WO2014098369A1 - 리그노술포네이트 제조방법, 상기 방법으로 제조된 리그노술포네이트, 및 이를 포함하는 혼화제 및 콘크리트 - Google Patents

리그노술포네이트 제조방법, 상기 방법으로 제조된 리그노술포네이트, 및 이를 포함하는 혼화제 및 콘크리트 Download PDF

Info

Publication number
WO2014098369A1
WO2014098369A1 PCT/KR2013/009879 KR2013009879W WO2014098369A1 WO 2014098369 A1 WO2014098369 A1 WO 2014098369A1 KR 2013009879 W KR2013009879 W KR 2013009879W WO 2014098369 A1 WO2014098369 A1 WO 2014098369A1
Authority
WO
WIPO (PCT)
Prior art keywords
lignin
lignosulfonate
methylolation
sulfonation
prepared
Prior art date
Application number
PCT/KR2013/009879
Other languages
English (en)
French (fr)
Inventor
문선주
이상목
박정일
김영란
정민호
김정민
장진화
김다은
Original Assignee
씨제이제일제당 (주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 씨제이제일제당 (주) filed Critical 씨제이제일제당 (주)
Publication of WO2014098369A1 publication Critical patent/WO2014098369A1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07GCOMPOUNDS OF UNKNOWN CONSTITUTION
    • C07G1/00Lignin; Lignin derivatives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B24/00Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
    • C04B24/16Sulfur-containing compounds
    • C04B24/18Lignin sulfonic acid or derivatives thereof, e.g. sulfite lye
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08HDERIVATIVES OF NATURAL MACROMOLECULAR COMPOUNDS
    • C08H6/00Macromolecular compounds derived from lignin, e.g. tannins, humic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08HDERIVATIVES OF NATURAL MACROMOLECULAR COMPOUNDS
    • C08H8/00Macromolecular compounds derived from lignocellulosic materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08HDERIVATIVES OF NATURAL MACROMOLECULAR COMPOUNDS
    • C08H99/00Subject matter not provided for in other groups of this subclass, e.g. flours, kernels
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L97/00Compositions of lignin-containing materials
    • C08L97/005Lignin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L97/00Compositions of lignin-containing materials
    • C08L97/02Lignocellulosic material, e.g. wood, straw or bagasse

Definitions

  • It relates to a lignosulfonate production method, lignosulfonate prepared by the above method, and a composition and concrete comprising the same.
  • Lignin is a natural polymer that is produced by the process of producing pulp using wood, such as sulfite pulping and kraft pulping.
  • the lignin obtained in the pulp process contains hydrophilic functional groups such as sulfite groups, hydroxyl groups, carboxyl groups, and the like, and has been used in the preparation of lignosulfonates by adding sulfonation processes because of high solubility and easy handling.
  • lignin can be obtained as a by-product in the process of producing sugar through the hydrolysis of wood. Since the lignin obtained in the hydrolysis process increases the carbon-carbon bond through the recondensation process, the molecular weight is increased and the chemical reactivity is low compared to the lignin obtained in the pulp process, which is not suitable for use in preparing lignosulfonate.
  • One aspect is to provide a method for preparing a new lignosulfonate.
  • Another aspect is to provide lignosulfonate prepared by the above method.
  • Another aspect is to provide a admixture comprising the lignosulfonate.
  • Another aspect is to provide a concrete comprising the lignosulfonate.
  • a lignosulfonate method is provided in which 0.6 mol to 2.0 mol of sulfite or bisulfite compound is added per 200 g of lignin.
  • Admixtures comprising the lignosulfonate are provided.
  • a concrete comprising the lignosulfonate.
  • lignosulfonate can be prepared in high yield by sulfonating lignin obtained by hydrolysis at high temperature.
  • Lignosulfonate production method comprises the steps of preparing a lignin obtained by hydrolyzing wood-based biomass (lignocellulosic biomass) with acid; And sulfonating the lignin at a temperature of 130 ° C. or higher. In the sulfonation step, 0.6 to 2.0 moles of sulfite or bisulfite compound is added per 200 g of lignin.
  • the manufacturing method can be prepared in high yield by sulfonating the lignin obtained from the hydrolysis product of the wood-based biomass at a high temperature of 130 °C or more using a sulfite-based compound of a predetermined content.
  • the sulfonation temperature is less than 130 °C in the above production method, the yield of lignosulfonate may be lowered. If the sulfonation temperature is too high in the manufacturing method may be expensive because expensive steam is required.
  • the sulfonation step in the manufacturing method may be carried out at a temperature of 140 °C to 190 °C.
  • the sulfonation step in the manufacturing method may be carried out at a temperature of 160 °C to 190 °C.
  • the sulfonation step in the manufacturing method may be carried out at a temperature of 170 °C to 190 °C.
  • the sulfonation step in the production method may be carried out at a temperature of 180 °C to 190 °C.
  • the content of the sulfite compound added per 200 g of lignin in the preparation method is less than 0.6 mole, the yield of lignosulfonate may be lowered.
  • the content of the sulfite compound added per 200 g of lignin in the preparation method is more than 2.0 moles, the yield of lignosulfonate may be lowered.
  • the content of the sulfite compound added per 200 g of lignin may be 0.6 mol to 1.5 mol.
  • the content of the sulfite compound added per 200 g of lignin may be 0.6 mol to 1.0 mol.
  • the content of the sulfite compound added per 200 g of lignin may be 0.6 mol to 0.8 mol.
  • the sulfite-based compound may be sodium sulfite (Na 2 SO 3), sulfur dioxide / sodium hydroxide (SO 2 / NaOH), but is not necessarily limited thereto, and any compound capable of sulfonation of lignin in the art may be used. It is possible.
  • the sulfonation step may be performed at a pressure of more than 10 bar to 20 bar. If the pressure is less than 10ba it may be difficult to maintain the temperature required in the sulfonation step. If the pressure is more than 20 bar may be economical because a separate high pressure reactor is required.
  • the sulfonation step in the production method may be carried out at a pressure of 15bar to 20bar.
  • the sulfonate step may be performed at a pressure of 18 bar to 20 bar.
  • the sulfonation step in the production method may be performed at pH 3 to 11. If the pH is less than 3, the step of neutralizing the resulting lignosulfonate is additionally required, and if the pH is more than 11, a high viscosity lignosulfonate may be prepared.
  • the sulfonation step in the manufacturing method may be performed at pH 4 to pH 10.
  • the sulfonation step in the manufacturing method may be performed at pH 6 to pH 8.
  • the sulfonation step may be performed for 2 hours or more.
  • the sulfonation step can be carried out for 2-3 hours.
  • the time when the sulfonate step is performed is the time when the sulfonation reaction occurs. If the sulfonation reaction time is less than 2 hours, the yield of lignosulfonate may be lowered. If the sulfonation reaction time is 3 hours or more, there is no significant change in yield.
  • the content of the lignin contained in the solution used in the sulfonation step for example, an aqueous solution may be 15% by weight or less.
  • the content of lignin included in the solution used in the sulfonation step may be 10% by weight or less. If the content of lignin contained in the solution used in the sulfonation step is 15% by weight or more, the yield of lignosulfonate may be lowered.
  • the method may further include methylolation of lignin.
  • the yield of lignosulfonate can be further improved.
  • the functional group may be increased to further improve reactivity in the sulfonation step.
  • 0.2 mol to 1.0 mol of formaldehyde may be added per 200 g of lignin. If the formaldehyde content is less than 0.2 mole, methylolation may be insignificant, and the yield of lignosulfonate may be difficult to improve. If the formaldehyde content is more than 1.0 mole, unreacted formaldehyde may remain to cause side reactions. For example, 0.3 to 0.6 moles of formaldehyde may be added per 200 g of lignin in the methylolation step.
  • the methylolation step may be performed at pH 11 to 13. If the pH is less than 11, the methylolation reaction may be insignificant. For example, the methylolation step may be performed at pH 11 to pH 12.5. For example, the methylolation step may be performed at pH 11 to pH 12.
  • the methylolation step may be carried out at a temperature of 70 °C or more. When the methylolation step is carried out at less than 70 °C methylolation reaction may not proceed.
  • the methylolation step may be performed at a temperature of 70 °C to 85 °C.
  • the methylolation step may be performed at a temperature of 70 °C to 80 °C.
  • the methylolation step may be performed at a temperature of 70 °C to 75 °C.
  • the methylolation step in the preparation method may further comprise the step of impregnating the lignin in a basic solvent of 60 °C or more.
  • a basic solvent of 60 °C or more.
  • the benzene ring contained in the lignin may be ionized to increase the reaction efficiency.
  • the basic solution may have a pH of 11 to 12, but is not necessarily limited to this range, and any conditions may be used to ionize some or all of the benzene rings contained in lignin.
  • the time for impregnating the lignin in the basic solvent is not particularly limited, and it is possible to say that all of the conditions are possible to ionize some or all of the benzene rings contained in the lignin.
  • the methylolation step in the production method may further comprise the step of acidifying the lignin (acidification).
  • Acidifying the lignin is a step of lowering the pH of the reaction solution after methylolation to 2 or less.
  • the metal salt of the hydroxy group linked to the benzene ring of the lignin is acidified with a hydroxy group.
  • the acidified lignin may be left to solidify at a temperature of 70 ° C. or higher for 30 minutes or more, cooled to room temperature, filtered, washed and dried to prepare methylolated lignin.
  • lignin obtained by hydrolysis is a solid phase insoluble in water, it can be impregnated with water to increase reactivity in subsequent reactions. It may be impregnated with water in a ratio of 200 to 400 parts by weight of water relative to 100 parts by weight of lignin.
  • the step of impregnating the lignin in water may be performed at a temperature of 20 to 70 ° C. for 8 to 24 hours, but is not necessarily limited to these conditions, and any impregnation condition may improve the yield of lignosulfonate.
  • the acid that hydrolyzes the wood-based biomass may be sulfuric acid.
  • the sulfuric acid may be concentrated sulfuric acid with a concentration of 20% or more. Preferably it can be effectively hydrolyzed when the sulfuric acid concentration is 65% or more.
  • the yield of lignosulfonate prepared using lignin obtained by hydrolysis with sulfuric acid may be at least 30% by weight.
  • the yield of lignosulfonate prepared using lignin obtained from hydrolysis with sulfuric acid may be at least 35% by weight.
  • an acid for hydrolyzing the woody biomass may be hydrochloric acid.
  • Hydrochloric acid may be concentrated hydrochloric acid at a concentration of 20% or more. Preferably it can be hydrolyzed effectively when the hydrochloric acid concentration is 39% or more.
  • the yield of lignosulfonate prepared using lignin obtained from hydrolysis with hydrochloric acid may be at least 50% by weight.
  • the yield of lignosulfonate prepared using lignin obtained from hydrolysis with hydrochloric acid may be at least 60% by weight.
  • the yield of lignosulfonate prepared using lignin obtained from hydrolysis with hydrochloric acid may be at least 70% by weight.
  • the yield of lignosulfonate prepared using lignin obtained by hydrolysis with hydrochloric acid may be 80% by weight or more.
  • the yield of lignosulfonate prepared using lignin obtained from hydrolysis with hydrochloric acid may be at least 90% by weight.
  • the yield of lignosulfonate prepared using lignin obtained from hydrolysis with hydrochloric acid may be at least 95% by weight.
  • Lignosulfonate according to another embodiment is prepared by the method described above.
  • the strong acid lignin-derived lignosulfonate prepared by the above-described method was found to have the same functional group as that of kraft lignin-derived lignosulfonate when analyzed by FT-IR. However, since the carbon-carbon bond is increased through the recondensation process in the hydrolysis process by the strong acid, the molecular weight is larger than that of the conventional kraft lignin derived lignosulfonate.
  • composition according to another embodiment comprises lignosulfonate prepared by the method described above.
  • the composition may be, for example, an admixture for producing concrete.
  • the admixture may substantially serve as an air entraining and reducing water agent.
  • Concrete according to another embodiment includes lignosulfonate prepared by the method described above.
  • the concrete includes lignosulfonate, a small amount of fine bubbles are evenly dispersed in the concrete, thereby preventing cracking of the concrete due to the elasticity of the bubble and the like, thereby improving durability of the concrete.
  • the existing kraft lignin-derived lignosulfonate when used as a concrete admixture is used as a solid content 50%
  • the strong acid lignin-derived lignosulfonate of the present invention requires a smaller amount.
  • the strong acid lignin-derived lignosulfonate of the present invention had a solid content of approximately 40% (rignosulfonate approximately 30% by weight) and satisfied the concrete admixture standard without using an existing AE agent.
  • Calliandra was used as lignocellulosic biomass.
  • the Pianandra wood and sulfuric acid at a concentration of 72% were mixed at a ratio of 1: 2 (w / v), thoroughly stirred at 30 ° C. for 2 hours, after primary hydrolysis, and diluted with sulfuric acid at a concentration of 30%.
  • Secondary saccharification was performed with complete stirring at 85 ° C. for 3 hours to prepare a sugar solution including lignin.
  • lignin To separate lignin from the sugar solution, it was filtered using a filter paper (ADVANTEC No. 5B), washed until the pH of the lignin was neutral, and then dried in an oven at 70 ° C. to lignin (hereinafter referred to as sulfuric acid- hydrolytic lignin)).
  • the residual sugar component in lignin sulfate obtained through this process was less than 5%.
  • the lignin sulfate and water were mixed at a ratio of 1: 3 (w / v), and then stirred at room temperature for 24 hours to immerse lignin sulfate in water.
  • a basic solution having a pH of 11 to 12 was prepared by adding 50% sodium hydroxide (NaOH) solution to the lignin sulfate-immersed solution.
  • NaOH sodium hydroxide
  • the solution containing acidified lignin sulfate was solidified at 85 ° C. for 30 minutes, cooled to room temperature, filtered, washed, and dried to prepare methylolated lignin sulfate in 95% yield.
  • methylolated lignin sulfate 200 g was dispersed in water at a solid concentration of 9%, and 1.0 mol of sodium sulfite (Na 2 SO 3 ) was added thereto to completely dissolve the solution.
  • the pH of the lignin sulfate dissolved solution was adjusted to 7.0 using 72% sulfuric acid and / or 50% sodium hydroxide solution.
  • the pH adjusted solution was left at 100 ° C. and 10 bar for 2 hours to immerse the methylolated lignin sulfate in the solution. Subsequently, the temperature of the solution after immersion was increased to 190 ° C., the pressure was increased to 20 bar, and then stirred for 2 hours to proceed with the sulfonation reaction.
  • the obtained lignosulfonate solution was quantitatively / qualitatively analyzed using a UV / Vis spectrometer to calculate the yield of lignosulfonate.
  • powdery lignosulfonate having a South African purity of 41% was used as a standard sample.
  • Lignosulfonate was prepared in the same manner as in Example 1 except that the content of sodium sulfite (Na 2 SO 3 ) added in the sulfonation step was changed to 0.6 mol.
  • Na 2 SO 3 sodium sulfite
  • Lignosulfonate was prepared in the same manner as in Example 1 except that the pH of the solution in which the methylolated lignin sulfate added in the sulfonation step was changed to 10.9 was changed.
  • Lignosulfonate was prepared in the same manner as in Example 1 except for changing the pH of the solution in which lignin sulfate added in the sulfonation step was changed to 3.9.
  • Lignosulfonate was prepared in the same manner as in Example 1 except that the pH of the solution in which lignin sulfate was added in the sulfonation step was changed to 7.0.
  • Lignosulfonate was prepared in the same manner as in Example 1 except that the pH of the solution in which lignin sulfate added in the sulfonation step was changed to 12.7 was changed.
  • Calliandra was used as lignocellulosic biomass. Hydrogen chloride gas was added to the concentration of 35 to 37% hydrochloric acid to prepare 42% hydrochloric acid.
  • lignin hydrochloric acid
  • Lignin hydrochloric acid-hydrolytic lignin
  • the residual sugar component in lignin hydrochloride obtained through this process was less than 3%, and about 1% of chlorine (Cl) remained.
  • the lignin hydrochloride and water were mixed at a ratio of 1: 3 (w / v), and then stirred at room temperature for 24 hours to immerse lignin hydrochloride in water.
  • a basic solution having a pH of 11 to 12 was prepared by adding 50% sodium hydroxide (NaOH) solution to the lignin hydrochloride solution.
  • Formaldehyde (35% solution) corresponding to 0.6 mol was added to 200 g of lignin hydrochloride to the heated solution, followed by stirring at 70 ° C. for 2 hours to proceed with methylolation.
  • the solution containing acidified lignin hydrochloride was solidified at 85 ° C. for 30 minutes, cooled to room temperature, filtered, washed, and dried to prepare methylolated lignin hydrochloride in 95% yield.
  • methylolated lignin hydrochloride 200 g was dispersed in water at a solid concentration of 9%, and then completely dissolved by adding 0.6 mol of sodium sulfite (Na 2 SO 3 ) or sulfur dioxide / sodium hydroxide (SO 2 / NaOH).
  • the pH of the solution in which the lignin hydrochloride was dissolved was adjusted to 7.0 using 72% sulfuric acid and / or 50% sodium hydroxide solution.
  • the pH-controlled solution was left at 100 ° C. and 10 bar for 2 hours to immerse the methylolated lignin hydrochloride in the solution. Subsequently, the temperature of the solution after immersion was increased to 190 ° C., the pressure was increased to 20 bar, and then stirred for 2 hours to proceed with the sulfonation reaction.
  • the obtained lignosulfonate solution was quantitatively / qualitatively analyzed using UV / Vis spectrometer to calculate the yield of lignosulfonate.
  • powdery lignosulfonate having a South African purity of 41% was used as a standard sample.
  • Lignosulfonate was prepared in the same manner as in Example 8 except for changing the formaldehyde content added in the methylolation step to 0.3 mol.
  • Lignosulfonate was prepared in the same manner as in Example 8 except that the sulfonation reaction temperature was changed to 180 ° C.
  • Lignosulfonate was prepared in the same manner as in Example 8 except that the sulfonation reaction temperature was changed to 170 ° C.
  • Lignosulfonate was prepared in the same manner as in Example 8 except that the sulfonation reaction temperature was changed to 160 ° C.
  • Lignosulfonate was prepared in the same manner as in Example 8 except that the sulfonation reaction temperature was changed to 130 ° C.
  • the lignosulfonate was prepared in the same manner as in Example 8 except that the methylolation step was omitted and lignin hydrochloride that was not methylolated was used as it is.
  • Lignosulfonate was prepared in the same manner as in Example 8 except for changing the content of sodium sulfite (Na 2 SO 3 ) added in the sulfonation step to 1.0 mol.
  • Lignosulfonate was prepared in the same manner as in Example 8, except that the content of sodium sulfite (Na 2 SO 3 ) added in the sulfonation step was changed to 2.0 mol.
  • Lignosulfonate was prepared in the same manner as in Example 8, except that the lignin hydrochloride content added to the solution used in the sulfonation step was changed to 17%.
  • Lignosulfonate was prepared in the same manner as in Example 8, except that the lignin hydrochloride content added to the solution used in the sulfonation step was changed to 25%.
  • Lignosulfonate was prepared in the same manner as in Example 8 except that sodium sulfite (Na 2 SO 3 ) was not added in the sulfonation step.
  • Lignosulfonate was prepared in the same manner as in Example 8 except for changing the content of sodium sulfite (Na 2 SO 3 ) added in the sulfonation step to 0.2 mol.
  • the solution containing the lignosulfonate prepared in Example 19 was concentrated to prepare a solution having a lignosulfonate content of 15.7 wt% (solid content 49.6 wt%).
  • the solution containing the lignosulfonate prepared in Example 10 was concentrated to prepare a solution having a lignosulfonate content of 32% by weight (solid content 41.2%).
  • concrete was prepared according to the KS F 2560 method to evaluate its suitability as a concrete admixture.
  • Concrete containing the admixture of Example 23 was prepared by mixing water 177g, cement 320g, fine aggregate 1105g, coarse aggregate 1460g, admixture and commercial AE agent, admixture is 0.5% of cement content, AE agent 0.02% of cement content Was added.
  • Example 24 Concrete including the admixture of Example 24 was prepared by mixing water 142g, cement 320g, fine aggregate 867g, coarse aggregate 1091g, and admixture, the admixture was added 0.5% of the cement content. That is, no commercial AE agent was used.
  • Example 24 satisfied the concrete admixture criteria without the use of existing AE agents.
  • the lignosulfonate can be produced in high yield by sulfonating the lignin obtained by hydrolysis at high temperature.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Biochemistry (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Compounds Of Unknown Constitution (AREA)

Abstract

목질계 바이오매스(lignocellulosic biomass)를 산으로 가수분해하여 얻어지는 리그닌을 준비하는 단계; 및 상기 리그닌을 130℃ 이상의 온도에서 술폰화시키는 단계;를 포함하며, 상기 술폰화 단계에서 리그닌 200g 당 0.6몰 내지 2.0몰의 설파이트 또는 바이설파이트 화합물이 첨가되며, 상기 술폰화 단계가 pH 13 미만에서 수행되는 리그노술포네이트 제조방법, 상기 방법으로 제조된 리그노술포네이트, 이를 포함하는 혼화제 및 콘크리트가 제공된다.

Description

리그노술포네이트 제조방법, 상기 방법으로 제조된 리그노술포네이트, 및 이를 포함하는 혼화제 및 콘크리트
리그노술포네이트 제조방법, 상기 방법으로 제조된 리그노술포네이트, 및 이를 포함하는 조성물 및 콘크리트에 관한 것이다.
리그닌은 설파이트 펄프공정(sulfite pulping), 크라프트 펄프공정(kraft pulping)과 같이 목재를 이용하여 펄프를 제조하는 공정에서 생성되는 부산물로서 천연고분자이다.
상기 펄프공정에서 얻어지는 리그닌은 설파이트기, 하이드록시기, 카르복실기 등과 같은 친수성 작용기를 포함하고 있어 용해성이 높고 취급이 간편하므로 술폰화 공정을 추가하여 리그노술포네이트의 제조에 사용되었다.
한편, 리그닌은 목재의 가수분해 과정을 거쳐 당(sugar)을 제조하는 공정에서도 부산물로 얻어질 수 있다. 상기 가수분해 과정에서 얻어지는 리그닌은 재축합 과정을 거쳐 탄소-탄소 결합이 증가하므로, 펄프공정에서 얻어지는 리그닌에 비하여 분자량이 증가되고 화학적 반응성이 낮아 리그노술포네이트 제조에 사용하기 부적합하였다.
따라서, 상기 가수분해 과정에서 얻어지는 리그닌으로부터 리그노술포네이트를 효과적으로 제조하는 방법이 요구된다.
한 측면은 새로운 리그노술포네이트의 제조방법을 제공하는 것이다.
다른 한 측면은 상기 방법으로 제조된 리그노술포네이트를 제공하는 것이다.
또 다른 한 측면은 상기 리그노술포네이트를 포함하는 혼화제를 제공하는 것이다.
또 다른 한 측면은 상기 리그노술포네이트를 포함하는 콘크리트를 제공하는 것이다.
한 측면에 따라,
목질계 바이오매스(lignocellulosic biomass)를 산으로 가수분해하여 얻어지는 리그닌을 준비하는 단계; 및
상기 리그닌을 130℃ 이상의 온도에서 술폰화시키는 단계;를 포함하며,
상기 술폰화 단계에서 리그닌 200g 당 0.6몰 내지 2.0몰의 설파이트 또는 바이설파이트 화합물이 첨가되는 리그노술포네이트 제조방법이 제공된다.
다른 한 측면에 따라,
상기의 방법으로 제조된 리그노술포네이트가 제공된다.
또 다른 한 측면에 따라,
상기 리그노술포네이트를 포함하는 혼화제가 제공된다.
또 다른 한 측면에 따라
상기 리그노술포네이트를 포함하는 콘크리트가 제공된다.
한 측면에 따르면 가수분해에 의하여 얻어지는 리그닌을 고온에서 술폰화시킴에 의하여 리그노술포네이트를 높은 수율로 제조할 수 있다.
이하에서 예시적인 일구현예에 따른 리그노술포네이트 제조방법, 상기 방법으로 제조된 리그노술포네이트, 및 이를 포함하는 혼화제 및 콘크리트에 관하여 더욱 상세히 설명한다.
일구현예에 따른 리그노술포네이트 제조방법은 목질계 바이오매스(lignocellulosic biomass)를 산으로 가수분해하여 얻어지는 리그닌을 준비하는 단계; 및 상기 리그닌을 130℃ 이상의 온도에서 술폰화시키는 단계;를 포함하며, 상기 술폰화 단계에서 리그닌 200g 당 0.6몰 내지 2.0몰의 설파이트 또는 바이설파이트 화합물이 첨가된다.
상기 제조방법은 목질계 바이오매스의 가수분해 결과물에서 얻어진 리그닌을 소정 함량의 설파이트계 화합물을 사용하여 130℃ 이상의 고온에서 술폰화시킴에 의하여 높은 수율로 리그노술포네이트를 제조할 수 있다.
상기 제조방법에서 술폰화 온도가 130℃ 미만이면 리그노술포네이트의 수율이 저하될 수 있다. 상기 제조방법에서 술폰화 온도가 지나치게 높으면 고가의 스팀이 요구되므로 비경제적일 수 있다. 예를 들어, 상기 제조방법에서 술폰화 단계는 140℃ 내지 190℃의 온도에서 수행될 수 있다. 예를 들어, 상기 제조방법에서 술폰화 단계는 160℃ 내지 190℃의 온도에서 수행될 수 있다. 상기 제조방법에서 술폰화 단계는 170℃ 내지 190℃의 온도에서 수행될 수 있다. 상기 제조방법에서 술폰화 단계는 180℃ 내지 190℃의 온도에서 수행될 수 있다.
상기 제조방법에서 리그닌 200g 당 첨가되는 설파이트계 화합물의 함량이 0.6몰 미만이면 리그노술포네이트의 수율이 저하될 수 있다. 상기 제조방법에서 리그닌 200g 당 첨가되는 설파이트계 화합물의 함량이 2.0몰 초과이면 리그노술포네이트의 수율이 저하될 수 있다. 예를 들어, 상기 제조방법에서 리그닌 200g 당 첨가되는 설파이트계 화합물의 함량은 0.6몰 내지 1.5몰일 수 있다. 예를 들어, 상기 제조방법에서 리그닌 200g 당 첨가되는 설파이트계 화합물의 함량은 0.6몰 내지 1.0몰일 수 있다. 예를 들어, 상기 제조방법에서 리그닌 200g 당 첨가되는 설파이트계 화합물의 함량은 0.6몰 내지 0.8몰일 수 있다.
상기 설파이트계 화합물을 소듐설파이트(Na2SO3), 설퍼디옥사이드/소듐하이드록사이드(SO2/NaOH)일 있으나, 반드시 이들로 한정되지 않으며 당해 기술분야에서 리그닌의 술폰화를 가능하게 하는 화합물이라면 모두 가능하다.
상기 제조방법에서 술폰화 단계가 10bar 초과 내지 20bar의 압력에서 수행될 수 있다. 상기 압력이 10ba 이하이면 술폰화 단계에서 요구되는 온도를 유지하기 어려울 수 있다. 상기 압력이 20bar 초과이면 별도의 고압 반응기가 요구되므로 비경제적일 수 있다. 예를 들어, 상기 제조방법에서 술폰화 단계가 15bar 내지 20bar의 압력에서 수행될 수 있다. 예를 들어, 상기 제조방법에서 술폰환 단계가 18bar 내지 20bar의 압력에서 수행될 수 있다.
상기 제조방법에서 술폰화 단계는 pH 3 내지 11에서 수행될 수 있다. 상기 pH가 3 미만이면 생성된 리그노술포네이트를 중화시키는 단계가 추가적으로 요구되며, 상기 pH가 11 초과이면 고점도의 리그노술포네이트가 제조될 수 있다. 예를 들어, 상기 제조방법에서 술폰화 단계는 pH 4 내지 pH 10에서 수행될 수 있다. 예를 들어, 상기 제조방법에서 술폰화 단계는 pH 6 내지 pH 8에서 수행될 수 있다.
상기 제조방법에서 술폰화 단계는 2시간 이상 수행될 수 있다. 예를 들어, 술폰화 단계는 2 내지 3시간 동안 수행될 수 있다. 상기 술폰환 단계가 수행되는 시간은 술폰화 반응이 일어나는 시간이다. 술폰화 반응 시간이 2시간 미만이면 리그노술포네이트의 수율이 저하될 수 있다. 술폰화 반응시간이 3시간 이상이면 수율에 큰 변화가 없다.
상기 제조방법에서 술폰화 단계에 사용되는 용액, 예를 들어 수용액에 포함되는 리그닌의 함량은 15중량% 이하일 수 있다. 예를 들어, 술폰화 단계에 사용되는 용액에 포함되는 리그닌의 함량은 10중량% 이하일 수 있다. 상기 술폰화 단계에 사용되는 용액에 포함되는 리그닌의 함량이 15 중량% 이상이면 리그노술포네이트의 수율이 저하될 수 있다.
상기 제조방법에서 상기 술폰화 단계 전에, 리그닌을 메틸올화(methylolation)시키는 단계를 추가적으로 포함할 수 있다.
상기 리그닌을 메틸올화 시키는 단계를 추가적으로 포함함에 의하여 리그노술포네이트의 수율을 더욱 향상시킬 수 있다. 상기 메틸올화에 의하여 리그닌의 벤젠고리에 메틸올기가 추가됨에 의하여 작용기가 증가하여술폰화 단계에서의 반응성이 더욱 향상될 수 있다.
상기 메틸올화 단계에서 리그닌 200g 당 0.2몰 내지 1.0몰의 포름알데히드가 첨가될 수 있다. 상기 포름알데히드 함량이 0.2몰 미만이면 메틸올화가 미미하여, 리그노술포네이트의 수율이 향상되기 어려울 수 있으며, 상기 포름알데히드 함량이 1.0몰 초과이면 미반응 포름알데히드가 잔존하여 부반응이 발생할 수 있다. 예를 들어, 상기 메틸올화 단계에서 리그닌 200g 당 0.3몰 내지 0.6 몰의 포름알데히드가 첨가될 수 있다.
상기 메틸올화 단계는 pH 11 내지 13에서 수행될 수 있다. 상기 pH가 11 미만이면 메틸올화 반응이 미미할 수 있다. 예를 들어, 상기 메틸올화 단계는 pH 11 내지 pH 12.5에서 수행될 수 있다. 예를 들어, 상기 메틸올화 단계는 pH 11 내지 pH 12에서 수행될 수 있다.
상기 메틸올화 단계는 70℃ 이상의 온도에서 수행될 수 있다. 상기 메틸올화 단계가 70℃ 미만에서 수행되면 메틸올화 반응이 진행되지 않을 수 있다. 예를 들어, 상기 메틸올화 단계는 70℃ 내지 85℃의 온도에서 수행될 수 있다. 예를 들어, 상기 메틸올화 단계는 70℃ 내지 80℃의 온도에서 수행될 수 있다. 예를 들어, 상기 메틸올화 단계는 70℃ 내지 75℃의 온도에서 수행될 수 있다.
상기 제조방법에서 메틸올화 단계 전에, 리그닌을 60℃ 이상의 염기성 용매에 함침시키는 단계를 추가적으로 포함할 수 있다. 상기 리그닌을 염기성 용매에 추가적으로 함침시킴에 의하여 리그닌에 포함된 벤젠고리가 이온화되어 반응효율이 증가할 수 있다. 상기 염기성 용액의 pH는 11 내지 12일 수 있으나, 반드시 이러한 범위로 한정되지 않으며 리그닌에 포함된 벤젠고리를 일부 또는 전부 이온화시킬 수 있는 조건이라면 모두 가능하다. 리그닌을 염기성 용매에 함침시키는 시간은 특별히 한정되지 않으며 리그닌에 포함된 벤젠고리를 일부 또는 전부 이온화시킬 수 있는 조건이라며 모두 가능하다.
상기 제조방법에서 메틸올화 단계 후에, 상기 리그닌을 산성화(acidification)시키는 단계를 추가적으로 포함할 수 있다. 상기 리그닌을 산성화시키는 단계는 메틸올화가 종료된 반응액의 pH를 2이하로 낮추는 단계이다. 상기 리그닌을 산성화시키는 단계에서 리그닌의 벤젠고리에 연결된 하이드록시기의 금속염이 하이드록시기로 산성화된다.
상기 산성화된 리그닌을 70℃ 이상의 온도에서 30분 이상 방치하여 응고시킨 후 상온으로 냉각시켜 여과, 세척 및 건조하여 메틸올화된 리그닌을 제조할 수 있다.
상기 제조방법에서 메틸올화 단계 전에, 리그닌을 물에 함침시키는 단계를 추가적으로 포함할 수 있다. 가수분해에 의하여 얻어지는 리그닌은 물에 용해되지 않는 고체상이므로 물에 함침시켜 후속 반응에서 반응성을 높일 수 있다. 리그닌 100 중량부에 대하여 물 200 내지 400 중량부의 비율로 물에 함침될 수 있다.
리그닌을 물에 함침시키는 단계는 20 내지 70℃의 온도에서 8 내지 24시간 동안 수행될 수 있으나, 반드시 이러한 조건으로 한정되지 않으며 리그노술포네이트의 수율을 향상시킬 수 있는 함침 조건이라면 모두 가능하다.
상기 제조방법에서 목질계 바이오매스를 가수분해시키는 산이 황산일 수 있다. 황산은 농도 20% 이상의 진한 황산일 수 있다. 바람직하게는 황산 농도 65% 이상일 때 효과적으로 가수분해시킬 수 있다.
황산을 사용한 가수분해에서 얻어지는 리그닌을 사용하여 제조되는 리그노술포네이트의 수율은 30중량% 이상일 수 있다. 예를 들어, 황산을 사용한 가수분해에서 얻어지는 리그닌을 사용하여 제조되는 리그노술포네이트의 수율은 35중량% 이상일 수 있다.
상기 제조방법에서 목질계 바이오매스를 가수분해시키는 산이 염산일 수 있다. 염산은 농도 20% 이상의 진한 염산일 수 있다. 바람직하게는 염산 농도 39% 이상일 때 효과적으로 가수분해시킬 수 있다.
염산을 사용한 가수분해에서 얻어지는 리그닌을 사용하여 제조되는 리그노술포네이트의 수율은 50중량% 이상일 수 있다. 예를 들어, 염산을 사용한 가수분해에서 얻어지는 리그닌을 사용하여 제조되는 리그노술포네이트의 수율은 60중량% 이상일 수 있다. 예를 들어, 염산을 사용한 가수분해에서 얻어지는 리그닌을 사용하여 제조되는 리그노술포네이트의 수율은 70중량% 이상일 수 있다. 예를 들어, 염산을 사용한 가수분해에서 얻어지는 리그닌을 사용하여 제조되는 리그노술포네이트의 수율은 80중량% 이상일 수 있다. 예를 들어, 염산을 사용한 가수분해에서 얻어지는 리그닌을 사용하여 제조되는 리그노술포네이트의 수율은 90중량% 이상일 수 있다. 예를 들어, 염산을 사용한 가수분해에서 얻어지는 리그닌을 사용하여 제조되는 리그노술포네이트의 수율은 95중량% 이상일 수 있다.
다른 일구현예에 따른 리그노술포네이트는 상술한 방법으로 제조된다. 상술한 방법에 의하여 제조된 강산리그닌 유래 리그노술포네이트는 FT-IR을 통해 분석하였을 때 크래프트 리그닌 유래 리그노술포네이트와 동일한 작용기를 가지고 있음을 확인할 수 있었다. 그러나, 상기 강산에 의한 가수분해 과정에서 재축합과정을 거쳐 탄소-탄소 결합이 증가하므로, 기존 크래프트 리그닌 유래 리그노술포네이트에 비해 분자량이 큰 특징이 있다.
또 다른 일구현예에 따른 조성물은 상술한 방법으로 제조된 리그노술포네이트를 포함한다. 상기 조성물은 예를 들어 콘크리트 제조용 혼화제(admixture)일 수 있다. 상기 혼화제는 실질적으로 AE 감수제(air entraining and reducing water agent) 역할을 수행할 수 있다.
또 다른 일구현예에 따른 콘크리트는 상술한 방법으로 제조된 리그노술포네이트를 포함한다. 상기 콘크리트가 리그노술포네이트를 포함함에 의하여 콘크리트 내에 댜량의 미세 기포가 고루 분산됨에 의하여 기포의 탄성에 의하여 얼음 등에 의한 콘크리트의 균열 등을 방지할 수 있어 콘크리트의 내구성이 향상될 수 있다.
또한, 기존 크래프트 리그닌 유래 리그노술포네이트는 콘크리트 혼화제로 사용 시 고형분 함량 50%로 사용되는데, 본 발명의 강산리그닌 유래 리그노술포네이트는 보다 적은 양을 필요로 한다. 본 발명의 구체적인 실시예에서 본 발명의 강산리그닌 유래 리그노술포네이트는 고형분 함량 대략 40%(리그노설포네이트 대략 30%중량)로 기존의 AE제의 사용 없이도 콘크리트 혼화제 기준을 만족하였다.
이하의 실시예 및 비교예를 통하여 본 발명이 더욱 상세하게 설명된다. 단, 실시예는 본 발명을 예시하기 위한 것으로서 이들만으로 본 발명의 범위가 한정되는 것이 아니다.
(황산리그닌을 이용한 리그노술포네이트의 제조)
실시예 1
(황산리그닌 제조단계)
깔리안드라(calliandra)를 목질계 바이오매스(lignocellulosic biomass)로서 사용하였다. 상기 깔리안드라 목재와 농도72%의 황산을 1:2(w/v)비율로 혼합하여 30℃에서 2시간 동안 완전히 교반시키며 1차 당화(hydrolysis)를 거친 후, 농도30%의 황산으로 희석하여 85℃에서 3시간 동안 완전히 교반시키며 2차 당화를 진행하여 리그닌을 포함한 당액을 제조하였다.
상기 당액에서 리그닌을 분리하기 위해 여과지(ADVANTEC No.5B)를 사용하여 여과하고, 리그닌의 pH가 중성이 될 때까지 세척한 후 70℃ 오븐에서 건조시켜 리그닌(이하에서, 황산리그닌(sulfuric acid-hydrolytic lignin))을 제조하였다.
이러한 과정을 거쳐 얻어진 황산리그닌 내 잔존 당성분은 5% 미만이었다.
(메틸올화 단계)
상기 황산리그닌과 물을 1:3 (w/v)의 비율로 혼합한 후 상온에서 24시간 동안 교반하여 황산리그닌을 물에 침지시켰다.
이어서, 상기 황산리그닌이 침지된 용액에50% 수산화나트륨(NaOH) 용액을 첨가하여 pH 11~12 의 염기성 용액을 준비하였다.
이어서, 상기 염기성 용액에 황산리그닌과 물의 비율이 1:4 (w/v)가 되도록 물을 첨가한 후 70℃로 가열하였다.
상기 가열된 용액에 황산리그닌 200g에 대해 0.6 mol에 해당하는 포름알데히드(35% 용액)를 첨가한 후 70℃에서 2시간 동안 교반하여 메틸올화 반응을 진행시켰다.
상기 반응이 완료된 후, 상기 반응액에 72% 황산을 첨가하여 반응액을 pH 2로 조절하고 교반을 멈추어 황산리그닌을 산성화시켰다.
상기 산성화된 황산리그닌을 포함하는 용액을 85℃에서 30분 동안 응고시킨 후 상온으로 냉각하고, 여과, 세척, 건조 과정을 거쳐 95% 수율로 메틸올화된 황산리그닌을 제조하였다.
(술폰화 단계)
메틸올화된 황산리그닌 200g을 9%의 고형분 농도로 물에 분산시킨 후 소듐설파이트(Na2SO3) 1.0 mol을 첨가하여 완전히 용해시켜 용액을 준비하였다. 72% 황산 및/또는 50% 수산화나트륨 용액을 사용하여 상기 황산리그닌이 용해된 용액의 pH를 7.0으로 조절하였다. pH가 조절된 용액을 100℃, 10bar 조건에서 2시간 동안 방치하여 메틸올화된 황산리그닌을 용액에 침지시켰다. 이어서, 침지과정을 거친 용액의 온도를 190℃로 증가시키고, 압력을 20bar로 증가시킨 후 2시간 동안 교반하여 술폰화 반응을 진행시켰다.
상기 반응이 종결된 후 급격히 냉각시키고 이어서, 원심분리를 통해 미반응 잔사를 제거하고 리그노술포네이트를 포함하는 용액을 얻었다.
얻어진 리그노술포네이트 용액을 UV/Vis 스펙트로미터를 사용하여 정량/정성 분석하여 리그노술포네이트 제조수율을 계산하였다. 표준시료로서 남아공산 순도 41%의 분말상 리그노술포네이트를 사용하였다.
실시예 2
술폰화 단계에서 첨가되는 소듐설파이트(Na2SO3)의 함량을 0.6 mol로 변경한 것을 제외하고는 실시예 1과 동일한 방법으로 리그노술포네이트를 제조하였다.
실시예 3
술폰화 단계에서 첨가되는 소듐설파이트(Na2SO3)의 함량을 0.6 mol로 변경하고, 술폰화 반응시의 압력을 10bar로 변경한 것을 제외하고는 실시예 1과 동일한 방법으로 리그노술포네이트를 제조하였다.
실시예 4
술폰화 단계에서 첨가되는 메틸올화된 황산리그닌이 용해된 용액의 pH를 10.9로 변경한 것을 제외하는 실시예 1과 동일한 방법으로 리그노술포네이트를 제조하였다.
(실시예 5~7: 메틸올화 단계 생략)
실시예 5
메틸올화 단계를 생략하고, 메틸올화되지 않는 황산리그닌을 그대로 사용하고,
술폰화 단계에서 첨가되는 황산리그닌이 용해된 용액의 pH를 3.9로 변경한 것을 제외하는 실시예 1과 동일한 방법으로 리그노술포네이트를 제조하였다.
실시예 6
메틸올화 단계를 생략하고, 메틸올화되지 않는 황산리그닌을 그대로 사용하고,
술폰화 단계에서 첨가되는 황산리그닌이 용해된 용액의 pH를 7.0으로 변경한 것을 제외하는 실시예 1과 동일한 방법으로 리그노술포네이트를 제조하였다.
실시예 7
메틸올화 단계를 생략하고, 메틸올화되지 않는 황산리그닌을 그대로 사용하고,
술폰화 단계에서 첨가되는 황산리그닌이 용해된 용액의 pH를 12.7로 변경한 것을 제외하는 실시예 1과 동일한 방법으로 리그노술포네이트를 제조하였다.
황산리그닌을 이용한 실험 결과를 하기 표1에 실험조건과 같이 요약하였다.
표 1
성분 메틸올화 단계 유무 술폰화단계에 사용된 용액의 pH 술폰화단계에 사용된 소듐설파이트 함량 [mole] 술폰화 반응압력[bar] 리그노술포네이트 수율[wt.%]
실시예 1 7.0 1.0 20 14.0
실시예 2 7.0 0.6 20 39.9
실시예 3 7.0 0.6 10 17.1
실시예 4 10.9 0.6 20 38.3
실시예 5 3.9 1.0 20 5.6
실시예 6 7.0 1.0 20 9.9
실시예 7 12.7 1.0 20 -
상기 표 1에서 보여지는 바와 같이 실시예 1 내지 7에서는 리그노술포네이트가 얻어졌다. 다만, 실시예 7은 미반응 리그닌이 혼합되어 정확한 함량의 측정이 불가하였으나 리그노술포네이트가 얻어진 것으로 판단된다.
메틸올화 단계를 추가적으로 포함하는 실시예 1 내지 4에서 리그노술포네이트의 수율이 더욱 향상되었다.
실시예 4 및 7의 리그노술포네이트는 염기성이므로 콘크리트 혼화제 등에 사용될 경우 중화가 필요하다.
(염산리그닌을 이용한 리그노술포네이트의 제조)
실시예 8
(염산리그닌 제조단계)
깔리안드라(calliandra)를 목질계 바이오매스(lignocellulosic biomass)로서 사용하였다. 농도 35~37% 염산에 염화수소 가스를 투입하여 42% 염산을 제조하였다. 상기 깔리안드라 목재와 농도42%의 황산을 1:5(w/v)비율로 혼합하여 20℃에서 5시간 동안 완전히 교반시키며 당화(hydrolysis)를 진행시킨 후, 과량의 물을 투입하여 염산을 희석하여 리그닌을 포함한 당액을 제조하였다.
상기 당액에서 리그닌을 분리하기 위해 스테인레스스틸 시브(stainless steel sieve, 325-ASTM)를 사용하여 여과하고, 리그닌의 pH가 중성이 될 때까지 세척한 후 70℃ 오븐에서 건조시켜 리그닌(이하에서, 염산리그닌(hydrochloric acid-hydrolytic lignin))을 제조하였다.
이러한 과정을 거쳐 얻어진 염산리그닌 내 잔존 당성분은 3% 미만이었으며, 1% 가량의 염소(Cl)가 잔류하였다.
(메틸올화 단계)
상기 염산리그닌과 물을 1:3 (w/v)의 비율로 혼합한 후 상온에서 24시간 동안 교반하여 염산리그닌을 물에 침지시켰다.
이어서, 상기 염산리그닌이 침지된 용액에50% 수산화나트륨(NaOH) 용액을 첨가하여 pH 11~12 의 염기성 용액을 준비하였다.
이어서, 상기 염기성 용액에 염산리그닌과 물의 비율이 1:4 (w/v)가 되도록 물을 첨가한 후 70℃로 가열하였다.
상기 가열된 용액에 염산리그닌 200g에 대해 0.6 mol에 해당하는 포름알데히드(35% 용액)를 첨가한 후 70℃에서 2시간 동안 교반하여 메틸올화 반응을 진행시켰다.
상기 반응이 완료된 후, 상기 반응액에 72% 황산을 첨가하여 반응액을 pH 2로 조절하고 교반을 멈추어 염산리그닌을 산성화시켰다.
상기 산성화된 염산리그닌을 포함하는 용액을 85℃에서 30분 동안 응고시킨 후 상온으로 냉각하고, 여과, 세척, 건조 과정을 거쳐 95% 수율로 메틸올화된 염산리그닌을 제조하였다.
(술폰화 단계)
메틸올화된 염산리그닌 200g을 9%의 고형분 농도로 물에 분산시킨 후 소듐설파이트(Na2SO3) 또는 설퍼디옥사이드/소듐하이드록사이드(SO2/NaOH) 0.6 mol을 첨가하여 완전히 용해시켜 용액을 준비하였다. 72% 황산 및/또는 50% 수산화나트륨 용액을 사용하여 상기 염산리그닌이 용해된 용액의 pH를 7.0으로 조절하였다. pH가 조절된 용액을 100℃, 10bar 조건에서 2시간 동안 방치하여 메틸올화된 염산리그닌을 용액에 침지시켰다. 이어서, 침지과정을 거친 용액의 온도를 190℃로 증가시키고, 압력을 20bar로 증가시킨 후 2시간 동안 교반하여 술폰화 반응을 진행시켰다.
상기 반응이 종결된 후 급격히 냉각시키고 이어서, 원심분리를 통해 미반응 잔사를 제거하고 리그노술포네이트를 포함하는 용액을 얻었다.
얻어진 리그노술포네이트 용액을 UV/Vis 스펙트로미터를 사용하여 정량/정성 분석하여 리그노술포네이트 제조수율을 계산하였다. 표준시료로서 남아공산 순도 41%의 분말상 리그노술포네이트를 사용하였다.
실시예 9
술폰화 단계에서 첨가되는 소듐설파이트(Na2SO3) 또는 설퍼디옥사이드/소듐하이드록사이드(SO2/NaOH) 의 함량을 0.8 mol로 변경한 것을 제외하고는 실시예 8과 동일한 방법으로 리그노술포네이트를 제조하였다.
실시예 10
술폰화 단계에서 첨가되는 소듐설파이트(Na2SO3) 또는 설퍼디옥사이드/소듐하이드록사이드(SO2/NaOH)의 함량을 1.0 mol로 변경한 것을 제외하고는 실시예 8과 동일한 방법으로 리그노술포네이트를 제조하였다.
실시예 11
메틸올화 단계에서 첨가된 포름알데히드 함량을 0.3몰로 변경한 것을 변경한 것을 제외하는 실시예 8과 동일한 방법으로 리그노술포네이트를 제조하였다.
실시예 12
메틸올화 단계에서 첨가된 포름알데히드 함량을 0.3몰로 변경하고,
술폰화 단계에서 첨가되는 소듐설파이트(Na2SO3) 또는 설퍼디옥사이드/소듐하이드록사이드(SO2/NaOH) 의 함량을 0.8 mol로 변경한 것을 제외하고는 실시예 8과 동일한 방법으로 리그노술포네이트를 제조하였다.
실시예 13
메틸올화 단계에서 첨가된 포름알데히드 함량을 0.3몰로 변경하고,
술폰화 단계에서 첨가되는 소듐설파이트(Na2SO3) 또는 설퍼디옥사이드/소듐하이드록사이드(SO2/NaOH) 의 함량을 1.0 mol로 변경한 것을 제외하고는 실시예 8과 동일한 방법으로 리그노술포네이트를 제조하였다.
실시예 14
메틸올화 단계에서 첨가된 포름알데히드 함량을 0.3몰로 변경하고,
술폰화 단계에서 첨가되는 소듐설파이트(Na2SO3) 또는 설퍼디옥사이드/소듐하이드록사이드(SO2/NaOH) 의 함량을 0.8 mol로 변경하고,
술폰화 반응 온도를 180℃로 변경한 것을 제외하고는 실시예 8과 동일한 방법으로 리그노술포네이트를 제조하였다.
실시예 15
메틸올화 단계에서 첨가된 포름알데히드 함량을 0.3몰로 변경하고,
술폰화 단계에서 첨가되는 소듐설파이트(Na2SO3) 또는 설퍼디옥사이드/소듐하이드록사이드(SO2/NaOH) 의 함량을 0.8 mol로 변경하고,
술폰화 반응 온도를 170℃로 변경한 것을 제외하고는 실시예 8과 동일한 방법으로 리그노술포네이트를 제조하였다.
실시예 16
메틸올화 단계에서 첨가된 포름알데히드 함량을 0.3몰로 변경하고,
술폰화 단계에서 첨가되는 소듐설파이트(Na2SO3) 또는 설퍼디옥사이드/소듐하이드록사이드(SO2/NaOH) 의 함량을 0.8 mol로 변경하고,
술폰화 반응 온도를 160℃로 변경한 것을 제외하고는 실시예 8과 동일한 방법으로 리그노술포네이트를 제조하였다.
실시예 17
메틸올화 단계에서 첨가된 포름알데히드 함량을 0.3몰로 변경하고,
술폰화 단계에서 첨가되는 소듐설파이트(Na2SO3) 또는 설퍼디옥사이드/소듐하이드록사이드(SO2/NaOH) 의 함량을 0.8 mol로 변경하고,
술폰화 반응 온도를 130℃로 변경한 것을 제외하고는 실시예 8과 동일한 방법으로 리그노술포네이트를 제조하였다.
(실시예 18~22, 비교예 1~2: 메틸올화 단계 생략)
실시예 18
메틸올화 단계를 생략하고, 메틸올화되지 않는 염산리그닌을 그대로 사용한 것을 제외하고는 실시예 8과 동일한 방법으로 리그노술포네이트를 제조하였다.
실시예 19
메틸올화 단계를 생략하고, 메틸올화되지 않는 염산리그닌을 그대로 사용하고,
술폰화 단계에서 첨가되는 소듐설파이트(Na2SO3)의 함량을 1.0 mol로 변경한 것을 제외하는 실시예 8과 동일한 방법으로 리그노술포네이트를 제조하였다.
실시예 20
메틸올화 단계를 생략하고, 메틸올화되지 않는 염산리그닌을 그대로 사용하고,
술폰화 단계에서 첨가되는 소듐설파이트(Na2SO3)의 함량을 2.0 mol로 변경한 것을 제외하는 실시예 8과 동일한 방법으로 리그노술포네이트를 제조하였다.
실시예 21
메틸올화 단계를 생략하고, 메틸올화되지 않는 염산리그닌을 그대로 사용하고,
술폰화 단계에서 첨가되는 소듐설파이트(Na2SO3)의 함량을 1.0 mol로 변경하고,
술폰화 단계에서 사용되는 용액에 첨가된 염산리그닌 고형분 함량을 17%로 변경한 것을 제외하는 실시예 8과 동일한 방법으로 리그노술포네이트를 제조하였다.
실시예 22
메틸올화 단계를 생략하고, 메틸올화되지 않는 염산리그닌을 그대로 사용하고,
술폰화 단계에서 첨가되는 소듐설파이트(Na2SO3)의 함량을 1.0 mol로 변경하고,
술폰화 단계에서 사용되는 용액에 첨가된 염산리그닌 고형분 함량을 25%로 변경한 것을 제외하는 실시예 8과 동일한 방법으로 리그노술포네이트를 제조하였다.
비교예 1
메틸올화 단계를 생략하고, 메틸올화되지 않는 염산리그닌을 그대로 사용하고,
술폰화 단계에서 소듐설파이트(Na2SO3)를 첨가하지 않은 것을 제외하고는 실시예 8과 동일한 방법으로 리그노술포네이트를 제조하였다.
비교예 2
메틸올화 단계를 생략하고, 메틸올화되지 않는 염산리그닌을 그대로 사용하고,
술폰화 단계에서 첨가되는 소듐설파이트(Na2SO3) 함량을 0.2 mol로 변경한 것을 제외하고는 실시예 8과 동일한 방법으로 리그노술포네이트를 제조하였다.
염산리그닌을 이용한 실험 결과를 하기 표2에 실험조건과 같이 요약하였다.
표 2
성분 메틸올화 유무 포름알데히드 함량[mole] 리그닌 함량[wt%] 술폰화 반응온도[℃] 소듐설파이트 함량[mole] 리그노술포네이트 수율[wt.%]
실시예 8 0.6 9 190 0.6 53.2
실시예 9 0.6 9 190 0.8 75.8
실시예 10 0.6 9 190 1.0 99.1
실시예 11 0.3 9 190 0.6 54.9
실시예 12 0.3 9 190 0.8 92.6
실시예 13 0.3 9 190 1.0 95.6
실시예 14 0.3 9 180 0.8 39.6
실시예 15 0.3 9 170 0.8 26.5
실시예 16 0.3 9 160 0.8 18.1
실시예 17 0.3 9 130 0.8 6.8
실시예 18 - 9 190 0.6 57.5
실시예 19 - 9 190 1.0 82.9
실시예 20 - 9 190 2.0 81.3
실시예 21 - 17 190 1.0 56.8
실시예 22 - 25 190 1.0 48.6
비교예 1 - 9 190 0.0 0.0
비교예 2 - 9 190 0.2 0.0
상기 표 2에서 보여지는 바와 같이 실시예 8 내지 22에서는 리그노술포네이트가 얻어졌다.
이에 반해, 설파이트 첨가량이 낮은 비교예 1 내지 2에서는 리그노술포네이트가 얻어지지 않았다.
메틸올화 단계를 추가적으로 포함하는 실시예 8 내지 17이 메틸올화 단계가 없는 실시예 18 내지 22에 비하여 리그노술포네이트의 수율이 전반적으로 향상되었다.
(콘크리트 혼화제의 제조)
실시예 23
실시예 19에서 제조된 리그노술포네이트를 포함하는 용액을 농축시켜 리그노술포네이트 함량이 15.7중량% (고형분 함량 49.6중량%)인 용액을 준비하였다.
실시예 24
실시예 10에서 제조된 리그노술포네이트를 포함하는 용액을 농축시켜 리그노술포네이트 함량이 32중량% (고형분 함량 41.2%)인 용액을 준비하였다.
평가예 1: 콘크리트 혼화제 적합성 평가
실시예 23 및 24에서 제조된 혼화제에 대하여 KS F 2560 방법에 따라 콘크리트를 제조하여 콘크리트 혼화제로서의 적합성을 평가하였다.
실시예 23의 혼화제를 포함하는 콘크리트는 물 177g, 시멘트 320g, 잔골재 1105g, 굵은골재 1460g, 혼화제 및 상용 AE제를 혼합하여 제조하였고, 혼화제는 시멘트 함량의 0.5%, AE제는 시멘트 함량의 0.02%를 첨가하였다.
실시예 24의 혼화제를 포함하는 콘크리트는 물 142g, 시멘트 320g, 잔골재 867g, 굵은골재 1091g, 및 혼화제를 혼합하여 제조하였고, 혼화제는 시멘트 함량의 0.5%를 첨가하였다. 즉, 상용 AE제를 사용하지 않았다.
평가 결과를 하기 표 3에 나타내었다.
표 3
평가 항목 AE감수제_표준형의 품질 기준 실시예 23 실시예 24
감수율 [%] 10 이상 16 11
블리딩량의 비[%] 0.670이하 54 57
응결시간의 차[분] 초결 -60 내지 +90 +35 +30
종결 -60 내지 +90 +45 +30
압축강도의 비[%] 3일 115 이상 124 138
7일 110 이상 119 133
18일 110 이상 114 126
동결융해에 대한 저항성[상태 동탄성 계수, %] 80 이상 88 -
경시변화량[60분] 슬럼프[mm] 50 50
공기량[%] 0.4 0.3
표 3에서 보여지는 바와 같이 실시예 23 및 24의 혼화제는 AE감수제_표준형의 품질 기준을 충족하여 콘크리트 혼화제를 사용될 수 있음을 보여주었다.
특히, 실시예 24는 기존의 AE제의 사용 없이도 콘크리트 혼화제 기준을 만족하였다.
가수분해에 의하여 얻어지는 리그닌을 고온에서 술폰화시킴에 의하여 리그노술포네이트를 높은 수율로 제조할 수 있다.

Claims (20)

  1. 목질계 바이오매스(lignocellulosic biomass)를 산으로 가수분해하여 얻어지는 리그닌을 준비하는 단계; 및
    상기 리그닌을 130℃ 이상의 온도에서 술폰화시키는 단계;를 포함하며,
    상기 술폰화 단계에서 리그닌 200g 당 0.6몰 내지 2.0몰의 설파이트 또는 바이설파이트 화합물이 첨가되는 리그노술포네이트 제조방법.
  2. 제 1 항에 있어서, 상기 술폰화 단계가 140℃ 내지 190℃의 온도에서 수행되는 제조방법.
  3. 제 1 항에 있어서, 상기 술폰화 단계가 10bar 초과 내지 20bar의 압력에서 수행되는 제조방법.
  4. 제 1 항에 있어서, 상기 술폰화 단계가 pH 3 내지 11에서 수행되는 제조방법.
  5. 제 1 항에 있어서, 상기 술폰화 단계가 2 시간 이상 수행되는 제조방법.
  6. 제 1 항에 있어서, 상기 술폰화 단계 전에
    리그닌을 메틸올화(methylolation)시키는 단계를 추가적으로 포함하는 제조방법.
  7. 제 6 항에 있어서, 상기 메틸올화 단계에서 리그닌 200g 당 0.2몰 내지 1.0몰의 포름알데히드가 첨가되는 제조방법.
  8. 제 6 항에 있어서, 상기 메틸올화 단계가 pH 11 내지 13에서 수행되는 제조방법.
  9. 제 6 항에 있어서, 상기 메틸올화 단계가 70℃ 이상의 온도에서 수행되는 제조방법.
  10. 제 6 항에 있어서, 상기 메틸올화 단계 전에
    리그닌을 60℃ 이상의 염기성 용매에 함침시키는 단계를 추가적으로 포함하는 제조방법.
  11. 제 6 항에 있어서, 상기 메틸올화 단계 후에
    상기 리그닌을 산성화(acidification)시키는 단계를 추가적으로 포함하는 제조방법.
  12. 제 6 항에 있어서, 상기 메틸올화 단계 전에,
    리그닌을 물에 함침시키는 단계를 추가적으로 포함하는 제조방법.
  13. 제 12 항에 있어서, 상기 물에 함침시키는 단계가 20 내지 70?의 온도에서 8 내지 24시간 동안 수행되는 제조방법.
  14. 제 1 항에 있어서, 상기 산이 황산인 제조방법.
  15. 제 14 항에 있어서, 상기 리그노술포네이트의 수율이 30중량% 이상인 제조방법.
  16. 제 1 항에 있어서, 상기 산이 염산이 제조방법.
  17. 제 16 항에 있어서, 상기 리그노술포네이트의 수율이 50중량% 이상인 제조방법.
  18. 제 1 항 내지 제 17 항 중 어느 한 방법으로 제조된 리그노술포네이트.
  19. 제 1 항 내지 제 17 항 중 어느 한 방법으로 제조된 리그노술포네이트를 포함하는 혼화제.
  20. 제 1 항 내지 제 17 항 중 어느 한 방법으로 제조된 리그노술포네이트를 포함하는 콘크리트.
PCT/KR2013/009879 2012-12-20 2013-11-04 리그노술포네이트 제조방법, 상기 방법으로 제조된 리그노술포네이트, 및 이를 포함하는 혼화제 및 콘크리트 WO2014098369A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2012-0149759 2012-12-20
KR1020120149759A KR101479675B1 (ko) 2012-12-20 2012-12-20 리그노술포네이트 제조방법, 상기 방법으로 제조된 리그노술포네이트, 및 이를 포함하는 혼화제 및 콘크리트

Publications (1)

Publication Number Publication Date
WO2014098369A1 true WO2014098369A1 (ko) 2014-06-26

Family

ID=50978642

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/009879 WO2014098369A1 (ko) 2012-12-20 2013-11-04 리그노술포네이트 제조방법, 상기 방법으로 제조된 리그노술포네이트, 및 이를 포함하는 혼화제 및 콘크리트

Country Status (2)

Country Link
KR (1) KR101479675B1 (ko)
WO (1) WO2014098369A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2665576C1 (ru) * 2018-04-18 2018-08-31 Федеральное государственное бюджетное научное учреждение "Федеральный исследовательский центр "Красноярский научный центр Сибирского отделения Российской академии наук" (ФИЦ КНЦ СО РАН, КНЦ СО РАН) Способ сульфатирования органосольвентного лигнина
CN111218833A (zh) * 2020-04-01 2020-06-02 李孝亭 一种防止硫酸盐溶解浆预水解液酸溶解木质素聚积的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR880001323B1 (ko) * 1984-12-10 1988-07-23 웨스트 바코 코오퍼레이션 리그노술폰산 암모늄 및 그의 제조방법
US4892588A (en) * 1988-10-24 1990-01-09 Westvaco Corporation Production of lignosulfonate additives
KR900005605B1 (ko) * 1984-10-05 1990-07-31 웨스트바코 코오퍼레이션 저-전해질-함유 리그노술폰산 나트륨의 제조방법
JP2008532491A (ja) * 2005-02-11 2008-08-21 アグロテクノロジー アンド フード イノベイションズ ビー.ブイ. バイオマスの転化のための方法及び装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4892587A (en) 1988-10-24 1990-01-09 Westvaco Corporation Lignosulfonate additive-containing carbon black compositions

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR900005605B1 (ko) * 1984-10-05 1990-07-31 웨스트바코 코오퍼레이션 저-전해질-함유 리그노술폰산 나트륨의 제조방법
KR880001323B1 (ko) * 1984-12-10 1988-07-23 웨스트 바코 코오퍼레이션 리그노술폰산 암모늄 및 그의 제조방법
US4892588A (en) * 1988-10-24 1990-01-09 Westvaco Corporation Production of lignosulfonate additives
JP2008532491A (ja) * 2005-02-11 2008-08-21 アグロテクノロジー アンド フード イノベイションズ ビー.ブイ. バイオマスの転化のための方法及び装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2665576C1 (ru) * 2018-04-18 2018-08-31 Федеральное государственное бюджетное научное учреждение "Федеральный исследовательский центр "Красноярский научный центр Сибирского отделения Российской академии наук" (ФИЦ КНЦ СО РАН, КНЦ СО РАН) Способ сульфатирования органосольвентного лигнина
CN111218833A (zh) * 2020-04-01 2020-06-02 李孝亭 一种防止硫酸盐溶解浆预水解液酸溶解木质素聚积的方法

Also Published As

Publication number Publication date
KR20140092943A (ko) 2014-07-25
KR101479675B1 (ko) 2015-01-08

Similar Documents

Publication Publication Date Title
WO2017095174A1 (ko) 중합성 조성물
WO2018117426A2 (ko) 폴리페닐렌 설파이드의 제조방법 및 이로부터 제조된 고 점도 폴리페닐렌 설파이드
WO2017052323A1 (ko) 프탈로니트릴 화합물
WO2018147690A1 (ko) 가소제 조성물 및 이를 포함하는 수지 조성물
WO2014098369A1 (ko) 리그노술포네이트 제조방법, 상기 방법으로 제조된 리그노술포네이트, 및 이를 포함하는 혼화제 및 콘크리트
WO2018016780A1 (ko) 칼슘 화합물을 포함하는 시멘트 콘크리트용 조강혼합물 및 이의 제조방법
WO2018016781A1 (ko) 슬래그를 포함하는 시멘트 콘크리트용 조강혼합물 및 이의 제조방법
WO2011004980A2 (ko) 트리사이클릭 유도체의 제조방법
WO2018079868A1 (ko) 탄소광물화 처리된 비산재 및 조강형 팽창재를 포함하는 저수축 저탄소 그린 시멘트 조성물 및 이를 적용한 콘크리트
WO2023080428A1 (ko) 콘크리트 조기강도 발현용 나노입자, 이를 포함하는 콘크리트 형성용 조성물 및 이의 제조방법
WO2014010990A1 (en) Novel pyridine derivatives and method for preparation of intermediate compound for producing sulfonylurea herbicides using the same
WO2022158766A1 (ko) 고순도의 하이드로젠 헥사시아노코발테이트 화합물 및 이의 제조 방법
WO2020153707A1 (ko) 전지 포장재
WO2022114536A1 (ko) 접착제, 건조 접착층을 포함하는 구조물과 전열교환소자, 및 그 제조 방법
WO2018124803A1 (ko) 결정화 기술을 이용한 l-메티오닌 결정의 제조방법
WO2021066438A1 (ko) 아라미드 나노섬유를 포함하는 고분자 복합소재 및 이의 제조방법
WO2015133750A1 (ko) 시멘트 분산제 및 제조방법과 이를 이용한 모르타르·콘크리트 혼화제
WO2017183876A1 (ko) 가소제 조성물 및 이를 포함하는 수지 조성물
WO2020080737A1 (ko) 첨가제 조성물 및 그 제조방법
WO2019088800A2 (ko) 폴리에틸렌글리콜 유도체 및 이의 제조방법
CN109437645B (zh) 一种磺化副产有机酸制备砂浆助剂的方法
WO2022114587A1 (ko) 열경화성 수지 복합소재 분해 및 재활용 방법 및 장치, 이에 활용되는 조성물
WO2023277590A1 (ko) 알킬-d-알라니네이트의 제조방법, 알킬-d-알라니네이트, 알킬-d-알라니네이트 유도체, 및 이를 포함하는 의약품 또는 농업용품
WO2014098410A1 (ko) 보센탄 일수화물의 제조방법, 이에 사용되는 신규 중간체 및 이의 제조방법
WO2019039879A2 (ko) 복합 가소제 조성물, 이의 제조방법 및 이를 이용한 고분자 수지 조성물

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13864966

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 02.10.2015)

122 Ep: pct application non-entry in european phase

Ref document number: 13864966

Country of ref document: EP

Kind code of ref document: A1