WO2014101460A1 - 功能化氯化胆碱离子液体、其制备方法及其在电化学储能器件中的应用 - Google Patents

功能化氯化胆碱离子液体、其制备方法及其在电化学储能器件中的应用 Download PDF

Info

Publication number
WO2014101460A1
WO2014101460A1 PCT/CN2013/082892 CN2013082892W WO2014101460A1 WO 2014101460 A1 WO2014101460 A1 WO 2014101460A1 CN 2013082892 W CN2013082892 W CN 2013082892W WO 2014101460 A1 WO2014101460 A1 WO 2014101460A1
Authority
WO
WIPO (PCT)
Prior art keywords
ionic liquid
choline chloride
functionalized
room temperature
solvent
Prior art date
Application number
PCT/CN2013/082892
Other languages
English (en)
French (fr)
Inventor
张灵志
雍天乔
Original Assignee
中国科学院广州能源研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院广州能源研究所 filed Critical 中国科学院广州能源研究所
Priority to US14/648,859 priority Critical patent/US9728806B2/en
Publication of WO2014101460A1 publication Critical patent/WO2014101460A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C213/00Preparation of compounds containing amino and hydroxy, amino and etherified hydroxy or amino and esterified hydroxy groups bound to the same carbon skeleton
    • C07C213/06Preparation of compounds containing amino and hydroxy, amino and etherified hydroxy or amino and esterified hydroxy groups bound to the same carbon skeleton from hydroxy amines by reactions involving the etherification or esterification of hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C215/00Compounds containing amino and hydroxy groups bound to the same carbon skeleton
    • C07C215/02Compounds containing amino and hydroxy groups bound to the same carbon skeleton having hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon skeleton
    • C07C215/40Compounds containing amino and hydroxy groups bound to the same carbon skeleton having hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon skeleton with quaternised nitrogen atoms bound to carbon atoms of the carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C217/00Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton
    • C07C217/02Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having etherified hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon skeleton
    • C07C217/04Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having etherified hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and saturated
    • C07C217/06Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having etherified hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and saturated having only one etherified hydroxy group and one amino group bound to the carbon skeleton, which is not further substituted
    • C07C217/08Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having etherified hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and saturated having only one etherified hydroxy group and one amino group bound to the carbon skeleton, which is not further substituted the oxygen atom of the etherified hydroxy group being further bound to an acyclic carbon atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C253/00Preparation of carboxylic acid nitriles
    • C07C253/30Preparation of carboxylic acid nitriles by reactions not involving the formation of cyano groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C255/00Carboxylic acid nitriles
    • C07C255/01Carboxylic acid nitriles having cyano groups bound to acyclic carbon atoms
    • C07C255/16Carboxylic acid nitriles having cyano groups bound to acyclic carbon atoms containing cyano groups and singly-bound oxygen atoms bound to the same carbon atom of an acyclic carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C311/00Amides of sulfonic acids, i.e. compounds having singly-bound oxygen atoms of sulfo groups replaced by nitrogen atoms, not being part of nitro or nitroso groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C311/00Amides of sulfonic acids, i.e. compounds having singly-bound oxygen atoms of sulfo groups replaced by nitrogen atoms, not being part of nitro or nitroso groups
    • C07C311/48Amides of sulfonic acids, i.e. compounds having singly-bound oxygen atoms of sulfo groups replaced by nitrogen atoms, not being part of nitro or nitroso groups having nitrogen atoms of sulfonamide groups further bound to another hetero atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic System
    • C07F5/02Boron compounds
    • C07F5/022Boron compounds without C-boron linkages
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic System
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/10Compounds having one or more C—Si linkages containing nitrogen having a Si-N linkage
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic System
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/18Compounds having one or more C—Si linkages as well as one or more C—O—Si linkages
    • C07F7/1804Compounds having Si-O-C linkages
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic System
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/18Compounds having one or more C—Si linkages as well as one or more C—O—Si linkages
    • C07F7/1804Compounds having Si-O-C linkages
    • C07F7/1872Preparation; Treatments not provided for in C07F7/20
    • C07F7/188Preparation; Treatments not provided for in C07F7/20 by reactions involving the formation of Si-O linkages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • H01G11/62Liquid electrolytes characterised by the solute, e.g. salts, anions or cations therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/04Hybrid capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • H01G11/64Liquid electrolytes characterised by additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Electrochemistry (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Secondary Cells (AREA)

Abstract

本发明公开了式I所示的功能化氯化胆碱离子液体制备方法及其在电化学储能器件中的应用,作为电解质材料或添加剂应用于锂离子电池和超级电容器。所述离子液体电解质材料有较好的生物相容性、阻燃性,具有高的离子电导率、低粘度和宽电化学窗口。其中R1选自如下基团:(CH2=CH-(CH2n)->CN(CH2n-、或R2 3Si-,其中R2选自CH3-(CH2m-,n选自1〜3的整数,m选自0〜2的整数;或其中一个R2为(CH33Si-O-。阴离子A选自如下基团:Cl-、Br-、I-、BF4-、NO3-、SO4 2-、CF3COO-、CF3SO3 -、(CF3SO22N-、PF6 -、BF2C2O4 -、或者B(C2O42-

Description

功能化氯化胆碱离子液体、 其制备方法及其在电化学储能器件中的应用 技术领域
本发明涉及化学技术领域, 尤其涉及功能化的氯化胆碱室温离子液体材料, 其制备方法及其作为电解质材料或添加剂在电化学储能器件中的应用。
技术背景
目前,锂离子电池产业中所使用的电解质材料主要是环状碳酸酯和线型碳酸 酯类化合物的多元溶剂体系和 LiPF6锂盐, 电解质体系的工作模式在技术上仍然 存在安全性隐患,其主要原因是碳酸酯类有机电解质材料具有很高的挥发性和可 燃性。 在要求高安全性、 大容量和高倍率放电的混合动力和全电汽车应用领域, 安全性问题是制约这些材料应用的重要因素。因此, 国内外都在积极地研究开发 安全、 有效和环境友好的新一代有机电解质材料。
在室温或室温附近温度下呈液态的由离子构成的物质, 称为室温离子液体、 室温熔融盐、 有机离子液体等, 但倾向于简称离子液体。 由于其不易挥发, 不易 燃, 良好的热稳定性、 好的化学和电化学稳定性, 在绿色化学、 工业催化、 工业 溶剂等方面具有广泛的应用前景。因为离子液体的高安全、高电化学稳定等特性, 因此使用离子液体作为锂离子电池的电解液的研究在活跃地进行。
用于锂离子电池的离子液体电介质材料, 可以分为两种: 一种是离子液体的 锂盐溶体; 另一种是离子液体的锂盐熔体再加上相应的添加剂。第一代的离子液 体是以 A1C 为阴离子的有机熔盐,这种离子液体容易水解,与水反应放出 HC1, 所以对于第一代离子液体锂离子电池中的应用研究停留在此。第二代的离子液体 是以咪唑类阳离子为正离子和氟化的无机或者有机阴离子为负离子的有机室温 熔盐, 这种离子液体表现出不足的电化学还原稳定性, 因此在高能电池中不被认 为是有商业应用前景的。第三代离子液体使用非咪唑类阳离子和氟化的无机或有 机阴离子。 目前最适合于锂离子电池的离子液体是 N,N-二烷基哌啶 (专利 JP2006260952) 。 但是这些离子液体也致使锂离子电池的输出功率大为下降,因 为这些高电化学稳定性的离子液体有高的粘度,与传统碳酸酯类电解质相比这使 得锂离子传导速率大为下降 ( 0. Borodinet al. J. of Phydical Chemistry B, 2006, 110(34), pp. 16879-16886) 。 离子液体基电解质锂离子电池与传统碳酸酯基电解 质锂离子电池相比如今还是输出功率小, 充电容量也比较小。 Lee et al. (Electrochem. Comm. 8 (2006)460)报道过使用 N上带有酯基的咪唑离子液体作为 锂离子电池电解质提高了锂离子电导率和锂离子的扩散速率。但是这些咪唑离子 液体电化学稳定性不足。 R. West等在专利 US7679884B2和 US2009088583-A1 中,报道了硅基季膦和硅基季胺类离子液体, 这些离子液体显示出改善的电化学 稳定性, 但是仍有较高的粘度。
氯化胆碱在细胞发挥功能时起非常重要的作用,它的生物合成和分解调控细 胞的生命活动具有优秀的生物相容性, 并且可以生物降解。此外, 氯化胆碱作为 伺料添加剂等等, 实现了工业化生产, 是很便宜的原料。 另外, 氢氧化胆碱曾用 作 aldol縮合反应的碱性催化剂。 具有低熔点的胆碱衍生物是多种研究的题目, 一些胆碱的类似物已经合成出来 [Pemak, Chmistry-A Eurpean Journal, 2007, 13(24),pp. 6817-6827] [Me3NC2H4Y][Cl] (Y=OH, CI, OC(0)Me, OC(O)Ph)和 MC12 (M=Zn, Sn) 是室温附近导电的粘稠液体, 常用来做电沉积。 但是, 基于氯化 胆碱的离子液体还没有作为锂离子电池的电解液或者添加剂使用的。
发明内容:
本发明的目的是提供一种新型的功能化氯化胆碱室温离子液体。
本发明的另一个目的是提供上述功能化氯化胆碱室温离子液体在电化学储 能器件中的应用。
本发明是通过以下技术方案予以实现的:
一种功能化氯化胆碱室温离子液体,其阳离子化学结构式是基于功能化的氯 化胆碱室温离子液体, 其整体化学结构式如式 1所示:
Figure imgf000004_0001
式 I
其中 R1选自如下基团: (CH2=CH-(CH2)n) -、 CN(CH2)n -、 或 R2 3Si-, R2选自 CH3-(CH2)m-,n选自 1〜3的整数, m选自 0〜2的整数; 或其中一个 R2为 (CH3) 阴离子 A选自如下基团: CI-、 Br -、 I-、 BF4-、 NO3 S04 2-、 CF3COO CF3SO3 ( CF3SO2) 2N―、 PF6—、 BF2C204—、 或 B ( C2O4) 2。 式 I化合物制备方法有方法一和方法二。 举例说明如下。
方法一: 在冰浴冷却条件下, 氯化胆碱与等摩尔量氢氧化钠在乙腈溶剂中室 温反应 20分钟, 然后滴加 1.1倍摩尔量的 -X卤代烷烃回流反应 8小时, 或氯 化胆碱与等摩尔量有机硅试剂(如六甲基二硅氮烷、五甲基氯二硅氧烷和三甲基 氯硅烷) 回流反应 16小时。 反应后过滤除去固体, 旋转蒸发除去溶剂, 然后用 二氯甲烷和乙醚为溶剂重结晶得到 R1-和 R Si-功能化氯化胆碱离子液体。 此功 能化氯化胆碱离子液体与等摩尔量的碱金属或碱土金属盐 MA (阴离子 A为 BF4-、 N03-、 S04 2-、 CF3COO CF3SO3 ( CF3SO2 ) 2N -、 PF6-、 BF2C204-、或者 B ( C2O4 ) 2" ) 溶于水或其他溶剂进行阴离子交换, 搅拌反应 4-6小时后, 使用二氯甲烷溶 剂萃离子取交换后产物, 除去溶剂和干燥后得到目标离子液体。
方法一反应式如下所示:
CH Θ
© ?H2 L NaOH
HOCH2CH2-N-CH: R1-OCH2CH2-N-CH
2. R,X
Θ
CI
LiA
Θ
anion exchange a
Figure imgf000005_0001
R1 = CH2=CH(CH2)n;SiR2 3; CN(CH2)n
方法二: 在 R1为 R Si-的情况下, 室温将氯化胆碱和等摩尔量的碱金属或 碱土金属盐 MA (阴离子 A为 BF4-、 N03-、 SO42-、 CF3COO CF3SO3 ( CF3SO2) 2N -、 PF6-、 BF2C204-、 或者 B ( C2O4) 2" ) 溶于水或其他溶剂进行阴离子交换, 搅拌反应 4-6小时后, 使用二氯甲烷或者其他溶剂萃取, 除去溶剂后得到阴离子 交换后的氯化胆碱离子液体。在第二步反应中, 阴离子交换后的氯化胆碱离子液 体与相应的有机硅试剂(如六甲基二硅氮烷、五甲基氯二硅氧烷和三甲基氯硅烷) 回流反应 16小时, 抽真空除去残余低沸点物质后得到目标离子液体。
方法二反应式如下所示: ®
© CH2 CH:
LiA
HOCH2CH2-N-CH3 HOCHpCH -N-CH
anion exchange CH
CH3 3
Θ CI
Θ
R,X
OCHpCH -N-CH
Ri = SiR2 3
本发明的另一个目的是提供上述功能化的氯化胆碱离子液体作为电解质材 料或者添加剂在电化学储能器件中的应用。
上述室温离子液体电解质材料可用做季胺盐型离子液体电解质材料,作为电 解质材料或添加剂应用于锂离子电池。所述锂离子电池负极可选自石墨,钛酸锂, 纳米硅中的一种,正极可选自钴酸锂,磷酸铁锂, LiNi1/3Mn1/3Co1/302、 /LiNi0.6Mn0.602 和 LiMn02中的一种。
上述室温离子液体电解质材料可用做季胺盐型离 Θ A子液体电解质材料,作为电 解质材料或添加剂应用于电化学超级电容器。所述电化学超级电容器的电极选自 活性炭、 金属氧化物、 导电聚合物。
本发明的有益效果是: 跟现有技术相比,所述离子液体电解质材料有较好的 生物相容性, 具有阻燃性, 以及高离子电导率、 低粘度和宽电化学窗口。 Θ A 附图说明:
图 1是 2-烯丙氧基乙基三甲基铵双 (三氟甲基磺酰基) 亚胺盐的线性伏安 扫描图;
图 2是以 0.8 M 双(三氟甲基磺酰基)亚胺锂的 2-烯丙氧基乙基三甲基铵 双(三氟甲基磺酰基)亚胺离子液体为电解质的钛酸锂锂金属电池的循环性能 (■ - 比容量, 库仑效率);
图 3是以 0.8 M 双(三氟甲基磺酰基)亚胺锂的 2-烯丙氧基乙基三甲基铵 双(三氟甲基磺酰基)亚胺离子液体添加 10%碳酸亚乙烯酯添加剂为电解质的石 墨半电池的循环性能 (■-放电比容量, 充电比容量);
图 4是以 0.8 M 双(三氟甲基磺酰基)亚胺锂的 2-烯丙氧基乙基三甲基铵 双(三氟甲基磺酰基)亚胺离子液体添加 10%碳酸亚乙烯酯添加剂为电解质的磷 酸铁锂锂金属电池的循环性能 (■ -比容量, 库仑效率); 图 5是 2-三甲基硅氧基乙基三甲基铵双 (三氟甲基磺酰基) 亚胺盐的线性 伏安扫描图;
图 6是 2-三甲基硅氧基乙基三甲基铵双 (三氟甲基磺酰基) 亚胺盐的电导 率随温度变化图;
图 7是 2-三甲基硅氧基乙基三甲基铵双 (三氟甲基磺酰基) 亚胺盐超级电 容循环伏安性能;
图 8是 2-三甲基硅氧基乙基三甲基铵双(三氟甲基磺酰基)亚胺盐添加 AN 超级电容循环伏安性能;
图 9是 2-三甲基硅氧基乙基三甲基铵双 (三氟甲基磺酰基) 亚胺盐添加 90%AN超级电容充放电曲线;
图 10是 2-三甲基硅氧基乙基三甲基铵双 (三氟甲基磺酰基) 亚胺盐添加 90%AN超级电容大电流充放电性能。
具体实施方式:
以下通过实施例对本发明做进一步说明, 但不构成对本发明保护范围的限 制。
实施例 1: 2-烯丙氧基乙基三甲基铵氯盐的合成
在冰浴冷却条件下, 0.5 mol 氯化胆碱和 0.5 mol 氢氧化钠在乙腈溶剂中室 温反应 20分钟,然后滴加 0.55 mol摩尔量的烯丙溴, 回流反应 8小时。 反应后过 滤除去固体, 旋转蒸发除去溶剂, 然后用二氯甲烷和乙醚为溶剂重结晶得到 2- 烯丙氧基乙基三甲基铵氯盐: NMR (CDC ): σ 3.47 (m, 9H, +N(CH3)3), 3.90, 3.94 (dd, 4H, OCH2CH20), 4.02 (m, 2H, CH2=CH-CH2-0), 5.23 (ddq, 2H, CH2=CH-CH2-0), 5.84 (ddt, 1H, CH2=CH-CH2-0); 13C NMR (CDCb): σ 54.61, 63.98, 65.68, 72.21, 118.43, 133.27.
实施例 2: 2-烯丙氧基乙基三甲基铵双 (三氟甲基磺酰基) 亚胺盐的合成 0.4 mol 2-烯丙氧基乙基三甲基铵氯盐(实施例 1的产物)与等摩尔量双(三 氟甲基磺酰基)亚胺锂溶于水进行阴离子交换, 机械搅拌 4-6小时后, 使用二氯 甲烷溶剂萃取离子取交换后产物,除去溶剂和干燥后得目标离子液体 2-烯丙氧基 乙基三甲基铵双 (三氟甲基磺酰基) 亚胺盐: NMR CDCls): σ 3.19 (ηι,9Η, +N(CH3)3), 3.58, 3.86 (m, 4H, OCH2CH20), 4.05 (m, 2H, CH2=CH-CH2-0), 5.28 (ddq, 2H, CH2=CH-CH2-0), 5.85 (m, 1H, CH2=CH-CH2-0); 13C NMR (CDCb): σ 54.65, 63.50, 66.20, 72.31, 118.70, 132.97.
实施例 3: 胆碱双 (三氟甲基磺酰基) 亚胺盐的合成
室温下, 将 0.5 mol氯化胆碱和等摩尔量的双 (三氟甲基磺酰基) 亚胺锂溶 于水进行离子交换, 机械搅拌 4-6小时后使用二氯甲烷萃取, 除去溶剂后得到阴 离子交换后的胆碱双 (三氟甲基磺酰基) 亚胺盐: NMR (300MHz, CDCb): δ 3.16 (s, 9H, +N(CH3)3), 3.40 (s, 1H, OH), 3.45 (s, 2H, CH20), 4.03 (s, 2H, CH2N+); 13C NMR (300MHz, CDC ): 54.06, 56.21, 67.66, 119.75.
实施例 4: 2-三甲基硅氧基乙基三甲基铵双 (三氟甲基磺酰基) 亚胺盐的合 成
在 0.4 mol胆碱双 (三氟甲基磺酰基) 亚胺盐 (实施例 3的产物) 中, 滴入
0.4 mol六甲基二硅氮烷回流反应 16小时, 抽真空除去残余低沸点物质后得到目 标离子液体 2-三甲基硅氧基乙基三甲基铵双(三氟甲基磺酰基)亚胺盐: NMR (300MHz, CDC ): δ 0.16 (s, 9Η, Si(CH3)3), 3.22 (s, 9H, +N(CH3)3), 3.50 (s, 2H, CH20), 4.00 (s, 2H, CH2N+); 13C NMR (300MHz, CDC ): -1.04, 54.55, 56.81, 67.86, 119.87.
实施例 5: 2-烯丙氧基乙基三甲基铵双草酸硼酸盐的合成
2-烯丙氧基乙基三甲基铵双草酸硼酸盐是使用与实施例 2相似的方法合成 的。 0.4 mol 2-烯丙氧基乙基三甲基铵氯盐 (实施例 1的产物) 与等摩尔量双草 酸硼酸锂溶于水进行阴离子交换, 机械搅拌 4-6小时后, 使用二氯甲烷溶剂萃取 离子取交换后产物,除去溶剂和干燥后得目标离子液体 2-烯丙氧基乙基三甲基铵 双草酸硼酸盐: NMR (CDCb): σ 3.44 (m, 9H, +N(CH3)3), 3.89, 3.91 (m, 4H, OCH2CH2O), 4.04 (m, 2H, CH2=CH-CH2-0), 5.28 (ddq, 2H, CH2=CH-CH2-0), 5.87 (m, 1H, CH2=CH-CH2-0); 13C NMR (CDCb): σ 54.67, 63.63, 66.92, 72.37, 118.85, 132.01, 158.89。
实施例 6: 2-烯丙氧基乙基三甲基铵双氟草酸硼酸盐的合成
2-烯丙氧基乙基三甲基铵双氟草酸硼酸盐是使用与实施例 2相似的方法合成 的。 0.4 mol 2-烯丙氧基乙基三甲基铵氯盐 (实施例 1的产物) 与等摩尔量双氟 草酸硼酸锂溶于水进行阴离子交换, 机械搅拌 4-6小时后, 使用二氯甲烷溶剂萃 取离子取交换后产物,除去溶剂和干燥后得目标离子液体 2-烯丙氧基乙基三甲基 铵双氟草酸硼酸盐: ¾ NMR (CDC ): σ 3.38 (m, 9H, +N(CH3)3), 3.80, 3.89 (m, 4H, OCH2CH2O), 4.03 (m, 2H, CH2=CH-CH2-0), 5.27 (ddq, 2H, CH2=CH-CH2-0), 5.87 (m, 1H, CH2=CH-CH2-0); 13C NMR (CDCb): σ 54.64, 63.67, 66.72, 72.22, 118.67, 133.05, 160
实施例 腈丙氧基乙基三甲基铵氯盐的合成
2-腈丙氧基乙基三甲基铵氯盐是使用与实施例 1相似的方法合成的。在冰浴 冷却条件下, 0.5 mol 氯化胆碱和 0.5 mol氢氧化钠在乙腈溶剂中室温反应 20分 钟, 然后滴加 0.55 mol腈丙基溴回流反应 8小时, 旋转蒸发除去溶剂, 然后用甲 醇和乙醚为溶剂重结晶得到 2-腈丙氧基乙基三甲基铵氯盐: ^ NMR^CDCb): σ 3.40 (m, 9H, +N(CH3)3), 3.88, 3.94 (dd, 4H, OCH2CH2O), 3.68 (m, 2H, CNCH2-CH2-O), 2.72 (m, 2H, CN-CH7-CH7-O 电化学储能性能说明
实施例 8: 2-烯丙氧基乙基三甲基铵双 (三氟甲基磺酰基) 亚胺盐性能 下面, 以 2-烯丙氧基乙基三甲基铵双(三氟甲基磺酰基)亚胺盐(实施例 2 所得产物)为例,对本发明功能化氯化胆碱室温离子液体的电化学储能性能进行 说明。
2-烯丙氧基乙基三甲基铵双(三氟甲基磺酰基)亚胺盐的电化学窗口测定使 用三电极玻璃电池体系, 以 Pt丝为工作电极, Li丝为对电极和另一 Li丝为参考 电极。 所得线性伏安扫描图如图 1示, 电化学窗口为 0.5-5.2V, 优于咪唑类离子 液体(通常 4V, A. Lewandowski, Journal of Power Sources 194 (2009) 601-609)。
2-烯丙氧基乙基三甲基铵双(三氟甲基磺酰基)亚胺盐中参入 0.8 M双(三 氟甲基磺酰基)亚胺锂后得到没有添加剂电解液, 以此电解液、钛酸锂为正极的 锂金属电池的循环性能如图 2所示。 循环稳定, 容量保持在 145mAh/g不衰减。
2-烯丙氧基乙基三甲基铵双(三氟甲基磺酰基)亚胺盐中参入 0.8 M双(三 氟甲基磺酰基) 亚胺锂和 10%碳酸亚乙烯酯后得到有添加剂的电解液, 以此电 解液、 石墨为正极的半电池的电池的循环性能如图 3 所示。
2-烯丙氧基乙基三甲基铵双(三氟甲基磺酰基)亚胺盐中参入 0.8 M双(三 氟甲基磺酰基) 亚胺锂和 10%碳酸亚乙烯酯后得到有添加剂的电解液, 以此电 解液、 磷酸铁锂为正极的锂金属电池的电池的循环性能如图 4所示。
实施例 9: 2-三甲基硅氧基乙基三甲基铵双 (三氟甲基磺酰基) 亚胺盐性能 下面, 以 2-三甲基硅氧基乙基三甲基铵双(三氟甲基磺酰基)亚胺盐(实施 例 4所得产物)为例,对本发明功能化氯化胆碱室温离子液体的电化学储能性能 进行说明。
2-三甲基硅氧基乙基三甲基铵双(三氟甲基磺酰基)亚胺盐的电化学窗口测 定使用三电极玻璃电池体系, 以 Pt丝为工作电极, Li丝为对电极和另一 Li丝为 参考电极。其线性伏安扫描图如图 5所示, 电化学窗口为 0-5.3V。还原电位低于 咪唑类离子液体(咪唑类通常在 lV vs. Li/Li+),氧化电位也高于咪唑类离子液体 (通常 4 V vs. Li/Li+)。 并且由于还原电位在 0V, 2-三甲基硅氧基乙基三甲基铵 双(三氟甲基磺酰基)亚胺盐室温离子液体适用于锂金属电池和高压锂金属电池。
2-三甲基硅氧基乙基三甲基铵双(三氟甲基磺酰基)亚胺盐的电导率测定使 用玻璃碳电极电池体系。 电导率随温度变化如图 6所示。
下面, 以 2-三甲基硅氧基乙基三甲基铵双(三氟甲基磺酰基)亚胺盐(实施 例 4所得产物)为例,对本发明功能化氯化胆碱室温离子液体的电化学超级电容 器性能进行说明。
发明人研究了纯 2-三甲基硅氧基乙基三甲基铵双(三氟甲基磺酰基)亚胺盐 作为电解液, 活性炭电极组成的对称型超级电容器, 以 5 mv/s的扫描速度, 在不 同截止电压 (1-5 V)内的循环伏安性能 (图 7)。 该电解液在 1-4 V范围内, 循环伏安 曲线呈对称的矩形, 表明活性炭电极具有很好的可逆性, 显示出良好的双电层电 容特性。
图 8为低粘度 A 的添加对其循环伏安性能的影响, 随着 AN 添加量的增加 (20%〜90%) 循环伏安曲线呈现更好的矩形。 因此我们选择添加体积分数为 90% 的 AN/2-三甲基硅氧基乙三甲基铵双(三氟甲基磺酰基)亚胺盐作为电解液, 活性炭电极组成的对称型超级电容器, 来研究其电容器性能。
图 9为 90% 的 AN/2-三甲基硅氧基乙三甲基铵双(三氟甲基磺酰基)亚胺盐 作为电解液, 活性炭电极组成的对称型超级电容器, 在 0.2 A/g 电流密度下的恒 电流充放电曲线。 活性炭电极在 0〜3.5 V电压范围内放电曲线呈现线性变化, 没 有见到明显的析气现象和损坏。 其电压范围远高于商用四乙基四氟硼酸胺 (Et4NBF4)/PC电解液 (0〜2.7V)。
图 10为 90%的 AN/2-三甲基硅氧基乙三甲基铵双 (三氟甲基磺酰基) 亚胺 盐作为电解液, 活性炭电极组成的对称型超级电容器的倍率性能。当电流密度为 0.2 A-g 1 时, 活性炭电极的比电容为 90 F -1; 电流密度增大到 2A_g- 1 时, 比电 容仍能达到 70 F-g"1, 表现非常好的大电流充放电性能。

Claims

权利要求书
1、 一类功能化氯化胆碱离子液体, 其化学结构式如式 1所示:
Figure imgf000012_0001
式 I
其中 R1选自如下基团: (CH2=CH-(CH2)n)-、 CN(CH2)n-、 或 R2 3Si -, R2选自 CH3-(CH2)m-,n选自 1〜3的整数, m选自 0〜2的整数; 或其中一个 R2为 (CH3)
2、 如权利要求 1所述的功能化氯化胆碱离子液体, 其特征在于其阴离子 A 选自如下基团: CI-、 Br -、 I-、 BF4-、 N03-、 SO42-、 CF3COO CF3SO3 (CF3S02)
2N -、 PF6-、 BF2C204-、 或 B (C2O4) 2。 Θ A
3、 权利要求 1所述的功能化氯化胆碱离子液体的制备方法, 其特征在于: 在冰浴冷却条件下, 氯化胆碱和等摩尔量氢氧化钠在乙腈溶剂中室温反应 20分 钟, 然后滴加 1.1倍摩尔量的卤代烷烃, 回流反应 8小时; 或氯化胆碱与等摩尔 量有机硅试剂回流反应 16小时; 反应后过滤除去固体, 旋转蒸发除去溶剂, 然 后用二氯甲烷和乙醚为溶剂重结晶得到功能化氯化胆碱离子液体,此功能化氯化 胆碱离子液体与等摩尔量的碱金属或碱土金属盐溶于水或其他溶剂进行阴离子 交换, 搅拌反应 4-6小时后, 使用二氯甲烷溶剂萃离子取交换后产物, 除去溶剂 和干燥后得到目标离子液体。
4、 权利要求 1所述的功能化氯化胆碱室温离子液体的制备方法, 其特征在 于: 室温下,将氯化胆碱和等摩尔量的碱金属或碱土金属盐溶于水或其他溶剂进 行阴离子交换, 搅拌反应 4-6小时后, 使用二氯甲烷或者其他溶剂萃取, 除去溶 剂后得到阴离子交换后的氯化胆碱离子液体;阴离子交换后的氯化胆碱离子液体 与有机硅试剂回流反应 16小时, 抽真空除去残余低沸点物质后得到目标离子液 体。
5、 权利要求 1所述的功能化氯化胆碱室温离子液体作为电解质材料或者添 加剂在电化学储能器件中的应用。
6、 如权利要求 5所述的功能化的氯化胆碱室温离子液体在电化学储能器件 中的应用,其特征在于所述功能化氯化胆碱室温离子液体用做季胺盐型离子液体 电解质材料, 作为电解质材料或添加剂应用于锂离子电池或超级电容器。
PCT/CN2013/082892 2012-12-28 2013-09-04 功能化氯化胆碱离子液体、其制备方法及其在电化学储能器件中的应用 WO2014101460A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/648,859 US9728806B2 (en) 2012-12-28 2013-09-04 Functionalized choline chloride ionic liquid, preparation method thereof and use in electrochemical energy storage device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210585742.6A CN103113242B (zh) 2012-12-28 2012-12-28 功能化氯化胆碱离子液体、其制备方法及其在电化学储能器件中的应用
CN201210585742.6 2012-12-28

Publications (1)

Publication Number Publication Date
WO2014101460A1 true WO2014101460A1 (zh) 2014-07-03

Family

ID=48411659

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/082892 WO2014101460A1 (zh) 2012-12-28 2013-09-04 功能化氯化胆碱离子液体、其制备方法及其在电化学储能器件中的应用

Country Status (3)

Country Link
US (1) US9728806B2 (zh)
CN (1) CN103113242B (zh)
WO (1) WO2014101460A1 (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2776178A1 (en) 2012-04-05 2013-10-05 Hydro-Quebec Ionic compounds
CN103113242B (zh) * 2012-12-28 2015-04-22 中国科学院广州能源研究所 功能化氯化胆碱离子液体、其制备方法及其在电化学储能器件中的应用
CN105529193A (zh) * 2016-01-29 2016-04-27 佛山市聚成生化技术研发有限公司 一种高工作电压的超级电容器及其制备方法
US20180069239A1 (en) * 2016-09-06 2018-03-08 Industrial Technology Research Institute Electrode, method for fabricating the same, and metal ion battery employing the same
US10707531B1 (en) 2016-09-27 2020-07-07 New Dominion Enterprises Inc. All-inorganic solvents for electrolytes
CN109010161B (zh) * 2018-08-29 2021-06-22 广东瑞邦日化有限公司 黑孢块菌提取物的制备方法及其在染发组合物中的应用
CN110517901B (zh) * 2019-09-20 2021-09-07 合肥工业大学 一种用于超级电容器的宽温区电解液及其制备方法
CN112993399A (zh) * 2019-12-13 2021-06-18 中国科学院广州能源研究所 抑制锂电池集流体铝箔腐蚀的方法
CN113394453B (zh) * 2020-03-12 2023-05-09 比亚迪股份有限公司 一种电解液添加剂、电解液及二次电池
CN112670096B (zh) * 2020-11-23 2022-03-22 广州大学 一种碱式金属盐纳米材料及其制备方法与应用
CN115322108B (zh) * 2022-08-05 2023-05-12 河南大学 胆碱2, 6-二羟基苯甲酸离子液体、合成方法及作为镁空气电池电解液添加剂的应用
CN115304629B (zh) * 2022-10-09 2023-06-02 江苏国泰超威新材料有限公司 一种二氟草酸硼酸钠的制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1724290A1 (en) * 2004-03-11 2006-11-22 Nisshinbo Industries, Inc. Liquid composition containing no solvent
CN101390245A (zh) * 2006-02-28 2009-03-18 3M创新有限公司 溶剂组合物和电化学装置
CN102372732A (zh) * 2010-08-27 2012-03-14 中国科学院广州能源研究所 有机硅醚室温离子液体电解质材料及其在电化学储能器件中的应用
CN103113242A (zh) * 2012-12-28 2013-05-22 中国科学院广州能源研究所 功能化氯化胆碱离子液体、其制备方法及其在电化学储能器件中的应用

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101210000A (zh) * 2006-12-26 2008-07-02 中国科学院兰州化学物理研究所 具有高电化学稳定性的离子液体及其制备方法
US20090088583A1 (en) * 2007-10-01 2009-04-02 West Robert C Organosilicon Amine-Based Electrolytes
CN102074736B (zh) * 2010-06-07 2012-09-05 中国科学院广州能源研究所 含聚醚链有机硅胺电解质材料及其在锂电池电解液中的应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1724290A1 (en) * 2004-03-11 2006-11-22 Nisshinbo Industries, Inc. Liquid composition containing no solvent
CN101390245A (zh) * 2006-02-28 2009-03-18 3M创新有限公司 溶剂组合物和电化学装置
CN102372732A (zh) * 2010-08-27 2012-03-14 中国科学院广州能源研究所 有机硅醚室温离子液体电解质材料及其在电化学储能器件中的应用
CN103113242A (zh) * 2012-12-28 2013-05-22 中国科学院广州能源研究所 功能化氯化胆碱离子液体、其制备方法及其在电化学储能器件中的应用

Also Published As

Publication number Publication date
US9728806B2 (en) 2017-08-08
US20150303511A1 (en) 2015-10-22
CN103113242A (zh) 2013-05-22
CN103113242B (zh) 2015-04-22

Similar Documents

Publication Publication Date Title
WO2014101460A1 (zh) 功能化氯化胆碱离子液体、其制备方法及其在电化学储能器件中的应用
Kar et al. Chelating ionic liquids for reversible zinc electrochemistry
JP5013776B2 (ja) 電気化学デバイスおよび電気化学デバイス電解質用組成物
CA2518923C (en) Energy storage devices
JP5778625B2 (ja) イオン液体、及びイオン液体を含む蓄電装置
EP3187487B1 (en) Ionic liquid and plastic crystal
Wang et al. A fluorinated polycarbonate based all solid state polymer electrolyte for lithium metal batteries
CN102723528B (zh) 两性离子液体电解质材料及其制备与在锂电池电解液中的应用
CN102916220B (zh) 镁电池电解液
CN103094611B (zh) 一种制备离子液体凝胶电解质的方法
JPWO2006106656A1 (ja) 電解液
JP2009249313A (ja) スルホニウム塩、並びにこれを用いた蓄電デバイス用電解液、蓄電デバイス、及び電気二重層キャパシタ
JP2013537998A (ja) イオン液体、当該イオン液体を含有するリチウム二次電池用電解質、及び当該電解質を備えるリチウム二次電池
WO2016084792A1 (ja) イオン液体、その製造方法及びその用途
JP5830047B2 (ja) マグネシウム電池用電解液、及び当該電解液を含むマグネシウム電池
JP5827334B2 (ja) 電池用電解液及びその製造方法、並びに当該電解液を備える電池
JP6267038B2 (ja) 非水電解液及びこれを含む蓄電デバイス
Dong et al. A piperidinium-based ionic liquid electrolyte to enhance the electrochemical properties of LiFePO 4 battery
Tsunashima et al. A lithium battery electrolyte based on a room-temperature phosphonium ionic liquid
JP2019505967A (ja) レドックスフロー電池用電解液およびレドックスフロー電池
Luo et al. Poly (ionic liquid) additive: Aqueous electrolyte engineering for ion rectifying and calendar corrosion relieving
JP2006196390A (ja) イオン性液体組成物及びそれを用いた電気化学デバイス
JP6282457B2 (ja) ナトリウムイオン電池用電解液およびナトリウムイオン電池
JP2004043407A (ja) イオン性液体
Tsunashima et al. Effect of quaternary phosphonium salts in organic electrolyte for lithium secondary batteries

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13867981

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14648859

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13867981

Country of ref document: EP

Kind code of ref document: A1