WO2022114536A1 - 접착제, 건조 접착층을 포함하는 구조물과 전열교환소자, 및 그 제조 방법 - Google Patents

접착제, 건조 접착층을 포함하는 구조물과 전열교환소자, 및 그 제조 방법 Download PDF

Info

Publication number
WO2022114536A1
WO2022114536A1 PCT/KR2021/014865 KR2021014865W WO2022114536A1 WO 2022114536 A1 WO2022114536 A1 WO 2022114536A1 KR 2021014865 W KR2021014865 W KR 2021014865W WO 2022114536 A1 WO2022114536 A1 WO 2022114536A1
Authority
WO
WIPO (PCT)
Prior art keywords
adhesive
cellulose
heat exchange
total heat
nano
Prior art date
Application number
PCT/KR2021/014865
Other languages
English (en)
French (fr)
Inventor
이동욱
김홍중
정경호
권준한
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to US18/038,404 priority Critical patent/US20230416577A1/en
Priority to CN202180078778.2A priority patent/CN116472310A/zh
Priority to EP21898362.5A priority patent/EP4265700A1/en
Publication of WO2022114536A1 publication Critical patent/WO2022114536A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J101/00Adhesives based on cellulose, modified cellulose, or cellulose derivatives
    • C09J101/08Cellulose derivatives
    • C09J101/26Cellulose ethers
    • C09J101/28Alkyl ethers
    • C09J101/286Alkyl ethers substituted with acid radicals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J101/00Adhesives based on cellulose, modified cellulose, or cellulose derivatives
    • C09J101/08Cellulose derivatives
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D21/0015Heat and mass exchangers, e.g. with permeable walls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/26Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
    • B32B3/28Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer characterised by a layer comprising a deformed thin sheet, i.e. the layer having its entire thickness deformed out of the plane, e.g. corrugated, crumpled
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/03Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers with respect to the orientation of features
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/05Interconnection of layers the layers not being connected over the whole surface, e.g. discontinuous connection or patterned connection
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/08Cellulose derivatives
    • C08L1/16Esters of inorganic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/08Cellulose derivatives
    • C08L1/26Cellulose ethers
    • C08L1/28Alkyl ethers
    • C08L1/286Alkyl ethers substituted with acid radicals, e.g. carboxymethyl cellulose [CMC]
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J101/00Adhesives based on cellulose, modified cellulose, or cellulose derivatives
    • C09J101/08Cellulose derivatives
    • C09J101/16Esters of inorganic acids
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/04Non-macromolecular additives inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/06Non-macromolecular additives organic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F12/00Use of energy recovery systems in air conditioning, ventilation or screening
    • F24F12/001Use of energy recovery systems in air conditioning, ventilation or screening with heat-exchange between supplied and exhausted air
    • F24F12/006Use of energy recovery systems in air conditioning, ventilation or screening with heat-exchange between supplied and exhausted air using an air-to-air heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0062Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by spaced plates with inserted elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/06Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being attachable to the element
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/26Polymeric coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/302Conductive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/726Permeability to liquids, absorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/748Releasability
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2275/00Fastening; Joining
    • F28F2275/02Fastening; Joining by using bonding materials; by embedding elements in particular materials
    • F28F2275/025Fastening; Joining by using bonding materials; by embedding elements in particular materials by using adhesives

Definitions

  • the present invention is applicable to the adhesive-related technical field, for example, relates to an adhesive containing a cellulose fiber, a structure and a total heat exchange element including a dry adhesive layer, and a manufacturing method thereof.
  • Nanocellulose is a material that has a nanometer-level diameter and micrometer-level length in a form in which the crystalline and amorphous parts of cellulose, the main component of plant cell walls, are combined. Such nano-cellulose is an eco-friendly material with a large aspect ratio and excellent mechanical properties.
  • Nano-cellulose can be prepared by methods such as mechanical grinding, chemical dissolution, and biological culture.
  • Nanocellulose mainly obtained by mechanical grinding and chemical dissolution, is obtained in the form of a suspension dispersed in water due to hydrophilic functional groups (hydroxyl groups), so it can be applied as a composite material strengthening agent, thickener, cosmetic additive, etc.
  • nano cellulose is to be used in adhesives.
  • the adhesive using such nano cellulose can be used for adhesion of the total heat exchange element.
  • Patent Document 1 is an invention related to an adhesive using nanocellulose.
  • the adhesive according to the invention described in Patent Document 1 contains nano-cellulose and starch at a concentration of 0.1 wt% to 12.0 wt% and 0.1 wt% to 12.0 wt%, based on the total weight of the adhesive.
  • Produced by binding in a proportion, the paper to be bound can be applied to the surface of the product.
  • the starch contained in the adhesive is easily decomposed by microorganisms, and there is a problem in that the adhesive strength decreases over time, and also there is a problem in that it is vulnerable to the propagation of bacteria and mold.
  • Patent Document 2 discloses a method for producing a natural adhesive comprising pulverized (separated) cellulose and water having a diameter of 300 ⁇ m to 1 nm.
  • an adhesive made of only nano cellulose is accompanied by a moisture bleed phenomenon, resulting in a strength inferiority phenomenon before drying, and also has a problem in causing a phenomenon in which wrinkles occur in the applied paper after drying.
  • An object of the present invention is to provide an adhesive, a structure including a dry adhesive layer, a total heat exchange element, and a method for manufacturing the same, which can prevent moisture from spreading during application of the adhesive to prevent the weakening of adhesive strength during drying.
  • an object of the present invention is to provide an adhesive, a structure including a dry adhesive layer, a total heat exchange element, and a method for manufacturing the same, which can prevent the weakening of adhesive strength when the adhesive is dried by imparting hygroscopicity to the adhesive.
  • the present invention is to provide an adhesive capable of imparting flame retardancy to the adhesive itself, a structure including a dry adhesive layer, a total heat exchange element, and a method for manufacturing the same.
  • Another object of the present invention is to provide an adhesive capable of imparting antibacterial properties to the adhesive, a structure including a dry adhesive layer, a total heat exchange device, and a method for manufacturing the same.
  • an object of the present invention is to provide an adhesive capable of improving total heat exchange efficiency when applied to a total heat exchange element, a structure including a dry adhesive layer, a total heat exchange element, and a method for manufacturing the same.
  • the present invention provides an adhesive comprising a solid content dispersed in water, wherein the solid content includes: nano cellulose fibers; and carboxymethyl cellulose to which a carboxymethyl group is imparted.
  • the adhesive may include 0.1 to 5% by weight of the nano-cellulose, and 0.1 to 5% by weight of the carboxymethyl cellulose.
  • the adhesive may further include an inorganic moisture absorbent.
  • the inorganic moisture absorbent may include at least one of calcium chloride, lithium chloride, magnesium chloride, and silica gel.
  • the adhesive may include 0.1 to 1% by weight of the inorganic moisture absorbent.
  • the adhesive may further include an antibacterial agent.
  • the antibacterial agent may include at least one of Ag, Cu or Zn-supported porous inorganic antibacterial agent or organic antibacterial agent including bronopol, phenylphenols or benzothiazolines.
  • the adhesive may include 0.1 to 1% by weight of the antibacterial agent.
  • the nano-cellulose may have a diameter of 1 to 50 nm.
  • a phosphoric acid functional group may be provided to the nano-cellulose.
  • the phosphoric acid functional group and the carboxymethyl group may be provided in a ratio of 0.5 to 3.0 mmol/g, respectively.
  • carboxymethyl cellulose may prevent the water from spreading to the object to be adhered.
  • the content of the water may be 88.0 to 99.6% by weight.
  • the present invention provides a structure comprising a dry adhesive layer positioned between the first member and the second member, wherein the dry adhesive layer is 15 to 35 wt% of nano cellulose, and carboxyl It may be composed of 65 to 85% by weight of carboxymethyl cellulose to which a methyl group is imparted.
  • the dry adhesive layer may further include an inorganic moisture absorbent.
  • the dry adhesive layer may further include an antibacterial agent.
  • the present invention provides a total heat exchange device comprising a dry adhesive layer, comprising: a first total heat exchange paper; a second total heat exchange paper; and a dry adhesive layer positioned between the first total heat exchange paper and the second total heat exchange paper, wherein the dry adhesive layer includes 15 to 35 wt% of nano cellulose, and 65 to 85 wt% of carboxymethyl cellulose to which a carboxymethyl group is imparted. % may be included.
  • first total heat exchanger may be a member for heat exchange
  • second total heat exchanger may be a spacer positioned between the first total heat exchangers to form a space through which air passes.
  • the present invention provides a method for manufacturing an adhesive comprising a solid content dispersed in water, the method comprising: obtaining a first solution in which nano cellulose is dispersed; obtaining a second solution in which carboxymethyl cellulose to which a carboxymethyl group is imparted is dispersed; It may be configured to include mixing the first solution and the second solution.
  • step of adding an inorganic desiccant may be further included.
  • step of adding an antibacterial agent may be further included.
  • a phosphoric acid functional group may be provided to the nano-cellulose.
  • the phosphoric acid functional group may include adding pulp and phosphoric acid in an amount of 1:0.01 to 1:0.5 wt% to obtain the nano-cellulose.
  • the embodiment of the present invention has the following effects.
  • the adhesive according to the present invention has the effect of imparting hygroscopicity, flame retardancy, moisture prevention, and antibacterial properties to the adhesive.
  • the adhesive according to the present invention can maintain high adhesive strength even at a relatively low drying temperature, and it is possible to impart flame retardancy without a separate flame retardant by a phosphate functional group.
  • FIG. 1 is a schematic diagram showing an adhesive according to an embodiment of the present invention.
  • Figure 2 is a schematic diagram showing the moisture trapping ability of the adhesive according to an embodiment of the present invention.
  • FIG. 3 is a schematic view showing the moisture-collecting state of the adhesive according to the comparative example.
  • FIG. 4 is a cross-sectional schematic view showing a structure including a dry adhesive layer to which an adhesive is applied according to an embodiment of the present invention.
  • FIG. 5 is a schematic view showing a total heat exchanger and a total heat exchange element to which the adhesive according to an embodiment of the present invention can be applied.
  • FIG. 6 is a schematic diagram showing an example of a total heat exchange device to which the adhesive according to an embodiment of the present invention can be applied.
  • FIG. 7 is a schematic diagram showing another example of a total heat exchange device to which the adhesive according to an embodiment of the present invention can be applied.
  • FIG. 8 is a schematic diagram showing another example of a total heat exchange device to which the adhesive according to an embodiment of the present invention can be applied.
  • FIG. 9 is a flowchart illustrating a method of manufacturing an adhesive according to an embodiment of the present invention.
  • FIG. 10 is a flowchart illustrating a process of obtaining a solution in which nano-cellulose is dispersed in the method of manufacturing an adhesive according to an embodiment of the present invention.
  • FIG. 11 is a flowchart illustrating a process of obtaining a solution in which carboxymethyl cellulose is dispersed in a method of manufacturing an adhesive according to an embodiment of the present invention.
  • the present invention relates to an adhesive and a method for manufacturing the same, for example, the adhesive according to the present invention can be used in a total heat exchange element.
  • the adhesive according to the present invention has the advantage of imparting hygroscopicity, flame retardancy, moisture prevention, and antibacterial properties to the adhesive.
  • Adhesiveness and flame retardancy of the adhesive may be implemented by nano-cellulose.
  • preventing moisture from spreading of the adhesive may be implemented by carboxymethyl cellulose.
  • flame retardancy may be imparted by the phosphoric acid group of nanocellulose.
  • the hygroscopicity of the adhesive may be realized by an inorganic hygroscopic agent.
  • the antibacterial property can be realized by the addition of the antibacterial agent.
  • It may include a phosphate functional group of nanocellulose.
  • a phosphate functional group of nanocellulose As such, it is possible to impart functionality to the adhesive due to the excellent bonding properties of the additives including the phosphate-treated nano-cellulose and carboxymethyl cellulose, the inorganic moisture absorbent and the antibacterial agent.
  • the hydroxyl group (-OH) present in nano cellulose and carboxymethyl cellulose may be combined with the cationic functional additive material.
  • the adhesive according to the present invention can be used in a total heat exchange element.
  • moisture absorption is imparted to improve the latent heat exchange efficiency. Therefore, it can contribute to the improvement of the total heat exchanger efficiency.
  • the adhesive according to the present invention can maintain high adhesive strength even at a relatively low drying temperature, and it is possible to impart flame retardancy without a separate flame retardant by a phosphate functional group.
  • the adhesive according to the present invention is a material that can be recycled by dissolving in water, is harmless to the human body or the environment, and is a odorless material. Therefore, when performing work using the adhesive according to the present invention, it is possible to improve the work efficiency in the process.
  • Nanocellulose is a crystalline polymer that is the main component of plant cell walls, and is a fibrous nanomaterial with a diameter of 100 nm or less. Such nano-cellulose exhibits high strength comparable to glass fiber, and has a low coefficient of thermal expansion of 10 ppm/K or less, so that it has very good thermal stability.
  • the present invention proposes a manufacturing method for lowering the grinding energy after undergoing chemical pretreatment.
  • Dispersibility refers to the property of nano-cellulose to be stably suspended in an aqueous solution without precipitation.
  • Adhesion refers to a property of being fixed and maintained without peeling due to chemical bonding or physical adsorption after being applied and dried between an object to be adhered, for example, paper and paper.
  • the adhesive strength and total heat exchange efficiency of the adhesive can be improved.
  • the present invention it is possible to reduce the environmental burden compared to the conventional adhesive, to provide various functionalities, and to ensure the easiness of operation in the process.
  • the adhesive according to the present invention can be variously applied as an adhesive capable of bonding various materials of the same or different types other than the total heat exchange element.
  • FIG. 1 is a schematic diagram showing an adhesive according to an embodiment of the present invention.
  • the adhesive according to an embodiment of the present invention may be an adhesive including solid content dispersed in water 10 . That is, the adhesive according to an embodiment of the present invention may be a water-based adhesive.
  • the solid content dispersed in water may include nano-cellulose 20 and carboxymethyl cellulose 30 to which a carboxymethyl group 32 is provided.
  • the adhesive may contain 0.1 to 5 wt% of the nano cellulose 20 (wt%), and 0.1 to 5 wt% of the carboxymethyl cellulose 30.
  • the adhesive according to an embodiment of the present invention may further include an inorganic moisture absorbent (40).
  • the inorganic desiccant 40 may include at least one of calcium chloride, lithium chloride, magnesium chloride, and silica gel.
  • the inorganic moisture absorbent 40 may be included in the adhesive in an amount of 0.1 to 1% by weight.
  • the adhesive according to an embodiment of the present invention may further include an antibacterial agent (50).
  • the antibacterial agent 50 may include at least one of Ag, Cu, or Zn-supported porous inorganic antibacterial agent or organic antibacterial agent including bronopol, phenylphenols, or benzothiazolines.
  • the antibacterial agent 50 may be included in the adhesive in an amount of 0.1 to 1% by weight.
  • the content of the water 10 constituting the solvent of the adhesive may be 88.0 to 99.6% by weight. That is, water 10 may occupy most of the mass of the adhesive before drying.
  • a phosphoric acid functional group 22 may be provided to the nano-cellulose 20 .
  • the nano-cellulose 20 may include the nano-cellulose fibers 21 .
  • Phosphoric acid functional groups 22 may be provided to the nano-cellulose fibers 21 .
  • a plurality of nano-cellulose fibers 21 or an individual in which a phosphoric acid functional group 22 is provided to the nano-cellulose fibers 21 may be referred to as nano-cellulose 20 .
  • carboxymethyl cellulose 30 may include nano cellulose fibers 31 .
  • a carboxymethyl group 32 may be provided to the nano-cellulose fiber 31 .
  • a plurality of nano-cellulose fibers 31 or an individual in which a carboxymethyl group 32 is provided to the nano-cellulose fibers 31 may be referred to as carboxymethyl cellulose 30 .
  • the nano-cellulose fibers 21 and 31 may have a diameter of 1 to 50 nm.
  • the phosphoric acid functional group 22 and the carboxymethyl group 32 may be provided to the nano-cellulose fibers 21 and 31 at a ratio of 0.5 to 3.0 mmol/g, respectively.
  • FIG. 1 it shows a state in which water particles 11 are collected in carboxymethyl cellulose 30 .
  • Carboxy methyl cellulose 30 may have a high moisture trapping ability. That is, many water particles 11 may be collected in the carboxymethyl cellulose 30 including the nano-cellulose fibers 31 to which the carboxymethyl group 32 is provided.
  • the carboxymethyl cellulose 30 component can prevent the water 10 contained in the adhesive from spreading to the adhesive object.
  • the nano-cellulose 20 included in the adhesive may improve the adhesive strength and flame retardancy of the adhesive.
  • flame retardancy may be imparted by the phosphate group 22 of the nano-cellulose 20 .
  • the hygroscopicity of the adhesive can be improved by the inorganic desiccant 40 .
  • the inorganic desiccant 40 of an appropriate content can improve the moisture absorption on the adhesive surface, and when the adhesive is used for the total heat exchange element, the total heat exchange efficiency can be improved.
  • the inorganic desiccant 40 is advantageously contained in an appropriate amount in the adhesive.
  • the inorganic moisture absorbent 40 when it is excessively included in the adhesive, it may cause agglomeration of the solid content. As a result, a phase separation phenomenon and a decrease in adhesive strength may occur.
  • antimicrobial properties may be secured by the addition of the antimicrobial agent 50 .
  • the antibacterial agent 50 is also included in an appropriate amount in the adhesive. For example, when the antimicrobial agent 50 is excessively included, the adhesive force of the adhesive may be reduced.
  • the inorganic moisture absorbent 40 may be included in the adhesive in an amount of 0.1 to 1 wt%.
  • the antimicrobial agent 50 may be included in the adhesive in an amount of 0.1 to 1% by weight.
  • each functionality can be imparted to the adhesive.
  • the adhesive according to the present invention has the effect of imparting hygroscopicity, flame retardancy, moisture prevention, and antibacterial properties to the adhesive.
  • the adhesive according to the present invention can be used in a total heat exchange element.
  • moisture absorption is imparted to improve the latent heat exchange efficiency.
  • the adhesive according to the present invention can maintain high adhesive strength even at a relatively low drying temperature, and it is possible to impart flame retardancy without a separate flame retardant by a phosphate functional group.
  • the adhesive according to the present invention is a material that can be recycled by dissolving in water, is harmless to the human body or the environment, and is a odorless material. Therefore, when performing work using the adhesive according to the present invention, it is possible to improve the work efficiency in the process.
  • Figure 2 is a schematic diagram showing the moisture trapping ability of the adhesive according to an embodiment of the present invention.
  • 3 is a schematic view showing the moisture-collecting state of the adhesive according to the comparative example.
  • FIG. 2 it shows a state in which the adhesive according to the embodiment of the present invention is locally applied to the bonding object 100 .
  • FIG. 3 shows a state in which an adhesive containing only the cellulose fibers 2 in water is locally applied to the object 100 to be adhered.
  • the carboxymethyl cellulose 30 in which the nano cellulose fiber 31 to which the carboxymethyl group 32 is provided is dispersed is dispersed in the water 10 constituting the adhesive.
  • Water 10 is relatively strongly trapped in the carboxymethyl cellulose 30 , so that the force A to spread to the adhesive object 100 may be relatively very weak.
  • the force (B) to spread the adhesive object 100 and the water 10 to the adhesive object 100 may be relatively large.
  • moisture bleed may occur, resulting in a strength inferiority phenomenon until the adhesive is dried.
  • it may cause a phenomenon in which wrinkles are generated in the object to be adhered 100 after drying of the adhesive.
  • the application state is maintained until the adhesive is dried.
  • the adhesive strength during application of the adhesive may be maintained, and the adhesive surface of the object 100 may be evenly maintained even after the adhesive is dried.
  • the adhesive object 100 to which the adhesive is applied includes paper, a more excellent effect may be exhibited.
  • FIG. 4 is a cross-sectional schematic view showing a structure including a dry adhesive layer to which an adhesive is applied according to an embodiment of the present invention.
  • the dry adhesion syndrome may mean a layer in which the water 10 is dried while the above-described adhesive is applied.
  • the dry adhesive layer may include the nano cellulose fibers 21 and 31 and the carboxymethyl group 32 .
  • this dry adhesive layer may include the nano-cellulose 20 and the carboxymethyl cellulose 30.
  • the nano-cellulose 20 may include the nano-cellulose fibers 21 .
  • a phosphoric acid functional group 22 may be provided to the nano-cellulose fiber 21 .
  • carboxymethyl cellulose 30 may include nano cellulose fibers 31 .
  • a carboxymethyl group 32 may be provided to the nano-cellulose fiber 31 .
  • the nano-cellulose fibers 21 and 31 may have a diameter of 1 to 50 nm.
  • the content (weight) of the carboxymethyl cellulose 30 in the dry adhesive layer may be greater than that of the nano-cellulose 20 .
  • the dry adhesive layer may be composed of 15 to 35% by weight of the nano cellulose 20, and 65 to 85% by weight of the carboxymethyl cellulose 30 to which the carboxymethyl group 32 is imparted.
  • At least one of the inorganic moisture absorbent 40 and the antibacterial agent 50 may be further included in the dry adhesive layer.
  • the content of the inorganic moisture absorbent 40 may be greater than the content of the antibacterial agent 50 .
  • the inorganic desiccant 40 may include at least one of calcium chloride, lithium chloride, magnesium chloride, and silica gel.
  • the antimicrobial agent 50 may include at least one of Ag, Cu, or Zn-supported porous inorganic antibacterial agent or organic antibacterial agent including bronopol, phenylphenols, or benzothiazolines.
  • first member 110 and the second member 120 may be structures made of paper.
  • the dry adhesive layer can efficiently attach the first member 110 and the second member 120 .
  • the application state can be maintained until the adhesive is dried. have.
  • the adhesive strength when the adhesive is applied can be maintained, and the adhesive surfaces of the objects to be adhered 110 and 120 can be uniformly maintained even in the dry adhesive after the adhesive is dried.
  • An example of a structure including such a dry adhesive layer may be a total heat exchange element.
  • the first member 110 may be a first total heat exchange paper
  • the second member 120 may be a second total heat exchange paper.
  • the first total heat exchange paper 110 may be a member for heat exchange
  • the second total heat exchange paper 120 is positioned between the first total heat exchange papers 110 to form a space through which air can flow.
  • FIG. 5 is a schematic view showing a total heat exchanger and a total heat exchange element to which the adhesive according to an embodiment of the present invention can be applied.
  • the adhesive according to an embodiment of the present invention may be applied to the total heat exchanger 101 shown in FIG. 5 .
  • a total heat exchange element 100 may be provided inside the total heat exchanger 101 .
  • the warmed fresh air is exchanged with the indoor warm polluted air, and eventually The cooled polluted air may be discharged through the total heat exchanger 101 .
  • the total heat exchange element 100 includes a liner for latent heat exchange and a spacer that is positioned between the liner to maintain a gap and block gas and allow air to flow through the gap.
  • the liner may correspond to the first total heat exchange paper 110 of FIG. 4
  • the spacer may correspond to the second total heat exchange paper 120 of FIG. 4 .
  • the introduced air may be supplied (T2) through the spacer, then ventilated with the air in the room and exhausted (T1) by a heat exchange process.
  • the total heat exchange element 100 may be installed through the wall along a diagonal.
  • a detailed description of the total heat exchange element 100 will be omitted.
  • FIG. 6 is a schematic diagram showing an example of a total heat exchange device to which the adhesive according to an embodiment of the present invention can be applied.
  • 7 is a schematic diagram showing another example of a total heat exchange device to which the adhesive according to an embodiment of the present invention can be applied.
  • 8 is a schematic diagram showing another example of a total heat exchange device to which the adhesive according to an embodiment of the present invention can be applied.
  • the adhesive according to an embodiment of the present invention may be applied between the first total heat exchange element 110 and the second total heat exchange element 120 , 121 , 122 for this total heat exchange element.
  • a dry adhesive layer may be formed.
  • the dry adhesive layer positioned between the first total heat exchange paper 110 and the second total heat exchange paper 120, 121, 122 is nano cellulose 20 to 15 to 35 wt%, and It may be configured to include 65 to 85% by weight of carboxymethyl cellulose 30 to which the carboxymethyl group 32 is imparted.
  • At least one of the inorganic moisture absorbent 40 and the antibacterial agent 50 may be further included in the dry adhesive layer.
  • the content of the inorganic moisture absorbent 40 may be greater than the content of the antibacterial agent 50 .
  • the inorganic desiccant 40 may include at least one of calcium chloride, lithium chloride, magnesium chloride, and silica gel.
  • Matters not described above may be equally applied to the matters described with reference to FIG. 4 .
  • a second total heat exchange paper (spacer) 120 may be disposed between the first total heat exchange papers (liner) 110 in a bent form.
  • an adhesive may be used in the portion (C) where the corners of the first total heat exchange paper 110 and the second total heat exchange paper 120 meet.
  • FIG. 7 shows another example of a total heat exchange element.
  • a second total heat exchange paper (spacer) 121 may be disposed between the first total heat exchange papers (liner) 110 in a bent form.
  • an adhesive may be used in the portion (D) where the inflection points of the first total heat exchange paper 110 and the second total heat exchange paper 121 meet.
  • the pitch P of the total heat exchange element shown in FIG. 7 may be further reduced compared to the total heat exchange element shown in FIG. 6 , and thus the height H may be reduced.
  • the total heat exchange element shown in FIG. 7 has an increased adhesive surface, and thus pressure loss can be reduced.
  • latent heat exchange efficiency may be improved. Accordingly, the transfer performance of temperature and humidity through the air may be improved.
  • the adhesive according to the embodiment of the present invention described above may exhibit excellent performance. That is, the adhesive according to the embodiment of the present invention can satisfy characteristics such as hygroscopicity and flame retardancy required for such a total heat exchange device.
  • the adhesive according to the embodiment of the present invention contains carboxymethyl cellulose 30, the force to spread the adhesive to the first total heat exchange paper 110 and the second total heat exchange paper 121 is relatively weak, so the adhesive The coating state can be maintained until drying of the.
  • the adhesive strength when the adhesive is applied can be maintained, and even after the adhesive is dried, the adhesive surfaces of the first total heat exchange paper 110 and the second total heat exchange paper 121 can be maintained evenly.
  • the total heat exchange element shown in FIG. 8 corresponds to an example in which the contact area E between the first total heat exchange site 110 and the second total heat exchange site 122 is increased more than that of FIG. 7 .
  • the effect of the performance of the adhesive on the efficiency of the total heat exchange element may be greater.
  • the adhesive according to the embodiment of the present invention described above can exhibit excellent performance. That is, the adhesive according to the embodiment of the present invention can satisfy characteristics such as hygroscopicity and flame retardancy required for such a total heat exchange device.
  • latent heat exchange efficiency may be improved. Accordingly, the transfer performance of temperature and humidity through the air may be improved.
  • the tendency of the adhesive to spread to the first total heat exchange paper 110 and the second total heat exchange paper 122 is reduced, so that the application state can be maintained until the adhesive is dried. have.
  • the adhesive strength when the adhesive is applied can be maintained, and even after the adhesive is dried, the adhesive surfaces of the first total heat exchange paper 110 and the second total heat exchange paper 122 can be maintained evenly.
  • FIG. 9 is a flowchart illustrating a method of manufacturing an adhesive according to an embodiment of the present invention.
  • FIG. 9 shows a method of manufacturing an adhesive including a solid content dispersed in water according to an embodiment of the present invention.
  • a manufacturing method according to an embodiment of the present invention will be described with reference to FIG. 9 . In this case, it may be described with reference to FIG. 1 .
  • a step (S10) of obtaining a first solution in which the nano-cellulose 20 is dispersed may be performed. That is, a nano-cellulose solution can be obtained by dispersing the nano-cellulose fibers 21 in a solvent (water).
  • the phosphoric acid functional group 22 may be provided to the nano-cellulose fiber 21 . That is, the nano-cellulose solution may be a phosphate-treated nano-cellulose solution.
  • the phosphoric acid functional group 22 of the phosphate-treated nanocellulose 20 can be provided using at least one of an acid/base and an organic/inorganic metal salt.
  • the phosphoric acid functional group (22) content is advantageously 0.5 mmol/g to 3.0 mmol/g.
  • the phosphate-treated nano-cellulose 20 may be dispersed in water in an amount of 0.1 to 5% by weight.
  • step (S20) of obtaining a second solution in which the carboxymethyl cellulose 30 to which the carboxymethyl group 32 is provided is dispersed in the nano-cellulose fiber 31 may be performed.
  • the carboxymethyl group 32 of the carboxymethyl cellulose 30 an acid/base and an organic/inorganic metal salt may be used.
  • the content of the carboxymethyl group 32 is advantageously between 0.5 and 3.0 mmol/g.
  • the carboxymethyl cellulose 30 may be dispersed in water in an amount of 0.1 to 5% by weight.
  • step (S40) of mixing the first solution and the second solution prepared through the above process may be performed, and thus an adhesive may be prepared (S50).
  • a water jet mill For agitation and mixing of the first solution and the second solution, a water jet mill, a high-speed grinder, a grinder, a high-pressure homogenizer, a high-pressure impact mill, a ball mill, a bead mill, a disk-type refiner, a conical refiner, a twin-screw kneader , at least one of a vibrating mill, a homomixer under high-speed rotation, or a beater may be used.
  • At least one step of adding the inorganic moisture absorbent 40 and/or the antibacterial agent 50 ( S30 ) before mixing the first solution and the second solution ( S40 ) may be further performed.
  • Calcium chloride, lithium chloride, magnesium chloride, silica gel, etc. may be used as the desiccant 40 .
  • the antimicrobial agent 50 may be an inorganic antimicrobial agent or an organic antimicrobial agent.
  • the inorganic antibacterial agent a porous inorganic antibacterial agent on which a metal having antibacterial properties, for example, Ag, Cu or Zn is supported, may be used.
  • a metal having antibacterial properties for example, Ag, Cu or Zn is supported.
  • the organic antibacterial agent bronopol, phenylphenol or benzothiazoline may be used.
  • FIG. 10 is a flowchart illustrating a process of obtaining a solution in which nano-cellulose is dispersed in the method of manufacturing an adhesive according to an embodiment of the present invention.
  • step (S10) of obtaining the first solution in which the nano-cellulose 20 described above is dispersed will be described in more detail.
  • a process (S11) of dissolving urea in a solvent (water) may be performed.
  • the mixing ratio of water and urea is preferably in the range of 1:1 to 1:3 by weight.
  • the dissolution process of urea is advantageously stirred in a temperature range of 30°C to 80°C.
  • the amount of phosphoric acid added to the pulp is more preferably from 1:0.1 to 1:0.5 by weight.
  • Urea should be at least twice the amount of phosphoric acid added to minimize fiber damage caused by phosphoric acid to obtain long-fiber nanocellulose.
  • the pulp may be added and stirred (S13).
  • pulp it is advantageous to put it in a state in which the reactable surface area is improved by using fibrillation, beating, or a mixer.
  • the amount of pulp input relative to the solvent may be sufficient to fully impregnate the pulp.
  • a heating reaction (carbamate-ester reaction) may be performed (S14).
  • the reaction temperature is a temperature at which urea is thermally decomposed and the carbamate reaction can occur together, and is preferably in the range of 100°C to 250°C. More preferably, the reaction temperature range may be between 120°C and 200°C.
  • the reaction time is preferably between 30 minutes and 4 hours.
  • the critical temperature range is 100 ° C. to 50 ° C. If the temperature is below the minimum critical temperature, the carbamate reaction does not occur, and if the temperature is above the maximum critical temperature, thermal damage to the fiber occurs.
  • distilled water at room temperature may be added and stirred to evenly dilute, followed by washing using a sieve. This process may proceed until the hydrogen ion concentration (pH) of the solution becomes neutral.
  • the nano-cellulose 20 can be obtained through mechanical pulverization (S16).
  • water jet mill high-speed grinder, grinder, high-pressure homogenizer, high-pressure impact mill, ball mill, bead mill, disc-type refiner, conical refiner, twin-screw kneader, vibrating mill, homomixer under high-speed rotation , an ultrasonic disperser, or at least one of a beater may be used.
  • FIG. 11 is a flowchart illustrating a process of obtaining a solution in which carboxymethyl cellulose is dispersed in a method of manufacturing an adhesive according to an embodiment of the present invention.
  • step (S20) of obtaining a second solution in which the carboxymethyl cellulose 30 is dispersed from above will be described in more detail.
  • a solvent water
  • pulp pulp
  • sodium hydroxide NaOH
  • IPA isopropyl alcohol
  • the mixing ratio of IPA (Isopropyl alcohol) and the pulp may be from 15:1 by weight to 40:1 by weight.
  • the mixing ratio of water and pulp is advantageously from 0.5:1 to 3:1 by weight.
  • sodium chloroacetate may be added to the mixture obtained in the above process (S22).
  • the mixing ratio of the mixed solution and Sodium Chloroacetate may be in the range of 10:1 to 50:1 by weight.
  • the temperature range at which the heating reaction is performed may be between 35 °C and 90 °C. At this time, the temperature range may be more advantageous in the range of 50 °C to 80 °C.
  • distilled water at room temperature may be added and stirred to evenly dilute, followed by washing using a sieve. This process may proceed until the hydrogen ion concentration (pH) of the solution becomes neutral.
  • the pulp concentration is advantageously 0.1 to 3.0 weight (wt)%.
  • the carboxymethyl cellulose 30 can be obtained through mechanical grinding (grinding grinding) (S26).
  • At least one of a mixer, an ultrasonic disperser, or a beater may be used.
  • Table 1 evaluates the adhesive strength of the adhesive according to an embodiment of the present invention described above.
  • an example of an adhesive in which a vinyl acetate adhesive, nano cellulose (CNF), carboxymethyl cellulose (CMC), a desiccant and an antibacterial agent is selectively used is shown together.
  • Table 2 evaluates the flame retardancy and antibacterial properties of the adhesive according to an embodiment of the present invention described above.
  • a comparative example an example of a vinyl acetate (resin) adhesive and an adhesive in which nano cellulose (CNF), carboxymethyl cellulose (CMC), and a desiccant (LiCl) are selectively used are shown together.
  • CNF nano cellulose
  • CMC carboxymethyl cellulose
  • LiCl desiccant
  • Flame retardant and antibacterial evaluation Condition (drying temperature 105°C, 60 minutes) Flame retardant (number of samples 1 piece) KS F 2819 vinyl acetate resin Water-soluble adhesive (water 3: undiluted solution 7) Flame retardant class 3 (continuous combustion) CNF Acid introduction 2.7 mmol/g Flame Retardant Level 1 (after flame less than 1 second) CMC - Flame Retardant Level 3 (Afterflame 30 seconds) CNF + CMC 5:5 ratio blend Flame Retardant Level 1 (after flame less than 1 second) CNF + CMC + LiCl (20%) 5:5:2 ratio blend Flame Retardant Level 1 (after flame less than 1 second)
  • flame-retardant grade 1 means a condition in which the carbonization length is 5 cm or less, the after-flame is 1 second or less, and there is no residual dust after 1 minute.
  • an adhesive including a cellulose fiber, a structure including a dry adhesive layer, a total heat exchange device, and a method for manufacturing the same.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Abstract

본 발명은 접착제 관련 기술 분야에 적용 가능하며, 예를 들어, 셀룰로오스 파이버를 포함하는 접착제, 건조 접착층을 포함하는 구조물과 전열교환소자, 및 그 제조 방법에 관한 것이다. 이러한 본 발명은, 물에 분산되는 고형분(solid content)을 포함하는 접착제에 있어서, 상기 고형분은, 나노 셀룰로오스 파이버; 및 카르복시 메틸기가 부여된 카르복시 메틸 셀룰로오스를 포함하여 구성될 수 있다.

Description

접착제, 건조 접착층을 포함하는 구조물과 전열교환소자, 및 그 제조 방법
본 발명은 접착제 관련 기술 분야에 적용 가능하며, 예를 들어, 셀룰로오스 파이버를 포함하는 접착제, 건조 접착층을 포함하는 구조물과 전열교환소자, 및 그 제조 방법에 관한 것이다.
나노 셀룰로오스란 식물 세포벽의 주성분인 셀룰로오스의 결정성과 비결정성 부분이 결합된 형태로 나노미터 수준의 직경과 마이크로미터 수준의 길이를 가지는 소재이다. 이러한 나노 셀룰로오스는 종횡비가 크고 기계적 특성이 우수한 친환경 소재이다.
이러한 나노 셀룰로오스는 기계적 분쇄, 화학적 용해, 생물학적 배양 등의 방법으로 제조할 수 있다. 주로 기계적 분쇄 및 화학적 용해 방법으로 얻어진 나노 셀룰로오스는 친수성 작용기(하이드록실기)로 인해 물에 분산된 현탁액 형태로 얻어져 복합소재 강화제, 증점제, 화장품 첨가제 등으로 응용이 가능하다.
이와 같은 나노 셀룰로오스의 용도 중 하나는 접착제에 이용되는 것이다. 또한, 이러한 나노 셀룰로오스를 이용한 접착제는 전열교환소자의 접착에 이용될 수 있다.
그러나 나노 셀룰로오스를 이용한 접착제 및 이를 이용하여 전열교환소자를 접착하기 위하여 해결하여야 할 문제점이 존재한다.
예를 들어, 하기의 선행기술문헌(특허문헌 1)에 기재된 발명은 나노 셀룰로오스를 이용한 접착제에 관한 발명이다. 특허문헌 1에 기재된 발명에 의한 접착제는 접착제의 전체 중량을 기준으로 하여, 0.1 중량%(wt%) 내지 12.0 중량%의 나노 셀룰로오스 농도 및 0.1 중량% 내지 12.0 중량% 농도로 나노 셀룰로오스와 전분을 소정 비율로 결합하여 생성되며, 결합될 종이 생성물의 표면에 적용될 수 있다.
그러나 접착제에 포함되는 전분은 미생물에 의해 쉽게 분해되어 시간이 지남에 따라 접착력 저하되는 문제점이 있고, 또한 세균 및 곰팡이 번식에 취약한 문제점이 존재한다.
한편, 하기의 선행기술문헌(특허문헌 2)에 기재된 발명은 나노 셀룰로오스를 이용한 접착제에 관한 발명이다. 특허문헌 2에는 300 ㎛ 내지 1 nm 크기의 직경을 갖는 분쇄(분리)된 셀룰로오스와 물을 포함하는 천연 접착제 제조방법을 게재하고 있다.
그러나, 나노 셀룰로오스만으로 이루어진 접착제는 종이에 적용 시 수분 번짐 현상이 동반되어 건조 전까지 강도 열위현상이 일어나고, 또한 건조 후 도포된 종이에 주름이 발생하는 현상을 초래하는 문제점이 있다.
따라서, 이와 같은 선행기술이 가지고 있는 문제점을 해결할 수 있는 방안이 요구된다.
본 발명은 접착제 도포시 수분 번짐 현상을 방지하여 건조시 접착력이 약화되는 현상을 방지할 수 있는 접착제, 건조 접착층을 포함하는 구조물과 전열교환소자, 및 그 제조 방법을 제공하고자 한다.
또한, 본 발명은 접착제에 흡습성을 부여하여 접착제 건조시 접착력이 약화되는 현상을 방지할 수 있는 접착제, 건조 접착층을 포함하는 구조물과 전열교환소자, 및 그 제조 방법을 제공하고자 한다.
또한, 본 발명은 접착제 자체에 난연성을 부여할 수 있는 접착제, 건조 접착층을 포함하는 구조물과 전열교환소자, 및 그 제조 방법을 제공하고자 한다.
또한, 본 발명은 접착제에 항균성을 부여할 수 있는 접착제, 건조 접착층을 포함하는 구조물과 전열교환소자, 및 그 제조 방법을 제공하고자 한다.
또한, 본 발명은 전열교환소자에 적용될 때 전열교환효율을 향상시킬 수 있는 접착제, 건조 접착층을 포함하는 구조물과 전열교환소자, 및 그 제조 방법을 제공하고자 한다.
나아가, 본 발명의 다른 실시예에 따르면, 여기에서 언급하지 않은 추가적인 기술적 효과들도 있다. 당업자는 명세서 및 도면의 전 취지를 통해 이해할 수 있을 것이다.
상기 기술적 과제를 이루기 위한 제1관점으로서, 본 발명은, 물에 분산되는 고형분(solid content)을 포함하는 접착제에 있어서, 상기 고형분은, 나노 셀룰로오스 파이버; 및 카르복시 메틸기가 부여된 카르복시 메틸 셀룰로오스를 포함하여 구성될 수 있다.
또한, 상기 접착제는 상기 나노 셀룰로오스가 0.1 내지 5 중량%, 그리고 상기 카르복시 메틸 셀룰로오스가 0.1 내지 5 중량%를 포함할 수 있다.
또한, 상기 접착제는 무기계 흡습제를 더 포함할 수 있다.
또한, 상기 무기계 흡습제는 염화칼슘, 염화리튬, 염화마그네슘, 및 실리카겔 중 적어도 어느 하나를 포함할 수 있다.
또한, 상기 접착제는 상기 무기계 흡습제 0.1 내지 1 중량%를 포함할 수 있다.
또한, 상기 접착제는 항균제를 더 포함할 수 있다.
또한, 상기 항균제는 Ag, Cu 또는 Zn 이 담지된 다공질 무기 항균제 또는 브로노 폴, 페닐페놀류 또는 벤조티아졸린류를 포함하는 유기 항균제 중 적어도 어느 하나를 포함할 수 있다.
또한, 상기 접착제는 상기 항균제 0.1 내지 1 중량%를 포함할 수 있다.
또한, 상기 나노 셀룰로오스는 1 내지 50 nm 크기의 직경을 가질 수 있다.
또한, 상기 나노 셀룰로오스에는 인산 작용기가 부여될 수 있다.
또한, 상기 인산 작용기 및 상기 카르복시 메틸기는 각각 0.5 내지 3.0 mmol/g의 비율로 부여될 수 있다.
또한, 상기 카르복시 메틸 셀룰로오스는 상기 물이 접착 대상물로 번지는 현상을 방지할 수 있다.
또한, 상기 물의 함량은 88.0 내지 99.6 중량%일 수 있다.
상기 기술적 과제를 이루기 위한 제2관점으로서, 본 발명은, 제1 부재와 제2 부재 사이에 위치하는 건조 접착층을 포함하는 구조물에 있어서, 상기 건조 접착층은, 나노 셀룰로오스 15 내지 35 중량%, 및 카르복시 메틸기가 부여된 카르복시 메틸 셀룰로오스 65 내지 85 중량%를 포함하여 구성될 수 있다.
또한, 상기 건조 접착층은 무기계 흡습제를 더 포함할 수 있다.
또한, 상기 건조 접착층은 항균제를 더 포함할 수 있다.
상기 기술적 과제를 이루기 위한 제3관점으로서, 본 발명은, 건조 접착층을 포함하는 전열교환소자에 있어서, 제1 전열교환지; 제2 전열교환지; 및 상기 제1 전열교환지와 상기 제2 전열교환지 사이에 위치하는 건조 접착층을 포함하고, 상기 건조 접착층은, 나노 셀룰로오스 15 내지 35 중량%, 및 카르복시 메틸기가 부여된 카르복시 메틸 셀룰로오스 65 내지 85 중량%를 포함하여 구성될 수 있다.
또한, 상기 제1 전열교환지는 열교환을 위한 부재이고, 상기 제2 전열교환지는 상기 제1 전열교환지 사이에 위치하여 공기가 지나도록 공간을 형성하는 스페이서일 수 있다.
상기 기술적 과제를 이루기 위한 제4관점으로서, 본 발명은, 물에 분산되는 고형분(solid content)을 포함하는 접착제의 제조 방법에 있어서, 나노 셀룰로오스가 분산된 제1 용액을 얻는 단계; 카르복시 메틸기가 부여된 카르복시 메틸 셀룰로오스가 분산된 제2 용액을 얻는 단계; 상기 제1 용액 및 상기 제2 용액을 혼합하는 단계를 포함하여 구성될 수 있다.
또한, 무기계 흡습제를 첨가하는 단계를 더 포함할 수 있다.
또한, 항균제를 첨가하는 단계를 더 포함할 수 있다.
또한, 상기 나노 셀룰로오스에는 인산 작용기가 부여될 수 있다.
또한, 상기 인산 작용기 부여는, 상기 나노 셀룰로오스를 얻기 위한 펄프와 인산을 1:0.01 내지 1:0.5 중량%로 첨가하는 단계를 포함할 수 있다.
본 발명의 실시예는 다음과 같은 효과를 가진다.
먼저, 본 발명에 의한 접착제는 접착제에 흡습성, 난연성, 수분 번짐 방지, 및 항균성을 부여할 수 있는 효과가 있다.
또한, 본 발명에 의한 접착제가 전열교환소자에 이용될 경우에 흡습력이 부여되어 잠열교환효율을 향상시킬 수 있다.
또한, 본 발명에 의한 접착제는 비교적 낮은 건조온도에서도 높은 접착력 유지가 가능하며, 인산염 작용기에 의해 별도의 난연제 없이 난연성 부여가 가능하다.
또한, 본 발명에 의한 접착제를 이용하여 작업을 수행할 경우 공정상 작업 능률을 향상시킬 수 있다.
도 1은 본 발명의 일 실시예에 의한 접착제를 나타내는 개략도이다.
도 2는 본 발명의 일 실시예에 의한 접착제의 수분 포집 능력을 나타내는 개략도이다.
도 3은 비교예에 의한 접착제의 수분 포집 상태를 나타내는 개략도이다.
도 4는 본 발명의 일 실시예에 의한 접착제가 적용된 건조 접착층을 포함하는 구조물을 나타내는 단면 개략도이다.
도 5는 본 발명의 일 실시예에 의한 접착제가 적용될 수 있는 전열교환기 및 전열교환소자를 나타내는 개략도이다.
도 6은 본 발명의 일 실시예에 의한 접착제가 적용될 수 있는 전열교환소자의 일례를 나타내는 개략도이다.
도 7은 본 발명의 일 실시예에 의한 접착제가 적용될 수 있는 전열교환소자의 다른 예를 나타내는 개략도이다.
도 8은 본 발명의 일 실시예에 의한 접착제가 적용될 수 있는 전열교환소자의 또 다른 예를 나타내는 개략도이다.
도 9는 본 발명의 일 실시예에 의한 접착제의 제조 방법을 나타내는 순서도이다.
도 10은 본 발명의 일 실시예에 의한 접착제의 제조 방법 중 나노 셀룰로오스가 분산된 용액을 얻는 과정을 나타내는 순서도이다.
도 11은 본 발명의 일 실시예에 의한 접착제의 제조 방법 중 카르복시 메틸 셀룰로오스가 분산된 용액을 얻는 과정을 나타내는 순서도이다.
이하, 첨부된 도면을 참조하여 본 명세서에 개시된 실시 예를 상세히 설명하되, 도면 부호에 관계없이 동일하거나 유사한 구성요소는 동일한 참조 번호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다. 이하의 설명에서 사용되는 구성요소에 대한 접미사 "모듈" 및 "부"는 명세서 작성의 용이함만이 고려되어 부여되거나 혼용되는 것으로서, 그 자체로 서로 구별되는 의미 또는 역할을 갖는 것은 아니다. 또한, 본 명세서에 개시된 실시예를 설명함에 있어서 관련된 공지기술에 대한 구체적인 설명이 본 명세서에 개시된 실시 예의 요지를 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다. 또한, 첨부된 도면은 본 명세서에 개시된 실시 예를 쉽게 이해할 수 있도록 하기 위한 것일 뿐, 첨부된 도면에 의해 본 명세서에 개시된 기술적 사상이 제한되는 것으로 해석되어서는 아니 됨을 유의해야 한다.
나아가, 설명의 편의를 위해 각각의 도면에 대해 설명하고 있으나, 당업자가 적어도 2개 이상의 도면을 결합하여 다른 실시예를 구현하는 것도 본 발명의 권리범위에 속한다.
또한, 층, 영역 또는 기판과 같은 요소가 다른 구성요소 "상(on)"에 존재하는 것으로 언급될 때, 이것은 직접적으로 다른 요소 상에 존재하거나 또는 그 사이에 중간 요소가 존재할 수도 있다는 것을 이해할 수 있을 것이다.
본 발명은 접착제 및 그 제조 방법에 관한 것으로, 일례로, 본 발명에 의한 접착제는 전열교환소자에 이용될 수 있다.
이러한 본 발명에 의한 접착제는 접착제에 흡습성, 난연성, 수분 번짐 방지, 및 항균성을 부여할 수 있는 장점이 있다.
접착제의 접착력 및 난연성은 나노 셀룰로오스에 의하여 구현될 수 있다. 또한, 접착제의 수분 번짐 방지는 카르복시 메틸 셀룰로오스에 의하여 구현될 수 있다.
일례로, 나노 셀룰로오스의 인산기에 의해 난연성을 부여할 수 있다. 또한, 카르복시 메틸 셀룰로오스의 수분 친화성에 의해 수분이 종이로 번지는 현상을 개선할 수 있다.
또한, 접착제의 흡습성은 무기계 흡습제에 의하여 구현될 수 있다. 그리고, 항균성은 항균제 첨가에 의하여 구현될 수 있다.
나노 셀룰로오스의 인산염 작용기를 포함할 수 있다. 이와 같이, 인산염 처리된 나노 셀룰로오스 및 카르복시 메틸 셀룰로오스, 무기계 흡습제 및 항균제를 포함하는 첨가제의 우수한 결합성으로 인해 접착제에 기능성을 부여할 수 있다.
나노 셀룰로오스와 카르복시 메틸 셀룰로오스에 존재하는 수산화기(-OH)가 양이온성의 기능성 첨가제 물질과 결합할 수 있다.
이러한 본 발명에 의한 접착제는 전열교환소자에 이용될 수 있다. 본 발명에 의한 접착제가 전열교환소자에 이용될 경우에 흡습력이 부여되어 잠열교환효율을 향상시킬 수 있다. 따라서, 전열교환기 효율 향상에 기여할 수 있다.
또한, 본 발명에 의한 접착제는 비교적 낮은 건조온도에서도 높은 접착력 유지가 가능하며, 인산염 작용기에 의해 별도의 난연제 없이 난연성 부여가 가능하다.
한편, 본 발명에 의한 접착제는 물에 녹여 재활용 가능한 물질이며, 인체나 환경에 무해하고, 냄새 없는 물질이다. 따라서, 본 발명에 의한 접착제를 이용하여 작업을 수행할 경우 공정상 작업 능률을 향상시킬 수 있다.
나노 셀룰로오스는 식물 세포벽의 주성분인 결정성 고분자로, 직경이 100 nm 이하인 섬유 형상의 나노 소재이다. 이러한 나노 셀룰로오스는 유리섬유 수준의 높은 강도를 나타내면서도 열팽창계수가 10 ppm/K 이하로 낮아서 열 안정성이 매우 우수한 장점을 가진다.
나노 셀룰로오스를 기계적 과정에 의해서만 처리할 경우 높은 분쇄 에너지가 요구될 수 있다. 따라서, 본 발명에서는 화학적 전처리를 거친 후 분쇄 에너지를 낮추는 제조 방법을 제안한다.
이러한 화학적 전처리로 TEMPO 촉매 산화법, 카르복실메틸화, 황산에스테르화, 인산에스테르화, 카바메이트-인산에스테르화 등의 방법을 이용할 수 있다.
화학적 전처리를 이용할 경우, 작용기 도입량이 많을수록 음전하량 및 하이드록실기가 많아져 수분산성 및 접착력이 우수하다. 분산성은 나노 셀룰로오스가 수용액 내에 침전되지 않고 안정하게 부유하는 성질을 말한다. 접착력은 접착 대상물, 예를 들어, 종이와 종이 사이에 도포되고 건조된 후 화학적 결합이나 물리적 흡착으로 인해 박리되지 않고 고정되어 유지되는 성질을 의미한다.
나노 셀룰로오스와 물 그리고 첨가제를 이용하여, 또한, 경우에 따라, 이들 성분의 배합 비율을 조절함으로써, 접착제의 접착력 및 전열교환효율을 향상시킬 수 있다.
이러한 본 발명에 의하면, 종래의 접착제에 비해 환경적 부담을 줄여주고, 다양한 기능성을 부여할 수 있으며, 공정상의 작업 용이성을 확보할 수 있다.
또한, 본 발명에 의한 접착제는 전열교환소자 이외 동종 또는 이종 간의 다양한 물질을 접착할 수 있는 접착제로 다양하게 응용 가능하다.
이하, 본 발명의 실시예를 도면을 참조하여 자세히 설명한다.
도 1은 본 발명의 일 실시예에 의한 접착제를 나타내는 개략도이다.
도 1을 참조하면, 본 발명의 일 실시예에 의한 접착제는 물(10)에 분산되는 고형분(solid content)을 포함하는 접착제일 수 있다. 즉, 본 발명의 일 실시예에 의한 접착제는 수계 접착제일 수 있다.
이때, 물에 분산되는 고형분은 나노 셀룰로오스(20) 및 카르복시 메틸기(32)가 부여된 카르복시 메틸 셀룰로오스(30)를 포함하여 구성될 수 있다.
이러한 접착제는 나노 셀룰로오스(20)가 0.1 내지 5 중량%(wt%), 그리고 카르복시 메틸 셀룰로오스(30)가 0.1 내지 5 중량%를 포함할 수 있다.
또한, 본 발명의 일 실시예에 의한 접착제는 무기계 흡습제(40)를 더 포함할 수 있다. 이러한 무기계 흡습제(40)는 염화칼슘, 염화리튬, 염화마그네슘, 및 실리카겔 중 적어도 어느 하나를 포함할 수 있다.
이러한 무기계 흡습제(40)는 접착제에 0.1 내지 1 중량%의 함량으로 포함될 수 있다.
한편, 본 발명의 일 실시예에 의한 접착제는 항균제(50)를 더 포함할 수 있다. 이러한 항균제(50)는 Ag, Cu 또는 Zn 이 담지된 다공질 무기 항균제 또는 브로노 폴, 페닐페놀류 또는 벤조티아졸린류를 포함하는 유기 항균제 중 적어도 어느 하나를 포함할 수 있다.
이러한 항균제(50)는 접착제에 0.1 내지 1 중량%의 함량으로 포함될 수 있다.
또한, 접착제의 용매를 이루는 물(10)의 함량은 88.0 내지 99.6 중량%일 수 있다. 즉, 건조되기 전의 접착제는 물(10)이 대부분의 질량을 차지할 수 있다.
한편, 나노 셀룰로오스(20)에는 인산 작용기(22)가 부여될 수 있다.
여기서, 설명의 편의 상, 나노 셀룰로오스(20)는 나노 셀룰로오스 파이버(21)를 포함할 수 있다. 나노 셀룰로오스 파이버(21)에는 인산 작용기(22)가 부여될 수 있다. 이와 같이, 본 명세서에, 다수의 나노 셀룰로오스 파이버(21) 또는 나노 셀룰로오스 파이버(21)에 인산 작용기(22)가 부여된 개체를 나노 셀룰로오스(20)라고 칭할 수 있다.
마찬가지로, 카르복시 메틸 셀룰로오스(30)는 나노 셀룰로오스 파이버(31)를 포함할 수 있다. 나노 셀룰로오스 파이버(31)에는 카르복시 메틸기(32)가 부여될 수 있다. 이와 같이, 본 명세서에, 다수의 나노 셀룰로오스 파이버(31) 또는 나노 셀룰로오스 파이버(31)에 카르복시 메틸기(32)가 부여된 개체를 카르복시 메틸 셀룰로오스(30)라고 칭할 수 있다.
나노 셀룰로오스 파이버(21, 31)는 1 내지 50 nm 크기의 직경을 가질 수 있다.
또한, 인산 작용기(22) 및 카르복시 메틸기(32)는 각각 0.5 내지 3.0 mmol/g의 비율로 나노 셀룰로오스 파이버(21, 31)에 부여될 수 있다.
도 1을 참조하면, 카르복시 메틸 셀룰로오스(30)에는 물 입자(11)가 포집된 상태를 도시하고 있다. 카르복시 메틸 셀룰로오스(30)는 높은 수분 포집 능력을 가질 수 있다. 즉, 카르복시 메틸기(32)가 부여된 나노 셀룰로오스 파이버(31)를 포함하는 카르복시 메틸 셀룰로오스(30)에는 많은 물 입자(11)가 포집될 수 있다.
따라서, 카르복시 메틸 셀룰로오스(30) 성분은 접착제에 포함된 물(10)이 접착 대상물로 번지는 현상을 방지할 수 있다.
이와 같이, 접착제에 포함된 카르복시 메틸 셀룰로오스(30)에 의하여 수분 번짐이 방지될 수 있다. 이러한 특성은 특히 종이와 같은 수분이 번질 수 있는 부재에 접착제가 적용될 경우에 유리할 수 있다.
또한, 접착제에 포함된 나노 셀룰로오스(20)는 접착제의 접착력 및 난연성을 향상시킬 수 있다. 일례로, 나노 셀룰로오스(20)의 인산기(22)에 의해 난연성을 부여할 수 있다.
한편, 무기계 흡습제(40)에 의하여 접착제의 흡습성을 향상시킬 수 있다. 적정한 함유량의 무기계 흡습제(40)는 접착면에서의 흡습도를 개선시킬 수 있어, 접착제가 전열교환소자에 사용되는 경우 전열교환효율을 향상시킬 수 있다.
언급한 바와 같이, 무기계 흡습제(40)는 접착제에 적정량 함유되는 것이 유리하다. 일례로, 접착제에 무기계 흡습제(40)가 과다하게 포함되는 경우 고형분의 응집현상 초래할 수 있다. 이로 인하여 상분리 현상 및 접착력 저하현상이 발생할 수 있다.
또한, 항균제(50)의 첨가에 의하여 항균성이 확보될 수 있다.
이러한 항균제(50)도 접착제에 적정량 포함되는 것이 유리하다. 예를 들어, 항균제(50)가 과도하게 포함되면 접착제의 접착력이 저하될 수 있다.
따라서, 위에서 언급한 바와 같이, 무기계 흡습제(40)는 접착제에 0.1 내지 1 중량%의 함량으로 포함될 수 있다. 또한, 항균제(50)는 접착제에 0.1 내지 1 중량%의 함량으로 포함될 수 있다.
이와 같이, 인산염 처리된 나노 셀룰로오스(20) 및 카르복시 메틸 셀룰로오스(30), 무기계 흡습제(40) 및 항균제(50)를 포함하는 첨가제의 우수한 결합성으로 인해 접착제에 각각의 기능성을 부여할 수 있다.
즉, 이러한 본 발명에 의한 접착제는 접착제에 흡습성, 난연성, 수분 번짐 방지, 및 항균성을 부여할 수 있는 효과가 있다.
이러한 본 발명에 의한 접착제는 전열교환소자에 이용될 수 있다. 본 발명에 의한 접착제가 전열교환소자에 이용될 경우에 흡습력이 부여되어 잠열교환효율을 향상시킬 수 있다.
또한, 본 발명에 의한 접착제는 비교적 낮은 건조온도에서도 높은 접착력 유지가 가능하며, 인산염 작용기에 의해 별도의 난연제 없이 난연성 부여가 가능하다.
한편, 본 발명에 의한 접착제는 물에 녹여 재활용 가능한 물질이며, 인체나 환경에 무해하고, 냄새 없는 물질이다. 따라서, 본 발명에 의한 접착제를 이용하여 작업을 수행할 경우 공정상 작업 능률을 향상시킬 수 있다.
도 2는 본 발명의 일 실시예에 의한 접착제의 수분 포집 능력을 나타내는 개략도이다. 도 3은 비교예에 의한 접착제의 수분 포집 상태를 나타내는 개략도이다.
도 2를 참조하면, 접착 대상물(100)에 본 발명의 실시예에 의한 접착제가 국소적으로 도포된 상태를 도시하고 있다. 또한, 비교예로서, 도 3은 물에 셀룰로오스 파이버(2)만이 포함된 접착제가 접착 대상물(100)에 국소적으로 도포된 상태를 도시하고 있다.
위에서 설명한 바와 같이, 본 발명의 실시예에서, 접착제를 이루는 물(10)에 카르복시 메틸기(32)가 부여된 나노 셀룰로오스 파이버(31)가 분산되어 위치하는 카르복시 메틸 셀룰로오스(30)가 분산된 경우, 물(10)은 이러한 카르복시 메틸 셀룰로오스(30)에 상대적으로 강하게 포집되어 접착 대상물(100)로 번지려는 힘(A)이 상대적으로 매우 약해질 수 있다.
다시 말하면, 비교예에서와 같이, 셀룰로오스만으로 이루어진 접착제는 접착 대상물(100), 물(10)이 접착 대상물(100)로 번지려는 힘(B)이 상대적으로 클 수 있다.
일례로, 비교예에 의하면, 종이에 적용 시 수분 번짐 현상이 발생하여 접착제의 건조 전까지 강도 열위현상이 발생할 수 있다. 또한, 접착제의 건조 후 접착 대상물(100)에 주름이 발생하는 현상을 초래할 수 있다.
그러나, 본 발명의 실시예에 의하면, 물(10)은 이러한 카르복시 메틸 셀룰로오스(30)에 상대적으로 강하게 포집되어 접착 대상물(100)로 번지려는 힘이 약하므로, 접착제의 건조 전까지 도포 상태가 유지될 수 있다. 따라서, 접착제 도포 시의 접착 강도가 유지될 수 있고, 접착제 건조 후에도 접착 대상물(100)의 접착면이 고르게 유지될 수 있다.
이러한 현상에 의하여, 본 발명의 실시예에 의하면, 접착제가 도포되는 접착 대상물(100)이 종이를 포함하는 경우에 더 우수한 효과를 보일 수 있다.
도 4는 본 발명의 일 실시예에 의한 접착제가 적용된 건조 접착층을 포함하는 구조물을 나타내는 단면 개략도이다.
도 4를 참조하면, 제1 부재(110)와 제2 부재(120) 사이에 건조 접착층이 위치하는 상태를 도시하고 있다.
여기서, 건조 접착증은 위에서 설명한 접착제가 도포된 상태에서 물(10)이 건조된 상태의 층을 의미할 수 있다. 따라서, 이러한 건조 접착층은 나노 셀룰로오스 파이버(21, 31) 및 카르복시 메틸기(32)를 포함할 수 있다.
다시 말하면, 도 4에는 도 1과 같이 나노 셀룰로오스(20)와 카르복시 메틸 셀룰로오스(30)가 별개로 표기되어 있지 않으나, 이러한 건조 접착층은, 나노 셀룰로오스(20) 및 카르복시 메틸 셀룰로오스(30)를 포함할 수 있다.
위에서 설명한 바와 같이, 나노 셀룰로오스(20)는 나노 셀룰로오스 파이버(21)를 포함할 수 있다. 나노 셀룰로오스 파이버(21)에는 인산 작용기(22)가 부여될 수 있다.
마찬가지로, 카르복시 메틸 셀룰로오스(30)는 나노 셀룰로오스 파이버(31)를 포함할 수 있다. 나노 셀룰로오스 파이버(31)에는 카르복시 메틸기(32)가 부여될 수 있다.
이때, 나노 셀룰로오스 파이버(21, 31)는 1 내지 50 nm 크기의 직경을 가질 수 있다.
건조 접착층에서 카르복시 메틸 셀룰로오스(30)의 함량(중량)은 나노 셀룰로오스(20)보다 더 클 수 있다.
구체적으로, 건조 접착층은 나노 셀룰로오스(20) 15 내지 35 중량%, 및 카르복시 메틸기(32)가 부여된 카르복시 메틸 셀룰로오스(30) 65 내지 85 중량%를 포함하여 구성될 수 있다.
또한, 도 4에 별도로 표기되어 있지는 않으나, 건조 접착층에는 무기계 흡습제(40) 및 항균제(50) 중 적어도 어느 하나가 더 포함될 수 있다.
건조 접착층에 무기계 흡습제(40) 및 항균제(50)가 모두 포함되는 경우, 무기계 흡습제(40)의 함량이 항균제(50)의 함량보다 클 수 있다.
이러한 무기계 흡습제(40)는 염화칼슘, 염화리튬, 염화마그네슘, 및 실리카겔 중 적어도 어느 하나를 포함할 수 있다.
또한, 항균제(50)는 Ag, Cu 또는 Zn 이 담지된 다공질 무기 항균제 또는 브로노 폴, 페닐페놀류 또는 벤조티아졸린류를 포함하는 유기 항균제 중 적어도 어느 하나를 포함할 수 있다.
일례로, 제1 부재(110) 및 제2 부재(120)는 종이로 제작된 구조물일 수 있다. 이와 같이, 건조 접착층은 제1 부재(110) 및 제2 부재(120)를 효율적으로 부착할 수 있다.
위에서 설명한 바와 같이, 카르복시 메틸기(32)가 부여된 카르복시 메틸 셀룰로오스(30)에 상대적으로 강하게 포집되어 접착 대상물(110, 120)로 번지려는 힘이 약하므로, 접착제의 건조 전까지 도포 상태가 유지될 수 있다.
따라서, 접착제 도포 시의 접착 강도가 유지될 수 있고, 접착제 건조 후의 건조 접착물에도 접착 대상물(110, 120)의 접착면이 고르게 유지될 수 있다.
이러한 건조 접착층을 포함하는 구조물의 예는 전열교환소자일 수 있다.
도 4에서 도시된 건조 접찹층이 전열교환소자에 적용되는 경우, 제1 부재(110)는 제1 전열교환지일 수 있고, 제2 부재(120)는 제2 전열교환지일 수 있다.
이때, 제1 전열교환지(110)는 열교환을 위한 부재일 수 있고, 제2 전열교환지(120)는 제1 전열교환지(110) 사이에 위치하여 공기가 흐를 수 있는 공간을 형성하는 스페이서에 해당할 수 있다.
도 5는 본 발명의 일 실시예에 의한 접착제가 적용될 수 있는 전열교환기 및 전열교환소자를 나타내는 개략도이다.
본 발명의 일 실시예에 의한 접착제는 도 5에서 도시하는 전열교환기(101)에 적용될 수 있다. 이러한 전열교환기(101) 내부에는 전열교환소자(100)가 구비될 수 있다.
도 5에서 간략히 도시된 바와 같이, 전열교환기(101)를 통하여 차가운 신선한 외기가 유입되어 전열교환소자(100)에서 열교환이 일어난 후, 데워진 신선한 공기는 실내의 따뜻한 오염된 공기와 교환이 일어나고, 결국 식어진 오염된 공기가 전열교환기(101)를 통하여 배출될 수 있다.
이때, 전열교환소자(100)는 잠열교환을 위한 라이너와 이 라이너 사이에 위치하여 간격을 유지하고 기체를 차단함과 동시에 간격을 통해 공기가 흐를 수 있도록 하는 스페이서를 포함한다.
여기서, 라이너는 도 4의 제1 전열교환지(110)에 해당할 수 있고, 스페이서는 도 4의 제2 전열교환지(120)에 해당할 수 있다.
도 5를 참조하면, 유입된 공기는 스페이서를 통하여 급기(T2)되고, 이후 실내의 공기와 환기되고 열교환 과정이 일어나서 배기(T1)될 수 있다.
또한, 이러한 전열교환소자(100)는 대각선을 따라 벽을 관통하여 설치될 수 있다. 이하, 전열교환소자(100)에 대한 자세한 설명은 생략한다.
도 6은 본 발명의 일 실시예에 의한 접착제가 적용될 수 있는 전열교환소자의 일례를 나타내는 개략도이다. 도 7은 본 발명의 일 실시예에 의한 접착제가 적용될 수 있는 전열교환소자의 다른 예를 나타내는 개략도이다. 도 8은 본 발명의 일 실시예에 의한 접착제가 적용될 수 있는 전열교환소자의 또 다른 예를 나타내는 개략도이다.
이러한 전열교환소자는 제1 전열교환지(110)와 제2 전열교환지(120, 121, 122) 사이에 본 발명의 일 실시예에 의한 접착제가 적용될 수 있다. 이러한 접착제가 건조되면 건조 접착층이 형성될 수 있다.
위에서 도 4를 참조하여 설명한 바와 같이, 제1 전열교환지(110)와 제2 전열교환지(120, 121, 122) 사이에 위치하는 건조 접착층은 나노 셀룰로오스(20) 15 내지 35 중량%, 및 카르복시 메틸기(32)가 부여된 카르복시 메틸 셀룰로오스(30) 65 내지 85 중량%를 포함하여 구성될 수 있다.
또한, 도 4에 별도로 표기되어 있지는 않으나, 건조 접착층에는 무기계 흡습제(40) 및 항균제(50) 중 적어도 어느 하나가 더 포함될 수 있다.
건조 접착층에 무기계 흡습제(40) 및 항균제(50)가 모두 포함되는 경우, 무기계 흡습제(40)의 함량이 항균제(50)의 함량보다 클 수 있다.
이러한 무기계 흡습제(40)는 염화칼슘, 염화리튬, 염화마그네슘, 및 실리카겔 중 적어도 어느 하나를 포함할 수 있다.
그 외의 설명되지 않은 사항은 위에서 도 4를 참조하여 설명한 사항이 동일하게 적용될 수 있다.
이하, 전열교환소자의 예를 도면을 참조하여 설명한다.
도 6을 참조하면, 제1 전열교환지(라이너; 110) 사이에 제2 전열교환지(스페이서; 120)가 절곡된 형태로 배치될 수 있다. 이때, 제1 전열교환지(110)와 제2 전열교환지(120)의 모서리가 만나는 부분(C)에 접착제가 이용될 수 있다.
도 7은 전열교환소자의 다른 예를 도시하고 있다. 도 7을 참조하면, 제1 전열교환지(라이너; 110) 사이에 제2 전열교환지(스페이서; 121)가 굴곡된 형태로 배치될 수 있다. 이때, 제1 전열교환지(110)와 제2 전열교환지(121)의 변곡지점이 만나는 부분(D)에 접착제가 이용될 수 있다.
도 7에서 도시하는 바와 같은 전열교환소자는 도 6에서 도시하는 전열교환소자에 비하여 피치(P)가 더 축소될 수 있고, 이에 따라 높이(H)가 감소할 수 있다.
이와 같은 도 7에서 도시하는 전열교환소자는 도 6의 경우와 비교하여 접착면이 증가하여 압력 손실이 감소할 수 있다.
이때, 도 7의 경우, 접촉면적(D)이 증가하는 것을 알 수 있다. 따라서, 접착제의 성능이 전열교환소자의 효율에 미치는 영향이 커질 수 있다.
또한, 접착제에 흡습성이 부여되는 경우, 잠열교환 효율이 향상될 수 있다. 이에 따라 공기를 통한 온도 및 습도의 전달 성능이 향상될 수 있다.
이러한 경우, 위에서 설명한 본 발명의 실시예에 의한 접착제는 우수한 성능을 발휘할 수 있다. 즉, 본 발명의 실시예에 의한 접착제는 이러한 전열교환소자에서 요구되는 흡습성, 난연성 등의 특성을 만족시킬 수 있다.
더욱이, 본 발명의 실시예에 의한 접착제는 카르복시 메틸 셀룰로오스(30)를 포함하여 접착제가 제1 전열교환지(110) 및 제2 전열교환지(121)로 번지려는 힘이 상대적으로 약하므로, 접착제의 건조 전까지 도포 상태가 유지될 수 있다.
따라서, 접착제 도포 시의 접착 강도가 유지될 수 있고, 접착제 건조 후에도 제1 전열교환지(110) 및 제2 전열교환지(121)의 접착면이 고르게 유지될 수 있다.
도 8에서 도시하는 전열교환소자는 제1 전열교환지(110)와 제2 전열교환지(122) 사이의 접촉면적(E)이 도 7의 경우보다 더 증가한 예에 해당한다.
이와 같이, 접촉면적(E)이 커짐에 따라 접착제의 성능이 전열교환소자의 효율에 미치는 영향이 더 커질 수 있다.
위에서 설명한 바와 같이, 위에서 설명한 본 발명의 실시예에 의한 접착제는 우수한 성능을 발휘할 수 있다. 즉, 본 발명의 실시예에 의한 접착제는 이러한 전열교환소자에서 요구되는 흡습성, 난연성 등의 특성을 만족시킬 수 있다.
또한, 접착제에 흡습성이 부여되는 경우, 잠열교환 효율이 향상될 수 있다. 이에 따라 공기를 통한 온도 및 습도의 전달 성능이 향상될 수 있다.
더욱이, 본 발명의 실시예에 의한 접착제를 적용하면 접착제가 제1 전열교환지(110) 및 제2 전열교환지(122)로 번지는 경향성이 감소하여, 접착제의 건조 전까지 도포 상태가 유지될 수 있다.
따라서, 접착제 도포 시의 접착 강도가 유지될 수 있고, 접착제 건조 후에도 제1 전열교환지(110) 및 제2 전열교환지(122)의 접착면이 고르게 유지될 수 있다.
도 9는 본 발명의 일 실시예에 의한 접착제의 제조 방법을 나타내는 순서도이다.
도 9를 참조하면, 본 발명의 일 실시예에 의한 물에 분산되는 고형분(solid content)을 포함하는 접착제의 제조 방법을 나타내고 있다. 이하, 도 9를 참조하여 본 발명의 일 실시예에 의한 제조 방법을 설명한다. 이때, 도 1을 함께 참조하여 설명할 수 있다.
먼저, 나노 셀룰로오스(20)가 분산된 제1 용액을 얻는 단계(S10)가 수행될 수 있다. 즉, 용매(물)에 나노 셀룰로오스 파이버(21)를 분산하여 나노 셀룰로오스 용액을 얻을 수 있다.
이때, 나노 셀룰로오스 파이버(21)에는 인산 작용기(22)가 부여될 수 있다. 즉, 나노 셀룰로오스 용액은 인산염 처리된 나노 셀룰로오스 용액일 수 있다.
인산염 처리된 나노셀룰로오스(20)의 인산 작용기(22)로서 산/염기, 유/무기 금속염 중 적어도 어느 하나를 이용하여 부여할 수 있다. 이때, 인산 작용기(22) 함량은 0.5 mmol/g 내지 3.0 mmol/g이 유리하다.
이러한 인산염 처리된 나노 셀룰로오스(20)는 물에 0.1 내지 5 중량%로 분산될 수 있다.
이후, 나노 셀룰로오스 파이버(31)에 카르복시 메틸기(32)가 부여된 카르복시 메틸 셀룰로오스(30)가 분산된 제2 용액을 얻는 단계(S20)가 수행될 수 있다.
카르복시 메틸 셀룰로오스(30)의 카르복시 메틸기(32)로서 산/염기, 유/무기 금속염을 이용될 수 있다. 이때, 카르복시 메틸기(32)의 함량은 0.5 내지 3.0mmol/g 사이가 유리하다.
이러한 카르복시 메틸 셀룰로오스(30)는 물에 0.1 내지 5 중량%로 분산될 수 있다.
이후, 위의 과정을 통하여 제조된 제1 용액 및 제2 용액을 혼합하는 단계(S40)가 수행될 수 있고, 이에 따라 접착제가 제조될 수 있다(S50).
제1 용액 및 제2 용액의 교반 및 혼합을 위해서는 워터젯 분쇄기, 고속 해섬기, 그라인더, 고압 호모게나이저, 고압 충돌형 분쇄기, 볼 밀, 비즈 밀, 디스크형 리파이너, 코니컬 리파이너, 2축 혼련기, 진동 밀, 고속 회전하에서의 호모 믹서 또는 비터 중 적어도 어느 하나가 이용될 수 있다.
한편, 제1 용액 및 제2 용액을 혼합하는 단계(S40) 이전에 무기계 흡습제(40) 및/또는 항균제(50)를 첨가하는 단계(S30) 중 적어도 어느 한 단계가 더 수행될 수 있다.
흡습제(40)로 염화칼슘, 염화리튬, 염화마그네슘, 실리카겔 등이 사용될 수 있다.
또한, 항균제(50)는 무기 항균제 또는 유기 항균제일 수 있다.
무기 항균제로는 항균성을 가진 금속, 예를 들면 Ag, Cu 또는 Zn 이 담지된 다공질 무기 항균제가 사용될 수 있다. 또한, 유기 항균제로는 브로노 폴, 페닐페놀류 또는 벤조티아졸린류 등이 사용될 수 있다.
도 10은 본 발명의 일 실시예에 의한 접착제의 제조 방법 중 나노 셀룰로오스가 분산된 용액을 얻는 과정을 나타내는 순서도이다.
도 10을 참조하여, 위에서 설명한 나노 셀룰로오스(20)가 분산된 제1 용액을 얻는 단계(S10)를 더 구체적으로 설명한다.
먼저, 용매(물)에 요소를 용해하는 과정(S11)이 수행될 수 있다.
이때, 물과 요소의 혼합비율은 1:1 중량비 내지 1:3 중량비의 범위가 바람직하다. 요소의 용해과정은 30℃ 내지 80℃의 온도범위에서 교반하는 것이 유리하다.
이후, 인산을 투입할 수 있다(S12).
인산의 농도는 반응 후 나노 셀룰로오스(20)의 물성에 가장 큰 영향을 미치는 조건 중 하나로서 펄프 대비 인산 첨가량은 펄프:인산 = 1:0.01 중량비부터 1:0.5 중량비까지가 유리하다.
이때, 펄프 대비 인산 첨가량은 1:0.1 중량비부터 1:0.5 중량비까지가 더욱 바람직 하다. 요소는 인산 첨가량보다 최소 2배 이상이 되어야 인산에 의한 섬유 손상을 최소화하여 장섬유의 나노 셀룰로오스를 얻을 수 있다.
다음, 펄프를 투입하고 교반할 수 있다(S13).
펄프의 경우 해섬, 고해 또는 믹서를 사용하여 반응 가능한 표면적을 향상시킨 상태에서 넣는 것이 유리하다. 용매(물+요소) 대비 펄프 투입량은 펄프가 모두 충분히 함침될 정도일 수 있다.
이와 같은 상태에서 가열 반응(카바메이트-에스테르 반응)이 이루어질 수 있다(S14).
이때, 반응 온도는 요소가 열분해되어 카바메이트 반응이 함께 일어날 수 있는 온도로서 100℃ 내지 250℃ 범위가 바람직하다. 더 바람직하게는 반응 온도 범위는 120℃ 내지 200℃ 사이일 수 있다.
반응 시간은 30분에서 4시간 사이가 바람직하다. 임계온도 범위는 100℃ ㄴ내지 50℃로서, 최소 임계온도 이하일 경우 카바메이트 반응이 일어나지 않고, 최고 임계온도 이상일 경우 섬유 열손상이 발생하게 되어 제약이 따른다.
이후, 물을 투입하여 교반 후 세척하는 과정(S15)이 이루어질 수 있다.
이때, 상온의 증류수를 첨가하고 교반하여 고르게 희석 후 거름체를 이용하여 세척을 진행할 수 있다. 이 과정은 용액의 수소이온농도(pH)가 중성이 될 때까지 진행할 수 있다.
다음, 기계적 분쇄를 통하여 나노 셀룰로오스(20)를 얻을 수 있다(S16).
기계적 분쇄를 위해서는 워터젯 분쇄기, 고속 해섬기, 그라인더, 고압 호모지나이저, 고압 충돌형 분쇄기, 볼 밀, 비즈 밀, 디스크형 리파이너, 코니컬 리파이너, 2축 혼련기, 진동 밀, 고속 회전하에서의 호모 믹서, 초음파 분산기, 또는 비터 중 적어도 어느 하나를 사용할 수 있다.
도 11은 본 발명의 일 실시예에 의한 접착제의 제조 방법 중 카르복시 메틸 셀룰로오스가 분산된 용액을 얻는 과정을 나타내는 순서도이다.
도 11을 참조하여, 위에서 카르복시 메틸 셀룰로오스(30)가 분산된 제2 용액을 얻는 단계(S20)를 더 구체적으로 설명한다.
먼저, 이소프로필 알콜(Isopropyl alcohol(IPA))에 용매(물), 펄프 및 수산화나트륨(NaOH)을 혼합하여 교반할 수 있다(S21).
이때, IPA(Isopropyl alcohol)와 펄프의 혼합비율은 15:1 중량비부터 40:1 중량비까지일 수 있다. 물과 펄프의 혼합비율은 0.5:1 중량비에서 3:1 중량비까지가 유리하다.
이후, 위의 과정에서 얻어진 혼합액에 클로로아세테이트 나트륨(Sodium Chloroacetate)을 투입할 수 있다(S22).
이때, 혼합액과 Sodium Chloroacetate의 혼합비율은 10:1 중량비 내지 50:1 중량비의 범위일 수 있다.
다음, 가열 반응이 이루어질 수 있다(S23).
가열 반응이 이루어지는 온도 범위는 35℃ 내지 90℃ 사이일 수 있다. 이때, 온도 범위는 50℃ 내지 80℃가 더욱 유리할 수 있다.
이후, 용매(물)를 투입하고 교반 후 세척이 이루어질 수 있다(S24).
이때, 상온의 증류수를 첨가하고 교반하여 고르게 희석 후 거름체를 이용하여 세척을 진행할 수 있다. 이 과정은 용액의 수소이온농도(pH)가 중성이 될 때까지 진행할 수 있다.
이후에, 농도를 조절하는 과정이 이루어질 수 있다(S25).
이는 이후에 이루어지는 분쇄 과정에 따라 점도가 증가할 수 있기 때문이다. 분쇄 장비의 성능을 고려하여 펄프 농도는 0.1 내지 3.0 중량(wt)%가 유리하다.
다음, 기계적 분쇄(그라인딩 분쇄)를 통하여 카르복시 메틸 셀룰로오스(30)를 얻을 수 있다(S26).
기계적 분쇄를 위해서는 수중대향충돌, 고속 해섬기, 그라인더, 고압 호모지나이저, 고압 충돌형 분쇄기, 볼 밀, 비즈 밀, 디스크형 리파이너, 코니컬 리파이너, 2축 혼련기, 진동 밀, 고속 회전하에서의 호모 믹서, 초음파 분산기, 또는 비터 중 적어도 어느 하나를 사용할 수 있다.
아래의 표 1은 위에서 설명한 본 발명의 일 실시예에 의한 접착제의 접착력을 평가한 것이다. 이때, 비교예로서, 초산비닐 접착제, 그리고 나노 셀룰로오스(CNF), 카르복시 메틸 셀롤로오스(CMC), 흡습제 및 항균제가 선택적으로 이용된 접착제의 예를 함께 나타내고 있다.
표 1을 참조하면, 나노 셀룰로오스(CNF) 및 카르복시 메틸 셀롤로오스(CMC)만 포함된 경우에도 종래의 초산비닐 접착제의 경우에 비하여 고형분 함량이 크게 줄어들면서 흡습도가 크게 증가한 것을 알 수 있다. 이와 함께 난연성이 부여될 수 있음을 보이고 있다.
또한, 여기에 흡습제와 항균제가 추가됨에 따라 항균성 및 점도가 만족되는 것을 알 수 있다.
Figure PCTKR2021014865-appb-img-000001
아래의 표 2는 위에서 설명한 본 발명의 일 실시예에 의한 접착제의 난연성 및 항균성을 평가한 것이다. 이때, 비교예로서, 초산비닐(수지) 접착제, 그리고 나노 셀룰로오스(CNF), 카르복시 메틸 셀롤로오스(CMC) 및 흡습제(LiCl)가 선택적으로 이용된 접착제의 예를 함께 나타내고 있다.
난연성 및 항균성 평가
조건
(건조온도 105℃, 60분)
난연성 (샘플 수 1개)
KS F 2819
초산 비닐 수지 수용성 접착제 (물 3:원액 7) 방염 3급 (계속 연소)
CNF 산도입량 2.7 mmol/g 방염 1급 (잔염 1초 이하)
CMC - 방염 3급 (잔염 30초)
CNF + CMC 5:5 비율 혼합 방염 1급 (잔염 1초 이하)
CNF + CMC + LiCl (20%) 5:5:2 비율 혼합 방염 1급 (잔염 1초 이하)
표 2를 참조하면, 나노 셀룰로오스(CNF) 및 카르복시 메틸 셀롤로오스(CMC)가 포함된 경우에도 방염 1급을 만족하는 것을 알 수 있다.
또한, 여기에 흡습제(LiCl)가 20% 함유된 경우에도 방염 1급을 만족할 수 있다. 여기서, 방염 1등급은 탄화길이가 5 cm 이하이고, 잔염이 1초 이하이며, 1분 후에는 잔진이 존재하지 않는 조건을 의미한다.
이상의 설명은 본 발명의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다.
따라서, 본 발명에 개시된 실시 예들은 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시 예에 의하여 본 발명의 기술 사상의 범위가 한정되는 것은 아니다.
본 발명의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.
본 발명에 의하면 셀룰로오스 파이버를 포함하는 접착제, 건조 접착층을 포함하는 구조물과 전열교환소자, 및 그 제조 방법을 제공할 수 있다.

Claims (20)

  1. 물에 분산되는 고형분을 포함하는 접착제에 있어서,
    상기 고형분은,
    나노 셀룰로오스; 및
    카르복시 메틸기가 부여된 카르복시 메틸 셀룰로오스를 포함하는 것을 특징으로 하는 접착제.
  2. 제1항에 있어서, 상기 나노 셀룰로오스가 0.1 내지 5 중량%, 그리고 상기 카르복시 메틸 셀룰로오스가 0.1 내지 5 중량% 포함되는 것을 특징으로 하는 접착제.
  3. 제1항에 있어서, 무기계 흡습제를 더 포함하는 것을 특징으로 하는 접착제.
  4. 제3항에 있어서, 상기 무기계 흡습제는 염화칼슘, 염화리튬, 염화마그네슘, 및 실리카겔 중 적어도 어느 하나를 포함하는 것을 특징으로 하는 접착제.
  5. 제3항에 있어서, 상기 무기계 흡습제가 0.1 내지 1 중량% 포함되는 것을 특징으로 하는 접착제.
  6. 제1항에 있어서, 항균제를 더 포함하는 것을 특징으로 하는 접착제.
  7. 제6항에 있어서, 상기 항균제는 Ag, Cu 또는 Zn 이 담지된 다공질 무기 항균제 또는 브로노 폴, 페닐페놀류 또는 벤조티아졸린류를 포함하는 유기 항균제 중 적어도 어느 하나를 포함하는 것을 특징으로 하는 접착제.
  8. 제6항에 있어서, 상기 항균제가 0.1 내지 1 중량% 포함되는 것을 특징으로 하는 접착제.
  9. 제1항에 있어서, 상기 나노 셀룰로오스는 1 내지 50 nm 크기의 직경을 가지는 것을 특징으로 하는 접착제.
  10. 제1항에 있어서, 상기 나노 셀룰로오스에는 인산 작용기가 부여된 것을 특징으로 하는 접착제.
  11. 제10항에 있어서, 상기 인산 작용기 및 상기 카르복시 메틸기는 각각 0.5 내지 3.0 mmol/g의 비율로 부여되는 것을 특징으로 하는 접착제.
  12. 제1항에 있어서, 상기 카르복시 메틸 셀룰로오스는 상기 물이 접착 대상물로 번지는 현상을 방지하기 위한 것을 특징으로 하는 접착제.
  13. 제1항에 있어서, 상기 물의 함량은 88.0 내지 99.6 중량%인 것을 특징으로 하는 접착제.
  14. 제1 부재와 제2 부재 사이에 위치하는 건조 접착층을 포함하는 구조물에 있어서,
    상기 건조 접착층은,
    나노 셀룰로오스 15 내지 35 중량%, 및
    카르복시 메틸기가 부여된 카르복시 메틸 셀룰로오스 65 내지 85 중량%를 포함하는 것을 특징으로 하는 구조물.
  15. 제14항에 있어서, 상기 건조 접착층은 무기계 흡습제를 더 포함하는 것을 특징으로 하는 구조물.
  16. 제15항에 있어서, 상기 무기계 흡습제는 염화칼슘, 염화리튬, 염화마그네슘, 및 실리카겔 중 적어도 어느 하나를 포함하는 것을 특징으로 하는 구조물.
  17. 제14항에 있어서, 상기 건조 접착층은 항균제를 더 포함하는 것을 특징으로 하는 구조물.
  18. 제17항에 있어서, 상기 항균제는 Ag, Cu 또는 Zn 이 담지된 다공질 무기 항균제 또는 브로노 폴, 페닐페놀류 또는 벤조티아졸린류를 포함하는 유기 항균제 중 적어도 어느 하나를 포함하는 것을 특징으로 하는 구조물.
  19. 제14항에 있어서, 상기 나노 셀룰로오스에는 인산 작용기가 부여된 것을 특징으로 하는 구조물.
  20. 건조 접착층을 포함하는 전열교환소자에 있어서,
    제1 전열교환지;
    제2 전열교환지;
    상기 제1 전열교환지와 상기 제2 전열교환지 사이에 위치하는 건조 접착층을 포함하고,
    상기 건조 접착층은,
    나노 셀룰로오스 15 내지 35 중량%, 및
    카르복시 메틸기가 부여된 카르복시 메틸 셀룰로오스 65 내지 85 중량%를 포함하는 것을 특징으로 하는 전열교환소자.
PCT/KR2021/014865 2020-11-24 2021-10-22 접착제, 건조 접착층을 포함하는 구조물과 전열교환소자, 및 그 제조 방법 WO2022114536A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US18/038,404 US20230416577A1 (en) 2020-11-24 2021-10-22 Adhesive, total heat exchange element and structure comprising dried adhesive layer, and production methods for same
CN202180078778.2A CN116472310A (zh) 2020-11-24 2021-10-22 粘合剂、包含干燥粘合剂层的总热交换元件和结构以及粘合剂的生产方法
EP21898362.5A EP4265700A1 (en) 2020-11-24 2021-10-22 Adhesive, total heat exchange element and structure comprising dried adhesive layer, and production methods for same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2020-0159354 2020-11-24
KR20200159354 2020-11-24

Publications (1)

Publication Number Publication Date
WO2022114536A1 true WO2022114536A1 (ko) 2022-06-02

Family

ID=81754796

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/014865 WO2022114536A1 (ko) 2020-11-24 2021-10-22 접착제, 건조 접착층을 포함하는 구조물과 전열교환소자, 및 그 제조 방법

Country Status (5)

Country Link
US (1) US20230416577A1 (ko)
EP (1) EP4265700A1 (ko)
KR (1) KR102480299B1 (ko)
CN (1) CN116472310A (ko)
WO (1) WO2022114536A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102450300B1 (ko) * 2022-06-23 2022-10-05 디케이화인케미칼 주식회사 건축용 향균성 셀룰로오스 제조방법 및 그에 의하여 제조되는 건축용 항균성 셀룰로오스

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100837023B1 (ko) * 2007-06-27 2008-06-19 미쓰비시덴키 가부시키가이샤 전열교환 소자 및 전열교환기
JP2011237157A (ja) * 2010-05-10 2011-11-24 Nippon Air Filter Kk 熱交換器の全熱交換エレメント
JP5390588B2 (ja) * 2006-01-18 2014-01-15 コロプラスト アクティーゼルスカブ 異なる親水コロイド組成物を有する接着剤層を含む層状接着構造体
KR101554910B1 (ko) * 2014-07-03 2015-09-23 인천경기기계공업협동조합 고분자 재질 현열교환기와 그 제조방법
JP2019094388A (ja) * 2017-11-20 2019-06-20 花王株式会社 接着組成物
JP2020016343A (ja) * 2018-07-23 2020-01-30 ダイキン工業株式会社 全熱交換素子およびその製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101646955B1 (ko) 2014-09-01 2016-08-12 박찬오 셀룰로오스를 이용한 접착제와 그의 제조방법
BR112020023952A2 (pt) 2018-05-24 2021-02-23 GranBio Intellectual Property Holdings, LLC adesivo composto de nanocelulose e amido, produto celulósico multicamadas tendo pelo menos duas camadas de produto celulósico unidas usando um adesivo, processo para a produção de um produto celulósico multicamadas com adesivo e produto celulósico multicamadas tendo pelo menos duas camadas únicas de produto celulósico unidas entre usando um adesivo

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5390588B2 (ja) * 2006-01-18 2014-01-15 コロプラスト アクティーゼルスカブ 異なる親水コロイド組成物を有する接着剤層を含む層状接着構造体
KR100837023B1 (ko) * 2007-06-27 2008-06-19 미쓰비시덴키 가부시키가이샤 전열교환 소자 및 전열교환기
JP2011237157A (ja) * 2010-05-10 2011-11-24 Nippon Air Filter Kk 熱交換器の全熱交換エレメント
KR101554910B1 (ko) * 2014-07-03 2015-09-23 인천경기기계공업협동조합 고분자 재질 현열교환기와 그 제조방법
JP2019094388A (ja) * 2017-11-20 2019-06-20 花王株式会社 接着組成物
JP2020016343A (ja) * 2018-07-23 2020-01-30 ダイキン工業株式会社 全熱交換素子およびその製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102450300B1 (ko) * 2022-06-23 2022-10-05 디케이화인케미칼 주식회사 건축용 향균성 셀룰로오스 제조방법 및 그에 의하여 제조되는 건축용 항균성 셀룰로오스

Also Published As

Publication number Publication date
CN116472310A (zh) 2023-07-21
KR20230002200A (ko) 2023-01-05
US20230416577A1 (en) 2023-12-28
KR20220071877A (ko) 2022-05-31
EP4265700A1 (en) 2023-10-25
KR102480299B1 (ko) 2022-12-23

Similar Documents

Publication Publication Date Title
WO2016133328A1 (ko) 미세 분말 함침 부직포 및 이의 제조 방법
WO2012018242A2 (ko) 탄소소재를 이용한 고효율 방열도료 조성물
WO2022114536A1 (ko) 접착제, 건조 접착층을 포함하는 구조물과 전열교환소자, 및 그 제조 방법
WO2014196789A1 (en) Water-dispersed hydrophobic powder composition and method for preparing pulp paper and glass fiber using the same
WO2021230622A1 (ko) 분리막 구조, 그 제조 방법 및 이를 이용한 이차전지
WO2019066543A1 (ko) 인조 흑연 분말을 이용한 열전도성 박막의 제조방법
WO2017069558A1 (ko) 다공성 단일 수지 섬유 복합재 및 다공성 단일 수지 섬유 복합재를 제조하는 방법
WO2017171317A1 (ko) 비 산처리 친환경 셀룰로오스 나노결정체의 제조방법 및 이로 제조된 셀룰로오스 나노결정체
WO2018074889A2 (ko) 그라파이트 시트의 제조방법
WO2015080335A1 (ko) 나노피브릴화 셀룰로오스의 제조 방법
WO2023013834A1 (ko) 방열 도료 조성물, 이의 제조방법, 이로부터 형성된 방열 코팅막 및 이를 포함하는 히트씽크
WO2018004288A2 (ko) 폴리에스테르 다층필름
WO2021002660A1 (ko) 에어로겔 함유 분무용 조성물과 그 제조방법
WO2022071775A1 (ko) 리튬 이차 전지용 분리막, 이의 제조 방법 및 이를 포함하는 리튬 이차 전지
WO2021045533A1 (ko) 에어로겔 블랭킷
WO2019125040A1 (ko) 실리카층의 제조 방법
WO2023080349A1 (ko) 일액형 우레탄 방열 도료 조성물 및 이의 제조방법
WO2018221987A1 (ko) 에어로겔 시트 및 이를 포함하는 단열 재료
WO2022196902A1 (en) Separator structure, method for producing the same, and secondary battery using the same
WO2017135619A1 (ko) 실버 코팅 글래스 프릿, 그 제조방법 및 실버 코팅 글래스 프릿을 이용한 솔라셀용 실버 페이스트 조성물
WO2021071152A1 (ko) 플렉서블 윈도우 필름 및 이를 포함하는 디스플레이 장치
WO2020076138A1 (ko) 복합 코팅액, 이를 이용하여 제조된 금속 기판 구조체, 및 그 제조 방법
WO2016122144A1 (ko) 변성 이소부틸렌-이소프렌 고무, 이의 제조방법 및 경화물
WO2022050506A1 (ko) 누액방지 고성능 흡습제 조성물 및 그 제조방법
WO2022030748A1 (ko) 비할로겐계 인계 난연제, 이를 적용한 난연성 고분자 수지 및 이의 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21898362

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180078778.2

Country of ref document: CN

Ref document number: 18038404

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021898362

Country of ref document: EP

Effective date: 20230626