WO2014098213A1 - 摩擦材 - Google Patents

摩擦材 Download PDF

Info

Publication number
WO2014098213A1
WO2014098213A1 PCT/JP2013/084238 JP2013084238W WO2014098213A1 WO 2014098213 A1 WO2014098213 A1 WO 2014098213A1 JP 2013084238 W JP2013084238 W JP 2013084238W WO 2014098213 A1 WO2014098213 A1 WO 2014098213A1
Authority
WO
WIPO (PCT)
Prior art keywords
friction
friction material
fiber
present
potassium titanate
Prior art date
Application number
PCT/JP2013/084238
Other languages
English (en)
French (fr)
Inventor
幸廉 須貝
克司 関
Original Assignee
曙ブレーキ工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=50978529&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2014098213(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 曙ブレーキ工業株式会社 filed Critical 曙ブレーキ工業株式会社
Priority to US14/646,419 priority Critical patent/US10461104B2/en
Priority to CN201380062609.5A priority patent/CN104854213B/zh
Priority to EP13866368.7A priority patent/EP2937398B1/en
Publication of WO2014098213A1 publication Critical patent/WO2014098213A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D69/00Friction linings; Attachment thereof; Selection of coacting friction substances or surfaces
    • F16D69/02Compositions of linings; Methods of manufacturing
    • F16D69/025Compositions based on an organic binder
    • F16D69/026Compositions based on an organic binder containing fibres
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/1446Devices controlled by radiation in a repetitive configuration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/02002Arrangements for conducting electric current to or from the device in operations
    • H01L31/02005Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2200/00Materials; Production methods therefor
    • F16D2200/0082Production methods therefor
    • F16D2200/0086Moulding materials together by application of heat and pressure

Definitions

  • the present invention relates to a friction material, and more particularly, to a friction material used for brake pads or brake linings, clutches and the like of automobiles, railway vehicles, industrial machines and the like.
  • Friction materials used for brakes such as disc brakes and drum brakes, or clutches, are made of a fiber base material that reinforces, a friction adjustment material that imparts friction and adjusts its friction performance, and these components. It is made of raw materials such as binding materials.
  • the role of brakes has become increasingly severe, and it is necessary to have a sufficiently high coefficient of friction (effectiveness). Further, since the temperature becomes high during braking from high speed, the friction state is different from that during braking at low temperature and low speed, and stable friction characteristics are required in which the change in the friction coefficient due to temperature change is small.
  • Patent Document 1 when the friction material contains copper fibers in a predetermined amount range, it is possible to improve the friction coefficient at a low temperature and to suppress a decrease in the friction coefficient at a high temperature and a high speed.
  • this mechanism when the friction material and the mating material (disk rotor) are rubbed, an adhesive film is generated on the surface of the mating material due to the spreadability of the metal contained in the friction material, and this film acts as a protective film at low temperatures. It is thought that it contributes greatly to stabilizing the friction coefficient at the high temperature and maintaining a high friction coefficient at high temperatures.
  • the metal components contained in the disc rotor wear powder and the brake pad friction material may bite into the friction material, where they may aggregate to form a large metal mass and remain between the brake pad and the disc rotor.
  • the agglomerated metal mass may cause abnormal wear of the disk rotor (Patent Document 2).
  • the metal components contained in the friction material are mainly metal fibers such as steel fibers and copper fibers, and when these fibers are contained in a large amount, there is a risk of causing the above-described abnormal wear of the disk rotor.
  • Patent Document 3 discloses a method for suppressing elution of a copper component in a friction material.
  • an object of the present invention is to provide a friction material that does not contain a copper component and metal fibers, has a stable friction characteristic, is excellent in wear resistance, and has a low attacking property against a counterpart material.
  • the present inventors do not contain metal fibers and copper components in the friction material by using a predetermined amount of a grinding material having a Mohs hardness of 7 or more, potassium titanate having a plurality of convex shapes, and an elastomer-modified phenol resin.
  • the present inventors have found that the problems of lowering the friction coefficient at high speed and high load, increasing the aggressiveness of the mating material, and stabilizing the friction coefficient at a low temperature are solved in a balanced manner, and the present invention has been completed.
  • “not including a copper component” means that neither copper fiber, copper powder, nor an alloy (such as brass or bronze) containing copper and a compound is blended as a raw material of the friction material. Say.
  • this invention solves the said subject, and consists of the following structures.
  • the friction material according to (1), wherein the abrasive having a Mohs hardness of 7 or more is at least one selected from the group consisting of stabilized zirconia, zirconium silicate, and alumina.
  • the friction material according to (1) or (2), wherein the elastomer-modified phenol resin is at least one of an acrylic rubber-modified phenol resin and a silicone rubber-modified phenol resin.
  • potassium titanate having a specific shape, an elastomer-modified resin, and an abrasive having a Mohs hardness of a certain value or more stable friction can be obtained without containing metal fibers and copper components. It is possible to obtain a friction material having characteristics, excellent wear resistance, and low attacking on the counterpart material.
  • the friction material according to the present invention is a friction material that does not contain metal fibers and a copper component, and includes 10 to 35% by volume of potassium titanate having a plurality of convex shapes, and 3 to 10 abrasives having a Mohs hardness of 7 or more. It is characterized by containing 10 to 30% by volume of an elastomer-modified phenol resin. Moreover, it is preferable that the friction material of this invention contains fillers, such as fiber base materials, such as a normally used organic fiber and an inorganic fiber, and an organic filler and an inorganic filler. The filler is used as a friction modifier together with the abrasive. Moreover, it is preferable to contain binders, such as a thermosetting resin which integrates these components as needed.
  • weight% and “mass%” are synonymous.
  • the friction material according to the present invention includes a filler and an abrasive as a friction adjusting material.
  • a filler 10 to 35% by volume of potassium titanate having a plurality of convex shapes, which is an inorganic filler, may be contained in the friction material, and other inorganic fillers and organic fillers may be included.
  • the abrasive 3 to 10% by volume of an abrasive having a Mohs hardness of 7 or more may be included, and other abrasives may be included. Details of these will be described below.
  • the present invention includes potassium titanate having a plurality of convex shapes.
  • the potassium titanate in the present invention means that the three-dimensional shape of the particle has a plurality of convex portions. Having a plurality of convex shapes means that the projected shape of the potassium titanate particles on the plane can take a shape having convex portions in two or more directions, unlike at least normal polygons, circles, ellipses, etc. Means.
  • the said convex part means the part corresponding to the part which applied a polygon, a circle
  • the three-dimensional shape of the titanate compound of the present invention include a boomerang shape, a cross shape, an amoeba shape, various animal and plant parts (for example, hands, horns, leaves, etc.) or an overall shape thereof or a similar shape thereof, konpeito And the like.
  • the amoeba shape represents a shape in which a plurality of protrusions extend in an irregular direction.
  • the resin as the binder mechanically joins with the potassium titanate of the present invention. It becomes easy to be structurally held in the powder matrix of the adjusting material. Therefore, even if it does not contain metal fibers and copper components, it can maintain a high friction coefficient at high speed and high load by using the potassium titanate of the present invention in combination with an abrasive material having a Mohs hardness of 7 or more and an elastomer-modified phenol resin. It is considered to show wear.
  • potassium hexatitanate (K) is used because there is little elution of alkali metal ions that causes deterioration of the resin (binding material) constituting the friction material matrix.
  • 2 O ⁇ 6TiO 2 ) and potassium octatitanate (K 2 O ⁇ 8TiO 2 ) are preferable.
  • the average particle size of the potassium titanate having a plurality of convex shapes in the present invention is preferably 1 to 50 ⁇ m, and more preferably 5 to 20 ⁇ m.
  • the average particle diameter can be measured by, for example, a laser diffraction particle size distribution measuring apparatus.
  • the potassium titanate having a plurality of convex portions according to the present invention is a known inorganic friction modifier, and can be obtained, for example, by the method described in International Publication No. 2008/123046.
  • the oxides and salts of atoms that constitute potassium titanate in the normal shape are mixed with a Henschel mixer, and then mixed while being pulverized into mechanochemicals using a vibration mill to obtain a highly reactive mixture, which is fired.
  • the potassium titanate having a specific shape according to the present invention can be produced.
  • the potassium titanate having a plurality of convex portions of the present invention is preferably contained in an amount of 10 to 35% by volume, more preferably 10 to 20% by volume in the entire friction material.
  • the effect of the present invention can be sufficiently obtained.
  • the upper limit to 35% by volume or less, the necessary matrix strength of the brake pad can be exhibited, a sufficient amount of compressive deformation can be obtained, and good vibration characteristics can be obtained.
  • an abrasive having a Mohs hardness of 7 or more is used. It is preferable that the Mohs hardness of the abrasive is 7 or more because a high friction coefficient required for braking at high speed and high load can be obtained.
  • the abrasive having a Mohs hardness of 7 or more include alumina, silica, silicon carbide, mullite, stabilized zirconia, zirconium silicate, and the like, and have a role of improving the friction coefficient by grinding the counterpart material.
  • At least one selected from the group consisting of stabilized zirconia, zirconium silicate and alumina is preferable to use at least one selected from the group consisting of stabilized zirconia, zirconium silicate and alumina. It is more preferable to use at least one of zirconia and zirconium silicate. These abrasives can be used alone or in combination of two or more.
  • the stabilized zirconia used in the present invention includes, for example, adding a few percent of a stabilizer such as calcia (CaO), yttria (Y 2 O 3 ), or magnesia (MgO) to badelite which is natural zirconia. It is prepared by stabilizing treatment. By this treatment, monoclinic zirconia becomes cubic and does not cause a phase transition and is thermally stabilized.
  • a stabilizer such as calcia (CaO), yttria (Y 2 O 3 ), or magnesia (MgO)
  • the stabilization rate that is, the proportion of the cubic system in the zirconia crystal may be arbitrary because it does not affect the stabilization of the initial friction coefficient, but in the case of partially stabilized zirconia with a stabilization rate of less than 50%, It is known that the amount of wear of the disk rotor, which is a material, is remarkably increased. Since the amount of wear of the mating material increases depending on the hardness of the mating material, a stabilization rate of 50% or more is desirable. However, if the wear amount of the counterpart material is not so large, the stabilization rate may be less than 50%.
  • the addition amount of the stabilizer required in order to obtain 100% stabilized zirconia composed only of a cubic system in which the stabilizer is dissolved is, for example, as follows.
  • the addition amount here is an amount with respect to natural zirconia.
  • the abrasive having a Mohs hardness of 7 or more is preferably contained in an amount of 3 to 10% by volume, more preferably 3 to 6% by volume, based on the friction material. Within this range, it is possible to improve the coefficient of friction during high-speed and high-load braking and to reduce the opponent material aggression.
  • the abrasive having a Mohs hardness of 7 or more preferably has an average particle size of 3 to 20 ⁇ m. Within this range, it is possible to improve the coefficient of friction during high-speed and high-load braking and to reduce the opponent material aggression.
  • the average particle size is a value of 50% particle size measured by the laser diffraction particle size distribution method.
  • organic fillers As other friction modifiers used in the present invention, commonly used organic fillers and inorganic fillers can be used. An abrasive having a Mohs hardness of less than 7 can also be used in combination.
  • the organic filler include various rubbers such as acrylonitrile butadiene rubber (NBR), styrene butadiene rubber (SBR), butadiene rubber (BR), etc., organic dust such as rubber dust, cashew dust, and polytetrafluoroethylene (PTFE). Etc.
  • inorganic fillers include metal powders such as aluminum, tin, and zinc, vermiculite, mica, calcium hydroxide, barium sulfate, calcium carbonate, natural graphite, flake graphite, elastic graphite, expanded graphite, tin sulfide, and plate shape And scale-like or powdery potassium titanate, lithium potassium titanate, magnesium potassium titanate and the like.
  • the potassium titanate does not include potassium titanate having a plurality of convex shapes according to the present invention.
  • the abrasive having a Mohs hardness of less than 7 include magnesia, iron oxide, and chromite.
  • the friction modifier generally includes 30 to 80% by volume, preferably 60 to 80% of the entire friction material, including the potassium titanate having a plurality of convex shapes of the present invention and an abrasive having a Mohs hardness of 7 or more. Used in volume%.
  • the fiber base material that can be used in the present invention may be organic or inorganic, but from the viewpoint of the natural environment and the aggressiveness of the counterpart material, it may not contain metal fibers such as copper fibers or copper components. preferable.
  • the organic fiber include aromatic polyamide (aramid) fiber, cellulose fiber, and polyacrylic fiber.
  • the inorganic fiber include potassium titanate fiber, biosoluble inorganic fiber, glass fiber, carbon fiber, rock wool and the like.
  • the fiber base materials are used alone or in combination of two or more.
  • biosoluble inorganic fibers among the inorganic fibers are used as the fiber base material.
  • the biosoluble inorganic fiber in the present invention is an inorganic fiber having a feature that it is decomposed in a short time and discharged outside the body even when taken into the human body.
  • the chemical composition of the biosoluble inorganic fiber is such that the total amount of alkali metal oxides and alkaline earth metal oxides (total amount of oxides of sodium, potassium, calcium, magnesium, barium) is 18% by mass or more and is due to respiration
  • the fiber half-life of 20 ⁇ m or less is within 10 days, or in the short-term biopermanence test during intratracheal injection, the mass half-life of fibers over 20 ⁇ m is within 40 days, or intraperitoneally Means inorganic fibers that do not have evidence of excessive carcinogenicity in the test or that have no associated pathogenicity or tumor development in long-term breathing tests (EU Directive 97/69 / EC Note Q (exclude carcinogenicity)) ).
  • Such a biosoluble inorganic fiber preferably contains at least one selected from the group consisting of SiO 2 , MgO and SrO as a chemical composition.
  • the SiO 2 —CaO—MgO fiber, SiO 2 Examples thereof include biosoluble ceramic fibers such as —MgO—SrO fiber, and biosoluble rock wool such as SiO 2 —CaO—MgO—Al 2 O 3 fiber.
  • the ceramic fiber used in the present invention has excellent heat resistance equivalent to that of alumina silica fiber, and further has excellent biosolubility and water resistance, and is a biosoluble ceramic fiber, SiO 2 —MgO—SrO. System fibers are preferred. These biosoluble inorganic fibers are produced by fiberizing inorganic fiber raw materials by a melt spinning method or the like generally used.
  • biosoluble rock wool and biosoluble ceramic fibers such as SiO 2 —CaO—MgO fiber, SiO 2 —CaO—MgO—Al 2 O 3 fiber, and SiO 2 —MgO—SrO fiber include commercially available RB220.
  • -Roxul 1000 manufactured by Lapinus
  • Fineflex-E bulk fiber T manufactured by NICHIAS
  • BIOSTAR bulk fiber manufactured by ITM
  • the biosoluble inorganic fiber preferably has a fiber diameter of 0.1 to 10 ⁇ m and a fiber length of 1 to 1000 ⁇ m, more preferably a fiber diameter of 0.2 to 6 ⁇ m and a fiber length of 10 to 850 ⁇ m. If it is this range, the effect of this invention can be exhibited effectively.
  • the biosoluble inorganic fibers that can be used in the present invention generally generate shots (particulate matter) that did not become fibers in the production process, and these shots are contained in the fibers. These shot contents are preferably 0.1 to 70% by mass in the fiber base material. When the shot content is larger than the above range, the attacking property to the disk rotor increases.
  • the disk rotor cleaning effect cannot be expected.
  • the biologically soluble inorganic fiber is not particularly limited as long as it is within the above definition.
  • the surface of the biosoluble inorganic fiber may be subjected to a surface treatment with a silane coupling agent or the like.
  • the fiber base is usually used in an amount of 2 to 35% by volume, preferably 5 to 28% by volume, in the entire friction material.
  • the friction material according to the present invention includes an elastomer-modified phenol resin.
  • the elastomer that modifies the phenol resin may be any one that imparts plasticity to the phenol resin, and examples thereof include cross-linked natural rubber and synthetic rubber.
  • As the elastomer for modifying the phenol resin acrylic rubber, silicone rubber and the like are preferably used.
  • the elastomer-modified phenolic resins can be used alone or in combination of two or more.
  • the elastomer-modified phenolic resin of the present invention is preferably contained in an amount of 10 to 30% by volume, more preferably 10 to 20% by volume in the entire friction material. If it is this range, even if there is no adhesion coating derived from a metal component, the friction coefficient at low temperature can be stabilized.
  • binder used in the present invention examples include thermosetting resins such as phenol resins (including straight phenol resins and various modified phenol resins), melamine resins, epoxy resins, and polyimide resins in addition to the elastomer-modified phenol resins. Can do.
  • Various modified phenol resins include hydrocarbon resin-modified phenol resins, epoxy-modified phenol resins, and the like.
  • the binder including the elastomer-modified phenolic resin is usually used in an amount of 10 to 30% by volume, preferably 14 to 20% by volume in the entire friction material.
  • the friction material of the present invention can be produced by blending the above components, pre-molding the blend according to a normal production method, and performing treatments such as thermoforming, heating, and polishing.
  • a brake pad provided with the friction material can be manufactured by the following steps (1) to (4).
  • (1) A step of forming a steel plate (pressure plate) into a predetermined shape by a sheet metal press.
  • (2) A step of applying a degreasing treatment, a chemical conversion treatment, and a primer treatment to a steel sheet formed into a predetermined shape, and applying an adhesive.
  • the pressure plate having undergone the steps (1) and (2) and the preform of the friction material are thermoformed at a predetermined temperature and pressure in the thermoforming step, and the two members are fixed together.
  • Process. (4) A process in which after-curing is performed, and finally finishing treatment such as polishing, surface baking, and painting is performed.
  • Examples 1 to 11 and Comparative Examples 1 to 6 The blending material of the friction material was uniformly mixed by a mixer according to the blending composition (volume%) shown in Table 1 to obtain a friction material mixture. Subsequently, the friction material mixture was preformed at room temperature and a pressure of 6 MPa, and then heated and pressed at a temperature of 140 to 170 ° C. and a molding surface pressure of 30 to 80 MPa for 5 minutes, and then 1 to a temperature of 150 to 300 ° C. and a fastening of 980 to 7840 N. Heat treatment was performed for 4 hours to obtain friction materials A to Q.
  • the potassium titanate used as the filler is potassium titanate having a plurality of convex shapes, and has an average particle size of 10 ⁇ m (manufactured by Otsuka Chemical Co., Ltd., TERRACESS JP).
  • As the organic fiber an aramid fiber was used, and as the inorganic fiber, a SiO 2 —MgO—SrO-based biosoluble ceramic fiber (Biostar 600/70 manufactured by ITM Co., Ltd.) having a shot content of 30% by mass was used.
  • the Mohs hardness of the abrasive used in the present invention is 7 for stabilized zirconia and zirconium silicate, 9 for alumina, and iron oxide (Fe 3 O 4 ) used in Comparative Example 6 (friction material Q). ) Is 6.
  • Friction characteristics Evaluation of friction characteristics based on JASO C406 (general performance test) was performed.
  • a low temperature efficacy test (test conditions: braking initial speed 50 km / h, braking deceleration 2.94 m / s 2 , brake temperature before braking 50 ° C.) was performed as an evaluation of friction characteristics at low temperatures, and a friction coefficient ⁇ was determined.
  • a second efficacy test (test conditions: initial braking speed 130 km / h, braking deceleration 7.35 m / s 2 ) was performed to determine the friction coefficient ⁇ .
  • the friction material M of Comparative Example 2 contains copper fibers and a straight phenol resin, and the blending composition corresponds to the blending composition conventionally used as a friction material for NAO (Non-Asbestos Organic) material. .
  • the friction materials A to K according to the present invention showed high performance equivalent to that of the friction material M in any of friction characteristics, wear resistance, and mating material aggression.
  • the metal fiber content is increased with respect to the reference friction material M, the amount of pad wear increases, so the wear resistance is low and the counterpart material attack is also high.
  • the friction coefficient in a low temperature efficacy test also becomes high and a noise may arise (Comparative Example 1: Friction material L).
  • the friction material N (Comparative Example 3) containing no metal fiber has a higher coefficient of friction in the low-temperature efficacy test than the friction materials L and M containing metal fiber.
  • the amount of wear of the rotor that shows the opponent's aggressiveness is still high.
  • the wear resistance is improved, but the effect at high load is low (Comparative Example 4: Friction material O).
  • Friction material O the friction coefficient in the low temperature efficacy test of the friction material O is still high, and there is a possibility that squeal occurs.
  • Friction material A was obtained (Example 1).
  • Friction material M By using an elastomer-modified phenol resin such as an acrylic rubber-modified phenol resin or a silicone rubber-modified phenol resin instead of a straight phenol resin as a friction material that does not contain a copper component and metal fibers, a conventional friction material M serving as a reference is used. It was found that a friction material having performance equivalent to However, only by changing the binding material, stable friction characteristics, excellent wear resistance and counterpart material attack cannot be obtained (Comparative Example 5: Friction material P and Comparative Example 6: Friction material Q).
  • the potassium titanate contained in the filler is not plate-shaped, but using potassium titanate having a plurality of convex shapes, A friction material excellent in friction characteristics, wear resistance, and attacking property of the counterpart material can be obtained.
  • a stable friction characteristic can be obtained by using a single grinding material having a Mohs hardness of less than 7 (iron oxide: Fe 3 O 4 ). It can be seen that the wear resistance and the attack of the opponent material are not good. It has been found that the material used for the abrasive must include a material having a Mohs hardness of 7 or more, such as stabilized zirconia, zirconium silicate, and alumina.
  • the friction material according to the present invention does not contain metal fibers and copper components, and has 10 to 35% by volume of potassium titanate having a plurality of convex shapes, and 3 to 10% by volume of abrasive having a Mohs hardness of 7 or more. As long as the friction material contains 10 to 30% by volume of the elastomer-modified phenolic resin, a friction material having stable friction characteristics and low attacking on the counterpart material can be obtained.
  • the friction material according to the present invention is a friction material having a low environmental load because it does not contain a copper component or metal fiber. Despite containing no copper component or metal fiber, it contains a specific amount of potassium titanate, abrasives, and elastomer-modified phenolic resin in a specific shape, ensuring stable friction characteristics equivalent to or better than conventional ones. Thus, the friction material has excellent wear resistance and low attack on the other material. Therefore, the friction material according to the present invention is particularly useful when applied to brake pads, brake linings, clutches, etc. used in automobiles, railway vehicles, industrial machines, etc., and its technical significance is extremely large. .

Abstract

 本発明は銅成分および金属繊維を含有しない摩擦材であって、安定した摩擦特性を持ち、耐摩耗性に優れ、かつ相手材攻撃性が小さい摩擦材を提供することを課題とする。本発明は金属繊維および銅成分を含有しない摩擦材であって、複数の凸部形状を有するチタン酸カリウムを10~35体積%、モース硬度7以上の研削材を3~10体積%、およびエラストマー変性フェノール樹脂を10~30体積%含有する摩擦材に関する。

Description

摩擦材
 本発明は、摩擦材に関し、特に自動車、鉄道車両、産業機械等のブレーキパッドまたはブレーキライニング、クラッチ等に用いられる摩擦材に関する。
 ディスクブレーキやドラムブレーキなどのブレーキ、或いはクラッチなどに使用される摩擦材は、補強作用をする繊維基材、摩擦作用を与え且つその摩擦性能を調整する摩擦調整材、及び、これらの成分を一体化する結合材などの原材料からなっている。
 昨今の車両の高性能化、高速化に伴い、ブレーキの役割は益々過酷なものとなってきており、十分に高い摩擦係数(効き)を有することが必要である。さらに高速からの制動時には高温となることから、低温低速での制動時とは摩擦状態が異なり、温度変化による摩擦係数の変化が少ない、安定した摩擦特性が求められている。
 現在、一般的な摩擦材に金属繊維を適量含有することは、摩擦材の強度補強や摩擦係数の安定化、さらには高温における摩擦係数の維持や放熱効率の向上、耐摩耗性向上等に有効であることが知られている。この金属繊維の特性に着目し、スチール繊維を5~10質量%、平均繊維長が2~3mmの銅繊維を5~10質量%、および粒径が5~75μmの亜鉛粉を2~5質量%、含有した摩擦材が特許文献1に開示されている。
 特許文献1によれば、摩擦材は銅繊維を所定量の範囲で含有すると、低温での摩擦係数の向上を図ることができ、高温高速時の摩擦係数の低下を抑制することができる。このメカニズムは摩擦材と相手材(ディスクロータ)との摩擦時に、摩擦材に含有された金属の展延性によって相手材表面に凝着被膜が生成し、この被膜が保護膜として作用することで低温での摩擦係数を安定化し、高温での高い摩擦係数を維持することに大きく寄与すると考えられる。
 一方で、ディスクロータの摩耗粉やブレーキパッドの摩擦材に含まれる金属成分が摩擦材に食い込み、そこで凝集して大きな金属塊となってブレーキパッドとディスクロータの間に留まってしまう場合がある。このように凝集した金属塊は、ディスクロータを異常摩耗させることがある(特許文献2)。
 現在、摩擦材に含まれる金属成分は主にスチール繊維や銅繊維といった金属繊維が多く、これらの繊維を多量に含有した場合、上述のディスクロータの異常摩耗を引き起こすおそれがある。
 また、摩擦材中に含まれる銅成分は、ブレーキ制動により摩耗粉として放出されることから、自然環境への影響が指摘されている。そこで特許文献3では、摩擦材中の銅成分の溶出を抑制する方法が開示されている。
日本国特開2010-77341号公報 日本国特開2007-218395号公報 日本国特開2010-285558号公報
 上述のように、相手材(ディスクロータ)の異常摩耗量の低減および環境低負荷を目的として、銅繊維および金属成分を含まない摩擦材や金属成分の溶出を抑制した摩擦材等が種々検討されている。しかしながら、銅繊維や金属成分を含まない摩擦材では、従来の銅成分を含む摩擦材と同等の摩擦特性や耐摩耗性を得ることが難しく、摩擦材の性能について改善の余地があった。
 したがって、本発明は銅成分および金属繊維を含まない摩擦材であって、安定した摩擦特性を持ち、耐摩耗性に優れ、かつ相手材攻撃性が小さい摩擦材を提供することを目的とする。
 本発明者らは、モース硬度7以上の研削材、複数の凸部形状を有するチタン酸カリウム、およびエラストマー変性フェノール樹脂を所定量組み合わせて用いることで、摩擦材に金属繊維および銅成分を含有しない場合に生じる、高速・高負荷での摩擦係数の低下、相手材攻撃性の増大、および低温での摩擦係数の安定化という課題をバランスよく解決することを見出し、本発明を完成するに至った。なお本願明細書で、「銅成分を含まない」とは、銅繊維、銅粉、並びに銅を含んだ合金(真鍮又は青銅等)及び化合物のいずれも、摩擦材の原材料として配合していないことを言う。
 すなわち本発明は、上記課題を解決するものであり、下記の構成からなるものである。
(1)金属繊維および銅成分を含有しない摩擦材であって、複数の凸部形状を有するチタン酸カリウムを10~35体積%、モース硬度7以上の研削材を3~10体積%、およびエラストマー変性フェノール樹脂を10~30体積%含有する摩擦材。
(2)前記モース硬度7以上の研削材が、安定化ジルコニア、珪酸ジルコニウムおよびアルミナからなる群より選ばれる少なくとも1種である、前記(1)に記載の摩擦材。
(3)前記エラストマー変性フェノール樹脂がアクリルゴム変性フェノール樹脂およびシリコーンゴム変性フェノール樹脂の少なくともいずれか一方である、前記(1)または(2)に記載の摩擦材。
 したがって、本発明によれば、特定形状のチタン酸カリウムとエラストマー変性樹脂および一定値以上のモース硬度を有する研削材を用いることにより、金属繊維や銅成分を含んでいなくても、安定した摩擦特性を持ち、耐摩耗性に優れ、かつ、相手材攻撃性が小さい摩擦材を得ることができる。
 本発明に係る摩擦材は、金属繊維および銅成分を含有しない摩擦材であって、複数の凸部形状を有するチタン酸カリウムを10~35体積%、モース硬度7以上の研削材を3~10体積%、およびエラストマー変性フェノール樹脂を10~30体積%含むことを特徴とする。
 また、本発明の摩擦材は、通常用いられる有機繊維や無機繊維などの繊維基材、および有機充填材や無機充填材などの充填材を含有することが好ましい。該充填材は研削材と共に、摩擦調整材として用いられる。また、必要に応じてこれらの成分を一体化する熱硬化性樹脂などの結合材を含有することが好ましい。以下、本発明に係る摩擦材について詳述する。ここで、“重量%”と“質量%”とは同義である。
[摩擦調整材]
 本発明に係る摩擦材には、摩擦調整材として充填材及び研削材を含む。充填材としては、無機充填材である複数の凸部形状を有するチタン酸カリウムを摩擦材中10~35体積%含み、その他の無機充填材や有機充填材を含んでもよい。研削材としては、モース硬度7以上の研削材を3~10体積%含み、その他の研削材を含んでもよい。
 これらについて、以下に詳細を説明する。
(複数の凸部形状を有するチタン酸カリウム)
 本発明は、複数の凸部形状を有するチタン酸カリウムを含む。本発明におけるチタン酸カリウムは、粒子の3次元形状が複数の凸部を有することを意味する。
 複数の凸部形状を有するとは、チタン酸カリウム粒子の平面への投影形状が少なくとも通常の多角形、円、楕円等とは異なり2方向以上に凸部を有する形状を取りうるものであることを意味する。当該凸部とは、電子顕微鏡による写真(投影図)に多角形、円、楕円等(基本図形)を当てはめ、それに対して突出した部分に対応する部分を言う。本発明のチタン酸化合物の具体的3次元形状としては、ブーメラン状、十字架状、アメーバ状、種々の動植物の部分(例えば、手、角、葉等)もしくはその全体形状又はそれらの類似形状、金平糖状等が挙げられる。ここでアメーバ状とは、不規則方向に複数の突起が伸びた形状を表す。
 特に本発明に用いるチタン酸カリウムの複数の凸部形状によって、結合材である樹脂が本発明のチタン酸カリウムと機械的に接合し、結果として、本発明のチタン酸カリウムは繊維基材や摩擦調整材の粉粒体マトリクス内に構造的に保持されやすくなる。そのため、金属繊維および銅成分を含まずとも、本発明のチタン酸カリウムをモース硬度7以上の研削材およびエラストマー変性フェノール樹脂と併用することで高速・高負荷での高い摩擦係数を維持し、耐摩耗性を示すと考えられる。
 本発明のチタン酸カリウムを摩擦材の配合材料として使用する場合、摩擦材のマトリックスを構成する樹脂(結合材)の劣化を誘因するアルカリ金属イオンの溶出が少ないことから、六チタン酸カリウム(KO・6TiO)、八チタン酸カリウム(KO・8TiO)が好ましい。
 本発明における複数の凸部形状を有するチタン酸カリウムの平均粒径は、1~50μmが好ましく、5~20μmが更に好ましい。ここで平均粒径とは、例えばレーザー回折式粒度分布測定装置により測定することができる。
 本発明の複数の凸部形状を有するチタン酸カリウムは、公知の無機摩擦調整材であり、例えば、国際公開第2008/123046号に記載の方法により得ることができる。例えば、通常形状のチタン酸カリウムを構成する原子の酸化物、塩等をヘンシェルミキサーで混合し、次いで振動ミルによりメカノケミカルに粉砕しながら混合することで、反応活性の高い混合物とし、これを焼成することで、本発明の特定形状のチタン酸カリウムを製造することができる。
 本発明の複数の凸部を有するチタン酸カリウムは、摩擦材全体中に10~35体積%含有することが好ましく、10~20体積%含有することが更に好ましい。下限を10体積%以上とすることにより、本発明の効果を十分に得ることができる。また上限を35体積%以下とすることにより、ブレーキパッドの必要なマトリクス強度を発現すると共に、十分な圧縮変形量が得られ、良好な振動特性を得ることができる。
(モース硬度7以上の研削材)
 本発明に係る摩擦材では、モース硬度7以上の研削材を用いる。研削材のモース硬度が7以上であることで、高速・高負荷での制動で要求される高い摩擦係数を得られる点から好ましい。
 モース硬度が7以上である研削材は例えば、アルミナ、シリカ、シリコンカーバイド、ムライト、安定化ジルコニア、珪酸ジルコニウム等が挙げられ、相手材を研削し摩擦係数を向上させる役割がある。
 この中でも、安定化ジルコニア、珪酸ジルコニウムおよびアルミナからなる群より選ばれる少なくとも1つを研削材として用いることが高速・高負荷での制動で要求される高い摩擦係数を得られる点から好ましく、安定化ジルコニアおよび珪酸ジルコニウムの少なくともいずれか一方を用いることがより好ましい。これら研削材は単独でまたは2種以上組み合わせて用いることができる。
 特に、高速・高負荷での制動で要求される高い摩擦係数を得るために、熱的に安定な立方晶系の安定化ジルコニアを含有することが好ましい。
 本発明に用いる安定化ジルコニアの調製は、例えば天然ジルコニアであるバッデライトをカルシア(CaO)、イットリア(Y)、またはマグネシア(MgO)などの安定化剤を数%添加して電融・安定化処理することにより調製される。この処理により、単斜晶系のジルコニアは立方晶系となって相転移を起こさなくなり、熱的に安定化される。
 その安定化率、即ち、ジルコニア結晶中の立方晶系の割合は、初期の摩擦係数の安定化に影響しないので任意でよいが、安定化率50%未満の部分安定化ジルコニアの場合は、相手材であるディスクロータの摩耗量が著しく増加することが知られており、相手材の硬度によっては相手材の摩耗量が大きくなることから、安定化率は50%以上のものが望ましい。しかし、相手材の摩耗量があまり大きくならない場合は、安定化率50%未満でも差し支えない。
 なお、安定化剤が固溶した立方晶系のみで構成される100%安定化ジルコニアを得るために必要な安定化剤の添加量は、例えば、次のとおりである。ここでの添加量は天然ジルコニアに対する量である。
カルシア(CaO):4~8質量%
イットリア(Y):6~10質量%
マグネシア(MgO):4~8質量%
 本発明ではモース硬度7以上の研削材を、摩擦材に対して3~10体積%含有することが好ましく、3~6体積%が更に好ましい。この範囲であれば高速・高負荷の制動時での摩擦係数を向上させ相手材攻撃性を小さくすることができる。
 本発明ではモース硬度7以上の研削材は平均粒径が3~20μmが好ましい。この範囲であれば高速・高負荷の制動時での摩擦係数を向上させ相手材攻撃性を小さくすることができる。なお、本発明において平均粒径はレーザー回折粒度分布法により測定した50%粒径の値を用いた。
(その他の摩擦調整材)
 本発明に用いられるその他の摩擦調整材として、通常用いられる有機充填材と無機充填材を利用できる。また、モース硬度7未満の研削材も併用することができる。
 有機充填材としては、例えば、アクリルニトリルブタジエンゴム(NBR)、スチレンブタジエンゴム(SBR)、ブタジエンゴム(BR)等からなる各種ゴムやゴムダスト、カシューダストなどの有機物ダスト、ポリテトラフルオロエチレン(PTFE)等が挙げられる。
 無機充填材としては、例えば、アルミニウム、錫、亜鉛等の金属粉、バーミキュライト、マイカ、水酸化カルシウム、硫酸バリウム、炭酸カルシウム、天然黒鉛、鱗片状黒鉛、弾性黒鉛、膨張黒鉛、硫化スズ、板状、鱗片状または粉状のチタン酸カリウム、チタン酸リチウムカリウム、チタン酸マグネシウムカリウム等を挙げることができる。ただし、該チタン酸カリウムには、本発明に係る複数の凸部形状を有するチタン酸カリウムは含まれない。
 モース硬度7未満の研削材としては、マグネシア、酸化鉄、クロマイト等を挙げることができる。
 上記その他の摩擦調整材は、単独または2種以上組み合わせて用いることができ、粉粒体で用いられ、粒径等は使用される状況に合わせて適宜選定される。
 本発明において、摩擦調整材は本発明の複数の凸部形状を有するチタン酸カリウムおよびモース硬度7以上の研削材も含めて、摩擦材全体中、通常30~80体積%、好ましくは60~80体積%用いられる。
[繊維基材]
 本発明で用いることができる繊維基材としては、有機系でも無機系でもよいが、自然環境への配慮と相手材攻撃性の観点から、銅繊維等の金属繊維や銅成分を含まないことが好ましい。
 有機繊維としては、芳香族ポリアミド(アラミド)繊維、セルロース繊維、ポリアクリル系繊維等が挙げられる。
 無機繊維としては、チタン酸カリウム繊維、生体溶解性無機繊維、ガラス繊維、炭素繊維、ロックウール等が挙げられる。
 上記繊維基材は、各々単独または2種以上を組み合わせて用いられる。
 また、本発明では、繊維基材として、無機繊維の中でも生体溶解性無機繊維を用いることが好ましい。本発明における生体溶解性無機繊維は、人体内に取り込まれた場合でも短時間で分解され体外に排出される特徴を有する無機繊維である。生体溶解性無機繊維の化学組成はアルカリ金属酸化物およびアルカリ土類金属酸化物の総量(ナトリウム、カリウム、カルシウム、マグネシウム、バリウムの酸化物の総量)が18質量%以上であり、かつ、呼吸による短期バイオ永続性試験において20μm以下の繊維の質量半減期が10日以内である若しくは気管内注入時の短期バイオ永続性試験において20μm以上の繊維の質量半減期が40日以内である、又は腹膜内試験において過度の発癌性の証拠が無い、又は長期呼吸試験において関連の病原性や腫瘍発生が無いことを満たす無機繊維を意味する(EU指令97/69/ECのNote Q(発癌性適用除外))。
 このような生体溶解性無機繊維は、化学組成として、SiO、MgO及びSrOからなる群より選ばれる少なくとも1種を含むものが好ましく、具体的にはSiO-CaO-MgO系繊維、SiO-MgO-SrO系繊維等の生体溶解性セラミック繊維やSiO-CaO-MgO-Al系繊維等の生体溶解性ロックウール等が挙げられる。
 本発明において使用するセラミック繊維は、アルミナシリカ繊維と同等の優れた耐熱性を有し、さらに優れた生体溶解性及び耐水性を有する点で、生体溶解性セラミック繊維であるSiO-MgO-SrO系繊維が好ましい。また、これらの生体溶解性無機繊維は、無機繊維の原料を一般に使用される溶融紡糸法等により繊維化して製造される。
 SiO-CaO-MgO系繊維、SiO-CaO-MgO-Al系繊維、SiO-MgO-SrO系繊維等の生体溶解性ロックウールや生体溶解性セラミック繊維としては、市販のRB220-Roxul1000(ラピナス社製)、ファインフレックス-E バルクファイバーT(ニチアス社製)、BIOSTARバルクファイバー(ITM社製)等が使用可能である。
 生体溶解性無機繊維は、繊維径0.1~10μm、繊維長1~1000μmであることが好ましく、繊維径0.2~6μm、繊維長10~850μmであることが更に好ましい。この範囲であれば、本発明の効果を有効に発揮することができる。
 また、本発明で用いることのできる生体溶解性無機繊維は一般に、製造過程で繊維にならなかったショット(粒状物)を発生し、これらのショットが繊維中に含まれている。これらのショット含有量は繊維基材中0.1~70質量%であることが好ましい。ショット含有量が上記範囲よりも多いと、ディスクロータへの攻撃性が増大する。一方ショット含有量が上記範囲よりも少ないとディスクロータのクリーニング効果が期待できなくなる。なお、生体溶解性無機繊維とショットを製造過程で分離し、任意の比率で配合して使用することも可能である。
 生体溶解性無機繊維としては、上記定義内であれば特に制限されない。また、生体溶解性無機繊維は、その表面にシランカップリング剤等により表面処理が施されていてもよい。
 本発明において、繊維基材は、摩擦材全体中、通常2~35体積%、好ましくは5~28体積%用いられる。
[結合材]
(エラストマー変性フェノール樹脂)
 本発明に係る摩擦材には、エラストマー変性フェノール樹脂を含む。フェノール樹脂を変性させるエラストマーはフェノール樹脂に可塑性を与えるものであればよく、架橋した天然ゴムや合成ゴムが例示される。
 フェノール樹脂を変性させるエラストマーとしては、アクリルゴム、シリコーンゴム等が好ましく用いられる。エラストマー変性フェノール樹脂は単独で、または2種以上組み合わせて用いることができる。
 本発明のエラストマー変性フェノール樹脂は摩擦材全体中に10~30体積%含有することが好ましく、10~20体積%含有することが更に好ましい。この範囲であれば、金属成分由来の凝着被膜が無くても、低温での摩擦係数の安定化を図ることができる。
 本発明に用いられる結合材としては、前記エラストマー変性フェノール樹脂の他にフェノール樹脂(ストレートフェノール樹脂、各種変性フェノール樹脂を含む)、メラミン樹脂、エポキシ樹脂、ポリイミド樹脂等の熱硬化性樹脂を挙げることができる。各種変性フェノール樹脂には炭化水素樹脂変性フェノール樹脂、エポキシ変性フェノール樹脂等が挙げられる。
 なお、本発明において、前記エラストマー変性フェノール樹脂も含めた結合材は、摩擦材全体中、通常は10~30体積%、好ましくは14~20体積%用いられる。
[摩擦材の製造]
 本発明の摩擦材を製造するには、上記各成分を配合し、その配合物を通常の製法に従って予備成形し、熱成形、加熱、研摩等の処理を施すことにより製造することができる。
 上記摩擦材を備えたブレーキパッドは、以下の工程(1)~(4)により製造することができる。
(1)鋼板(プレッシャプレート)を板金プレスにより所定の形状に成形する工程。
(2)所定の形状に成形された鋼板に脱脂処理、化成処理、及びプライマー処理を施し、接着剤を塗布する工程。
(3)上記(1)および(2)の工程を経たプレッシャプレートと、上記摩擦材の予備成形体とを、熱成形工程において所定の温度及び圧力で熱成形して両部材を一体に固着する工程。
(4)その後アフタキュアを行い、最終的に研摩や表面焼き、塗装等の仕上げ処理を施す工程。
 以下、実施例により本発明を具体的に説明する。ただし、本発明はこれらの実施例のみに限定されるものではない。
<実施例1~11および比較例1~6>
 摩擦材の配合材料を表1に示す配合組成(体積%)に従って混合機にて均一に混合し、摩擦材混合物を得た。続いて摩擦材混合物を室温、圧力6MPaで予備成形した後、温度140~170℃、成形面圧30~80MPaで5分間加熱加圧成形し、次いで温度150~300℃、締め付け980~7840Nで1~4時間熱処理し、摩擦材A~Qを得た。
 充填材として用いたチタン酸カリウムは複数の凸部形状を有するチタン酸カリウムであり、平均粒径が10μmである(大塚化学株式会社製、TERRACESS JP)。
 有機繊維としてはアラミド繊維を用い、無機繊維としては、ショット含有量30質量%のSiO-MgO-SrO系の生体溶解性セラミック繊維(株式会社ITM製、Biostar600/70)を用いた。
 なお、本発明で用いた研削材のモース硬度は、安定化ジルコニアおよびケイ酸ジルニウムが7であり、アルミナが9であり、比較例6(摩擦材Q)で用いた酸化鉄(Fe)は6である。
 得られた摩擦材A~Qの評価方法を以下に示す。
(1)摩擦特性
 JASO C406(一般性能試験)に準拠した摩擦特性評価を実施した。低温での摩擦特性の評価として低温効力試験(試験条件:制動初速度50km/h、制動減速度2.94m/s、制動前ブレーキ温度50℃)を実施し、摩擦係数μを求めた。また、高速・高負荷での摩擦特性の評価として、第二効力試験(試験条件:制動初速度130km/h、制動減速度7.35m/s)を実施し、摩擦係数μを求めた。
 一般に摩擦係数μは、より高い方が好まれる傾向が認められるが、低温効力試験における摩擦係数μは高すぎると「鳴き」が発生しやすくなることから、0.30±10%以内、すなわち、0.27~0.33が好ましい値である。また、第二効力試験においては、摩擦係数μが高いほど好ましいが、相手材攻撃性とのバランスを考慮し、適宜、所望の摩擦係数となるように調整する。
(2)耐摩耗性
 JASO C427(温度別摩耗試験)に準拠した評価を実施し、ブレーキ温度300℃の制動1000回相当のブレーキパッド(摩擦材)の摩耗量を評価した。耐摩耗性を表すパッド摩耗量の値は小さいほど好ましい。
(3)相手材攻撃性
 JASO C406:2000(ダイナモメータ試験法)に準拠した摩擦特性評価を実施した後の、ディスクロータ(相手材)の摩耗量を評価した。なお、ディスクロータにはFC200相当を用いた。
 上記(1)~(3)の評価結果を摩擦材の配合組成とともに表1に示す。
Figure JPOXMLDOC01-appb-T000001
 比較例2の摩擦材Mは、銅繊維とストレートフェノール樹脂を含有しており、配合組成はNAO(Non-Asbestos Organic)材の摩擦材として従来一般的に用いられる配合組成に相当するものである。本発明に係る摩擦材A~K(実施例1~11)は、摩擦特性、耐摩耗性および相手材攻撃性のいずれにおいても、摩擦材Mと同等の高い性能を示した。
 基準となる摩擦材Mに対して、金属繊維の含有量を増やすとパッド摩耗量が多くなることから耐摩耗性は低く、相手材攻撃性も高い値となった。また、低温効力試験における摩擦係数も高くなり、鳴きが生じる可能性がある(比較例1:摩擦材L)。
 一方、摩擦材Mに対して、金属繊維を含まない摩擦材N(比較例3)は、低温効力試験における摩擦係数が、金属繊維を含む摩擦材LおよびMよりも大きな値となった。また、相手攻撃性を示すロータ摩耗量も依然として高い。摩擦材Nに対して研削材の量を減らすと、耐摩耗性は改善されるものの、高負荷時の効力が低い(比較例4:摩擦材O)。また、摩擦材Oの低温効力試験における摩擦係数は依然として高く、鳴きが発生するおそれがある。
 これに対し、結合材をストレートフェノール樹脂からアクリルゴム変性フェノール樹脂にすることによって、銅成分や金属繊維を含まなくても、低温効力試験における摩擦係数は大きくなりすぎず、安定した摩擦特性を示す摩擦材Aが得られた(実施例1)。
 銅成分および金属繊維を含まない摩擦材として、結合材をストレートフェノール樹脂ではなくアクリルゴム変性フェノール樹脂やシリコーンゴム変性フェノール樹脂などのエラストマー変性フェノール樹脂を用いることによって、基準となる従来の摩擦材Mと同等の性能を有する摩擦材を得られることが分かった。しかしながら、結合材を変化させただけでは、安定した摩擦特性や、優れた耐摩耗性や相手材攻撃性は得られない(比較例5:摩擦材Pおよび比較例6:摩擦材Q)。
 そこで実施例1の摩擦材Aと比較例5の摩擦材Pを比較すると、充填材中に含まれるチタン酸カリウムを板状ではなく、複数の凸部形状を有するチタン酸カリウムを用いることで、摩擦特性や耐摩耗性、相手材攻撃性に優れた摩擦材が得られるようになる。
 また、実施例1の摩擦材Aと比較例6の摩擦材Qを比較すると、モース硬度が7未満の研削材(酸化鉄:Fe)を単体で用いると、安定した摩擦特性が得られず、耐摩耗性や相手材攻撃性も芳しくないものとなることが分かる。研削材に用いる材料は安定化ジルコニア、ケイ酸ジルコニウム、アルミナなどの、モース硬度が7以上の材料を含むことが必要であることが分かった。
 したがって、本発明の、金属繊維および銅成分を含有しない摩擦材であって、複数の凸部形状を有するチタン酸カリウムを10~35体積%、モース硬度7以上の研削材を3~10体積%、およびエラストマー変性フェノール樹脂を10~30体積%含有する摩擦材であれば、安定した摩擦特性を持ち、相手材攻撃性が小さい摩擦材を得ることができる。
 本発明を詳細に、また特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。本出願は2012年12月21日出願の日本特許出願(特願2012-280239)に基づくものであり、その内容はここに参照として取り込まれる。
 本発明に係る摩擦材は、銅成分や金属繊維を含まないことから環境低負荷な摩擦材である。また、銅成分や金属繊維を含まないにも関わらず、特定形状のチタン酸カリウム、研削材、およびエラストマー変性フェノール樹脂をそれぞれ特定量含有することにより、従来と同等かそれ以上の安定した摩擦特性、優れた耐摩耗性、および低い相手材攻撃性を有する摩擦材となる。したがって、本発明に係る摩擦材は、自動車、鉄道車両、産業機械等に使用されるブレーキパッドやブレーキライニング、クラッチ等へ適用することは特に有用であり、その技術的意義は極めて大きなものである。

Claims (3)

  1.  金属繊維および銅成分を含有しない摩擦材であって、複数の凸部形状を有するチタン酸カリウムを10~35体積%、モース硬度7以上の研削材を3~10体積%、およびエラストマー変性フェノール樹脂を10~30体積%含有する摩擦材。
  2.  前記モース硬度7以上の研削材が、安定化ジルコニア、珪酸ジルコニウム、およびアルミナからなる群より選ばれる少なくとも1種である、請求項1に記載の摩擦材。
  3.  前記エラストマー変性フェノール樹脂がアクリルゴム変性フェノール樹脂およびシリコーンゴム変性フェノール樹脂の少なくともいずれか一方である、請求項1または2に記載の摩擦材。
PCT/JP2013/084238 2012-12-21 2013-12-20 摩擦材 WO2014098213A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/646,419 US10461104B2 (en) 2012-12-21 2013-12-20 Friction material
CN201380062609.5A CN104854213B (zh) 2012-12-21 2013-12-20 摩擦材料
EP13866368.7A EP2937398B1 (en) 2012-12-21 2013-12-20 Friction material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012280239A JP5981839B2 (ja) 2012-12-21 2012-12-21 摩擦材
JP2012-280239 2012-12-21

Publications (1)

Publication Number Publication Date
WO2014098213A1 true WO2014098213A1 (ja) 2014-06-26

Family

ID=50978529

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/084238 WO2014098213A1 (ja) 2012-12-21 2013-12-20 摩擦材

Country Status (5)

Country Link
US (1) US10461104B2 (ja)
EP (1) EP2937398B1 (ja)
JP (1) JP5981839B2 (ja)
CN (1) CN104854213B (ja)
WO (1) WO2014098213A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017082983A (ja) * 2015-10-30 2017-05-18 曙ブレーキ工業株式会社 鉄道車両用摩擦材
US20200217383A1 (en) * 2017-09-21 2020-07-09 Toho Titanium Co., Ltd. Alkali metal titanate, method for producing alkali metal titanate, and friction material
EP3187562B1 (en) 2014-08-01 2021-09-08 Nisshinbo Brake Inc. Friction material

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6490940B2 (ja) * 2014-10-14 2019-03-27 日本ブレーキ工業株式会社 摩擦材組成物、摩擦材及び摩擦部材
JP6493956B2 (ja) * 2014-10-14 2019-04-03 日本ブレーキ工業株式会社 摩擦材組成物、摩擦材及び摩擦部材
JP6480145B2 (ja) * 2014-10-14 2019-03-06 日本ブレーキ工業株式会社 摩擦材組成物、摩擦材及び摩擦部材
JP6563676B2 (ja) * 2015-04-27 2019-08-21 曙ブレーキ工業株式会社 摩擦材組成物および摩擦材とその製造方法
US10233988B2 (en) 2015-09-23 2019-03-19 Akebono Brake Industry Co., Ltd Friction material
CN105461870A (zh) * 2015-12-09 2016-04-06 无锡普瑞明思机械制造有限公司 一种用于离合器的复合机械材料
JP6301997B2 (ja) 2016-04-19 2018-03-28 日清紡ブレーキ株式会社 摩擦材
MX2017016591A (es) 2016-04-21 2018-05-17 Hitachi Chemical Co Ltd Composicion de material de friccion y material de friccion y miembro de friccion que usa el mismo.
CN106120434B (zh) * 2016-06-25 2017-09-29 绍兴纺织机械集团有限公司 一种界面均匀的纸基摩擦材料及其制备方法
KR102237886B1 (ko) * 2017-03-08 2021-04-07 오츠카 가가쿠 가부시키가이샤 마찰재 조성물, 마찰재 및 마찰 부재
JP7078359B2 (ja) * 2017-06-27 2022-05-31 曙ブレーキ工業株式会社 焼結摩擦材及び焼結摩擦材の製造方法
KR101972222B1 (ko) * 2017-08-01 2019-04-24 주식회사 프릭사 안정화지르코늄, 미세 실리콘카바이드, 칼슘몰리브데이트를 포함한 오토바이용 브레이크 마찰재 조성물
JPWO2020059005A1 (ja) * 2018-09-18 2021-08-30 昭和電工マテリアルズ株式会社 摩擦部材、摩擦材組成物、下張り材用摩擦材組成物、下張り材及び車
CN110242691A (zh) * 2019-03-27 2019-09-17 山东金麒麟股份有限公司 一种环保摩擦材料及基于其的刹车片和制备方法
EP4194404A1 (en) * 2020-08-04 2023-06-14 Otsuka Chemical Co., Ltd. Friction adjusting material, friction material composition, friction material, and friction member
WO2022030165A1 (ja) 2020-08-04 2022-02-10 大塚化学株式会社 摩擦調整材、摩擦材組成物、摩擦材、及び摩擦部材

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06220426A (ja) * 1993-01-27 1994-08-09 Nisshinbo Ind Inc 非石綿系摩擦材
JPH06248091A (ja) * 1993-02-22 1994-09-06 Kubota Corp 摩擦材
JP2000219872A (ja) * 1998-11-27 2000-08-08 Nisshinbo Ind Inc パ―キングブレ―キ用摩擦材
JP2000256013A (ja) * 1999-03-08 2000-09-19 Kawatetsu Mining Co Ltd チタン酸カリウム微粒子
JP2007218395A (ja) 2006-02-20 2007-08-30 Toyota Motor Corp ブレーキキャリパ
WO2008123046A1 (ja) 2007-04-04 2008-10-16 Otsuka Chemical Co., Ltd. チタン酸カリウム及びその製造方法並びに摩擦材及び樹脂組成物
JP2010077341A (ja) 2008-09-29 2010-04-08 Hitachi Automotive Systems Ltd ブレーキ摩擦材
JP2010285558A (ja) 2009-06-12 2010-12-24 Akebono Brake Ind Co Ltd 摩擦材
WO2011158917A1 (ja) * 2010-06-18 2011-12-22 曙ブレーキ工業株式会社 摩擦材
JP2011256255A (ja) * 2010-06-08 2011-12-22 Akebono Brake Ind Co Ltd 摩擦材及び摩擦材用造粒物
JP5071604B2 (ja) * 2010-11-19 2012-11-14 日立化成工業株式会社 ノンアスベスト摩擦材組成物、これを用いた摩擦材及び摩擦部材
WO2013039183A1 (ja) * 2011-09-14 2013-03-21 曙ブレーキ工業株式会社 摩擦材

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3330732A (en) 1964-06-11 1967-07-11 Indiana University Foundation Cleaning and polishing agent for dental prophylaxis
US5383963A (en) 1993-02-22 1995-01-24 Kubota Corporation Composite fibers of potassium hexatitanate and titanium dioxide
JP4292320B2 (ja) * 1998-08-26 2009-07-08 日清紡ホールディングス株式会社 非石綿系摩擦材
EP1031754B1 (en) * 1999-02-22 2003-10-29 Nisshinbo Industries Inc. Non-asbestos friction materials
US7250950B2 (en) * 2001-01-29 2007-07-31 Symyx Technologies, Inc. Systems, methods and computer program products for determining parameters for chemical synthesis
JP2002241737A (ja) * 2001-02-20 2002-08-28 Nisshinbo Ind Inc 非石綿系摩擦材
JP2004067884A (ja) * 2002-08-07 2004-03-04 Nisshinbo Ind Inc 非石綿系摩擦材
JP2005024005A (ja) * 2003-07-02 2005-01-27 Nisshinbo Ind Inc 摩擦材
JP2005247898A (ja) 2004-03-01 2005-09-15 Advics:Kk 摩擦材
JP4138801B2 (ja) * 2004-12-28 2008-08-27 曙ブレーキ工業株式会社 摩擦材及びその製造方法
JP2007056063A (ja) * 2005-08-22 2007-03-08 Advics:Kk ステンレス繊維基材の摩擦材
US20070148428A1 (en) 2005-12-28 2007-06-28 Akebono Brake Industry Co., Ltd. Friction material and manufacturing method thereof
DE102007061459B4 (de) 2006-12-27 2020-10-08 Akebono Brake Industry Co., Ltd. Asbestfreies Reibungsmaterial
US8172051B2 (en) 2008-10-03 2012-05-08 Federal-Mogul Products, Inc. Friction material for brakes
WO2011049575A1 (en) 2009-10-23 2011-04-28 Federal-Mogul Products, Inc. Friction material for brakes
JP5797428B2 (ja) * 2010-04-23 2015-10-21 日清紡ブレーキ株式会社 ディスクブレーキパッド
US9470283B2 (en) 2011-06-07 2016-10-18 Hitachi Chemical Company, Ltd. Non-asbestos friction material composition
JP5970749B2 (ja) * 2011-06-07 2016-08-17 日立化成株式会社 ノンアスベスト摩擦材組成物

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06220426A (ja) * 1993-01-27 1994-08-09 Nisshinbo Ind Inc 非石綿系摩擦材
JPH06248091A (ja) * 1993-02-22 1994-09-06 Kubota Corp 摩擦材
JP2000219872A (ja) * 1998-11-27 2000-08-08 Nisshinbo Ind Inc パ―キングブレ―キ用摩擦材
JP2000256013A (ja) * 1999-03-08 2000-09-19 Kawatetsu Mining Co Ltd チタン酸カリウム微粒子
JP2007218395A (ja) 2006-02-20 2007-08-30 Toyota Motor Corp ブレーキキャリパ
WO2008123046A1 (ja) 2007-04-04 2008-10-16 Otsuka Chemical Co., Ltd. チタン酸カリウム及びその製造方法並びに摩擦材及び樹脂組成物
JP2010077341A (ja) 2008-09-29 2010-04-08 Hitachi Automotive Systems Ltd ブレーキ摩擦材
JP2010285558A (ja) 2009-06-12 2010-12-24 Akebono Brake Ind Co Ltd 摩擦材
JP2011256255A (ja) * 2010-06-08 2011-12-22 Akebono Brake Ind Co Ltd 摩擦材及び摩擦材用造粒物
WO2011158917A1 (ja) * 2010-06-18 2011-12-22 曙ブレーキ工業株式会社 摩擦材
JP5071604B2 (ja) * 2010-11-19 2012-11-14 日立化成工業株式会社 ノンアスベスト摩擦材組成物、これを用いた摩擦材及び摩擦部材
WO2013039183A1 (ja) * 2011-09-14 2013-03-21 曙ブレーキ工業株式会社 摩擦材

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2937398A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3187562B1 (en) 2014-08-01 2021-09-08 Nisshinbo Brake Inc. Friction material
JP2017082983A (ja) * 2015-10-30 2017-05-18 曙ブレーキ工業株式会社 鉄道車両用摩擦材
US20200217383A1 (en) * 2017-09-21 2020-07-09 Toho Titanium Co., Ltd. Alkali metal titanate, method for producing alkali metal titanate, and friction material
US11566677B2 (en) * 2017-09-21 2023-01-31 Toho Titanium Co., Ltd. Alkali metal titanate, method for producing alkali metal titanate, and friction material

Also Published As

Publication number Publication date
CN104854213B (zh) 2020-07-17
EP2937398B1 (en) 2021-02-17
US20150287753A1 (en) 2015-10-08
JP2014122314A (ja) 2014-07-03
CN104854213A (zh) 2015-08-19
JP5981839B2 (ja) 2016-08-31
US10461104B2 (en) 2019-10-29
EP2937398A1 (en) 2015-10-28
EP2937398A4 (en) 2016-12-07

Similar Documents

Publication Publication Date Title
JP5981839B2 (ja) 摩擦材
US9914667B2 (en) Friction material
JP6157071B2 (ja) 摩擦材
JP6037918B2 (ja) 摩擦材
WO2014098215A1 (ja) 摩擦材
JP5970749B2 (ja) ノンアスベスト摩擦材組成物
JP6379249B2 (ja) 摩擦材
WO2012169545A1 (ja) ノンアスベスト摩擦材組成物
CN108291133B (zh) 摩擦材料
JP6568612B2 (ja) 摩擦材
JP6828791B2 (ja) 摩擦材組成物、摩擦材組成物を用いた摩擦材および摩擦部材
JP2016000824A (ja) ノンアスベスト摩擦材組成物
JP6370421B2 (ja) 摩擦材
JP6233461B2 (ja) ノンアスベスト摩擦材組成物
WO2019022011A1 (ja) 摩擦材
JP2018053254A (ja) ノンアスベスト摩擦材組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13866368

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14646419

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2013866368

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE