WO2014101882A1 - 基于蒸镀处理的稀土磁铁用合金粉末的制造方法和稀土磁铁的制造方法 - Google Patents

基于蒸镀处理的稀土磁铁用合金粉末的制造方法和稀土磁铁的制造方法 Download PDF

Info

Publication number
WO2014101882A1
WO2014101882A1 PCT/CN2013/091065 CN2013091065W WO2014101882A1 WO 2014101882 A1 WO2014101882 A1 WO 2014101882A1 CN 2013091065 W CN2013091065 W CN 2013091065W WO 2014101882 A1 WO2014101882 A1 WO 2014101882A1
Authority
WO
WIPO (PCT)
Prior art keywords
rare earth
vapor deposition
earth magnet
fine powder
powder
Prior art date
Application number
PCT/CN2013/091065
Other languages
English (en)
French (fr)
Inventor
永田浩
吴冲浒
Original Assignee
厦门钨业股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 厦门钨业股份有限公司 filed Critical 厦门钨业股份有限公司
Priority to US14/758,696 priority Critical patent/US20150357119A1/en
Publication of WO2014101882A1 publication Critical patent/WO2014101882A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0572Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes with a protective layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/12Making metallic powder or suspensions thereof using physical processes starting from gaseous material
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0257Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements
    • C22C33/0278Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/007Ferrous alloys, e.g. steel alloys containing silver
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/10Ferrous alloys, e.g. steel alloys containing cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/0555Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 pressed, sintered or bonded together
    • H01F1/0557Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 pressed, sintered or bonded together sintered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0293Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets diffusion of rare earth elements, e.g. Tb, Dy or Ho, into permanent magnets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered

Definitions

  • the present invention relates to the field of manufacturing technology of magnets, and more particularly to a method for producing an alloy powder for rare earth magnets by vapor deposition treatment and a method for producing a rare earth magnet.
  • the rare earth magnet is a magnet based on the intermetallic compound R 2 T 14 B, wherein R is a rare earth element, T is iron, or a transition metal element replacing a part of iron and iron, and B is boron.
  • Rare earth magnets have extremely high magnetic properties and are known as magnetic kings. Their maximum magnetic energy product (BH)max is higher than the maximum magnetic energy product of ferrite magnets by more than 10 times.
  • the operating temperature of rare earth magnets is up to 200. Celsius, excellent machinability, and its hard texture, stable performance, good cost performance, and extremely wide application.
  • the manufacturing process of the rare earth magnet has the following two types: one is a sintered rare earth magnet, and the other is a bonded rare earth magnet. Among them, the use of sintered rare earth magnets is the most widely used.
  • the manufacturing process of the sintered rare earth magnet mainly includes the following processes: raw material preparation ⁇ melting ⁇ casting ⁇ hydrogen breaking pulverization (HD) ⁇ jet milling (JM) ⁇ magnetic field forming ⁇ sintering ⁇ heat treatment ⁇ magnetic property evaluation ⁇ sintered body Evaluation of oxygen content ⁇ processing ⁇ surface treatment, etc.
  • the development process of increasing the content of the main phase and reducing the composition of the rare earth is not unreasonable.
  • the overall anti-oxidation technology of the manufacturing method is continuously developed.
  • the oxygen content in the sintered magnet can be reduced to below 2,500 ppm, but if the oxygen content in the sintering is low, the fine composition Fluctuations, the influence of unstable factors such as the incorporation of impurities in the process will also increase, which may cause over-sintering and abnormal grain growth (AGG), and may also cause problems such as coercivity, squareness, and low heat resistance. .
  • the grain boundary diffusion method is a method of diffusing heavy rare earths such as Dy and Tb in the grain boundary of the sintered magnet by the following methods 1) to 3):
  • Rich heavy rare earth alloy powder coating method coating powder of DyH 2 powder, TbH 2 powder, (Dy or Tb)-Co-Ni-Al metal compound powder, and then at a temperature of 700 ° C to 900 ° C The magnet performs grain boundary diffusion of elements such as Dy and Tb;
  • Vapor deposition method The high-temperature evaporation source is used to generate heavy rare earth metal vapors such as Dy and Tb, and the grain boundary diffusion of Dy, Tb and other elements is performed on the rare earth magnet at a temperature of 700 ° C to 900 ° C.
  • the Br and (BH)max of the magnet remain substantially unchanged, but the coercive force can be increased by about 7 kOe, and the heat resistance of the magnet can be increased by about 40 °C.
  • the diffusion time has to be shortened, so that the magnet production is performed in a state where the heavy rare earth element (Dy, Tb, or Ho, etc.) has not sufficiently diffused to the center portion and the heat resistance of the magnet has not been sufficiently improved;
  • the magnet will react with the placing table and the tooling, resulting in poor scratches on the surface of the magnet material, and the cost of the tool is also high;
  • the oxygen content in the magnet is relatively low, the oxidation inside and outside of the magnet is not uniform, and a uniform dispersed oxide layer is not formed. After diffusion by RH, the magnet is easily deformed (bent).
  • An object of the present invention is to overcome the deficiencies of the prior art and provide a thinning based on evaporation treatment.
  • a method for producing an alloy powder for a soil magnet which is characterized in that after the fine pulverization step, a fine powder vapor deposition treatment step is added before the forming step in the magnetic field, so that the sinterability of the powder is drastically changed to obtain a high coercive force and a high square shape.
  • a magnet of a main phase of R 2 T 14 B said R being at least one selected from the group consisting of rare earth elements including lanthanum, said T being at least one transition metal element including Fe, characterized by including
  • the following steps are as follows: The rare earth magnet is coarsely pulverized with an alloy and then finely pulverized to obtain a fine powder, and the fine powder and the evaporated material are obtained by vapor deposition treatment in a vacuum or an inert gas atmosphere, wherein
  • Tb Ho, K, Na, Sr, Tl, Mn, Sn, Sb, P, Zn, Mg, Li, Ca, Ga, Ag, Al,
  • a uniform vapor deposition layer establishes conditions for uniform sintering.
  • the rare earth magnet has an oxygen content of 1500 ppm or less.
  • the oxygen content is mainly determined by the jet milling process in which a large amount of gas is pulverized.
  • the oxygen content of the atmosphere is reduced to less than 1000 ppm when the gas jet is pulverized, a high-performance sintered magnet having an oxygen content of less than 2500 ppm can be obtained.
  • the adhesion between the magnet powders is strong, and the degree of orientation of the magnetic powder is not high, and since the content of the oxide is small, over-sintering is likely to occur, and the problem of abnormal growth of crystal grains is more likely to occur.
  • the magnet coercive force, squareness and heat resistance are lowered, and the present invention overcomes the above problems caused by the low oxygen content process by the vapor deposition treatment of the fine powder, and obtains a high Br, high (BH) max magnet. At the same time, the coercive force, squareness and heat resistance of the magnet are not affected. It can be said that the fine powder evaporation treatment is one of the best ways to ensure a low-oxygen high-performance magnet.
  • the fine powder is sent to a coating chamber, and a vacuum is applied to heat the evaporation material to above the evaporation temperature, and the fine powder is vapor-deposited, and the temperature of the coating chamber is 50 ° C. ⁇ 800 ° C, evaporation time is 6 minutes or more and 24 hours or less.
  • the temperature of the coating chamber is from 300 ° C to 70 (TC, i.e., it is preferred to use an evaporation material having an evaporation temperature in the above section at a specific pressure.
  • the alloy for a rare earth magnet is obtained by cooling a raw material alloy melt by a strip casting method at a cooling rate of 10 2 ° C /sec or more and 10 4 ° C /sec or less.
  • the coarse pulverization comprises a step of maintaining hydrogen absorbing and breaking for 0.5 to 6 hours under a hydrogen pressure of 0.10 MPa or more and IMPa or less, and a step of dehydrogenating thereafter, the fine pulverization is a fine pulverization by a jet mill. .
  • the fine powder in the vapor deposition treatment step, is vibrated or shaken.
  • a furnace such as a rotary furnace for treatment, thereby improving production efficiency.
  • the fine powder is subjected to a vapor deposition treatment in a vacuum having a pressure condition of 10 _ 5 Pa or more and 100 O or less, or an inert atmosphere of 10 ⁇ 3 Pa or more and 100 ⁇ or less.
  • a vacuum having a pressure condition of 10 _ 5 Pa or more and 100 O or less, or an inert atmosphere of 10 ⁇ 3 Pa or more and 100 ⁇ or less.
  • the present invention sets the pressure of the vacuum below 100OOa, which is much lower than the pressure of the standard atmospheric pressure, according to the average
  • the free path formula, the mean free path of the oxidizing gas is inversely proportional to the pressure P. Therefore, the probability of vapor deposition of a single alloy powder is more uniform, so that the powders located in the surface layer, the middle layer and the bottom layer can be vapor-deposited to obtain high performance. powder.
  • the rare earth magnet alloy is in atomic percentage and its composition is
  • R is Nd or contains Nd and at least one selected from the group consisting of La, Ce, Pr, Sm, Gd, Dy, Tb, Ho, Er, Eu, Tm, Lu or Y
  • T is Fe or contains Fe and is selected From at least one of Ru, Co or Ni
  • A is B or contains B and at least one selected from C or P
  • J is at least one selected from the group consisting of Cu, Mn, Si or Cr
  • G is selected From at least one of Al, Ga, Ag, Bi or Sn
  • D is at least one selected from the group consisting of Zr, Hf, V, Mo, W, Ti or Nb;
  • the atomic percentage of e is 1%, 12 ⁇ e ⁇ 16,
  • the atomic percentage of g &1% is 5 ⁇ g ⁇ 9,
  • the atomic percentage of h &1% is 0.05 ⁇ h ⁇ l
  • the atomic percentage of i &1% is 0.2 ⁇ i ⁇ 2.0
  • the atomic percentage of k is 1%, 0 ⁇ j ⁇ 4,
  • f 100-e-g-h-i-k.
  • Another object of the present invention is a method of producing a rare earth magnet.
  • the rare earth magnet is a magnet containing a main phase of R 2 T 14 B, and the R is at least one selected from the group consisting of rare earth elements including a lanthanum element, and the T is including Fe.
  • the at least one transition metal element is characterized in that it comprises the following steps: the rare earth magnet is coarsely pulverized with an alloy and then finely pulverized to form a fine powder, and the fine powder and the evaporated material are steamed in a vacuum or an inert gas atmosphere.
  • the formed body is sintered at a temperature of 900 ° C to 1140 ° C, and the evaporation material is selected from the group consisting of Yb, Eu, Ba, Sm, Tm, Dy, Nd, Gd, Er, Pr, Tb, Ho, K, Na, Sr, Tl, Mn, Sn, Sb, P, Zn, Mg, Li, Ca, Ga, Ag, Al, Cu, B at least one 2 0 3, Mo0 3, ZnS , SiO or of W0 3.
  • the RH (heavy rare earth element) grain boundary diffusion treatment step is carried out at a temperature of 700 ° C to 1050 ° C in the treatment step after sintering.
  • the temperature of the grain boundary diffusion treatment step is preferably from 1000 ° C to 1050 ° C.
  • the invention has the following characteristics:
  • the powder can be sintered at a relatively high temperature of 20 to 60 ° C higher than the conventional one, or can be sintered at a lower temperature of 20 to 60 ° C lower than the conventional one, regardless of the type.
  • No abnormal grain growth (AGG) occurs, and the powder after evaporation treatment can be sintered in a particularly wide range of sintering temperatures, thereby broadening the production conditions;
  • the magnet is processed into a desired size and subjected to grain boundary diffusion treatment.
  • the grain boundary diffusion test is performed at a temperature of 700 ° C to 1080 ° C, and it is confirmed that when the magnet is used, the magnet can be subverted.
  • the temperature is higher than 900 ° C, the treatment is completed in a short time, eliminating the disadvantages of the long processing time of the existing grain boundary diffusion method, and the most suitable RH crystal in the range of 1000 ° C ⁇ 105 (TC interval)
  • the diffusion treatment temperature is such that, when the construction period is tight, it is possible to select a higher diffusion temperature than the prior art, thereby eliminating the disadvantage that the existing grain boundary diffusion method has a long processing time;
  • Raw material preparation process Prepare 99.5% purity Nd, Pr, Dy, Tb, Gd, industrial Fe-B, Industrial pure Fe, Co with a purity of 99.99%, Cu, Mn, Al, Ag, Mo, C with a purity of 99.5%. It is prepared according to the composition of ReTfAgJhGtDk in atomic percentage at%. The content of each element is shown in Table 1:
  • Smelting process 500 kg of the prepared raw material is placed in a crucible made of alumina, and vacuum-melted at a temperature of 1500 ° C or lower in a vacuum of 10 Pa or less in a high-frequency vacuum induction melting furnace.
  • Hydrogen breaking process The cast piece is placed in a stainless steel rotary hydrogen furnace vessel with an inner diameter of 1200 mm. Vacuum is applied to bring the vessel to a vacuum of 10 Pa or less, and then a hydrogen gas with a purity of 99.999% is supplied to the rotary hydrogen of stainless steel.
  • the pressure of the furnace vessel was 0.12 MPa, and the rotation was performed at a rotation speed of 1 rpm for 2 hours, and then vacuum was applied while heating, and the vacuum was maintained at 600 ° C for 2 hours, and then the container was cooled while rotating at a rotation speed of 30 rpm, and taken out. Hydrogen breaks the coarse powder after pulverization.
  • Fine pulverization process Fine pulverization was carried out using a jet mill to obtain a fine powder having an average particle diameter of 2.0 ⁇ m.
  • Fine powder evaporation heat treatment process each fine powder is placed in a c
  • the fine powder is vapor-deposited, and the heat treatment time of the fine powder vapor deposition is 2 hours.
  • the stainless steel container is rotated at a rotation speed of 2 rpm; evaporation of the evaporation material during heating causes a change in the degree of vacuum.
  • a molecular vacuum pump is used to control the change in suction. Need It should be noted that, in this embodiment, except!
  • the temperature of the coating chamber is all controlled to a temperature 200 ° C lower than the evaporation temperature of each evaporation material.
  • the temperature of the coating chamber is 50 ° lower than the evaporation temperature.
  • the temperature of the coating chamber is 100 ° C lower than the evaporation temperature.
  • the container was taken out from the furnace, and while being externally cooled by water, it was rotated at a number of revolutions of 20 rpm, and cooled for 1 hour.
  • Each of the evaporation materials of Test Nos. 1 to 27 used a plurality of bulk evaporation materials of 0.5 to 2 cm 3 , and when the fine powder after the vapor deposition treatment was taken out, the evaporation material and the fine powder were separated by sieving.
  • Forming process in magnetic field All powders are not added with organic additives such as forming aids and lubricants.
  • a right-angle oriented magnetic field forming machine in a 2.1T oriented magnetic field, forming at a molding pressure of 0.2 ton/cm 2 A plurality of cubes with a side length of 40 mm are demagnetized in a magnetic field of 0.2 T after one molding; in order to seal the molded body after one molding without contacting the air as much as possible, a secondary molding machine (isostatic forming machine) is used. ) secondary molding under a pressure of 1.2ton / C m 2 a.
  • Each formed body is transferred to a sintering furnace for sintering, and the sintering is maintained at a temperature of 300 ° C and 800 ° C for 2 hours under a vacuum of 10 - 2 Pa or less, and then in an Ar gas atmosphere of 20,000 Pa. After sintering at a temperature of 1080 V for 2 hours, Ar gas was introduced to bring the gas pressure to 0.1 MPa, and then cooled to room temperature.
  • Heat treatment process The sintered body was heat-treated at a temperature of 450 ° C for 2 hours in a high-purity Ar gas, and then cooled to room temperature and taken out.
  • Magnetic performance evaluation process The sintered magnet was magnetically tested using the NIM-10000H BH bulk rare earth permanent magnet non-destructive measurement system of China Metrology Institute.
  • Oxygen content evaluation process in the sintered body The oxygen content in the sintered body was measured using an EMGA-620W type oxygen-nitrogen analyzer of Japan HORIBA Co., Ltd.
  • Table 2 shows the magnetic property evaluation and oxygen content evaluation of the examples and comparative examples of the fine powder vapor deposition heat treatment of different evaporation materials.
  • Table 2 Magnetic property evaluation and oxygen content evaluation of the examples and comparative examples
  • the present invention Rb 100 14.6 16.9 98.3 51.3 375
  • the present invention Ba 500 14.7 16.1 98.2 51.5 384
  • the magnetic magnetic insulating film adheres to lower the local demagnetization coefficient, thereby obtaining a high coercive force. .
  • the surface is formed The fine powder activity of the uniform vapor-deposited film becomes weak, and in the process of forming to sintering, even if it is exposed to the atmosphere, intense oxidation does not occur, and fine powder which has not been subjected to vapor deposition treatment is more active and easily oxidized, and is formed into sintering. Even if only a little bit of the atmosphere is exposed, intense oxidation occurs, resulting in a high oxygen content of the sintered body.
  • the heat treatment temperature of the fine powder vapor deposition exceeds 800 ° C
  • the vapor deposited film formed on the surface of the fine powder particles easily diffuses into the particles, and as a result, the surface having a strong activity is the same as that of the non-vapor-deposited film, and the powder is interposed between the powders.
  • the adhesion is high, Br, (BH) max becomes extremely poor, and at the same time, it does not have the effect of preventing abnormal growth of crystal grains, and it is easy to cause abnormal grain growth (AGG) during sintering, so that coercive force Hcj is lowered.
  • Example 2 Raw material preparation process: Preparation of 99.9% purity Nd, Lu, industrial Fe-B, Fe-P, industrial pure Fe, purity 99.9% Ru, Cu, Mn, Ga, purity 99.5% Zr, Atomic percentage at. /. According to the composition of ReTfAgJhGtDk, the content of each element is shown in Table 3 below:
  • Smelting process The raw material prepared by lOOKg is placed in a crucible made of magnesia, and vacuum-melted at a temperature of 1650 ° C or lower in a vacuum of 10 - 2 Pa or less in a high-frequency vacuum induction melting furnace.
  • Casting process Ar gas was introduced into a melting furnace after vacuum melting to bring the gas pressure to 20,000 Pa, and then cast into a cast piece having an average thickness of 3 mm in a water-cooled disk-shaped cast sheet.
  • Hydrogen breaking pulverization process Put the raw material into a stainless steel rotary hydrogen furnace container with an inner diameter of c
  • Fine pulverization process Fine pulverization was carried out using a jet mill to obtain a fine powder having an average particle diameter of 7.0 ⁇ m, and the pulverized powder was subjected to two equal portions.
  • Powder deposition heat treatment process wherein 50Kg powder after jet milling into parts 1 c
  • evaporating material severe Cu balls having a diameter of 5 to 10 mm
  • the rotating container was taken out from the furnace, and while rotating outside, the outside was rotated at a rotation speed of 10 rpm, and the mixture was cooled for 3 hours. Thereafter, the fine powder after the vapor deposition treatment was taken out, and the evaporation material and fine were sieved. The powder is separated.
  • Forming process in a magnetic field The above-mentioned powder of the fine powder vapor-deposited heat treatment and the remaining one of the powders which are not subjected to the fine powder vapor deposition heat treatment are not added with an organic substance such as a forming aid and a lubricant, and a magnetic field of a right-angle orientation type is directly used.
  • the molding machine in a 2T orientation magnetic field, is formed into a cube having a side length of 30 mm at a molding pressure of 0.2 ton/cm 2 , and is demagnetized in a magnetic field of 0.15 T after one molding, in order to form a shape after one molding.
  • the body was not exposed to air as much as possible, and it was sealed, and secondary molding was performed under a pressure of lton/cm 2 using a secondary molding machine (isostatic pressing machine).
  • Sintering process Each formed body is transferred to a sintering furnace for sintering, and sintered in a vacuum of 10 - 2 Pa or less, held at 300 ° C and 500 ° C for 2 hours, and then sintered at a temperature of 1050 ° C. After an hour, Ar gas was introduced to bring the gas pressure to 0.1 MPa, and then cooled to room temperature.
  • Heat treatment process The sintered body was heat-treated at a temperature of 650 ° C for 2 hours in high-purity Ar gas, and then cooled to room temperature and taken out.
  • the sintered body which has not been subjected to the fine powder vapor deposition heat treatment is processed into a magnet of c
  • the magnetic properties (Comparative Example 1) were evaluated, and another magnet was washed, and after the surface was cleaned, grain boundary diffusion treatment was carried out in accordance with the method in A in Table 4 (Comparative Example 2).
  • the sintered body subjected to the fine powder vapor deposition heat treatment is processed into a magnet of c
  • Magnetic properties (Comparative Example 3).
  • Grain boundary diffusion treatment process The other three parts of the sintered body processed by the fine powder vapor deposition heat treatment are washed, and after the surface is cleaned, one part of each is subjected to grain boundary diffusion treatment according to the three methods of Table 4 and BC, respectively. .
  • Table 4 Grain boundary diffusion treatment method
  • heat treatment was carried out at a temperature of 700 ° C for 24 hours.
  • the Dy 3 oTb 3 oNi 5 Co 25 Al 1 () alloy was finely pulverized into a fine powder of an average crystal grain of 20 ⁇ m (Dy Tb Ni-Co-Al alloy fine powder, which was spray-coated on the magnet, and after coating The magnet is dry,
  • Coating diffusion method Heat treatment at a temperature of 1050 ° C for 4 hours in a high-purity Ar gas atmosphere.
  • the film was vapor-deposited in an Ar atmosphere at a temperature of 1000 C for 4 hours.
  • Magnetic performance evaluation process The sintered magnet was magnetically tested using the NIM-10000H BH bulk rare earth permanent magnet non-destructive measurement system of China Metrology Institute.
  • Oxygen content evaluation process in the sintered body The oxygen content in the sintered body was measured using an EMGA-620W type oxygen-nitrogen analyzer of HORIBA, Japan.
  • the magnetic property evaluation and the oxygen content evaluation of the examples and the comparative examples in the case of the fine powder vapor deposition heat treatment and the grain boundary diffusion treatment are shown in Table 5.
  • Table 5 Magnetic properties evaluation and oxygen content evaluation of the examples and comparative examples. Fine powder steaming ⁇ grain boundary expansion Br (kG H i SQ ⁇ (BH)max sintered body oxygen-containing plate plating treatment ⁇ (kOe) (%) (MGOe) Quantity (ppm)
  • the diffusion speed of Dy, Tb, Ho, etc. is faster, and the diffusion efficiency of Dy, Tb, and Ho is improved, and the coercive force is significantly improved. It is common knowledge that when a magnet having a thickness of 5 mm needs to be subjected to grain boundary diffusion, Generally, it needs to be diffused in the temperature range of 800 ° C to 950 ° C for more than 10 hours to obtain a good coercive force improving effect. Although increasing the diffusion temperature helps to shorten the diffusion time, it is easy to cause magnet deformation, surface melting, and
  • the magnet of the present invention diffuses in the range of 1000 ° C to 1050 ° C, and only needs to be diffused for 4 hours, so that a good coercive force improving effect can be obtained without causing the above problem, and the production cycle is greatly shortened.
  • Example 3 Raw material preparation process: Preparation of 99.5% purity La, Ce, Nd, Ho, Er, industrial Fe-B, industrial pure Fe, purity 99.99% Ru, purity 99.5% P, Si, Cr, Bi , Sn, Ta, in atomic percentage at%, according to the composition of ReTfAgJhGtDk, the content of each element is as follows:
  • Hydrogen breaking pulverization process The raw material is placed in a stainless steel rotary hydrogen furnace vessel with an inner diameter of c
  • the fine pulverization process fine pulverization using a gas flow fine pulverizer to obtain a fine powder having an average particle diameter of 5 ⁇ m; the fine powder after the air flow pulverization is divided into 7 equal portions.
  • Fine powder evaporation heat treatment process Each fine powder is placed in a c-)1200mm stainless steel rotary hydrogen furnace container with lg evaporation material (several 5 ⁇ 10mm particle size Ga), and the container is vacuumed. A vacuum of less than 0.000 Pa was obtained, and then the stainless steel container was placed in an external heat furnace for heating.
  • the vapor deposition heating temperature and time per fine powder are as shown in Table 6.
  • the stainless steel container was rotated at a rotation speed of 3 rpm.
  • the rotary container was taken out from the furnace, and while the outside was water-cooled, the rotation was performed at a rotation speed of 10 rpm, and the mixture was cooled for 3 hours.
  • Forming process in a magnetic field No organic additives such as forming aids and lubricants are added to the powder, and a magnetic field forming machine of a right-angle orientation type is used, and a molding is performed at a molding pressure of 2.1 ton/cm 2 in a 2.1 T oriented magnetic field.
  • a plurality of cubes having a side length of 40 mm are demagnetized in a magnetic field of 0.15 T after one molding, so that the molded body after the primary molding is not exposed to the air as much as possible, and is sealed and transported to a sintering furnace.
  • the temperature of V is sintered for 3 hours, and then Ar gas is introduced to bring the gas pressure to O.lMPa, and then cooled to room temperature.
  • Heat treatment process The sintered body was heat-treated at a temperature of 600 ° C for 1 hour in high-purity Ar gas, and then cooled to room temperature and taken out.
  • Magnetic performance evaluation process The sintered magnet was magnetically tested using NIM-10000H type BH bulk rare earth permanent magnet non-destructive measurement system of China Metrology Institute, and the average value was evaluated.
  • Oxygen content evaluation process in the sintered body The oxygen content in the sintered body was measured using an EMGA-620W type oxygen-nitrogen analyzer of Japan HORIBA Co., Ltd.
  • the magnetic property evaluation and the oxygen content evaluation of the examples and comparative examples after the fine powder vapor deposition heat treatment at the same heating temperature and at different times are shown in Table 6.
  • Table 6 Magnetic properties evaluation and oxygen content evaluation of the examples and comparative examples. Fine powder deposition at the fine powder evaporation site Br Hcj SQ (BH)max Sintered body oxygen refractory temperature (°C) Time (hr) (kGs) (kOe) (%) (MGOe) Content (ppm)
  • Example 4 Raw material preparation process: Prepare Sm, Eu, Nd, Tm, Y with a purity of 99.5%, Fe-B for industrial use Pure Fe, purity 99.99% Ni, purity 99.5% C, Cu, Mn, Ga, In, Ti, in atomic percentage at%, according to the composition of ReTfAgJhGtDk, the content of each element is as follows:
  • Fe is the balance and Ni is 0.2;
  • C is 0.05 and B is 6.5;
  • Cu is 0.2 and Mn is 0.1;
  • Ga is 0.2 and In is 0.1;
  • Ti is 0.5.
  • Hydrogen breaking pulverization process The raw material is placed in a stainless steel rotary hydrogen furnace vessel with an inner diameter of 1200 mm, vacuum is applied to bring the vessel to a vacuum below lOPa, and then a hydrogen gas having a purity of 99.999% is introduced until the vessel pressure is 0.1 MPa.
  • the rotation speed of 2 rpm was rotated for 2 hours, and the vacuum was applied while heating, and the vacuum was maintained at 700 ° C for 3 hours. Thereafter, the container was rotated while rotating at a rotation speed of 5 rpm, and the crushed coarse powder was taken out by hydrogen.
  • Fine pulverization process Fine pulverization was carried out using a He gas flow fine pulverizer to obtain a fine powder having an average particle diameter of 1.8 ⁇ m.
  • the fine powder was divided into 2 equal portions of 250 kg each.
  • Fine powder evaporation heat treatment process 250Kg fine powder pulverized in one part of airflow is placed in c
  • the container was taken out from the furnace, and while being externally cooled by water, it was rotated at a rotation speed of 5 rpm, and cooled for 5 hours.
  • Forming process in a magnetic field The above-mentioned powder of the fine powder vapor-deposited heat treatment and the remaining one of the powders which are not subjected to the fine powder vapor deposition heat treatment are not added with an organic substance such as a forming aid and a lubricant, and a magnetic field of a right-angle orientation type is directly used.
  • the molding machine was formed into a plurality of cubes having a side length of 40 mm under a molding pressure of 1.8 ton/cm 2 in an orientation magnetic field of 1.8 T, and demagnetized in a magnetic field of 0.1 T after one molding.
  • Each formed body is transferred to a sintering furnace for sintering, and sintered in a vacuum of 10 - 2 Pa or less, held at 300 ° C and 700 ° C for 2 hours, and then in an Ar gas atmosphere of 50000 Pa.
  • the mixture was sintered at a temperature of 900 ° C to 1160 ° C for 2 hours, and then Ar gas was introduced to bring the gas pressure to 0.1 MPa, and then cooled to room temperature.
  • Heat treatment process The sintered body was heat-treated at a temperature of 600 ° C for 1 hour in high-purity Ar gas, and then cooled to room temperature and taken out.
  • Magnetic performance evaluation process The sintered magnet was magnetically tested using NIM-10000H type BH bulk rare earth permanent magnet non-destructive measurement system of China Metrology Institute, and the average value was evaluated.
  • Oxygen content evaluation process in the sintered body The oxygen content in the sintered body was measured using an EMGA-620W type oxygen-nitrogen analyzer of Japan HORIBA Co., Ltd.
  • the present invention is based on a method for producing an alloy powder for a rare earth magnet by a vapor deposition process and a method for producing a rare earth magnet, which are characterized in that after the fine pulverization step, a fine powder vapor deposition treatment step is added before the magnetic field forming step to make the powder
  • the sinterability is drastically changed to achieve the purpose of producing a magnet having high coercive force, high squareness, and high heat resistance.
  • the invention is industrially practical and has good industrial applicability.

Abstract

本发明公开了基于蒸镀处理的稀土磁铁用合金粉末的制造方法和稀土磁铁的制造方法,其包括如下的步骤:稀土磁铁用合金粗粉碎后再通过微粉碎制成细粉,将所述细粉和蒸发材料在真空或惰性气体气氛中蒸镀处理后获得,其中蒸镀到所述细粉上的所述蒸发材料与所述细粉的重量比为10-6-0.05:1。其是在微粉碎工序之后,磁场中成形工序之前,增加细粉蒸镀处理工序,以使粉末的烧结性发生剧变,达到制成高矫顽力、高方形度、高耐热性的磁铁的目的。

Description

基于蒸镀处理的稀土磁铁用合金粉末的制造方法和稀土磁铁的制造 方法 技术领域
本发明涉及磁铁的制造技术领域, 特别是涉及一种基于蒸镀处理的稀土磁 铁用合金粉末的制造方法和稀土磁铁的制造方法。
背景技术
稀土磁铁是以金属间化合物 R2T14B为基础的磁铁,这其中, R是稀土元素, T是铁, 或者是取代铁和铁的一部分的过渡金属元素, B是硼。 稀土磁铁拥有极 高的磁性能,被人们称为磁王,其最大磁能积(BH)max高过铁氧体磁铁(Ferrite) 最大磁能积 10倍以上, 另外, 稀土磁铁的工作温度最高可达 200摄氏度, 机械 加工性能极佳, 而且其质地坚硬, 性能稳定, 有很好的性价比, 应用极其广泛。
稀土磁铁的制作工艺有以下二种: 一种是烧结稀土磁铁, 另一种是粘结稀 土磁铁。 这其中, 又以烧结稀土磁铁的应用最为广泛。 现有技术中, 烧结稀土磁 铁的制作工艺主要包括如下流程: 原料配制→熔炼→铸造→氢破粉碎 (HD) → 气流粉碎 (JM) →磁场成形→烧结→热处理→磁性能评价→烧结体中的氧含量 评价→加工→表面处理等。
用一句话来概括稀土烧结磁铁的发展史的话, 可以说成是提高主相含有率, 降低稀土组成的开发过程也不为过。 目前, 为提高磁铁的 (BH)max、 矫顽力, 制 造方法整体的防氧化技术不断发展, 目前烧结磁铁中的氧含量可降至 2500ppm 以下, 但是, 烧结中氧含量较低的话, 细微组成波动, 工序中杂质的混入等不稳 定因素的影响也会扩大, 这就容易引起过烧结现象和晶粒异常长大 (AGG), 也 会产生矫顽力、 方形度、 耐热性低下等问题。
为提高磁铁的矫顽力、 方形度, 并解决耐热性低下的问题, 在 Nd-Fe-B烧 结磁铁中进行 Dy、 Tb、 Ho等重稀土的晶界扩散是很普遍的, 晶界扩散处理通常 是在加工工序之后, 表面处理工序之前进行的。所谓晶界扩散法, 就是在烧结后 的磁铁晶界里, 按以下 1 ) 至 3 ) 的方法, 使 Dy、 Tb等重稀土进行扩散的方法:
1 ) 将稀土氟化物 (DyF3、 TbF3)、 稀土氧化物 (Dy203、 Tb203) 等的粉末 涂覆在烧结磁体表面, 之后在 700°C~900°C的温度对磁体进行 Dy、 Tb等元素的 晶界扩散;
2)富重稀土合金粉末涂覆法:涂覆 DyH2粉、 TbH2粉、(Dy或 Tb)-Co-Ni-Al 金属化合物粉的粉末,之后在 700°C〜900°C的温度对磁铁进行 Dy、 Tb等元素的 晶界扩散;
3 ) 蒸镀法: 利用高温蒸发源产生 Dy、 Tb等重稀土金属蒸汽, 在 700°C〜 900°C的温度下对稀土磁体进行 Dy、 Tb等元素的晶界扩散。
通过晶界扩散法,磁铁的 Br、(BH)max基本保持不变,但矫顽力可提高 7kOe 左右, 磁体耐热性可以提高 40°C左右。
然而,这种在 700°C~90(TC的温度条件下使重稀土发生扩散的晶界扩散方法 虽然可以提高矫顽力, 但是也存在着不足:
1、 扩散需要很长时间, 比如, 要使重稀土元素充分扩散到片厚为 10mm的 磁铁中心部位的话, 所需的时间为 48 小时, 当然, 大量生产时, 无法确保 48 小时长的扩散时间, 为了提高生产效率, 只好缩短扩散时间, 这样, 在重稀土元 素 (Dy、 Tb或 Ho等) 尚未充分扩散至中心部位, 磁体耐热性也还未充分提高 的状态下进行磁铁生产;
2、 磁铁会和放置台以及冶具发生反应, 致使磁铁材料表面产生不良划痕, 冶具的消耗费用也很高昂;
3、 磁铁中的氧含量比较低, 磁体内外氧化不均匀, 没有形成均匀分散的氧 化层, 经 RH扩散后, 磁铁容易发生变形 (弯曲)。
发明内容
本发明的一个目的在于克服现有技术之不足, 提供一种基于蒸镀处理的稀 土磁铁用合金粉末的制造方法, 其是在微粉碎工序之后, 磁场中成形工序之前, 增加细粉蒸镀处理工序, 以使粉末的烧结性发生剧变, 达到制成高矫顽力、 高方 形度、 高耐热性的磁铁的目的。
本发明解决其技术问题所采用的技术方案是:
基于蒸镀处理的稀土磁铁用合金粉末的制造方法, 所述的稀土磁铁为含有
R2T14B主相的磁铁,所述的 R为选自包含钇元素在内的稀土元素中的至少一种, 所述 T为包括 Fe的至少一种过渡金属元素, 其特征在于, 包括如下的步骤: 稀 土磁铁用合金粗粉碎后再通过微粉碎制成细粉,将所述细粉和蒸发材料在真空或 惰性气体气氛中蒸镀处理获得, 其中
蒸镀到所述细粉上的所述蒸发材料与所述细粉的重量比为 10_6-0.05:1, 以及所述蒸发材料选自 Yb、 Eu、 Ba、 Sm、 Tm、 Dy、 Nd、 Gd、 Er、 Pr、
Tb、 Ho、 K、 Na、 Sr、 Tl、 Mn、 Sn、 Sb、 P、 Zn、 Mg、 Li、 Ca、 Ga、 Ag、 Al、
Cu、 B203、 Mo03、 ZnS、 SiO或 W03中的至少一种。
增加蒸镀热处理工序之所以能够解决本发明的技术问题, 这是因为, 通过 蒸镀热处理, 产生了如下的效果:
1 ) 粉末表面产生极少量的蒸镀层, 失去了粉碎后的新生表面;
2)通过韧化效果去除粉末表面附近的划痕, 可避免因缺陷等而造成的烧结 促进效果的损失;
3 )粉末的锐利边角变圆,减少细粉之间的接触,可使粉末间的润滑性变好, 修复粉末表面晶格缺陷, 提高粉末取向度及磁铁矫顽力;
4) 均匀的蒸镀层为均匀烧结建立了条件。
上述多种因素综合作用, 使粉末的性能发生剧变, 达到制成高矫顽力、 高 方形度、 高耐热性的磁铁的目的。
在推荐的实施例中, 所述稀土磁铁的氧含量在 1500ppm以下。 随着制造方 法整体的防氧化程度不断进步, 成形至烧结工序几乎不发生氧化, 因此, 磁铁中 的含氧量主要取决于在大量气流中进行粉碎的气流磨工序,在气流粉碎时气氛的 氧含量降至 lOOOppm以下时,可获得氧含量降至 2500ppm以下的高性能烧结磁铁, 在磁铁氧含量小于 2500ppm的低氧含量工序中, 磁铁粉末间的粘着力很强, 导 致磁粉取向度不高, 且由于氧化物的含量变少, 容易产生过烧结, 更容易形成晶 粒异常长大的问题, 导致磁铁矫顽力、 方形度和耐热性下降, 而本发明通过细粉 的蒸镀处理, 克服了低氧含量工序所带来的上述问题, 在获得高 Br、 高 (BH)max 磁铁的同时, 使磁铁矫顽力、 方形度和耐热性不受影响, 可以说, 细粉蒸镀处理 是保证低氧含量高性能磁铁的最优方式之一。
在推荐的实施方式中, 将所述细粉送入镀膜室, 抽真空, 将所述蒸发材料 加热到蒸发温度以上,对所述细粉进行蒸镀,所述镀膜室的温度为 50°C〜800°C, 蒸镀时间为 6分钟以上 24小时以下。
在推荐的实施方式中, 所述镀膜室的温度为 300°C〜70(TC, 亦即, 优选使 用在某一特定压力下蒸发温度在上述区间的蒸发材料。
在推荐的实施方式中, 所述稀土磁铁用合金是将原料合金熔融液用带材铸 件法, 以 102°C/秒以上、 104°C/秒以下的冷却速度冷却得到的。
在推荐的实施方式中,所述粗粉碎包括在 O.OlMPa以上、 IMPa以下的氢气 压力下保持 0.5〜6小时吸氢破碎的步骤和之后脱氢的步骤, 所述微粉碎为气流 磨微粉碎。
在推荐的实施方式中, 所述蒸镀处理工序中, 对所述细粉进行振动或摇动。 细粉蒸镀处理工序中, 为防止粉末间的附着及凝结,最好是使用旋转炉之类的炉 进行处理, 可提高生产效率。
在推荐的实施方式中, 是在压力条件为 10_5Pa以上 lOOOPa以下的真空或 10"3Pa以上 lOOOPa以下的惰性气氛中对细粉进行蒸镀处理。本发明的实施例中, 仅仅列举了在真空气氛下对细粉进行蒸镀之情形,但其同样适用于惰性气氛。本 发明通过将真空的压力设在 lOOOPa以下, 远小于标准大气压的压力, 根据平均 自由程的公式, 氧化气体的平均自由程与压力 P成反比, 因此, 单个合金粉末蒸 镀的概率更为均匀, 使位于表层、 中层和底层的粉末均可以得到蒸镀处理, 从而 获得高性能粉末。
在推荐的实施方式中, 所述稀土磁铁用合金以原子百分比计, 其成分为
ReTfAgJhG.Dk, 其中:
其中, R为 Nd或包含 Nd和选自 La、 Ce、 Pr、 Sm、 Gd、 Dy、 Tb、 Ho、 Er、 Eu、 Tm、 Lu或 Y中的至少一种, T为 Fe或包含 Fe和选自 Ru、 Co或 Ni 中的至少一种, A为 B或包含 B和选自 C或 P中的至少一种, J为选自 Cu、Mn、 Si或 Cr中的至少一种, G为选自 Al、 Ga、 Ag、 Bi或 Sn中的至少一种, D为选 自 Zr、 Hf、 V、 Mo、 W、 Ti或 Nb中的至少一种; 以及
e的原子百分比 1%为 12≤e≤16,
g的原子百分比 &1%为 5≤g≤9,
h的原子百分比 &1%为 0.05≤h≤l,
i的原子百分比 &1%为 0.2≤i≤2.0,
k的原子百分比 1%为 0≤j≤4,
f的原子百分比 &1%为 f= 100-e-g-h-i-k。
本发明的另一个目的在于一种稀土磁铁的制造方法。
稀土磁铁的制造方法, 所述的稀土磁铁为含有 R2T14B主相的磁铁, 所述的 R为选自包含钇元素在内的稀土元素中的至少一种, 所述 T为包括 Fe的至少一 种过渡金属元素, 其特征在于, 包括如下的步骤: 稀土磁铁用合金粗粉碎后再通 过微粉碎制成细粉,将所述细粉和蒸发材料在真空中或惰性气体气氛中蒸镀处理 后, 蒸镀到所述细粉上的所述蒸发材料与所述细粉的重量比为 10_6-0.05:1, 之后 使用磁场成形法获得成形体, 并在真空或惰性气体中以 900°C〜1140°C的温度对 所述成形体进行烧结, 以及所述蒸发材料选自 Yb、 Eu、 Ba、 Sm、 Tm、 Dy、 Nd、 Gd、 Er、 Pr、 Tb、 Ho、 K、 Na、 Sr、 Tl、 Mn、 Sn、 Sb、 P、 Zn、 Mg、 Li、 Ca、 Ga、 Ag、 Al、 Cu、 B203、 Mo03、 ZnS、 SiO或 W03中的至少一种。
在推荐的实施方式中,在烧结后的处理工序中, 还包括在 700°C〜1050°C的 温度下进行的 RH (重稀土元素) 晶界扩散处理工序。
优选地, 所述晶界扩散处理工序的温度优选为 1000°C〜1050°C。
与现有技术相比, 本发明具有如下的特点:
1 )将微粉碎后的细粉与蒸发材料一起放入处理容器, 通过旋转、 搅拌、 摇 动等移动处理容器,使蒸发材料能够均匀地蒸镀处理在细粉表面上,使粉末的性 能发生剧变, 达到制成高矫顽力、 高方形度、 高耐热性的磁铁的目的;
2)与以往相比, 粉末既能在比以往高 20〜60°C的较高温度下进行烧结, 也 可在比以往低 20〜60°C的较低温度下进行烧结, 不管是哪种, 都不会发生晶粒 异常长大 (AGG), 蒸镀处理后的粉末能在特别广泛的烧结温度范围都可进行烧 结, 拓宽了生产条件;
3 )烧结后将磁铁加工为期望的尺寸,进行晶界扩散处理,本发明中,在 700 °C〜1080°C的温度下进行了晶界扩散试验,确认使用该种磁铁时, 能够颠覆以往 的常识, 以比 900°C还高的温度, 在短时间内完成处理, 消除现有晶界扩散方法 处理时间过长的弊端, 并以 1000°C〜105(TC区间为最合适的 RH晶界扩散处理 温度, 这样, 可以在工期紧张时, 选择使用较现有技术更高的扩散温度, 从而消 除现有晶界扩散方法处理时间过长的弊端;
4)通过实施本发明的细粉蒸镀处理工序, 形成了均匀分散的蒸镀层, 可进 行无弯曲磁铁的大量生产;
5 ) 扩散时无需附着治具, 防止磁铁材料表面产生不良划痕。
具体实施方式
以下结合实施例对本发明作进一步详细说明。
实施例 1
原料配制过程: 准备纯度 99.5%的 Nd、 Pr、 Dy、 Tb、 Gd, 工业用 Fe-B, 工业用纯 Fe, 纯度 99.99%的 Co, 纯度 99.5%的 Cu、 Mn、 Al、 Ag、 Mo、 C。 以 原子百分比 at%计,按照成分为 ReTfAgJhGtDk来配制,各元素的含量如表 1所示:
表 1 各元素的配比
R T A J G D
Nd Pr Dy Tb Gd Fe Co C B Cu Mn Al Ag Mo
8 4 0.5 0.5 0.5 余量 1 0.05 6.5 0.1 0.1 0.3 0.1 0.5 按照上述配制组成, 合计称量、 配制了 500Kg的原料。
熔炼过程: 取 500Kg配制好的原料放入氧化铝制的坩埚中, 在高频真空感 应熔炼炉中在 10Pa以下的真空中以 1500°C以下的温度进行真空熔炼。
铸造过程: 在真空熔炼后的熔炼炉中通入 Ar气体使气压达到 3万 Pa后, 使用甩带铸造法 (SC ) 铸造成平均厚度为 0.2mm的铸片。
氢破粉碎过程:将铸片放入内径为 Φ 1200mm的不锈钢制旋转式氢破炉容器 中, 抽真空使容器达到 10Pa以下的真空后, 通入纯度为 99.999%的氢气至不锈 钢制旋转式氢破炉容器压力为 0.12MPa, 按 lrpm的旋转速度旋转 2小时, 而后 边加热边抽真空, 在 600°C的温度下保持真空状态 2小时, 之后按 30rpm的旋转 速度一边旋转容器一边冷却, 取出氢破粉碎后的粗粉。
微粉碎过程: 使用气流微粉碎机进行微粉碎, 获得平均粒径为 2.0μηι的细 粉。
取气流粉碎后的细粉 27等份, 每份 15Kg。 细粉蒸镀热处理过程:每份细粉分别放入 c|)600mm的不锈钢旋转式容器 (镀 膜室) 中, 将容器中抽真空, 之后将容器放入外热式炉中, 将表 2中所示试验序 号为 1〜27的 10g蒸发材料各自放入独立的蒸发室,蒸发室分别抽真空至与相应 镀膜室相同真空度后,加热到蒸发温度以上, 而后分别将蒸发材料的蒸气导入不 锈钢旋转式容器(镀膜室)中,对细粉进行蒸镀,细粉蒸镀热处理时间为 2小时, 加热时, 不锈钢容器按 2rpm的旋转速度旋转; 加热中的蒸发材料蒸发会引起真 空度的变化, 为使其控制在表 2范围内, 使用分子式真空泵控制吸力的变化。 需 要说明的是, 本实施例中, 除!^、 P和 Rb的实施例之外, 镀膜室的温度全部控 制成较各蒸发材料蒸发温度低 200°C的温度, 在 K和 Rb的实施例中, 镀膜室的 温度较蒸发温度低 50°C, 在 P的实施例中, 镀膜室的温度较蒸发温度低 100°C。
蒸镀热处理结束后,将容器从炉中取出,一边在外部进行水冷一边按 20rpm 的旋转数进行旋转, 冷却 1小时。
试验序号为 1〜27的蒸发材料各自使用的是数个 0.5〜2cm3的块状蒸发材 料, 在取出蒸镀处理后的细粉时, 通过过筛将蒸发材料与细粉进行分离。
磁场中成形过程: 所有粉末都不添加成形助剂及润滑剂等有机物, 直接使 用直角取向型的磁场成型机, 在 2.1T的取向磁场中, 在 0.2ton/cm2的成型压力 下, 一次成形为数个边长 40mm的立方体, 一次成形后在 0.2T的磁场中退磁; 为使一次成形后的成形体尽可能地不接触到空气将其进行密封,使用二次成形机 (等静压成形机) 在 1.2ton/Cm2的压力下进行二次成形。
烧结过程: 将各成形体搬至烧结炉进行烧结, 烧结在 10— 2Pa以下的真空下, 在 300°C和 800°C的温度下各保持 2小时后,在 20000Pa的 Ar气体气氛中以 1080 V的温度烧结 2小时, 之后通入 Ar气体使气压达到 O.lMPa后, 冷却至室温。
热处理过程:烧结体在高纯度 Ar气中, 以 450°C温度进行 2小时热处理后, 冷却至室温后取出。
磁性能评价过程: 烧结磁铁使用中国计量院的 NIM-10000H型 BH大块稀 土永磁无损测量系统进行磁性能检测。
烧结体中的氧含量评价过程: 烧结体中的氧含量使用日本 HORIBA公司的 EMGA-620W型氧氮分析仪进行检测。
不同蒸发材料的细粉蒸镀热处理后的实施例和比较例的磁性能评价和氧含 量评价的情况如表 2所示: 表 2 实施例和比较例的磁性能评价和氧含量评价的情况
较发发发发发发发发发发发发发
序 蒸发 容器真 Br Hcj (BH)max 烧结体氧 号 材料 空度 (Pa) ^ (kGs) (kOe) Q( o (MGOe) 含量 (ppm) 无细粉蒸镀处理 14.2 1 1.4 79.8 45.6 2630
W03 900 14.8 17.3 98.3 52.3 375
B203 800 14.8 15.6 98.2 52.8 379
SiO 1000 14.8 15.7 99.1 52.1 371
4 ZnS 700 14.6 14.8 99.1 50.1 369
Cu 900 14.8 17.2 99.2 53.2 383
Al 0·05〜 800 14.8 17.6 98.5 52.8 369
Ga 0.00001 700 14.8 17.3 98.3 53.1 375
Ag 600 14.8 17.6 98.5 52.8 385
Mn 700 14.7 16.1 98.7 51.8 376
Er 800 14.6 15.4 98.2 51.3 381
Ho 800 14.7 16.3 99.1 52.3 375
Dy 700 14.7 16.8 99.1 52.3 369
Sm 500 14.6 15.2 99.2 50.3 385
14 本发明 Mo03 600 14.8 17.5 99.2 53.2 328
15 本发明 Zn 400 14.7 16.3 98.7 52.3 375
16 本发明 P 200 14.6 15.6 98.2 51.5 376
17 本发明 Te 400 14.6 15.3 98.7 50.6 371
18 本发明 Na 300 14.6 14.6 98.5 50.4 368
19 本发明 Mg 300 14.7 16.8 99.3 52.5 382
20 本发明 K 100 14.6 16.2 98.4 50.9 385
0.05〜
21 本发明 Rb 100 14.6 16.9 98.3 51.3 375
1000
22 本发明 Sr 400 14.7 16.7 98.9 51.8 379
23 本发明 Ba 500 14.7 16.1 98.2 51.5 384
24 本发明 Ca 500 14.6 16.8 98.7 51.3 367
25 本发明 Li 500 14.6 16.7 98.5 50.6 372
26 本发明 Eu 500 14.7 15.2 98.6 50.3 389
27 本发明 Yb 600 14.7 15.8 98.7 50.9 383 从表 2可以看出, 通过细粉的蒸镀热处理, 可在粉末表面形成非常薄的均 匀蒸镀膜, 可使粉末间的润滑性变好, 提高粉末的取向度, Br、 ( BH) max显著 提高, 且烧结时不易引起晶粒异常长大, 可形成较细的组织, 矫顽力 Hcj也会明 显增加; 另外, 通过细粉的蒸镀热处理, 粉末表面的锐利部附着上蒸镀成分, 一 部分发生溶解, 使形状变圆, 更有甚者, 通过附着的磁性绝缘膜, 可使局部的反 磁场系数变低, 这样可获得较高的矫顽力。 且, 在成形至烧结的工序, 表面形成 均匀蒸镀膜的细粉活性变弱, 在成形至烧结的工序, 就算接触到大气, 也不会发 生激烈的氧化, 而没有经过蒸镀处理的细粉则活性较强容易氧化,在成形至烧结 的工序, 就算只接触到一点点的大气, 也会发生激烈的氧化, 导致烧结体的氧含 量变高。
需要说明的是,在细粉蒸镀热处理温度超过 800°C时, 细粉的粒子表面生成 的蒸镀膜容易扩散到粒子内, 结果就会同无蒸镀膜一样, 拥有活性较强的表面, 粉末间的附着力变高, Br、 (BH) max会变得极差, 同时, 也不具有防止晶粒 异常长大的效果, 烧结时就容易产生晶粒异常长大(AGG), 使矫顽力 Hcj降低。 以往, 在低氧含量工序中, 由于磁铁粉末间的粘着力很强, 存在磁铁粉末 取向度不高的问题, 这样也会存在磁铁 Br、 (BH) max低下的问题, 且由于磁 铁粉末间表面活性度很高,烧结时结晶和结晶之间容易融着, 就会产生晶粒异常 长大 (AGG), 使矫顽力急降, 现在上述问题同样得以解决。
实施例 2 原料配制过程: 准备纯度 99.9%的 Nd、 Lu, 工业用 Fe-B、 Fe-P, 工业用纯 Fe, 纯度 99.9%的 Ru、 Cu、 Mn、 Ga, 纯度 99.5%的 Zr, 以原子百分比 at。/。计, 按照成分为 ReTfAgJhGtDk来配制, 各元素的含量如下表 3所示: 各元素的配比
R τ A J G D
Nd Lu Fe Ru B P Cu Mn Ga Zr
12.6 0.1 余量 0.1 5.9 0.05 0.2 0.1 0.1 0.01 按照上述配制组成, 合计称量、 配制了 lOOKg的原料。
熔炼过程: 取 lOOKg配制好的原料放入氧化镁制的坩埚中, 在高频真空感 应熔炼炉中在 10— 2Pa以下的真空中以 1650°C以下的温度进行真空熔炼。 铸造过程: 在真空熔炼后的熔炼炉中通入 Ar气体使气压达到 2万 Pa后, 在水冷圆盘状铸造板中铸造成平均厚度为 3mm的铸片。 氢破粉碎过程: 将原料放入内径为 c|)800mm的不锈钢制旋转式氢破炉容器 中, 抽真空使容器达到 10Pa以下的真空后, 通入纯度为 99.999%的氢气至容器 压力为 0.08MPa,按 2rpm的旋转速度旋转 4小时,而后边加热边抽真空,在 500 V的温度下保持真空状态 3小时, 之后按 5rpm的旋转速度一边旋转容器一边冷 却, 取出氢破粉碎后的粗粉。
微粉碎过程: 使用气流微粉碎机进行微粉碎, 获得平均粒径为 7.0μηι的细 粉, 粉碎后的粉末进行 2等份。
细粉蒸镀热处理过程: 将其中 1份气流粉碎后的细粉 50Kg放入 c|)800mm 的不锈钢旋转容器 (镀膜室) 中, 旋转容器中抽真空至真空度达到 10— 2Pa以下, 之后将旋转容器放入外热式炉中进行加热, 加热温度 500度, 将 lKg的蒸发材 料 (数个直径 5〜10mm的 Cu球) 放入独立的蒸发室, 蒸发室抽真空至真空度 达到 10_2Pa以下后,加热到 700度以上,而后将蒸发材料的蒸气导入不锈钢旋转 式容器(镀膜室) 中, 对细粉进行蒸镀, 时间为 4小时, 加热时不锈钢制容器以 2rpm的旋转速度进行旋转。
蒸镀热处理结束后, 将旋转容器从炉中取出, 一边对外部进行水冷一边按 lOrpm的旋转速度进行旋转, 冷却 3小时, 之后取出蒸镀处理后的细粉, 通过过 筛将蒸发材料与细粉进行分离。
磁场中成形过程: 上述 1份经细粉蒸镀热处理后的粉末和剩余 1份不经过 细粉蒸镀热处理的粉末中均不添加成形助剂及润滑剂等有机物,直接使用直角取 向型的磁场成型机, 在 2T的取向磁场中, 在 0.2ton/cm2的成型压力下, 一次数 个成形为边长 30mm的立方体, 一次成形后在 0.15T的磁场中退磁, 为使一次成 形后的成形体尽可能地不接触到空气, 将其进行密封, 使用二次成形机(等静压 成形机) 在 lton/cm2的压力下进行二次成形。
烧结过程: 将各成形体搬至烧结炉进行烧结, 烧结在 10— 2Pa以下的真空中, 在 300°C和 500°C的温度下各保持 2小时后, 以 1050°C的温度烧结 6小时, 之后 通入 Ar气体使气压达到 O.lMPa后, 冷却至室温。 热处理过程:烧结体在高纯度 Ar气中, 以 650°C温度进行 2小时热处理后, 冷却至室温后取出。 加工过程: 未经过细粉蒸镀热处理的烧结体加工成 c|)15mm、 厚度 3mm的 磁铁, 3mm方向为磁场取向方向, 分成 2份, 1份作为无晶界扩散处理的磁铁直 接进行磁性能检测, 评定其磁特性 (比较例 1 ), 另 1份磁铁洗净, 表面洁净化 后, 按表 4中 A中方法进行晶界扩散处理 (比较例 2)。 经过细粉蒸镀热处理的烧结体加工成 c|)15mm、 厚度 5mm的磁铁, 5mm方 向为磁场取向方向, 分成 4份, 1份作为无晶界扩散处理的磁铁直接进行磁性能 检测, 评定其磁特性 (比较例 3 )。 晶界扩散处理过程: 将另 3份经过细粉蒸镀热处理的烧结体加工成的磁铁 洗净, 表面洁净化后, 各取 1份分别按表 4中 、 B C三种方法进行晶界扩散 处理。 表 4 晶界扩散处理方法 晶界扩散的种类 工序明细
n IV Mn^ ^IV Mn^ 使用 ^氧化物和 Tb氟化物按 3: 1比例配制成的原料,全
Dy氧化物粉末、 Tb 化物粉末 μ ^ ^ hh^ ft-^ -^r ^r^ rtf
A fy^ +r^ 面喷雾涂覆在 铁上, 将涂覆后的 铁干燥, 在 |¾纯度
) Ar气体气氛中, 以 700°C的温度扩散热处理 24小时。
将 Dy3oTb3oNi5Co25Al1()合金微粉碎为平均结晶粒为 20μιη (Dy Tb Ni-Co-Al系合金细粉 的细粉, 全面喷雾涂覆在磁石上, 将涂覆后的磁铁干燥,
B
涂覆扩散法 在高纯度 Ar气体气氛中, 以 1050°C的温度扩散热处理 4 小时。
^ ττ ί . ^™^*^ 在真空热处理炉中' 将 Ho金属板、 Mo网和磁铁一起放
C Ηθ Μθ金属蒸 II扩散法 , ,、, ^/^- ^ ^-k^ h rm
以 1000 C的温度在 Ar气氛中蒸镀处理 4小时。 磁性能评价过程: 烧结磁铁使用中国计量院的 NIM-10000H型 BH大块稀 土永磁无损测量系统进行磁性能检测。 烧结体中的氧含量评价过程: 烧结体中的氧含量使用日本 HORIBA公司的 EMGA-620W型氧氮分析仪进行检测。 细粉蒸镀热处理和晶界扩散处理情况下实施例和比较例的磁性能评价和氧 含量评价的情况如表 5所示。 表 5 实施例和比较例的磁性能评价和氧含量评价的情况 序 细粉蒸 ~~晶界扩 Br (kG H i SQ ~~ (BH)max 烧结体氧含 号 镀处理 散 ^ (kOe ) (%) (MGOe) 量(ppm)
0 比较例 1 无 13 7.2 72.5 21.2 2890
1 比较例 2 A 13.2 12.9 87.8 33.4 2740
2 比较例 3 无 15.4 9.8 86.4 47.2 289
3 本发明 A 15.4 22.7 99.1 55.3 278
4 本发明 无无有有有有 B 15.5 22.3 99.1 56.4 273
5 本发明 C 15.6 25.1 99.2 58.2 275 从表 5可以看出, 通过细粉蒸镀热处理, 蒸镀物均匀存在于细粉表面, 烧 结磁体结晶晶界处蒸镀物质富集, 晶界相的组成发生明显变化, 晶界扩散时,
Dy、 Tb、 Ho等的扩散速度变快, 提高了 Dy、 Tb、 Ho的扩散效率, 使矫顽力显 者提! 现有的常识认为,片厚为 5mm的磁铁需要进行晶界扩散时,一般需要在 800 °C〜950°C的温度区间下扩散 10小时以上,才能获得良好的矫顽力改善效果,提 高扩散温度虽然有助于缩短扩散时间, 但是容易引发磁铁变形、表面融化、 以及
AGG等的问题, 且使得扩散在晶界相和主相扩散同时进行, 导致磁铁性能降低。
而本发明的磁铁在以 1000°C〜1050°C区间进行扩散, 仅需扩散 4小时, 就能在 不引发上述问题的前提下获得良好的矫顽力改善效果, 大大缩短了生产周期。
实施例 3 原料配制过程: 准备纯度 99.5%的 La、 Ce、 Nd、 Ho、 Er, 工业用 Fe-B, 工业用纯 Fe, 纯度 99.99%的 Ru, 纯度 99.5%的 P、 Si、 Cr、 Bi、 Sn、 Ta, 以原 子百分比 at%计, 按照成分为 ReTfAgJhGtDk来配制, 各元素的含量如下:
R成分中, La为 0.1, Ce为 0.1, Nd为 12.5, Ho为 0.2, Er为 0.2; T成分中, Fe 为余量, Ru为 1 ; A成分中, P为 0.05, B为 6.5 ; J成分中, Si为 0.01, Cr为 0.15 ; G成分中, Bi为 0.1, Sn为 0.1 ; D成分中, Ta为 0.5。 按照上述配制组成, 合计称量、 配制了 500Kg的原料。
熔炼过程: 取 500Kg配制好的原料放入氧化铝制的坩埚中, 在高频真空感 应熔炼炉中在 O.lPa以下的真空中以 1550°C以下的温度进行真空熔炼。
铸造过程: 在真空熔炼后的熔炼炉中通入 Ar气体使气压达到 1万 Pa后, 使用甩带铸造法 (SC法) 铸造成平均厚度为 0.1mm的铸片。
氢破粉碎过程:将原料放入内径为 c|)1200mm的不锈钢制旋转式氢破炉容器 中, 抽真空使容器达到 lOPa以下的真空后, 通入纯度为 99.999%的氢气至容器 压力为 0.08MPa,按 3rpm的旋转速度旋转 4小时,而后边加热边抽真空,在 600 V的温度下保持真空状态 2小时, 之后按 30rpm的旋转速度一边旋转容器一边 冷却, 取出氢破粉碎后的粗粉。
微粉碎过程:使用气流微粉碎机进行微粉碎,获得平均粒径为 5μηι的细粉; 将气流粉碎后的细粉分成 7等份。
细粉蒸镀热处理过程: 每份细粉分别与 lg蒸发材料 (数个 5〜10mm粒径 的粒状 Ga) —起放入 c|)1200mm的不锈钢制旋转式氢破炉容器中, 容器抽真空 使达到 O.OOlPa以下的真空, 之后将不锈钢制容器放入外热式炉中进行加热。
每份细粉的蒸镀加热温度、时间如表 6所示,加热时,不锈钢制容器以 3rpm 的旋转速度进行旋转。
蒸镀热处理结束后, 将旋转容器从炉中取出, 一边对外部进行水冷一边按 lOrpm的旋转速度进行旋转, 冷却 3小时。
之后取出蒸镀处理后的细粉, 通过过筛将蒸发材料与细粉进行分离。
磁场中成形过程: 粉末中不添加成形助剂及润滑剂等有机物, 直接使用直 角取向型的磁场成型机, 在 2.1T的取向磁场中, 在 l.lton/cm2的成型压力下, 一次成形为数个边长为 40mm的立方体, 一次成形后在 0.15T的磁场中退磁, 为 使一次成形后的成形体尽可能地不接触到空气, 将其进行密封, 运至烧结炉。
烧结过程: 将各成形体搬至烧结炉进行烧结, 烧结在 10— 以下的真空中, 在 100°C和 400°C的温度下各保持 4小时后,在 20000Pa的 Ar气体气氛中以 1040 s s s s S匕匕
较较发发发发发
V的温例例明明明明明度烧结 3小时, 之后通入 Ar气体使气压达到 O.lMPa后, 冷却至室温。 热处理过程:烧结体在高纯度 Ar气中, 以 600°C温度进行 1小时热处理后, 冷却至室温后取出。
磁性能评价过程: 烧结磁铁使用中国计量院的 NIM-10000H型 BH大块稀 土永磁无损测量系统进行磁性能检测, 评价平均值。 烧结体中的氧含量评价过程: 烧结体中的氧含量使用日本 HORIBA公司的 EMGA-620W型氧氮分析仪进行检测。 相同加热温度、 不同时间的细粉蒸镀热处理后的实施例和比较例的磁性能 评价和氧含量评价的情况如表 6中所示。 表 6 实施例和比较例的磁性能评价和氧含量评价的情况 序 细粉蒸镀处 细粉蒸镀处 Br Hcj SQ (BH)max 烧结体氧 号 理温度(°C ) 理时间 (hr) (kGs) (kOe) (%) (MGOe) 含量(ppm)
00 0.05 13.9 9.1 79.9 44.7 2780 00 0.1 15.3 13.4 98.1 55.1 725 00 1 15.4 14.3 98.3 55.2 368 00 4 15.4 14.4 99.3 55.7 385
4 00 12 15.5 13.9 99.2 56.5 402
00 24 15.3 13.6 99.1 55.8 569 00 48 14.9 12.7 97.4 52.8 980 从表 6可以看出, 细粉的蒸镀处理时间不满 0.1小时的话, 细粉蒸镀处理 的效果不充分, 这样就会和同没有氧化膜时一样, 粉末间的附着力变高, 这样的 话, Br、 (BH) max会变得极差, 另外, 也容易产生 AGG, 使矫顽力降低。 另 一方面, 细粉的蒸镀热处理时间超过 24小时之时, 细粉的粒子表面生成的蒸镀 膜被吸收扩散到粒子内, 结果就会同无氧化膜一样,会使氧含量增加, Br、 (BH) max降低, 极易产生 (AGG), 使矫顽力 Hcj降低。
实施例 4 原料配制过程: 准备纯度 99.5%的 Sm、 Eu、 Nd、 Tm、 Y, 工业用 Fe-B,工 业用纯 Fe,纯度 99.99%的 Ni, 纯度 99.5%的 C、 Cu、 Mn、 Ga、 In、 Ti, 以原子 百分比 at%计, 按照成分为 ReTfAgJhGtDk来配制, 各元素的含量如下:
R成分中, Sm为 0.1, Eu为 0.1, Nd为 12.5, Tm为 0.5, Y为 0.1 ;
T成分中, Fe 为余量, Ni为 0.2;
A成分中, C为 0.05, B为 6.5;
J成分中, Cu为 0.2, Mn为 0.1 ;
G成分中, Ga为 0.2, In为 0.1 ;
D成分中, Ti为 0.5。
按照上述配制组成, 合计称量、 配制了 500Kg的原料。
熔炼过程: 取 500Kg配制好的原料放入氧化铝制的坩埚中, 在高频真空感 应熔炼炉中在 O.lPa以下的真空中以 1550°C以下的温度进行真空熔炼。
铸造过程: 在真空熔炼后的熔炼炉中通入 Ar气体使气压达到 4万 Pa后, 使用甩带铸造法 (SC) 铸造成平均厚度为 0.6mm的铸片。
氢破粉碎过程: 将原料放入内径为 1200mm的不锈钢制旋转式氢破炉容器 中, 抽真空使容器达到 lOPa以下的真空, 之后通入纯度为 99.999%的氢气至容 器压力为 0.1MPa, 按 2rpm的旋转速度旋转 2小时, 而后边加热边抽真空, 在 700 °C的温度下保持真空状态 3小时, 之后按 5rpm的旋转速度一边旋转容器一 边冷却, 取出氢破粉碎后的粗粉。
微粉碎过程: 使用 He气流微粉碎机进行微粉碎, 获得平均粒径为 1.8μηι的 细粉。
将细粉分成 2等份, 每份 250Kg。
细粉蒸镀热处理过程: 将其中 1份气流粉碎后的 250Kg细粉与 2Kg蒸发材 料 (数个 2〜10mm粒状银) 一起放入 c|)1200mm的不锈钢制旋转式氢破炉容器 中, 在容器中抽真空使达到 O.OOOlPa以下的真空, 之后将不锈钢制容器放入外 热式炉中进行加热, 加热温度为 600°C, 蒸镀处理时间为 2小时, 且加热时不锈 钢制容器以 2rpm的旋转速度进行旋转。
加热后, 将容器从炉中取出, 一边在外部进行水冷一边按 5rpm的旋转速度 进行旋转, 冷却 5小时。
之后取出蒸镀处理后的细粉, 通过过筛将蒸发材料与细粉进行分离。
磁场中成形过程: 上述 1份经细粉蒸镀热处理后的粉末和剩余 1份不经过 细粉蒸镀热处理的粉末中均不添加成形助剂及润滑剂等有机物,直接使用直角取 向型的磁场成型机, 在 1.8T的取向磁场中, 在 l.lton/cm2的成型压力下, 成形 为数个边长为 40mm的立方体, 一次成形后在 0.1T的磁场中退磁。
为使成形后的成形体尽可能地不接触到空气将其进行密封, 运至烧结炉。
烧结过程: 将各成形体搬至烧结炉进行烧结, 烧结在 10— 2Pa以下的真空中, 在 300°C和 700°C的温度下各保持 2小时后,在 50000Pa的 Ar气体气氛中以 900 °C〜1160°C的温度烧结 2小时, 之后通入 Ar气体使气压达到 O.lMPa后, 冷却 至室温。
热处理过程:烧结体在高纯度 Ar气中, 以 600°C温度进行 1小时热处理后, 冷却至室温后取出。
磁性能评价过程: 烧结磁铁使用中国计量院的 NIM-10000H型 BH大块稀 土永磁无损测量系统进行磁性能检测, 评价平均值。
烧结体中的氧含量评价过程: 烧结体中的氧含量使用日本 HORIBA公司的 EMGA-620W型氧氮分析仪进行检测。
有或无细粉蒸镀热处理后在不同烧结温度情况下的实施例和比较例的磁性 能评价和氧含量评价的情况如表 7中所示。
表 7 实施例和比较例的磁性能评价和氧含量评价的情况 序 蒸镀 烧结温 TO Br Hcj SQ (BH)max 烧结体氧 号 处理 度 (°c ) (g/cc) (kGs) (kOe) (%) (MGOe) 含量(ppm)
1 比较例 无 925 7.23 12.9 11.8 68.3 22.8 2670
2 比较例 无 950 7.27 13.6 11.5 94.7 26.7 2860
3 比较例 无 975 7.34 13.8 11.2 96.2 43.4 2790 比较例 无 1000 7.45 14.1 10.9 96.1 44.2 2850 比较例 无 1025 7.51 14.3 10.8 96.1 44.8 2750 比较例 无 1050 7.54 13.8 10.5 92.5 40.7 2820 比较例 无 1075 7.46 13.6 10.3 90.2 40.2 2840 比较例 无 1 100 7.42 13.2 10.1 88.5 39.5 2760 比较例 无 1 125 7.38 12.8 9.1 83.9 38.3 2850 比较例 无 1 140 7.32 12.1 8.2 81.7 30.1 2820 比较例 无 1 150 7.31 1 1.7 6.7 70.3 27.2 2840 本发明 有 900 7.46 14.2 13.0 98.2 49.8 395 本发明 有 950 7.48 14.4 13.2 98.2 50.6 421 本发明 有 975 7.5 14.5 13.1 98.2 50.8 434 本发明 有 1000 7.51 14.6 13 98.3 51.1 436 本发明 有 1025 7.53 14.7 12.9 98,4 51.2 428 本发明 有 1050 7.56 14.8 12.8 98.4 51.2 448 本发明 有 1075 7.57 14.8 12.8 98.6 51.8 444 本发明 有 1 100 7.62 14.9 12.7 98.7 52.2 472 本发明 有 1 125 7.65 15 12.4 99.1 52.6 469 本发明 有 1 140 7.65 15 12.1 99.2 52.8 462 比较例 有 1 150 7.29 13.4 1 1.8 76.5 32.6 896 从表 7可以看出, 通过细粉的蒸镀热处理, 可使获得高性能磁体的烧结温 度范围显著变宽。这是因为蒸镀膜可防止氧化,有利于促进较低烧结温度时的烧 结, 及在高烧结温度时不会发生晶粒异常长大 (AGG), 这样的话不管是低温烧 结还是高温烧结都可以取得较好的结果。 上述实施例仅用来进一步说明本发明的几种具体实施方式, 但本发明并不 局限于实施例, 凡是依据本发明的技术实质对以上实施例所作的任何简单修改、 等同变化与修饰, 均落入本发明技术方案的保护范围内。 工业实用性 本发明基于蒸镀处理的稀土磁铁用合金粉末的制造方法和稀土磁铁的制造 方法, 其是在微粉碎工序之后, 磁场中成形工序之前, 增加细粉蒸镀处理工序, 以使粉末的烧结性发生剧变, 达到制成高矫顽力、 高方形度、 高耐热性的磁铁的 目的。 本发明可工业上实用, 具有良好的工业实用性。

Claims

权 利 要 求
1、 基于蒸镀处理的稀土磁铁用合金粉末的制造方法, 所述的稀土磁铁为含有 R2T14B主相的磁铁,所述的 R为选自包含钇元素在内的稀土元素中的至少一种, 所述 T为包括 Fe的至少一种过渡金属元素, 其特征在于, 包括如下的步骤: 稀 土磁铁用合金粗粉碎后再通过微粉碎制成细粉,将所述细粉和蒸发材料在真空或 惰性气体气氛中蒸镀处理, 其中
蒸镀到所述细粉上的所述蒸发材料与所述细粉的重量比为 10—6〜0.05: 1, 以及所述蒸发材料选自 Yb、 Eu、 Ba、 Sm、 Tm、 Dy、 Nd、 Gd、 Er、 Pr、
Tb、 Ho、 K、 Na、 Sr、 Tl、 Mn、 Sn、 Sb、 P、 Zn、 Mg、 Li、 Ca、 Ga、 Ag、 Al、
Cu、 B203、 Mo03、 ZnS、 SiO或 W03中的至少一种。
2、 根据权利要求 1中所述的基于蒸镀处理的稀土磁铁用合金粉末的制造方法, 其特征在于: 所述稀土磁铁的氧含量在 1500ppm以下。
3、 根据权利要求 2中所述的基于蒸镀处理的稀土磁铁用合金粉末的制造方法, 其特征在于: 将所述细粉送入镀膜室, 抽真空, 将所述蒸发材料加热到蒸发温度 以上, 对所述细粉进行蒸镀, 所述镀膜室的温度为 50°C〜800°C, 蒸镀时间为 6 分钟以上 24小时以下。
4、 根据权利要求 3中所述的基于蒸镀处理的稀土磁铁用合金粉末的制造方法, 其特征在于: 所述镀膜室的温度为 300°C〜700°C。
5、 根据权利要求 2中所述的基于蒸镀处理的稀土磁铁用合金粉末的制造方法, 其特征在于: 所述粗粉碎包括在 O.OlMPa以上、 IMPa以下的氢气压力下保持 0.5〜6小时吸氢破碎的步骤和之后脱氢的步骤, 所述微粉碎为气流磨微粉碎。
6、 根据权利要求 3中所述的基于蒸镀处理的稀土磁铁用合金粉末的制造方法, 其特征在于: 所述蒸镀处理工序中, 对所述细粉进行振动或摇动。
7、 根据权利要求 6中所述的基于蒸镀处理的稀土磁铁用合金粉末的制造方法, 其特征在于: 是在压力条件为 10—5Pa以上 lOOOPa以下的真空状态, 对细粉进行 蒸镀处理。
8、 根据权利要求 2中所述的基于蒸镀处理的稀土磁铁用合金粉末的制造方法, 其特征在于: 将所述细粉送入镀膜室, 将所述蒸发材料加热到蒸发温度以上, 对 所述细粉进行蒸镀, 所述镀膜室的温度为 50°C〜800°C, 蒸镀时间为 6分钟以上 24小时以下,在压力条件为 10—3Pa以上 lOOOPa以下的惰性气氛中对细粉进行蒸 镀处理。
9、 根据权利要求 7中所述的基于蒸镀处理的稀土磁铁用合金粉末的制造方法, 其特征在于, 所述稀土磁铁用合金以原子百分比计, 其成分为 RJVAgJhGiDk, 其 中:
R为 Nd或包含 Nd和选自 La、 Ce、 Pr、 Sm、 Gd、 Dy、 Tb、 Ho、 Er、 Eu、 Tm、 Lu或 Y中的至少一种, T为 Fe或包含 Fe和选自 Ru、 Co或 Ni中的至少 一种, A为 B或包含 B和选自 C或 P中的至少一种, J为选自 Cu、 Mn、 Si或 Cr中的至少一种, G为选自 Al、 Ga、 Ag、 Bi或 Sn中的至少一种, D为选自 Zr、 Hf、 V、 Mo、 W、 Ti或 Nb中的至少一种; 以及
e的原子百分比 &1%为 12≤e≤16,
g的原子百分比 &1%为 5≤g≤9,
h的原子百分比 &1%为 0.05≤h≤l,
i的原子百分比 &1%为 0.2≤i≤2.0,
k的原子百分比 &1%为 0≤j≤4,
f的原子百分比 &1%为 f= 100-e-g-h-i-k。
10、 稀土磁铁的制造方法, 所述的稀土磁铁为含有 R2T14B主相的磁铁, 所述的 R为选自包含钇元素在内的稀土元素中的至少一种, 所述 T为包括 Fe的至少一 种过渡金属元素, 其特征在于, 包括如下的步骤: 稀土磁铁用合金粗粉碎后再通 过微粉碎制成细粉, 将所述细粉和蒸发材料在真空或惰性气体气氛中蒸镀处理 后, 蒸镀到所述细粉上的所述蒸发材料与所述细粉的重量比为 10—6-0.05: 1, 之后 使用磁场成形法获得成形体, 并在真空或惰性气体中以 900°C〜1140°C的温度对 所述成形体进行烧结,
以及所述蒸发材料选自 Yb、 Eu、 Ba、 Sm、 Tm、 Dy、 Nd、 Gd、 Er、 Pr、 Tb、 Ho、 K、 Na、 Sr、 Tl、 Mn、 Sn、 Sb、 P、 Zn、 Mg、 Li、 Ca、 Ga、 Ag、 Al、 Cu、 B203、 Mo03、 ZnS、 SiO或 W03中的至少一种。
11、 根据权利要求 10中所述的稀土磁铁的制造方法, 其特征在于: 在烧结后的 处理工序中, 还包括在 700°C〜1050°C的温度下进行的 RH晶界扩散处理工序。
12、 根据权利要求 10中所述的稀土磁铁的制造方法, 其特征在于: 将所述细粉 送入镀膜室, 抽真空, 将所述蒸发材料加热到蒸发温度以上, 对所述细粉进行蒸 镀, 所述镀膜室的温度为 50°C〜800°C, 蒸镀时间为 6分钟以上 24小时以下。
PCT/CN2013/091065 2012-12-31 2013-12-31 基于蒸镀处理的稀土磁铁用合金粉末的制造方法和稀土磁铁的制造方法 WO2014101882A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/758,696 US20150357119A1 (en) 2012-12-31 2013-12-31 Manufacturing methods of a powder for rare earth magnet and the rare earth magnet based on evaporation treatment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210592348.5 2012-12-31
CN201210592348.5A CN103050268B (zh) 2012-12-31 2012-12-31 基于细粉蒸着热处理的烧结Nd-Fe-B系磁铁制作方法

Publications (1)

Publication Number Publication Date
WO2014101882A1 true WO2014101882A1 (zh) 2014-07-03

Family

ID=48062877

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2013/091065 WO2014101882A1 (zh) 2012-12-31 2013-12-31 基于蒸镀处理的稀土磁铁用合金粉末的制造方法和稀土磁铁的制造方法
PCT/CN2013/091061 WO2014101880A1 (zh) 2012-12-31 2013-12-31 基于蒸镀处理的稀土磁铁用合金粉末的制造方法和稀土磁铁的制造方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/091061 WO2014101880A1 (zh) 2012-12-31 2013-12-31 基于蒸镀处理的稀土磁铁用合金粉末的制造方法和稀土磁铁的制造方法

Country Status (3)

Country Link
US (1) US20150357119A1 (zh)
CN (1) CN103050268B (zh)
WO (2) WO2014101882A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112348101A (zh) * 2020-11-16 2021-02-09 中冶赛迪重庆信息技术有限公司 一种基于异常数据分析的轧钢燃耗预警方法及系统

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103050268B (zh) * 2012-12-31 2016-01-20 厦门钨业股份有限公司 基于细粉蒸着热处理的烧结Nd-Fe-B系磁铁制作方法
CN104900359B (zh) * 2015-05-07 2017-09-12 安泰科技股份有限公司 复合靶气相沉淀制备晶界扩散稀土永磁材料的方法
CN105598435A (zh) * 2015-11-12 2016-05-25 苏州萨伯工业设计有限公司 在磁钢废料中添加磷制备纳米复合永磁材料的方法
CN105598434A (zh) * 2015-11-12 2016-05-25 苏州萨伯工业设计有限公司 在磁钢废料中添加液相纳米铕制备稀土永磁材料的方法
CN105336464B (zh) * 2015-11-30 2017-06-30 宁波可可磁业股份有限公司 一种钕铁硼磁性材料的制备方法
CN105489368B (zh) * 2015-12-28 2017-10-31 宁波市电力设计院有限公司 钕铁硼永磁体的制备方法
JP6783935B2 (ja) * 2016-12-21 2020-11-11 パオトウ リサーチ インスティチュート オブ レア アース ネオジム−鉄−ボロン永久磁石材料の製造方法
CN106847455A (zh) * 2016-12-21 2017-06-13 包头稀土研究院 钕铁硼薄片的制备方法
CN106847456A (zh) * 2016-12-21 2017-06-13 包头稀土研究院 钕铁硼磁粉的制备方法
CN106676310A (zh) * 2017-03-07 2017-05-17 龙岩紫荆创新研究院 一种Ag‑Cu‑Sn晶界扩散添加剂及含有该晶界扩散添加剂的钕铁硼磁体
CN107464684B (zh) * 2017-08-30 2020-04-21 包头天和磁材科技股份有限公司 烧结磁体的处理方法
JP7139920B2 (ja) * 2018-12-03 2022-09-21 Tdk株式会社 R‐t‐b系永久磁石
JP7293772B2 (ja) * 2019-03-20 2023-06-20 Tdk株式会社 R-t-b系永久磁石
US20200303100A1 (en) * 2019-03-22 2020-09-24 Tdk Corporation R-t-b based permanent magnet
CN110993232B (zh) * 2019-12-04 2021-03-26 厦门钨业股份有限公司 一种r-t-b系永磁材料、制备方法和应用
CN111326307B (zh) * 2020-03-17 2021-12-28 宁波金鸡强磁股份有限公司 一种渗透磁体用的涂覆材料及高矫顽力钕铁硼磁体的制备方法
CN111613402B (zh) * 2020-05-18 2021-07-20 安徽吉华新材料有限公司 一种利用钕铁硼废旧磁钢再制造高性能永磁体的工艺
CN113441717B (zh) * 2021-07-02 2023-05-16 生一伦磁业有限公司 一种钕铁硼永磁材料的烧结方法
CN114898959B (zh) * 2022-04-29 2024-04-12 江苏兰诺磁业有限公司 一种高矫顽力的钕铁硼硬磁材料及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011023436A (ja) * 2009-07-14 2011-02-03 Fuji Electric Holdings Co Ltd 永久磁石用磁石粉末の製造方法、永久磁石粉末及び永久磁石
CN102586682A (zh) * 2011-01-17 2012-07-18 三环瓦克华(北京)磁性器件有限公司 一种高性能稀土永磁烧结磁体及其制造方法
CN102682987A (zh) * 2011-03-15 2012-09-19 北京中科三环高技术股份有限公司 稀土永磁体的制备方法、制备装置及其制备的稀土永磁体
CN103050268A (zh) * 2012-12-31 2013-04-17 厦门钨业股份有限公司 基于细粉蒸着热处理的烧结Nd-Fe-B系磁铁制作方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04221005A (ja) * 1990-12-20 1992-08-11 Sumitomo Metal Mining Co Ltd 還元拡散法を利用した希土類金属を含む合金粉末の製造方法
WO1999027544A1 (de) * 1997-11-20 1999-06-03 Institut für Festkörper- und Werkstofforschung Dresden e.V. Verfahren zur herstellung eines magnetlegierungspulvers
US6511552B1 (en) * 1998-03-23 2003-01-28 Sumitomo Special Metals Co., Ltd. Permanent magnets and R-TM-B based permanent magnets
CN103227022B (zh) * 2006-03-03 2017-04-12 日立金属株式会社 R‑Fe‑B系稀土类烧结磁铁
RU2427051C2 (ru) * 2006-12-21 2011-08-20 Улвак, Инк. Постоянный магнит и способ его изготовления
US8317941B2 (en) * 2008-03-31 2012-11-27 Hitachi Metals, Ltd. R-T-B-type sintered magnet and method for production thereof
CN101819841A (zh) * 2010-05-17 2010-09-01 上海交通大学 钕铁硼磁性材料及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011023436A (ja) * 2009-07-14 2011-02-03 Fuji Electric Holdings Co Ltd 永久磁石用磁石粉末の製造方法、永久磁石粉末及び永久磁石
CN102586682A (zh) * 2011-01-17 2012-07-18 三环瓦克华(北京)磁性器件有限公司 一种高性能稀土永磁烧结磁体及其制造方法
CN102682987A (zh) * 2011-03-15 2012-09-19 北京中科三环高技术股份有限公司 稀土永磁体的制备方法、制备装置及其制备的稀土永磁体
CN103050268A (zh) * 2012-12-31 2013-04-17 厦门钨业股份有限公司 基于细粉蒸着热处理的烧结Nd-Fe-B系磁铁制作方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112348101A (zh) * 2020-11-16 2021-02-09 中冶赛迪重庆信息技术有限公司 一种基于异常数据分析的轧钢燃耗预警方法及系统
CN112348101B (zh) * 2020-11-16 2023-04-07 中冶赛迪信息技术(重庆)有限公司 一种基于异常数据分析的轧钢燃耗预警方法及系统

Also Published As

Publication number Publication date
WO2014101880A1 (zh) 2014-07-03
CN103050268A (zh) 2013-04-17
US20150357119A1 (en) 2015-12-10
CN103050268B (zh) 2016-01-20

Similar Documents

Publication Publication Date Title
WO2014101882A1 (zh) 基于蒸镀处理的稀土磁铁用合金粉末的制造方法和稀土磁铁的制造方法
TWI751789B (zh) 釹鐵硼磁體材料、原料組合物及製備方法和應用
JP5205277B2 (ja) 永久磁石及び永久磁石の製造方法
EP3029689B1 (en) Method for increasing coercive force of magnets
JP7220300B2 (ja) 希土類永久磁石材料、原料組成物、製造方法、応用、モーター
JP4811143B2 (ja) R−Fe−B系希土類焼結磁石およびその製造方法
TWI742937B (zh) R-t-b系永磁材料、製備方法和應用
CN106128672A (zh) 一种扩散烧结连续化RE‑Fe‑B磁体及其制备方法
TWI755152B (zh) 釹鐵硼磁體材料、原料組合物及製備方法和應用
JP5101849B2 (ja) 磁気特性、耐熱性、耐食性及び耐候性に優れたボンド磁石用の磁性材料の製造方法及びこの磁性材料を用いて作製した希土類ボンド磁石
JP5348124B2 (ja) R−Fe−B系希土類焼結磁石の製造方法およびその方法によって製造された希土類焼結磁石
JP7253069B2 (ja) 希土類永久磁石材料及びその原料組成物、製造方法、並びに応用
TWI751788B (zh) 釹鐵硼磁體材料、原料組合物及製備方法和應用
CN109585113A (zh) 一种烧结钕铁硼磁体的制备方法
JP5146552B2 (ja) R−Fe−B系希土類焼結磁石およびその製造方法
WO2018113717A1 (zh) 钕铁硼永磁材料的制备方法
CN111091945B (zh) 一种r-t-b系永磁材料、原料组合物、制备方法、应用
CN113593882A (zh) 2-17型钐钴永磁材料及其制备方法和应用
CN107785141A (zh) 一种通过放电等离子烧结技术提高非稀土MnBi永磁合金高温稳定性的方法
WO2016155674A1 (zh) 一种含有Ho和W的稀土磁铁

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13868629

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14758696

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 13868629

Country of ref document: EP

Kind code of ref document: A1