Richtung zwischen den beiden Teilen zugelassen sind. Hierdurch ist es möglich, insbesondere für die Durchführung von Leerschnitten und/ oder zur Schneidspalteinstellung und/ oder zur Montage oder Demontage des Rotors, die Rotorwelle samt Messer und rotorseitigem Teil des Drehantriebs axial zu verstellen, ohne dass der Drehantrieb dem entgegenstehen würde.
Hierbei ist insbesondere vorgesehen, dass die Rotorwelle relativ zu dem stationären Teil des Drehantriebs für das Schneidmesser axial verstellbar ist.
Der stationäre Teil des Drehantriebs für das Schneidmesser kann von einem kombinierten Axial- und Drehlager und/ oder von einer Nabe für die Rotorwelle getragen sein. Auf diese Weise kann die Nabe zur Eigenrotation des Schneidmessers beitragen.
Ein rotorseitiger Teil des Drehantriebs, der zusammen mit dem Rotor die Drehbewegung ausführt, kann von einer Messerwelle des Schneidmessers gebildet sein, so dass es die Messerwelle ist, die mit dem stationären Teil des Drehantriebs zusammenwirkt.
Der stationäre Teil des Drehantriebs kann einen Ring umfassen, an welchem die Messerwelle abrollt. Dabei ist insbesondere vorgesehen, dass der Ring als Zahnkranz ausgebildet ist, der mit einem Zahnrad der Messerwelle zusammenwirkt.
Dieses Konzept zur Realisierung des Drehantriebs für die Eigenrotation des Messers ist konstruktiv einfach und zuverlässig, wobei außerdem der zur Verfügung stehende Bauraum optimal ausgenutzt wird, ohne dass eine komplizierte Mechanik zur Übertragung der Rotationsbewegung der Rotorwelle in radialer Richtung nach außen auf die Messerwelle erforderlich wäre. Komplexe Riemen- oder Zahnradanordnungen werden hierdurch vermieden.
In einer alternativen Ausgestaltung des Drehantriebs für die Eigenrotation des Drehmessers ist gemäß einem weiteren Ausführungsbeispiel der Erfindung eine koaxial zur Rotorwelle angeordnete Antriebswelle oder An- triebsachse vorgesehen, mit der eine Messerwelle des Schneidmessers antreibbar ist, beispielsweise über eine Riemen- und/oder Zahnradanordnung. Dabei ist es möglich, aber nicht zwingend, dass für die Antriebswelle ein separater Drehantrieb vorgesehen wird. Bei der Achse kann es sich um eine feststehende, d.h. nicht rotierende, Antriebsachse handeln, relativ zu welcher sich der Rotor dreht, wobei diese Relativbewegung in die Eigenrotation des Messers bzw. der Messerwelle umgesetzt wird.
Die Antriebswelle oder die Antriebsachse kann teleskopierbar ausgebildet sein, um auf diese Weise eine Axialverstellung insbesondere zur Durchführung von Leerschnitten und/ oder zur Schneidspalteinstellung zu ermöglichen. Alternativ kann die Antriebswelle bzw. die Antriebsachse als Ganzes axial verstellbar sein. Bei einer besonders vorteilhaften Ausgestaltung ist die Rotorwelle als eine Hohlwelle ausgebildet, durch welche sich die Antriebswelle oder die Antriebsachse hindurch erstreckt.
Das Zusammenwirken zwischen der Antriebswelle oder Antriebsachse für die Eigenrotation des Schneidmessers mit der Messerwelle kann in einem weiteren Ausführungsbeispiel innerhalb des Rotors erfolgen, wobei sich die Antriebswelle oder Antriebsachse in den Rotor hinein erstreckt.
Insbesondere für die Durchführung von Leerschnitten und/ oder zur Schneidspalteinstellung ist bevorzugt vorgesehen, dass sowohl die Rotorwelle als auch die Antriebswelle oder Antriebsachse zumindest teilweise axial verstellbar sind. Insbesondere sind die Rotorwelle und die Antriebswelle oder Antriebsachse gleichzeitig oder gemeinsam axial verstellbar. Bei einer Aufschneidevorrichtung mit planetarisch umlaufendem Schneidmesser ist das Schneidmesser gegenüber der den Rotor in Drehung versetzenden Rotorwelle und somit gegenüber der Drehachse des Rotors radial nach außen versetzt, d.h. das Schneidmesser ist exzentrisch angeord- net. Hierdurch weist der Rotor eine durch das Schneidmesser bedingte Unwucht auf. Um insbesondere bei den hohen Drehzahlen im Schneidebetrieb einen vibrationsfreien Lauf des Rotors bzw. des Messers zu gewährleisten, muss die Aufschneidevorrichtung in allen Ebenen ausgewuchtet sein.
Die erfindungsgemäße Aufschneidevorrichtung, insbesondere bei einer Ausgestaltung, wie sie vorstehend anhand möglicher Ausführungsformen erläutert wurde, ermöglicht ein besonders einfaches und wirkungsvolles Wuchtkonzept, das den erwähnten Anforderungen genügt. Im Unterschied zu bekannten Wuchtkonzepten kommt die Erfindung insbesondere ohne komplexe Konstruktionen und ohne teure Materialien wie z.B. Wolfram für die Wuchtmassen aus. Unter dem Begriff "Unwucht" ist im Folgenden auch allgemein je nach Zusammenhang eine Unwuchtmasse, eine Unwuchtlage und/ oder eine bei der Rotation aufgrund der Unwuchtmasse wirksame Kraft hinsichtlich Betrag und Richtung zu verstehen. Axiale Abstände, also längs der Drehachse bzw. der Messerachse gemessene Abstände, relativ zu einem Schneidmesser beziehen sich hier, sofern nichts anderes angegeben ist, auf eine durch das Messer bzw. die Messerschneide definierte Schneidebene, während sich die axiale Lage einer Wuchtmasse bzw. Unwucht auf eine Ebene bezieht, die senkrecht zur Drehachse bzw. Messerachse verläuft und in welcher der Massenschwerpunkt der Wuchtmasse bzw. Unwucht liegt. Generell beziehen sich hier Angaben zur Lage oder Wirkungsrichtung einer Wuchtmasse, sofern nichts anderes angegeben ist, auch auf die durch die Wuchtmasse bzw. durch die Komponente oder Baugruppe, in welche die betreffende Wucht- masse integriert ist, erzeugte Unwucht.
Wenn eine Integration einer Wuchtmasse in eine Komponente oder Baugruppe der Vorrichtung im Sinne eines gezielten Hinzufügens einer zu- sätzlichen Masse verstanden wird, dann ist für den Fachmann klar, dass dies gleichbedeutend ist mit einer gezielten Wegnahme von Material von einer Komponente oder Baugruppe, mathematisch gesprochen also mit einem gezielten Hinzufügen einer "negativen Wuchtmasse", allgemein also mit der gezielten Erzeugung einer Unwucht an oder in der betreffenden Komponente bzw. Baugruppe.
Gemäß einem Ausführungsbeispiel der Erfindung sind zum Ausgleichen einer durch das Schneidmesser hervorgerufenen Unwucht des Rotors we- nigstens zwei Wuchtmassen vorgesehen, wobei alle Wuchtmassen auf der der Demontageseite des Schneidmessers gegenüberliegenden Seite des Schneidmessers angeordnet und vorzugsweise axial voneinander beabstandet sind. Dies bedeutet eine Abkehr von solchen bekannten Wuchtkonzepten, bei denen das Gegengewicht zum Ausgleichen der Unwucht auf beide Messerseiten aufgeteilt, also zumindest eine Wuchtmasse vor und wenigstens eine weitere Wuchtmasse hinter dem Messer angeordnet ist. Zudem ermöglicht es dieses Konzept, ohne komplexe Konstruktionen und ohne teure Materialien für die Wuchtmassen auszukommen.
In einem vorteilhaften Ausführungsbeispiel der Erfindung bildet der Rotor eine Wuchtmasse und weist der Rotor bezüglich der Drehachse eine asymmetrische Rotationsgeometrie auf.
Hierbei ist es der Rotor selbst, der eine zum Auswuchten des Messers dienende Wuchtmasse bildet, d.h. der Rotor selbst gleicht seine durch das exzentrisch angeordnete Messer bedingte Unwucht zumindest teilweise aus. Hierdurch wird es ermöglicht, die benötigte Wuchtmasse einerseits axial nahe am Messer und andererseits radial relativ weit außen zu positionieren. Hierdurch wird insgesamt ein besonders effizientes Wuchtkonzept realisierbar. Durch die asymmetrische Ausbildung des Rotors kann bei relativ geringem Gesamtgewicht des Rotors eine ausreichend große Unwucht erzeugt werden.
Insbesondere zugunsten einer möglichst weit radial außen liegenden Wuchtmasse kann der Rotor von einer kreisförmigen Außenkontur extrem abweichen und gewissermaßen stark kopflastig - bezogen auf die radiale Richtung - ausgebildet werden, d.h. mit einer relativ großen Unwucht bzw. Unwuchtmasse behaftet sein, beispielsweise - bildlich gesprochen - wie ein rotierender Hammer.
Indem der Rotor selbst eine Wuchtmasse bildet, gestaltet sich die Konstruktion besonders einfach. Die Wuchtmasse befindet sich außerdem auf diese Weise axial besonders nahe an der Schneidebene. Eine weitere, separate Wuchtmasse in axialer Nähe des Schneidmessers ist somit nicht notwendig.
Bei einem Austausch eines Messers durch ein Messer mit einem anderen Gewicht, womit folglich eine andere Unwucht hervorgerufen wird, braucht lediglich der Rotor ausgetauscht zu werden. Die Aufschneidevorrichtung ist somit besonders einfach an verschiedene Anwendungen anpassbar. Auf einfache Weise können dadurch Messer mit unterschiedlichem Gewicht eingesetzt werden.
Dadurch, dass lediglich der Rotor ausgetauscht werden muss, können die weiteren Komponenten der Aufschneidevorrichtung beibehalten werden. Insbesondere kann eine zusätzlich vorgesehene weitere Wuchtmasse in derselben Position verbleiben.
Gemäß einem Ausführungsbeispiel der Erfindung kann eine weitere Wuchtmasse von dem Rotationsantrieb gebildet werden, insbesondere von einer Antriebsscheibe oder von einer Nabe, die mittels eines Antriebsmotors über einen Antriebsriemen in Rotation versetzbar ist. Hierdurch erfüllt der Rotationsantrieb eine weitere Funktion, indem nicht nur die Ro- torwelle in Rotation versetzt wird, sondern außerdem ein Teil der Unwucht des Rotors ausgeglichen wird.
Folglich bildet der Rotationsantrieb aufgrund der Wuchtmasse bzw. der Unwucht zusammen mit dem Rotor samt Kreismesser ein Massensystem, das derart hinsichtlich Dimensionierung und Anordnung ausgelegt werden kann, dass sich der Gesamtschwerpunkt des rotierenden Systems auf derjenigen Seite des Schneidmessers befindet, auf der auch der Rotationsantrieb gelegen ist. Mit anderen Worten wird dieser Schwerpunkt durch die Unwucht im Rotationsantrieb auf dessen Seite "gezogen". Folglich ist es möglich, die weitere Wuchtmasse ebenfalls auf dieser Seite des
Schneidmessers anzuordnen, so dass sich alle Wuchtmassen nur auf einer Seite des Schneidmessers befinden. Bezogen auf die axiale Länge der Gesamtanordnung - gemessen zwischen Schneidebene und Ebene des Rotationsantriebs - kann die Wuchtmasse des Rotationsantriebs in relativ großer axialer Entfernung von der
Schneidebene angeordnet werden. Hieraus resultiert gewissermaßen eine relativ große Hebelwirkung dieser Wuchtmasse, die damit selbst nur ein vergleichsweise geringes Gewicht aufzuweisen braucht, was wiederum in der Praxis ihre Integration in den Rotationsantrieb erleichtert oder überhaupt erst ermöglicht.
Folglich kann die von dem Rotationsantrieb gebildete Wuchtmasse in Kombination mit der vom Rotor gebildeten und somit axial extrem nahe an der Schneidebene befindlichen Wuchtmasse eine optimale Auswuchtung des rotierenden Gesamtsystems in allen Ebenen und sowohl statisch als auch dynamisch bewirken, und dies bei einem äußerst kompakten Aufbau der Gesamtanordnung.
Ein weiterer Vorteil ist, dass durch Modifizieren des Rotationsantriebs, beispielsweise durch einen Austausch der Antriebsscheibe oder der Nabe, ein Messer mit einem anderen Gewicht und somit ein eine andere Un- wucht hervorrufendes Messer ausgewuchtet werden kann. Der zusätzlich zum Rotationsantrieb als Wuchtmasse dienende Rotor selbst muss dabei nicht zwingend ausgetauscht werden, wobei es aber möglich ist, bei einem Messerwechsel sowohl den Rotor als auch die Antriebsscheibe bzw. die Nabe zu wechseln, letzteres insbesondere dann, wenn es nicht möglich oder nicht gewünscht ist, die mit einem Messerwechsel verbundene Änderung der auszugleichenden Unwucht ausschließlich durch Austauschen des Rotors zu kompensieren. Wenn die erste Wuchtmasse von dem Rotor gebildet wird und die zweite Wuchtmasse in den Rotationsantrieb integriert ist, dann ist insbesondere vorgesehen, dass die beiden Wuchtmassen auf unterschiedlichen Seiten eines feststehenden Gestell- oder Rahmenteils angeordnet sind. Die Anordnung der beiden Wuchtmassen erfolgt insbesondere derart, dass die erste Wuchtmasse und die Unwucht des Rotors zumindest näherungsweise in entgegengesetzte radiale Richtungen wirksam sind, während die zweite Wuchtmasse zumindest näherungsweise in die gleiche radiale Richtung wirksam ist wie die Unwucht des Rotors. Dabei ist insbesondere vor- gesehen, dass die erste Wuchtmasse in axialer Richtung näher am
Schneidmesser angeordnet ist als die zweite Wuchtmasse.
Insbesondere bei der "verschachtelten" Anordnung der Komponenten, wie sie vorstehend erläutert wurde, kann vorgesehen sein, dass die erste Wuchtmasse in axialer Richtung zumindest näherungsweise in Höhe eines kombinierten Axial- und Drehlagers für die Rotorwelle und/ oder eines in den Rotor integrierten Drehlagers für das Schneidmesser angeordnet ist.
Durch die erfindungsgemäß mögliche geometrische Anordnung der
Wuchtmassen kann folglich ein in allen Ebenen und sowohl statisch als auch dynamisch ausgewuchtetes System auch bei einem vergleichsweise kompakt und relativ einfach aufgebautem Slicer realisiert werden. Die Lösung der der Erfindung zugrunde liegenden Aufgabe erfolgt außerdem durch das eingangs erwähnte System, das eine Aufschneidevorrichtung sowie wenigstens zwei unterschiedlich ausgebildete Schneidmesserträger umfasst, die jeweils lösbar an einer Rotorwelle der Aufschneidevor- richtung anbringbar sind.
Dabei ist der eine Träger als im Betrieb um die Drehachse rotierende Messeraufnahme für ein Schneidmesser, insbesondere für ein Sichel- oder Spiralmesser, ausgebildet, das lediglich eine Eigenrotation um die Dreh- achse ausführt, wohingegen der andere Träger als im Betrieb um die
Drehachse rotierender Rotor für ein Schneidmesser, insbesondere Kreismesser, ausgebildet ist, das um die Drehachse planetarisch umläuft und zusätzlich relativ zum Rotor um eine parallel versetzt zur Drehachse verlaufende Messerachse rotiert.
Durch dieses Konzept wird eine universell einsetzbare Aufschneidevorrichtung geschaffen, die wahlweise als Sichelmesser-Slicer oder als Kreismes- ser-Slicer eingesetzt werden kann. Es wird folglich ein und derselbe
Grundaufbau, der insbesondere die axial verstellbare Rotorwelle samt Rotationsantrieb für die Rotorwelle sowie die feststehende Nabe samt Axial- und Drehlager umfasst, entweder mit einer Messeraufnahme für ein Sichelmesser oder mit einem Rotor für ein Kreismesser verwendet. Die Rotorwelle einerseits und die Messeraufnahme bzw. der Rotor andererseits umfassen hierbei jeweils eine aufeinander abgestimmte Schnittstelle, die auf denkbar einfache Weise einen Wechsel von einem Sichelmesserbetrieb in einen Kreismesserbetrieb, und umgekehrt, ermöglicht.
Besonders einfach kann dieses Universalprinzip realisiert werden, wenn ein für die Eigenrotation des Kreismessers vorgesehener Drehantrieb ent- sprechend dem vorstehend anhand eines Ausführungsbeispiels erläuterten Prinzip ausgestaltet ist, wonach die Aufschneidevorrichtung einen stationären Teil des Drehantriebs umfasst, der bei angebrachtem Rotor, also im Kreismesserbetrieb, mit einem rotorseitigen Teil des Drehantriebs zusammenwirkt und bei angebrachter Messeraufnahme, also im Sichelmesserbetrieb, unwirksam an der Vorrichtung verbleibt.
Mit anderen Worten kann in einem bevorzugten Ausführungsbeispiel das- jenige Zusammenwirken zwischen stationärem Teil und rotorseitigem Teil des Drehantriebs, das im Kreismesserbetrieb eine axiale Verstellbewegung insbesondere zur Durchführung von Leerschnitten und/ oder zur Schneidspalteinstellung, gestattet, auch eine einfache Demontage des Kreismesserrotors ermöglichen, um nach der Demontage des Kreismesserrotors ei- ne Messeraufnahme eines Sichelmessers mit der zum Grundaufbau der Aufschneidevorrichtung gehörenden Rotorwelle zu verbinden. In diesem Sichelmesserbetrieb bleibt der stationäre Teil des Drehantriebs dann folglich ungenutzt, steht dem Sichelmesserbetrieb aber auch nicht im Wege. Das vorstehend erläuterte Wuchtkonzept steht diesem Universalprinzip ebenfalls nicht entgegen. Vielmehr lassen sich beide Konzepte vorteilhafterweise miteinander kombinieren, wenn jeweils die erste Wuchtmasse in den betreffenden Träger integriert oder von dem Träger gebildet ist, d.h. wenn sowohl die Messeraufnahme für das Sichelmesser als auch der Ro- tor für das Kreismesser eine auf das jeweilige Messer und auf die in den Grundaufbau der Aufschneidevorrichtung integrierte zweite Wuchtmasse abgestimmte erste Wuchtmasse beinhaltet.
Die Erfindung wird im Folgenden beispielhaft unter Bezugnahme auf die Zeichnung beschrieben. Es zeigen:
Fig. 1 bis 7 verschiedene Ansichten eines Teils einer erfindungsgemäßen Aufschneidevorrichtung gemäß einem Aus- führungsbeispiel ,
Fig. 8 eine geschnittene Seitenansicht eines Teils einer erfindungsgemäßen Aufschneidevorrichtung gemäß einer weiteren Ausführungsform, und Fig. 9 eine geschnittene Seitenansicht eines Teils einer erfindungsgemäßen Aufschneidevorrichtung gemäß einer weiteren Ausführungsform.
Fig. 1 zeigt einen auch als Messer- oder Schneidkopf bezeichneten Teil einer Aufschneidevorrichtung (Slicer) zum Aufschneiden von Lebensmittelprodukten, insbesondere Wurst, Schinken oder Käse in einer geschnittenen Seitenansicht.
Eine Nabe 23 ist an einem Gehäuse bzw. einer feststehenden Gehäusewand 31 befestigt. Im Inneren der Nabe 23 ist ein kombiniertes Axial- und Drehlager 21 für eine Rotorwelle 13 angeordnet, die eine Drehachse 1 1 des Slicers definiert. Die Rotorwelle 13 ist somit um die Drehachse 1 1 drehbar und in Richtung der Drehachse 1 1 axial verstellbar innerhalb der Nabe 23 gelagert. Zum axialen Verstellen der Rotorwelle 13, was durch Doppelpfeile angedeutet ist, ist ein nicht näher dargestellter Axialantrieb 71 vorgesehen, der am hinteren Ende der Rotorwelle 13 angreift. In einem hinter der Gehäusewand 31 gelegenen Bereich befindet sich ein Rotationsantrieb 33 für die Rotorwelle 13. Der Rotationsantrieb 33 um- fasst eine mit einer Außenverzahnung versehene Antriebsscheibe 51 , die im hinteren Bereich der Rotorwelle 13 angebracht ist und mit einem Antriebszahnriemen 53 zusammenwirkt, der von einem nicht dargestellten Antriebsmotor angetrieben wird, um die Rotorwelle 13 in Rotation um die Drehachse 1 1 zu versetzen.
Am vorderen, außerhalb der Gehäusewand 31 gelegenen Ende der Rotorwelle 13 ist ein Rotor 15 befestigt. Radial beabstandet von der Drehachse 1 1 beinhaltet der Rotor 15 ein Drehlager 25 für eine Messerwelle 35, die einer Messerachse 19 definiert, die parallel zur Drehachse 1 1 verläuft. Das vordere, außerhalb des Rotors 15 gelegene Ende der Messerwelle 35 ist als eine Messeraufnahme ausgebildet, an der ein als Kreismesser ausgebildetes Schneidmesser 17 lösbar befestigt ist.
Das nach hinten vorstehende Ende der Messerwelle 35 ist als Zahnrad 29 ausgebildet, das einen rotorseitigen Teil eines Drehantriebs für die Messerwelle 35 und somit für das Schneidmesser 17 bildet.
Als ein stationärer Teil 27 dieses Drehantriebs dient ein feststehender Zahnkranz, der von der feststehenden Nabe 23 getragen oder an der Ge- häusewand 31 befestigt ist.
Der ringförmige, konzentrisch zur Drehachse 1 1 angeordnete Zahnkranz 27 ist mit einer Innenverzahnung versehen, die mit der Außenverzahnung des Zahnrades 29 der Messerwelle 35 zusammenwirkt.
Bei rotierender Rotorwelle 13 und somit um die Drehachse 1 1 rotierendem Rotor 15 laufen die Messerwelle 35 und somit das Schneidmesser 17 planetarisch um die Rotorwelle 13 herum. Dabei rollt das Zahnrad 29 der Messerwelle 35 an der Innenverzahnung des Zahnkranzes 27 ab, wodurch die Messerwelle 35 und somit das Schneidmesser 17 relativ zum Rotor 15 in Rotation um die Messerachse 19 versetzt werden.
In einem Aufschneidebetrieb führt das Schneidmesser 17 folglich eine planetarische Umlaufbewegung um die Drehachse 1 1 und zusätzlich eine Ei- genrotation um die durch die Messerwelle 35 definierte Messerachse 19 aus.
Die bezüglich der Drehachse 1 1 der Rotorwelle 13 exzentrische Anordnung des Schneidmessers 17 resultiert in einer Unwucht UM des Rotors 15. Gemäß dem im Einleitungsteil erläuterten Wuchtkonzept wird diese Unwucht UM durch ein Gegengewicht ausgeglichen, das zwei Wuchtmassen 47, 49 umfasst. Eine erste Wuchtmasse 47 wird durch den Rotor 15 gebildet. Die erste Wuchtmasse 47 erzeugt eine Unwucht Ul , die der Un- wucht UM zumindest näherungsweise in radialer Richtung entgegengesetzt ist. Die zweite Wuchtmasse 49 wird von der Antriebsscheibe 51 gebildet und ist zumindest näherungsweise in die gleiche radiale Richtung wirksam wie die Unwucht UM (vgl. auch Fig. 5).
Die Längen und Richtungen der Vektors UM, Ul und U2 in Fig. 1 und 5 sind lediglich anschaulich zu verstehen und sollen keine konkreten absoluten oder relativen Werte repräsentieren. Durch diese geometrische Anordnung der Wuchtmassen wird das rotierende Gesamtsystem statisch und dynamisch in allen Ebenen ausgewuchtet.
Die erfindungsgemäße Aufschneidevorrichtung besitzt folglich einen einfa- chen, kompakten und unter hygienischen Gesichtspunkten äußerst vorteilhaften Aufbau. Die Gehäusewand 31 trennt den Antriebsbereich vom Schneidebereich. Die Nabe 23, die mit dem kombinierten Axial- und Drehlager 21 die sich durch die Gehäusewand 31 hindurch erstreckende Rotorwelle 13 samt Rotor 15 und Schneidmesser 17 drehbar und axial be- weglich lagert, befindet sich vor der Gehäusewand 31 und liegt somit nach außen offen. Dies ermöglicht eine hygienisch einwandfreie Reinigung des Schneidebereichs. Eine Dichtung 55 dichtet das Axial- und Drehlager 21 gegenüber der Umgebung ab. Die axiale "Verschachtelung" der außerhalb der Gehäusewand 31 liegenden Komponenten sorgt für einen äußerst kompakten Aufbau mit geringer axialer Baulänge: Mit ihrem hinteren, an der Gehäusewand 31 gelegenen Bereich liegt die Nabe 23 innerhalb des Zahnkranzes 27, in den die Messerwelle 35 mit dem Zahnrad 29 axial eingreift. Die Nabe 23 selbst und der Rotor 15 greifen ebenfalls axial ineinander. Das Drehlager 25 für das Schneidmesser 17 befindet sich axial in Höhe des vorderen Bereiches der Nabe 23 und in Höhe des Axial- und Drehlagers 21. Zum Beispiel zur Durchführung von Leerschnitten und/ oder zur Schneidspalteinstellung wird die Rotorwelle 13 samt Rotor 15 und Schneidmesser 17 sowie Messerwelle 35 und Zahnrad 29 in axialer Richtung verstellt. Der von dem feststehenden Zahnkranz 27 und dem Zahnrad 29 der Messer- welle 35 gebildete Drehantrieb für das Schneidmesser 17 lässt eine solche axiale Verstellbewegung unter Aufrechterhaltung des Drehantriebs durch Zusammenwirken von Zahnkranz 27 und Zahnrad 29 zu.
Des Weiteren gestattet es diese Ausgestaltung des Drehantriebs, dass der Rotor 15 samt Schneidmesser 17 und Messerwelle 35 einfach durch Lösen der Verschraubung zwischen Rotor 15 und vorderem Ende der Rotorwelle 13 abgenommen, d.h. in axialer Richtung abgezogen, werden kann.
Der verbleibende Grundaufbau aus Nabe 23, stationärem Zahnkranz 27 und Rotorwelle 13 samt Rotationsantrieb 33 mit Wuchtmasse 49 kann hierdurch außerdem als Antrieb für eine ein Sichelmesser tragende Messeraufnahme (nicht dargestellt) dienen. Wie im Einleitungsteil erläutert, wird durch diesen Grundaufbau ein Universal-Slicer geschaffen, der sowohl zu einem Sichelmesser-Betrieb mit lediglich um die Drehachse 1 1 ro- tierendem Sichelmesser als auch entsprechend der Darstellung in Fig. 1 zu einem Kreismesser-Betrieb mit planetarisch um die Drehachse 1 1 umlaufendem und zusätzlich eine Eigenrotation um die Messerachse 19 ausführendem Kreismesser in der Lage ist. Die Unwucht Ul der Wuchtmasse 47 im Rotor 15 und die durch das
Schneidmesser 17 hervorgerufene Unwucht UM des Rotors 15 sind aufeinander und auf die in den Rotationsantrieb 33 integrierte Unwucht U2 der Wuchtmasse 49 abgestimmt. Entsprechend dem Rotor 15 ist in einem Sichelmesser-Betrieb die das Sichelmesser tragende Messeraufnahme (nicht dargestellt) ebenfalls mit einer Wuchtmasse versehen, die auf die jeweilige Unwucht des Sichelmessers derart abgestimmt ist, dass im Zusammenwirken mit der in den Rotationsantrieb 33 integrierten Unwucht U2 der Wuchtmasse 49 wiederum ein in allen Ebenen sowie statisch und dynamisch ausgewuchtetes rotierendes Gesamtsystem gegeben ist.
Die Unwucht U 1 des Rotors 15 ist wesentlich näher an der durch das Schneidmesser 17 definierten Schneidebene 61 gelegen als die Unwucht U2 des Rotationsantriebs 33. Die Unwucht Ul des Rotors 15 liegt außerdem relativ weit radial außen. Diese geometrische Anordnung der Wuchtmassen 47, 49 ermöglicht es somit, relativ geringe Wuchtmassen zu verwenden.
Fig. 2 zeigt die erfindungsgemäße Aufschneidevorrichtung ohne die Gehäusewand 31 und ohne Schneidmesser 17. Es ist wiederum die besondere Kompaktheit der sich sowohl radial als auch axial um die feststehende Nabe 23 herum gruppierenden Komponenten zu erkennen.
Die Seitenansicht der Fig. 3, in der wiederum die Gehäusewand 31 nicht dargestellt ist, zeigt insbesondere die unter hygienischen Gesichtspunkten vorteilhafte offene Ausgestaltung der im Schneidebereich gelegenen Komponenten. Das Drehlager für die nach hinten in den Zahnkranz 27 hinein ragende Messerwelle 35 ist mit einem Gehäuse 63 versehen.
Aus der Draufsicht der Fig. 4 geht insbesondere die extrem von einer rotationssymmetrischen Form bzw. einer kreisförmigen Außenkontur abweichende Ausgestaltung des Rotors 15 hervor (vgl. auch Fig. 5 und 7). Dem relativ kleine Abmessungen aufweisenden Drehlager für das Schneidmesser 17, von dem hier wiederum das Gehäuse 63 dargestellt ist, liegt die erste Wuchtmasse 47 diametral gegenüber, die vergleichsweise große Abmessungen besitzt. Fig. 5 zeigt insbesondere die stark kopflastige Ausgestaltung des Rotors 17 mit einem von der ersten Wuchtmasse 47 gebildeten, relativ schweren Abschnitt, der über einen vergleichsweise leichten Zentralabschnitt mit einem diametral gegenüberliegenden Abschnitt verbunden ist, an welchem das Drehlager für die Messerwelle des Schneidmessers 17 angebracht ist, wobei von dem Drehlager wiederum das Gehäuse 63 dargestellt ist.
Die Fig. 6 und 7 zeigen Vorderansichten mit (Fig. 6) und ohne (Fig. 7) Schneidmesser 17. Der Fig. 7 ist insbesondere die ankerartige Form des Rotors 15 zu entnehmen. Außerdem ist die Innenverzahnung des stationären Zahnkranzes 27 dargestellt.
Die Fig. 8 und 9 zeigen jeweils eine weitere Ausführungsform einer erfin- dungsgemäßen Aufschneidevorrichtung, bei der für den Drehantrieb des Kreismessers 17 eine feststehende Achse 39 (Fig. 8) bzw. eine drehangetriebene Antriebswelle 40 (Fig. 9) vorgesehen ist.
In beiden Ausführungsformen ist die Rotorwelle 13 für den Rotor 15 als eine Hohlwelle ausgebildet, die an einem hinteren Bereich eine Antriebsscheibe 51 trägt, die über einen Antriebsriemen 53 mittels eines nicht dargestellten Motors in Rotation um die Drehachse 1 1 versetzbar ist.
Die Achse 39 bzw. Welle 40 erstreckt sich durch die Hohlwelle 13 hin- durch und in den Rotor 15 hinein.
Im Ausführungsbeispiel der Fig. 8 trägt die Achse 39 ein ebenfalls bezüglich Rotation feststehendes Zahnriemenrad 41 , an welchem bei rotierendem Rotor 15 ein Zahnriemen 43 abrollt, der mit einer Verzahnung 45 zu- sammenwirkt, die an der das Kreismesser 17 tragenden Messerwelle 35 ausgebildet ist. Die planetarische Umlaufbewegung der Messerwelle 35 aufgrund der Drehbewegung des Rotors 15 relativ zu dem feststehenden Zahnriemenrad 41 wird folglich dazu genutzt, die Messerwelle 35 und somit das Kreismesser 17 relativ zum Rotor 15 in Rotation um die Messer- achse 19 zu versetzen.
Zur Aufnahme des Zahnriemenrades 41 ist der Rotor 15 zweiteilig ausgebildet. Dies gilt auch für das Ausführungsbeispiel der Fig. 9. Im Ausführungsbeispiel der Fig. 8 befindet sich die Nabe 23 samt kombiniertem Axial- und Drehlager 21 für die als Hohlwelle ausgebildete Rotorwelle 13 innerhalb eines Gehäuses, d.h. liegt nicht nach außen offen. Die Nabe 23 ist an einer Wand 31 des Gehäuses befestigt.
An ihrem hinteren Ende ist die Rotorwelle 13 mit einem Anlenkabschnitt 65 für einen wiederum nur angedeuteten Axialantrieb 71 versehen, der dazu dient, die Rotorwelle 13 samt Rotor 15 und Kreismesser 17 axial zu verstellen. Dies ist wiederum durch Doppelpfeile angedeutet.
Die feststehende Achse 39 ist nicht als Ganzes axial verstellbar, sondern teleskopierbar ausgebildet, so dass der das Zahnriemenrad 41 tragende vordere Abschnitt der Achse 39 gemeinsam mit der Rotorwelle 13 axial verstellt werden kann, um insbesondere Leerschnitte auszuführen oder eine Schneidspalteinstellung vorzunehmen.
Im Ausführungsbeispiel der Fig. 9 ist die Nabe 23 von einer feststehenden Gehäusewand 31 gebildet, wobei alternativ die Nabe 23 als ein separates Bauteil ausgebildet sein kann, das an der Gehäusewand 31 befestigt ist.
Die sich durch die als Hohlwelle ausgebildete Rotorwelle 13 hindurch erstreckende Antriebswelle 40 ist an ihrem hinteren Ende mit einem Zahnriemenrad 67 versehen und über einen Zahnriemen 69 durch einen sepa- raten, nicht dargestellten Antriebsmotor unabhängig vom Rotationsantrieb 33 für die Rotorwelle 13 in Drehung versetzbar.
Die Übertragung der Drehbewegung der Antriebswelle 40 auf die Messerwelle 35 erfolgt innerhalb des Rotors 15 über einen Zahnriemen 43, der mit einer Verzahnung 45 der Messerwelle 35 und mit einem Zahnriemenrad 41 der Antriebswelle 40 zusammenwirkt. Alternativ kann für die Rotorwelle 13 und für die Antriebswelle 40 ein gemeinsamer Antriebsmotor mit Zwischengetriebe vorgesehen sein, wodurch die Riemen 53 und 69 angetrieben werden.
Eine gemeinsame axiale Verstellung von Rotorwelle 13 und Antriebswelle 40 erfolgt durch einen wiederum nicht näher dargestellten Axialantrieb 71 , der an einem Anlenkabschnitt 65 der Rotorwelle 13 angreift.
Das vorstehend im Einleitungsteil sowie in Verbindung mit dem Ausführungsbeispiel der Fig. 1 bis 7 erläuterte Wuchtkonzept ist auch bei den Ausführungsformen gemäß Fig. 8 und Fig. 9 realisiert: Der Rotor 15 ist jeweils mit einer ersten Wuchtmasse 47 versehen, während eine zweite Wuchtmasse 49 jeweils in die Antriebsscheibe 51 des Rotationsantriebs 33 für die hier als Hohlwelle ausgebildete Rotorwelle 13 integriert ist. Für alle dargestellten Ausführungsbeispiele gilt, dass die Riemenantriebe für die Rotorwellen 15 bzw. für die Antriebswelle 40 der axialen Verstellbewegung nicht entgegenstehen, da hierbei nur relativ kurze axiale Stellwege erforderlich sind und folglich die Antriebsriemen 53, 69 entsprechend ausgelenkt werden können.
Bezugszeichenliste
1 1 Drehachse
13 Rotorwelle
15 Rotor
17 Schneidmesser
19 Messerachse
21 Axial- und Drehlager für die Rotorwelle 13
23 Nabe
25 Drehlager für das Schneidmesser 17
27 stationärer Teil des Drehantriebs, Zahnkranz
29 rotorseitiger Teil des Drehantriebs, Zahnrad der Messerwelle 35
31 feststehendes Gestell- oder Rahmenteil, Gehäusewand, Gehäuse
33 Rotationsantrieb
35 Messerwelle
39 feststehende Achse
40 Antriebswelle
41 Zahnriemenrad der feststehenden Achse 39 bzw. Antriebswelle 40
43 Zahnriemen
45 Verzahnung der Messerwelle 35
47 erste Wuchtmasse
49 zweite Wuchtmasse
51 Antriebsscheibe/Nabe des Rotationsantriebs 33
53 Antriebsriemen des Rotationsantriebs 33
55 Dichtung
61 Schneidebene
63 Gehäuse
65 Anlenkabschnitt für Axialantrieb 71
67 Zahnriemenrad
69 Zahnriemen
71 Axialantrieb
UM Unwucht des Rotors 15
Ul Unwucht der ersten Wuchtmasse 47
U2 Unwucht der zweiten Wuchtmasse 49

Claims

Patentansprüche
Vorrichtung zum Aufschneiden von Lebensmittelprodukten, insbesondere Hochleistungs-Slicer, mit
einer im Betrieb um eine Drehachse (1 1) rotierenden und, insbesondere zur Durchführung von Leerschnitten und/ oder zur
Schneidspalteinstellung, axial verstellbaren Rotorwelle (13), einem von der Rotorwelle (13) angetriebenen Rotor (15),
einem vom Rotor ( 15) getragenen Schneidmesser (17), insbesondere Kreismesser, das um die Drehachse (1 1) planetarisch umläuft und zusätzlich relativ zum Rotor ( 15) um eine parallel versetzt zur Drehachse (1 1) verlaufende Messerachse (19) rotiert, und
einem Rotationsantrieb (33) für die Rotorwelle (13).
Vorrichtung nach Anspruch 1 ,
dadurch gekennzeichnet,
dass ein kombiniertes Axial- und Drehlager (21) für die Rotorwelle (13) vorgesehen ist, relativ zu welchem die Rotorwelle (13) drehbar und axial verstellbar ist, wobei insbesondere das Axial- und Drehlager (21) eine feststehende Nabe (23) umfasst.
Vorrichtung nach Anspruch 1 oder 2,
dadurch gekennzeichnet,
dass ein vorderer Bereich einer Nabe (23) für die Rotorwelle (13) und zumindest ein ein Drehlager (25) für das Schneidmesser (17) umfassender Bereich des Rotors (15) sowie ein am hinteren Bereich der Nabe (23) angeordneter stationärer Teil (27) eines Drehantriebs für das Schneidmesser ( 17) und ein rotorseitiger Teil (29) des Drehantriebs jeweils axial ineinander greifen. Vorrichtung nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet,
dass eine Nabe (23) für die Rotorwelle (13) von einem feststehendes Gestell- oder Rahmenteil (31) getragen ist.
Vorrichtung nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet,
dass eine Nabe (23) für die Rotorwelle (13) nach außen offen liegt und ein kombiniertes Axial- und Drehlager (21) für die Rotorwelle (13) zwischen der Nabe (23) und der Rotorwelle (13) gegenüber der Umgebung abgedichtet ist.
Vorrichtung nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet,
dass der Rotor (15) ein Drehlager (25) für das Schneidmesser (17), insbesondere für eine in den Rotor (15) integrierte Messerwelle (35), aufweist, wobei in axialer Richtung das Drehlager (25) zumindest näherungsweise in Höhe eines kombinierten Axial- und Drehlagers (21) für die Rotorwelle (13) angeordnet ist.
Vorrichtung nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet,
dass die Rotorwelle (13) durch ein feststehendes Gestell- oder Rahmenteil (31) hindurchgeführt ist, auf dessen einer Seite der Rotationsantrieb (33) und auf dessen anderer Seite der Rotor (15) angeordnet ist.
Vorrichtung nach Anspruch 7,
dadurch gekennzeichnet,
dass der Rotor (15) von dem Gestell- oder Rahmenteil (31) in axialer Richtung beabstandet ist.
9. Vorrichtung nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet,
dass ein Drehantrieb für das Schneidmesser (17) von der Drehbewegung des Rotors (15) abgeleitet wird und/ oder dass ein Drehantrieb für das Schneidmesser (17) von der Rotorwelle (13) entkoppelt ist.
10. Vorrichtung nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet,
dass ein Drehantrieb für das Schneidmesser (17) eine Messerwelle (35) umfasst, die in den Rotor (15) integriert ist.
1 1. Vorrichtung nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet,
dass ein Drehantrieb für das Schneidmesser (17) einen stationären Teil (27) und einen rotorseitigen Teil (29) umfasst, wobei der stationäre Teil (27) und der rotorseitige Teil (29) des Drehantriebs bei an der Rotorwelle (13) angebrachtem Rotor (15) zusammenwirken, insbesondere derart, dass Relativbewegungen in axialer Richtung zwischen den beiden Teilen (27, 29) des Drehantriebs zugelassen sind, insbesondere zur Durchführung von Leerschnitten, zur
Schneidspalteinstellung und/ oder zur Montage oder Demontage des Rotors (15).
12. Vorrichtung nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet,
dass die Rotorwelle (13) relativ zu einem stationären Teil (27) eines Drehantriebs für das Schneidmesser (17) axial verstellbar ist. Vorrichtung nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet,
dass ein stationärer Teil (27) eines Drehantriebs für das Schneidmesser (17) von einem kombinierten Axial- und Drehlager (21) und/oder einer Nabe (23) für die Rotorwelle (13) getragen ist.
Vorrichtung nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet,
dass ein Drehantrieb für das Schneidmesser (17), insbesondere ein stationärer Teil (27) des Drehantriebs, auf der gleichen Seite eines feststehenden Gestell- oder Rahmenteils (31) wie der Rotor (15) angeordnet ist.
Vorrichtung nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet,
dass ein Drehantrieb für das Schneidmesser (17) einen stationären Teil (27) umfasst, mit dem eine Messerwelle (35) des Schneidmessers (17) zusammenwirkt.
Vorrichtung nach Anspruch 15,
dadurch gekennzeichnet,
dass der stationäre Teil (27) einen Ring umfasst, an welchem die Messerwelle (35) abrollt, wobei insbesondere der Ring als Zahnkranz ausgebildet ist, der mit einem Zahnrad (29) der Messerwelle (35) zusammenwirkt.
Vorrichtung nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet,
dass ein Drehantrieb für das Schneidmesser (17) eine koaxial zur Rotorwelle (13) angeordnete, drehangetriebene oder feststehende Antriebswelle (40) oder Antriebsachse (39) umfasst, mit der eine Messerwelle (35) des Schneidmessers (17) antreibbar ist, insbeson- dere über eine Riemen- und/ oder Zahnradanordnung (41 , 43, 45), wobei insbesondere die Antriebswelle (40) oder die Antriebsachse (39) teleskopierbar ist. 18. Vorrichtung nach Anspruch 17,
dadurch gekennzeichnet,
dass sich die Antriebswelle (40) oder Antriebsachse (39) durch die als Hohlwelle ausgebildete Rotorwelle (13) hindurch erstreckt. 19. Vorrichtung nach Anspruch 17 oder 18,
dadurch gekennzeichnet,
dass sich die Antriebswelle (40) oder Antriebsachse (39) in den Rotor (15) hinein erstreckt und mit der Messerwelle (35) innerhalb des Rotors (15) zusammenwirkt.
20. Vorrichtung nach einem der Ansprüche 17 bis 19,
dadurch gekennzeichnet,
dass sowohl die Rotorwelle (13) als auch die Antriebswelle (40) oder Antriebsachse (39) zumindest teilweise axial verstellbar sind, insbe- sondere gleichzeitig oder gemeinsam.
21. Vorrichtung nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet,
dass zum Ausgleichen einer durch das Schneidmesser ( 17) hervor- gerufenen Unwucht (UM) des Rotors (15) wenigstens zwei Wuchtmassen (47, 49) vorgesehen sind, wobei alle Wuchtmassen (47, 49) auf der der Demontageseite des Schneidmessers (17) gegenüberliegenden Seite des Schneidmessers ( 17) angeordnet und vorzugsweise axial voneinander beabstandet sind.
22. Vorrichtung nach Anspruch 21 ,
dadurch gekennzeichnet,
dass eine erste Wuchtmasse (47) und eine zweite Wuchtmasse (49) auf unterschiedlichen Seiten eines feststehenden Gestell- oder Rahmenteils (31) angeordnet sind.
23. Vorrichtung nach Anspruch 21 oder 22,
dadurch gekennzeichnet,
dass eine erste Wuchtmasse (47) und die Unwucht (UM) des Rotors (15) zumindest näherungsweise in entgegengesetzte radiale Richtungen wirksam sind, während eine zweite Wuchtmasse (49) zumindest näherungsweise in die gleiche radiale Richtung wirksam ist wie die Unwucht (UM) des Rotors (15), und wobei insbesondere die erste Wuchtmasse (47) in axialer Richtung näher am Schneidmesser ( 17) angeordnet ist als die zweite Wuchtmasse (49) .
24. Vorrichtung nach einem der Ansprüche 21 bis 23,
dadurch gekennzeichnet,
dass eine erste Wuchtmasse (47) in den Rotor ( 15) integriert oder von dem Rotor (15) gebildet ist.
25. Vorrichtung nach einem der Ansprüche 21 bis 24,
dadurch gekennzeichnet,
dass eine erste Wuchtmasse (47) in axialer Richtung zumindest näherungsweise in Höhe eines kombinierten Axial- und Drehlagers (21) für die Rotorwelle (13) und/ oder eines in den Rotor (15) integrierten Drehlagers (25) für das Schneidmesser (17) angeordnet ist. Vorrichtung nach einem der Ansprüche 21 bis 25,
dadurch gekennzeichnet,
dass eine zweite Wuchtmasse (49) in den Rotationsantrieb (33) der Rotorwelle (13) integriert oder von dem Rotationsantrieb (33) gebildet ist, insbesondere von einer Antriebsscheibe oder Nabe (51), die mittels eines Antriebsmotors über einen Antriebsriemen (53) in Rotation versetzbar ist.
System mit
einer Vorrichtung zum Aufschneiden von Lebensmittelprodukten, insbesondere Hochleistungs-Slicer, die eine im Betrieb um eine Drehachse (1 1) rotierende und, insbesondere zur Durchführung von Leerschnitten und/oder zur Schneidspalteinstellung, axial verstellbare Rotorwelle (13) sowie einen Rotationsantrieb (33) für die Rotorwelle (13) umfasst, und
wenigstens zwei unterschiedlich ausgebildeten Schneidmesserträgern (15), die jeweils lösbar an der Rotorwelle (13) anbringbar sind, wobei der eine Träger als im Betrieb um die Drehachse (1 1) rotierende Messeraufnahme für ein Schneidmesser (17), insbesondere Sichel- oder Spiralmesser, ausgebildet ist, das lediglich eine Eigenrotation um die Drehachse (1 1) ausführt, und
wobei der andere Träger als im Betrieb um die Drehachse (1 1) rotierender Rotor (15) für ein Schneidmesser (17), insbesondere Kreismesser, ausgebildet ist, das um die Drehachse (1 1) planetarisch umläuft und zusätzlich relativ zum Rotor ( 15) um eine parallel versetzt zur Drehachse (1 1) verlaufende Messerachse (19) rotiert, wobei bevorzugt der Rotor (15) ein Drehlager (25) für das Schneidmesser (17), insbesondere für eine in den Rotor (15) integrierte Messerwelle (35), aufweist. System nach Anspruch 27,
dadurch gekennzeichnet,
dass die Vorrichtung für das um die Messerachse (19) rotierende Schneidmesser (17) des Rotors (15) einen stationären Teil (27) eines Drehantriebs für das Schneidmesser (17) umfasst, der bei angebrachtem Rotor (15) mit einem rotorseitigen Teil (29) des Drehantriebs zusammenwirkt und bei angebrachter Messeraufnahme unwirksam an der Vorrichtung verbleibt.
System nach Anspruch 27 oder 28,
dadurch gekennzeichnet,
dass zum Ausgleichen einer durch das jeweilige Schneidmesser (17) hervorgerufenen Unwucht (UM) wenigstens zwei Wuchtmassen (47, 49) vorgesehen sind, wobei jeweils eine erste Wuchtmasse (47) in den Träger ( 15) integriert oder von dem Träger ( 15) gebildet und eine zweite Wuchtmasse (49) in die Vorrichtung integriert ist.
PCT/EP2013/077432 2012-12-24 2013-12-19 Vorrichtung zum aufschneiden von lebensmittelprodukten WO2014102142A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
ES13815730.0T ES2628977T3 (es) 2012-12-24 2013-12-19 Aparato para rebanar productos alimenticios
EP13815730.0A EP2919950B1 (de) 2012-12-24 2013-12-19 Vorrichtung zum aufschneiden von lebensmittelprodukten
US14/654,982 US10538009B2 (en) 2012-12-24 2013-12-19 Device for slicing food products

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE102012224360.7 2012-12-24
DE102012224360 2012-12-24
DE102013200403.6A DE102013200403A1 (de) 2012-12-24 2013-01-14 Vorrichtung zum Aufschneiden von Lebensmittelprodukten
DE102013200403.6 2013-01-14

Publications (1)

Publication Number Publication Date
WO2014102142A1 true WO2014102142A1 (de) 2014-07-03

Family

ID=50878927

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2013/077432 WO2014102142A1 (de) 2012-12-24 2013-12-19 Vorrichtung zum aufschneiden von lebensmittelprodukten

Country Status (5)

Country Link
US (1) US10538009B2 (de)
EP (1) EP2919950B1 (de)
DE (1) DE102013200403A1 (de)
ES (1) ES2628977T3 (de)
WO (1) WO2014102142A1 (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019170383A1 (de) * 2018-03-09 2019-09-12 Gea Food Solutions Germany Gmbh Messeraufnahme für eine vorrichtung zum aufschneiden von lebensmittelprodukten
IT202000002629A1 (it) * 2020-02-11 2021-08-11 Gambini Spa Dispositivo di taglio di rotoli di carta e relativo metodo di taglio.
US20230125230A1 (en) * 2021-10-25 2023-04-27 Provisur Technologies, Inc. Pivoting loading tray assembly for food product slicing apparatus and method of use

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10030691A1 (de) 2000-06-23 2002-01-03 Dixie Union Gmbh & Co Kg Schneidvorrichtung insbesondere zum Schneiden von Lebensmitteln
WO2005009695A1 (de) 2003-07-23 2005-02-03 Cfs Kempten Gmbh Schneidkopf einer exzenterschneidemaschine
WO2008034513A1 (de) 2006-09-18 2008-03-27 Weber Maschinenbau Gmbh Breidenbach Verstelleinheit
EP2374583A1 (de) * 2010-04-07 2011-10-12 Weber Maschinenbau GmbH Breidenbach Vorrichtung zum Aufschneiden von Lebensmittelprodukten

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005009696A1 (de) * 2003-07-23 2005-02-03 Cfs Kempten Gmbh Axial verschiebbares messer und schneidspalteinstellung
DE102009048056B4 (de) * 2009-10-02 2024-10-02 Weber Food Technology Gmbh Messerkopf mit integrierten Antrieben
DE102010008047A1 (de) * 2010-02-16 2011-08-18 Weber Maschinenbau GmbH Breidenbach, 35236 Vorrichtung zum Aufschneiden von Lebensmittelprodukten
EP2329930B1 (de) * 2009-12-02 2015-10-14 Weber Maschinenbau GmbH Breidenbach Vorrichtung zum Aufschneiden von Lebensmittelprodukten
ES2549909T3 (es) * 2009-12-21 2015-11-03 Weber Maschinenbau Gmbh Breidenbach Procedimiento para cortar productos de alimentación
DE102010013893A1 (de) * 2010-04-07 2011-10-13 Weber Maschinenbau Gmbh Breidenbach Vorrichtung zum Aufschneiden von Lebensmittelprodukten
DE102012207304A1 (de) * 2012-05-02 2013-11-21 Weber Maschinenbau Gmbh Breidenbach Antriebsvorrichtung

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10030691A1 (de) 2000-06-23 2002-01-03 Dixie Union Gmbh & Co Kg Schneidvorrichtung insbesondere zum Schneiden von Lebensmitteln
WO2005009695A1 (de) 2003-07-23 2005-02-03 Cfs Kempten Gmbh Schneidkopf einer exzenterschneidemaschine
WO2008034513A1 (de) 2006-09-18 2008-03-27 Weber Maschinenbau Gmbh Breidenbach Verstelleinheit
EP2374583A1 (de) * 2010-04-07 2011-10-12 Weber Maschinenbau GmbH Breidenbach Vorrichtung zum Aufschneiden von Lebensmittelprodukten

Also Published As

Publication number Publication date
EP2919950A1 (de) 2015-09-23
US20150367523A1 (en) 2015-12-24
DE102013200403A1 (de) 2014-06-26
US10538009B2 (en) 2020-01-21
EP2919950B1 (de) 2017-04-05
ES2628977T3 (es) 2017-08-04

Similar Documents

Publication Publication Date Title
EP2329930B1 (de) Vorrichtung zum Aufschneiden von Lebensmittelprodukten
EP2919950B1 (de) Vorrichtung zum aufschneiden von lebensmittelprodukten
EP2895308B1 (de) Aufschneidevorrichtung mit unwuchtausgleich
EP1197304A2 (de) Rotierend angetriebenes Messer für eine Schneidevorrichtung, insbesondere zum Schneiden von Lebensmitteln
DE202014003903U1 (de) Hubschrauber
DE102012009985A1 (de) Laborkugelmühle
EP2625971A2 (de) Längsförderer für stabförmige Produkte der Tabak verarbeitenden Industrie und Fördereinrichtung mit einem Längsförderer und Verfahren zum Betreiben eines Längsförderers
DE102016211559A1 (de) Antriebssystem zum Antreiben einer Komponente mit einer Elektromotoreinheit und einer Getriebeeinheit
DE102012207304A1 (de) Antriebsvorrichtung
DE102010008047A1 (de) Vorrichtung zum Aufschneiden von Lebensmittelprodukten
EP1734224A1 (de) Antriebsvorrichtung für rotierende, mit Oszillationsüberlagerung arbeitende Werkzeuge und Werkzeug hiermit
DE102010019744B4 (de) Vorrichtung zum Aufschneiden von Lebensmittelprodukten
WO2011038789A1 (de) Schneidkopf mit integrierten antrieben
EP2364584B1 (de) Schneidwerk für eine Erntemaschine
DE202014100185U1 (de) Kreismesserantrieb, insbesonere für Brotschneidemaschinen
US2012489A (en) Slicing machine
EP3169438A1 (de) Vorrichtung zum fixieren und ausrichten von kuttermessern für ein system zur feinzerkleinerung
EP3762194B1 (de) Messeraufnahme für eine vorrichtung zum aufschneiden von lebensmittelprodukten
EP4142554B1 (de) Standmixer mit einem ausgewuchteten rotierenden werkzeug
DE958169C (de) Maschine zur Herstellung feinstzerteilter Mischungen, Dispersionen oder Emulsionen
EP3114917B1 (de) Getriebe für den antrieb eines mähmessers einer erntemaschine
DE3630742C2 (de)
DE102023104231A1 (de) Aufschneide-Maschine mit Messer-Fangvorrichtung
EP0406480A2 (de) Rotationsvibrator
DE102009056670A1 (de) Vorrichtung zum Aufschneiden von Lebensmittelprodukten

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13815730

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2013815730

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013815730

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14654982

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE