WO2014097919A1 - ポリエーテルイミド多孔質体及びその製造方法 - Google Patents

ポリエーテルイミド多孔質体及びその製造方法 Download PDF

Info

Publication number
WO2014097919A1
WO2014097919A1 PCT/JP2013/082981 JP2013082981W WO2014097919A1 WO 2014097919 A1 WO2014097919 A1 WO 2014097919A1 JP 2013082981 W JP2013082981 W JP 2013082981W WO 2014097919 A1 WO2014097919 A1 WO 2014097919A1
Authority
WO
WIPO (PCT)
Prior art keywords
porous body
polyetherimide
phase separation
formula
body according
Prior art date
Application number
PCT/JP2013/082981
Other languages
English (en)
French (fr)
Inventor
晋平 八鍬
由美 竹川
笠置 智之
紘子 池永
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Priority to KR1020157016740A priority Critical patent/KR20150096428A/ko
Priority to CN201380065938.5A priority patent/CN104884514A/zh
Priority to EP13864343.2A priority patent/EP2933288A4/en
Priority to US14/652,527 priority patent/US20150344662A1/en
Publication of WO2014097919A1 publication Critical patent/WO2014097919A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/28Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a liquid phase from a macromolecular composition or article, e.g. drying of coagulum
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/26Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a solid phase from a macromolecular composition or article, e.g. leaching out
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1046Polyimides containing oxygen in the form of ether bonds in the main chain
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1067Wholly aromatic polyimides, i.e. having both tetracarboxylic and diamino moieties aromatically bound
    • C08G73/1071Wholly aromatic polyimides containing oxygen in the form of ether bonds in the main chain
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/17Amines; Quaternary ammonium compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/04Foams characterised by the foaming process characterised by the elimination of a liquid or solid component, e.g. precipitation, leaching out, evaporation
    • C08J2201/046Elimination of a polymeric phase
    • C08J2201/0464Elimination of a polymeric phase using water or inorganic fluids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2205/00Foams characterised by their properties
    • C08J2205/02Foams characterised by their properties the finished foam itself being a gel or a gel being temporarily formed when processing the foamable composition
    • C08J2205/026Aerogel, i.e. a supercritically dried gel
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2205/00Foams characterised by their properties
    • C08J2205/04Foams characterised by their properties characterised by the foam pores
    • C08J2205/044Micropores, i.e. average diameter being between 0,1 micrometer and 0,1 millimeter
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2207/00Foams characterised by their intended use
    • C08J2207/06Electrical wire insulation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2379/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
    • C08J2379/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08J2379/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors

Definitions

  • the present invention relates to a polyetherimide porous body having fine bubbles, a low relative dielectric constant and excellent heat resistance, and a method for producing the same.
  • the polyetherimide porous body of the present invention is useful as, for example, an insulating sheet incorporated in an automobile or industrial motor with inverter control.
  • plastic films have high insulation properties, they are used for components or members that require reliability, for example, electrical devices such as circuit boards or motors, or electronic components.
  • motors and industrial motors are widely used that have a structure in which inverter control can be performed at a high voltage as electronic and electric devices become smaller and have higher performance.
  • the insulator is required to have high reliability.
  • Measures against surge voltage include lowering the dielectric constant of the insulator in addition to improving the reliability of insulation.
  • Conventional methods for producing a general porous body include a dry method and a wet method, and the dry method includes a physical method and a chemical method.
  • a general physical method is to form bubbles by dispersing a low boiling point liquid (foaming agent) such as chlorofluorocarbons and hydrocarbons in a polymer and then volatilizing the foaming agent by heating.
  • a porous material is obtained by forming a cell with a gas generated by adding a foaming agent to a polymer and thermally decomposing the foaming agent.
  • Patent Document 1 proposes a method for producing a foam having a low density and a high mechanical strength by applying the foaming method to polyetherimide.
  • Patent Document 2 the foaming method is applied to a styrene resin having a syndiotactic structure to obtain a foam having a cell size of 0.1 to 20 ⁇ m, and this is used as an insulator for an electric circuit board. It has been proposed.
  • Patent Document 3 proposes a low dielectric constant plastic insulating film including a porous plastic having a porosity of 10 vol% or more, a heat resistant temperature of 100 ° C. or more, and a dielectric constant of 2.5 or less. Has been.
  • a component constituting the discontinuous phase is selected from evaporation and decomposition from a polymer solution having a microphase separation structure in which a discontinuous phase having an average diameter of less than 10 ⁇ m is dispersed in a continuous phase of a polymer.
  • a method for producing a porous body which is removed by at least one kind of operation and an extraction operation to make it porous.
  • the bubbles in the porous body may not be sufficiently small depending on the drying conditions or the manufacturing conditions such as the film thickness, and it is difficult to obtain a porous body having a high dielectric breakdown voltage. was there.
  • JP-A-6-322168 Japanese Patent Laid-Open No. 10-45936 Japanese Patent Laid-Open No. 9-130033 JP 2001-81225 A
  • the present invention has been made in view of the above problems, and provides a polyetherimide porous body having a fine bubble structure, a low relative dielectric constant and a high dielectric breakdown voltage, and a method for producing the same. It is in.
  • the present invention relates to a polyetherimide porous body (hereinafter, also simply referred to as “porous body”) including a crosslinked body obtained by ring-opening crosslinking a polyetherimide having a repeating structural unit represented by the following formula 1 with a polyamine compound.
  • a polyetherimide porous body (hereinafter, also simply referred to as “porous body”) including a crosslinked body obtained by ring-opening crosslinking a polyetherimide having a repeating structural unit represented by the following formula 1 with a polyamine compound.
  • ⁇ Formula 1> In formula 1, X contains at least one chemical structure shown in the following formula 2, and Y contains at least one chemical structure shown in the following formula 3. However, the benzene ring of the chemical structure shown in the formulas 2 and 3 is used. May have a substituent.)
  • ⁇ Formula 2> ⁇ Formula 3>
  • the inventors of the present invention can form a porous body by forming a porous body with a crosslinked body obtained by ring-opening cross-linking of the above polyetherimide with a polyamine compound, whereby the porous body can be made into fine bubbles, thereby having a low relative dielectric constant and a dielectric breakdown voltage. It has been found that a porous body having a high thickness can be obtained.
  • the polyamine compound is preferably a diamine compound, and in particular, the diamine compound is preferably at least one selected from the group consisting of aliphatic diamines, alicyclic diamines, and siloxane diamines. Since these diamine compounds have high basicity and high reactivity with imide groups, they are preferably used as crosslinking agents. Moreover, when these diamine compounds are used, the formation of fine bubbles in the porous body is improved.
  • the porous body preferably has an average cell diameter of 0.1 to 10 ⁇ m and a dielectric breakdown voltage of 30 kV / mm or more.
  • the average cell diameter is less than 0.1 ⁇ m, the rigidity of the porous body is increased, so that it becomes difficult to bend the porous body, and even if it is bent, it is easy to return to the original shape when the external force is removed. Therefore, it becomes difficult to attach a porous body (insulating sheet) to a motor or the like, and the attachment accuracy tends to be lowered.
  • the average bubble diameter exceeds 10 ⁇ m, it is difficult to lower the relative dielectric constant, or the mechanical strength tends to be lowered.
  • the dielectric breakdown voltage is 30 kV / mm or more, dielectric breakdown due to surge voltage can be effectively prevented when the porous body is used as an insulating sheet for a motor or the like.
  • the porous body preferably has a gel fraction of 10% or more.
  • the gel fraction is less than 10%, the cracking resistance of the porous body is lowered, and when the porous body is bent, cracking is likely to occur, so that the dielectric breakdown voltage tends to be lowered.
  • the porous body of the present invention is suitably used as an insulating sheet for a motor.
  • the present invention also relates to an insulating laminated sheet for a motor having a sheet material on at least one side of the polyetherimide porous body.
  • the present invention applies a polymer solution containing a polyetherimide having a repeating structural unit represented by the above formula 1, a phase separation agent for phase separation from the polyetherimide, and a polyamine compound on a substrate, and then dried.
  • a method for producing a polyetherimide porous body comprising: a step of producing a phase separation structure having a microphase separation structure; and a step of removing a phase separation agent from the phase separation structure to produce a porous body.
  • the porous body of the present invention is formed of a crosslinked product obtained by ring-opening crosslinking of polyetherimide with a polyamine compound, and has a fine cell structure, so that the dielectric breakdown voltage is high, and heat resistance and insulation are excellent. Further, there is a feature that the relative dielectric constant is low. Therefore, the porous body of the present invention is suitably used as an insulating sheet incorporated in an automobile or industrial motor with inverter control.
  • a polyetherimide having a repeating structural unit mainly represented by the following formula 1 is opened with a polyamine compound. A crosslinked product is used. Since the polyetherimide contains a plurality of aromatic rings in the molecule, the strength of the porous body can be remarkably improved. Only 1 type may be used for the polyetherimide of following formula 1, and it may use 2 or more types together.
  • ⁇ Formula 1> In formula 1, X contains at least one chemical structure shown in the following formula 2, and Y contains at least one chemical structure shown in the following formula 3. However, the benzene ring of the chemical structure shown in the formulas 2 and 3 is used. May have a substituent.) ⁇ Formula 2> ⁇ Formula 3>
  • substituent on the benzene ring examples include a halogen group, a saturated or unsaturated hydrocarbon group having 1 to 20 carbon atoms (which may contain a hetero atom and / or a halogen atom), and the like.
  • polyetherimide having the functional groups X and Y improves the dimensional stability of the porous body at high temperatures.
  • the number average molecular weight of the polyetherimide of the above formula 1 is not particularly limited, but is usually about 5000 to 50000.
  • polyetherimides can be synthesized by a known method.
  • examples of commercially available products of these polyetherimides include trade names “Ultem1000-1000” and “UltemXH-6050” manufactured by SABIC “Innovative” Plastics.
  • polyamide polycarbonate, polybutylene terephthalate, polyethylene terephthalate, polyphenylene sulfide, polysulfone, polyethersulfone, polyetheretherketone, polyamideimide, polyimide, etc. You may use together as a raw material.
  • the polyamine compound can be used without any particular limitation as long as the imide group of the polyetherimide is opened to form an intermolecular crosslink of the polymer.
  • examples of such polyamine compounds include iminobispropylamine, bis (hexamethylene) triamine, 1,3,6-trisaminomethylhexane, polymethylenediamine, trimethylhexamethylenediamine, polyether diamine, 1,3- Aliphatic polyamines such as bis (3-aminopropyl) tetramethyldisiloxane; isophoronediamine, menthanediamine, N-aminoethylpiperazine, 3,9-bis (3-aminopropyl) 2,4,8,10-tetraoxa And alicyclic polyamines such as spiro (5,5) undecane adduct, bis (4-amino-3-methylcyclohexyl) methane, and bis (4-aminocyclohexyl) methane; amino-modified
  • a diamine compound is preferably used as the polyamine compound, more preferably at least one selected from the group consisting of aliphatic diamines, alicyclic diamines, and siloxane diamines, and particularly aliphatic diamines having a high basicity. It is preferable to use it. These may contain an aromatic ring or a hetero atom in the molecule.
  • aliphatic diamine examples include a compound represented by the following formula 4.
  • n is usually an integer of 1 to 50. When n is too small, the reactivity is low, and when it is too large, the amount of addition increases. Therefore, n is preferably an integer of 4 to 30, more preferably an integer of 6 to 20.
  • n is usually an integer of 1 to 50.
  • n is preferably an integer of 4 to 30, more preferably an integer of 6 to 20.
  • the amount of the polyamine compound added is preferably such that the amino group is 0.001 to 2 molar equivalents, more preferably 0.005 to 0.5 molar equivalents, relative to 1 molar equivalent of the imide group.
  • the amino group is less than 0.001 equivalent, the ring-opening reaction of the imide group does not proceed sufficiently, so that the intended polyetherimide crosslinked product tends to be difficult to obtain.
  • the amino group exceeds 2 molar equivalents, film formation becomes difficult because the mixture gels when the raw materials are mixed.
  • Examples of the chemical structure of a crosslinked product obtained by ring-opening crosslinking of polyetherimide with a diamine compound include the chemical structure of the following formula 8. ⁇ Formula 8> In Formula 8, Z is a residue of a diamine compound.
  • the phase separation agent is a component that constitutes a discontinuous phase of a microphase separation structure and is capable of forming a microphase separation structure when the polymer is mixed and can be extracted with an extraction solvent.
  • polyalkylene glycol such as polyethylene glycol and polypropylene glycol; one end or both end methyl blockade of the polyalkylene glycol, or one end or both end (meth) acrylate blockade; urethane prepolymer; phenoxy polyethylene glycol (meth) (Meth) acrylates such as acrylate, ⁇ -caprolactone (meth) acrylate, trimethylolpropane tri (meth) acrylate, dipentaerythritol hexa (meth) acrylate, urethane (meth) acrylate, epoxy (meth) acrylate, oligoester (meth) acrylate, etc. ) Acrylate compounds. These may be used alone or in combination of two or more.
  • the molecular weight of the phase separation agent is not particularly limited, but the weight average molecular weight is preferably 10,000 or less (for example, about 100 to 10,000), more preferably 100 to 2000, because the extraction and removal operation is facilitated.
  • the weight average molecular weight is less than 100, it is difficult to phase separate from the cured polymer.
  • the weight average molecular weight exceeds 10,000, the microphase separation structure becomes too large, or it becomes difficult to extract and remove the phase separation agent from the phase separation structure.
  • an oligomer is often used.
  • the addition amount of the phase separation agent can be appropriately selected according to the combination of the phase separation agent and the polymer, but is a porous body having an average cell diameter of 0.1 to 10 ⁇ m and a volume porosity of 20 to 90%. Is preferably used in an amount of 20 to 300 parts by weight, more preferably 30 to 100 parts by weight, based on 100 parts by weight of the polymer.
  • the polymer solution is prepared by mixing the polymer, the phase separation agent and the solvent.
  • the solvent include amides such as N-methyl-2-pyrrolidone, N, N-dimethylacetamide, and N, N-dimethylformamide.
  • the amount of the solvent used is about 150 to 2000 parts by weight, preferably 150 to 400 parts by weight, and more preferably 300 to 350 parts by weight with respect to 100 parts by weight of the polymer.
  • additives include tackifier resins, flame retardants, antioxidants, inorganic fillers, cell nucleating agents, crystal nucleating agents, thermal stabilizers, light stabilizers, ultraviolet absorbers, plasticizers, lubricants, pigments, and crosslinking agents. , Crosslinking aids, and silane coupling agents.
  • the polymer solution is applied onto a substrate and dried to produce a phase separation structure (for example, a sheet or film) having a microphase separation structure.
  • the substrate is not particularly limited as long as it has a smooth surface.
  • Examples of the continuous application method include a wire bar, kiss coat, and gravure.
  • Examples of the batch application method include an applicator, a wire bar, and a knife coater.
  • phase separation structure in which the phase separation agent is microphase separated can be obtained.
  • the temperature at which the solvent is evaporated (dried) is not particularly limited and may be appropriately adjusted depending on the type of the solvent used, but is usually 60 to 200 ° C.
  • the microphase separation structure usually has a sea-island structure in which the polymer is the sea and the phase separation agent is the island.
  • phase separation agent that has undergone microphase separation is removed from the phase separation structure to produce a porous body.
  • the method for removing the phase separation agent from the phase separation structure is not particularly limited, but a method of extracting with a solvent is preferred.
  • the solvent must be a good solvent for the phase separation agent and does not dissolve the polymer.
  • water organic solvents such as toluene, ethanol, ethyl acetate, and heptane; liquefied carbon dioxide
  • Examples include carbon dioxide fluids such as critical carbon dioxide and supercritical carbon dioxide. Since the carbon dioxide fluid easily penetrates into the phase separation structure, the phase separation agent can be efficiently removed. Moreover, it can also extract using water or an organic solvent, and a carbon dioxide fluid together.
  • a pressure vessel When using carbon dioxide fluid as the extraction solvent, a pressure vessel is usually used.
  • the pressure vessel for example, a batch type pressure vessel, a pressure vessel equipped with a pressure-resistant sheet feeding and winding device, or the like can be used.
  • the pressure vessel is usually provided with carbon dioxide fluid supply means including a pump, piping, valves, and the like.
  • the extraction of the phase separation agent may be performed by continuously supplying and discharging the carbon dioxide fluid to and from the pressure vessel containing the phase separation structure.
  • the carbon fluid may not be moved out of the container.
  • subcritical carbon dioxide or supercritical carbon dioxide swelling of the phase separation structure is promoted, and phase separation is efficiently separated from the phase separation structure by improving the diffusion coefficient of the insolubilized phase separation agent.
  • the agent is removed.
  • liquefied carbon dioxide is used, the diffusion coefficient decreases, but the permeability into the phase separation structure is improved, so that the phase separation agent is efficiently removed from the phase separation structure.
  • the temperature and pressure when extracting the phase separation agent with the carbon dioxide fluid may be any temperature and pressure at which carbon dioxide is in each state (liquid, subcritical or supercritical). It is 7.3 to 100 MPa, preferably 25 to 200 ° C. and 10 to 50 MPa.
  • the extraction time needs to be appropriately adjusted depending on the temperature and pressure at the time of extraction, the blending amount of the phase separation agent, the thickness of the phase separation structure, etc., but is usually 1 to 15 hours, preferably 2 to 15 hours. It is.
  • Examples of the extraction method using water or an organic solvent include a method of immersing a phase separation structure in water or an organic solvent, a method of spraying water or an organic solvent on the phase separation structure, and the like.
  • the immersion method is preferable from the viewpoint of the removal efficiency of the phase separation agent.
  • the phase separation agent can be efficiently removed by exchanging water or the organic solvent several times or performing extraction while stirring.
  • phase separation agent is extracted and removed to produce a porous body
  • a drying treatment or the like may be performed.
  • the porous body of the present invention preferably has an average cell diameter of 0.1 to 10 ⁇ m, more preferably 0.1 to 5 ⁇ m, and further preferably 0.1 to 3 ⁇ m.
  • the porous body of the present invention preferably has a volume porosity of 20 to 90%, more preferably 30 to 80%, and further preferably 35 to 70%.
  • the volume porosity is less than 20%, the rigidity of the porous body becomes high. Therefore, it becomes difficult to bend the porous body, and even if the porous body is bent, it is easy to return to the original shape when the external force is removed. Therefore, it becomes difficult to attach a porous body (insulating sheet) to a motor or the like, and the attachment accuracy tends to be lowered. In addition, it is difficult to reduce the relative dielectric constant.
  • the volume porosity exceeds 90%, the mechanical strength tends to decrease.
  • the porous body of the present invention preferably has a dielectric breakdown voltage of 30 kV / mm or more, more preferably 40 kV / mm or more.
  • the upper limit of the dielectric breakdown voltage is usually about 200 kV / mm.
  • the porous body of the present invention preferably has a gel fraction of 10% or more, more preferably 30% or more, and further preferably 40% or more.
  • the porous body of the present invention has a relative dielectric constant of about 1.4 to 2.5, preferably 1.4 to 1.8.
  • the shape of the porous body can be appropriately changed depending on the application, but in the case of a sheet or film, the thickness is usually 1 to 500 ⁇ m, preferably 10 to 250 ⁇ m, more preferably 30 to 200 ⁇ m.
  • the porous body of the present invention is suitably used as an insulating sheet for a motor.
  • the motor insulating laminated sheet of the present invention has a sheet material on at least one side of the porous motor insulating sheet.
  • the shape of the insulating laminated sheet for motor is not particularly limited, and may be a sheet shape or a tape shape, may be punched into a necessary shape, or may be three-dimensionally bent.
  • the sheet material examples include non-woven fabric, paper, and film, but it is preferable to use non-woven fabric, paper, or a film having heat resistance in order to improve the heat resistance of the insulating laminated sheet for motors.
  • the thickness of the sheet material is not particularly limited, but is usually 5 to 100 ⁇ m, preferably 5 to 50 ⁇ m. If the thickness of the sheet material is less than 5 ⁇ m, it will be difficult to give strength to the insulating laminated sheet for motors, and if it exceeds 100 ⁇ m, the number of turns of the coil wire will decrease and the motor output will decrease, or the insulating laminated sheet for motors It becomes difficult to reduce the relative dielectric constant of the sheet.
  • the dielectric breakdown voltage of the porous body was measured by a method based on the standard of JlS C2110.
  • the boosting speed was 1 kV / sec.
  • the complex dielectric constant at a frequency of 1 GHz was measured by the cavity resonator perturbation method, and the real part was taken as the relative dielectric constant.
  • the measuring instrument uses a cylindrical cavity resonator (“Network Analyzer N5230C” manufactured by Agilent Technologies, “Cavity Resonator 1 GHz” manufactured by Kanto Electronics Application Development Co., Ltd.), and a strip-shaped sample (sample size 2 mm ⁇ 70 mm length). And measured.
  • Example 1 To a 1000 ml four-necked flask, 730 g of N-methyl-2-pyrrolidone (NMP) was added and heated to 70 ° C. Thereto, 189 g of a polyetherimide (PEI) resin (SABIC Innovative Plastics, UItem 1000-1000) and 81 g of PEI resin (SABIC Innovative Plastics, UItem XH-6050) were added and stirred for 5 hours, and the PEI resin solution (I )
  • PEI polyetherimide
  • PEI resin solution (I) polypropylene glycol having a weight average molecular weight of 400 is added to 45 parts by weight with respect to 100 parts by weight of PEI resin, and 0.04 mole equivalent of amino groups to 1 mole equivalent of imide groups of the PEI resin.
  • An amount of 1,4-butanediamine was added and stirred to obtain a transparent uniform PEI resin solution (II).
  • the PEI resin solution (II) was applied onto a PET film by a comma direct method, and then dried at 130 ° C. for 8 minutes to evaporate and remove NMP, thereby producing a phase separation structure having a microphase separation structure.
  • the phase separation structure was placed in a 30 L pressure vessel, carbon dioxide was injected in an atmosphere of 35 ° C., pressurized to 30 MPa, and held for 60 minutes while maintaining the pressure. Thereafter, the carbon dioxide fluid was injected and discharged at a flow rate of about 90 kg / hr until the total amount used reached 180 kg, and the remaining solvent and polypropylene glycol were extracted. Then, while setting the atmospheric temperature to 85 ° C. and raising the temperature of the carbon dioxide fluid, 320 kg of carbon dioxide fluid was further injected and discharged to perform an extraction process, thereby producing a PEI porous body.
  • Example 2 A PEI porous material was produced in the same manner as in Example 1 except that 1,6-hexanediamine was used instead of 1,4-butanediamine.
  • Example 3 A PEI porous material was produced in the same manner as in Example 1 except that 1,10-decanediamine was used instead of 1,4-butanediamine.
  • Example 4 Instead of adding 1,4-butanediamine in an amount of 0.04 molar equivalents of amino groups to 1 molar equivalent of imide groups of PEI resin, 0.02 amino groups relative to 1 molar equivalent of imide groups of PEI resin.
  • a PEI porous material was produced in the same manner as in Example 1, except that a molar equivalent amount of both-end amine-modified dimethylsiloxane (manufactured by Shin-Etsu Silicone Co., Ltd., KF-8010) was added.
  • Example 5 Instead of adding 1,4-butanediamine in an amount of 0.04 molar equivalents of amino groups to 1 molar equivalent of imide groups of PEI resin, 0.02 amino groups relative to 1 molar equivalent of imide groups of PEI resin.
  • a PEI was prepared in the same manner as in Example 1 except that both terminal amine-modified dimethylsiloxanes (X-22-9409, manufactured by Shin-Etsu Silicone Co., Ltd.) in which a part of the side chain in a molar equivalent amount was substituted with phenyl groups were added. A porous body was produced.
  • Comparative Example 1 A PEI porous material was produced in the same manner as in Example 1 except that 1,4-butanediamine was not added.
  • the porous body of the present invention is useful as an insulating sheet incorporated in an automobile or industrial motor with inverter control.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Laminated Bodies (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

 本発明は、微細気泡構造を有しており、比誘電率が低く、絶縁破壊電圧が高いポリエーテルイミド多孔質体及びその製造方法を提供する。本発明のポリエーテルイミド多孔質体は、特定の繰り返し構造単位を有するポリエーテルイミドをポリアミン化合物で開環架橋した架橋体を含む。

Description

ポリエーテルイミド多孔質体及びその製造方法
 本発明は、微細な気泡を有し、比誘電率が低く、かつ耐熱性に優れるポリエーテルイミド多孔質体及びその製造方法に関する。本発明のポリエーテルイミド多孔質体は、例えば、インバータ制御を伴う自動車用又は産業用モーターなどに組み込まれる絶縁シートとして有用である。
 従来、プラスチックフィルムは高い絶縁性を有するために、信頼性の必要な部品又は部材、例えば回路基板又はモーターなどの電気機器又は電子部品などに利用されている。最近では自動車用及び産業用モーターは、電子・電気機器の小型化、高性能化に伴い、高電圧でインバータ制御できる構造を有するものが広く使用されている。
 しかし、インバータから発生する高いサージ電圧がモーターに影響を及ぼすために、絶縁体には高い信頼性が求められている。
 サージ電圧の対策として、絶縁性の信頼性を向上させる以外に絶縁体の低誘電率化が挙げられる。
 一般にプラスチック材料の比誘電率はその分子骨格により決定されるため、比誘電率を下げる試みとして分子骨格を変成する方法が考えられる。しかし分子骨格を変成しても比誘電率を下げるには限界がある。
 他の低誘電率化の試みとしては、空気の比誘電率1を利用し、プラスチック材料を多孔化させ、その空孔率によって比誘電率を制御しようとする方法が各種提案されている。
 従来の一般的な多孔質体の製造方法としては、乾式法及び湿式法などがあり、乾式法には、物理的方法と化学的方法がある。一般的な物理的方法は、クロロフルオロカーボン類及び炭化水素類などの低沸点液体(発泡剤)をポリマーに分散させた後、加熱して発泡剤を揮発させることにより気泡を形成させるものである。また化学的方法は、ポリマーに発泡剤を添加して、発泡剤を熱分解することによって生じるガスによりセルを形成して多孔質体を得るものである。
 更に近年は、セル径が小さく、セル密度の高い多孔質体として、窒素及び二酸化炭素等の気体を高圧にてポリマー中に溶解させた後、圧力を解放し、ポリマーのガラス転移温度又は軟化点付近まで加熱することにより気泡を形成する方法が提案されている。この発泡法は、熱力学的に不安定な状態から核を形成し、この核を膨張成長させることで気泡を形成するものであり、今までにない微孔質の多孔質体が得られるという利点がある。
 例えば、特許文献1では、前記発泡法をポリエーテルイミドに適用して、密度が小さく、機械的強度が大きい発泡体の製造方法が提案されている。
 また例えば、特許文献2では、前記発泡法をシンジオタクチック構造を有するスチレン系樹脂に適用して、気泡サイズ0.1~20μmの発泡体を得て、これを電気回路基板用絶縁体として用いることが提案されている。
 また例えば、特許文献3では、空孔率が10vol%以上である多孔質なプラスチックを含み、耐熱温度が100℃以上で、かつ誘電率が2.5以下である低誘電率プラスチック絶縁フィルムが提案されている。
 また例えば、特許文献4では、ポリマの連続相に平均径10μm未満の非連続相が分散したミクロ相分離構造を有するポリマー溶液から、前記非連続相を構成する成分を蒸発及び分解から選択された少なくとも1種の操作と抽出操作とにより除去し、多孔化することを特徴とする多孔質体の製造方法が提案されている。
 しかし、乾燥誘起のミクロ相分離法においては、乾燥条件又は膜厚などの製造条件によっては多孔質体中の気泡が十分に小さくならない場合があり、絶縁破壊電圧が高い多孔質体を得難いという問題があった。
特開平6-322168号公報 特開平10-45936号公報 特開平9-100363号公報 特開2001-81225号公報
 本発明は、上記問題点に鑑みてなされたものであり、微細気泡構造を有しており、比誘電率が低く、絶縁破壊電圧が高いポリエーテルイミド多孔質体及びその製造方法を提供することにある。
 本発明は、下記式1に示す繰り返し構造単位を有するポリエーテルイミドをポリアミン化合物で開環架橋した架橋体を含むポリエーテルイミド多孔質体(以下、単に「多孔質体」ともいう)、に関する。
〈式1〉
Figure JPOXMLDOC01-appb-I000004

(式1中、Xは下記式2に示す化学構造の少なくとも1種を含み、Yは下記式3に示す化学構造の少なくとも1種を含む。ただし、式2及び3に示す化学構造のベンゼン環は置換基を有していてもよい。)
 
〈式2〉
Figure JPOXMLDOC01-appb-I000005

 
〈式3〉
Figure JPOXMLDOC01-appb-I000006
 本発明者らは、上記ポリエーテルイミドをポリアミン化合物で開環架橋した架橋体で多孔質体を形成することにより、多孔質体を微細気泡化でき、それにより比誘電率が低く、絶縁破壊電圧が高い多孔質体が得られることを見出した。
 ポリアミン化合物はジアミン化合物であることが好ましく、特にジアミン化合物は脂肪族ジアミン、脂環族ジアミン、及びシロキサンジアミンからなる群より選択される少なくとも1種であることが好ましい。これらジアミン化合物は塩基性度が高く、イミド基との反応性が高いため架橋剤として好ましく用いられる。また、これらジアミン化合物を用いると、多孔質体の微細気泡化が向上する。
 多孔質体は、平均気泡径が0.1~10μm、かつ絶縁破壊電圧が30kV/mm以上であることが好ましい。平均気泡径が0.1μm未満の場合は、多孔質体の剛性が高くなるため、多孔質体を折り曲げ難くなったり、折り曲げたとしても外力を取り除くと元の形状に戻りやすくなる。そのため、モーター等に多孔質体(絶縁シート)を取り付けることが困難になったり、取り付け精度が低下する傾向にある。一方、平均気泡径が10μmを超えると比誘電率を低くすることが難しくなったり、機械的強度が低下する傾向にある。また、絶縁破壊電圧が30kV/mm以上であれば、多孔質体をモーター等の絶縁シートとして使用した際に、サージ電圧による絶縁破壊を効果的に防止することができる。
 多孔質体は、ゲル分率が10%以上であることが好ましい。ゲル分率が10%未満の場合には、多孔質体の耐割れ性が低下し、多孔質体を折り曲げ加工すると割れが生じやすくなるため、絶縁破壊電圧が低下する傾向にある。
 本発明の多孔質体は、モーター用の絶縁シートとして好適に用いられる。
 また本発明は、前記ポリエーテルイミド多孔質体の少なくとも片面にシート材を有するモーター用絶縁積層シート、に関する。
 さらに本発明は、上記式1にて示す繰り返し構造単位を有するポリエーテルイミド、当該ポリエーテルイミドと相分離する相分離化剤、及びポリアミン化合物を含有するポリマー溶液を基板上に塗布し、乾燥させてミクロ相分離構造を有する相分離構造体を作製する工程、相分離構造体から相分離化剤を除去して多孔質体を作製する工程を含む上記ポリエーテルイミド多孔質体の製造方法、に関する。
 本発明の多孔質体は、ポリエーテルイミドをポリアミン化合物で開環架橋した架橋体で形成されており、微細気泡構造を有しているため、絶縁破壊電圧が高く、耐熱性及び絶縁性に優れ、さらに比誘電率が低いという特徴がある。そのため、本発明の多孔質体は、インバータ制御を伴う自動車用又は産業用モーターなどに組み込まれる絶縁シートとして好適に用いられる。
 本発明の多孔質体の素材として用いられるポリマー、すなわち、ミクロ相分離構造の連続相を構成するポリマーとしては、主に下記式1に示す繰り返し構造単位を有するポリエーテルイミドをポリアミン化合物で開環架橋した架橋体を用いる。当該ポリエーテルイミドは、分子内に複数の芳香環を含むため、多孔質体の強度を著しく向上させることができる。下記式1のポリエーテルイミドは1種のみ用いてもよく、2種以上を併用してもよい。
〈式1〉
Figure JPOXMLDOC01-appb-I000007

(式1中、Xは下記式2に示す化学構造の少なくとも1種を含み、Yは下記式3に示す化学構造の少なくとも1種を含む。ただし、式2及び3に示す化学構造のベンゼン環は置換基を有していてもよい。)
 
〈式2〉
Figure JPOXMLDOC01-appb-I000008

 
〈式3〉
Figure JPOXMLDOC01-appb-I000009
 ベンゼン環の置換基としては、例えば、ハロゲン基、炭素数1~20の飽和又は不飽和炭化水素基(ヘテロ原子及び/又はハロゲン原子を含んでいてもよい)などが挙げられる。
 上記式2のうち、Xは
Figure JPOXMLDOC01-appb-I000010

であることが好ましい。
 また上記式3のうち、Yは
Figure JPOXMLDOC01-appb-I000011

であることが好ましい。
 上記官能基X及びYを有するポリエーテルイミドを用いることにより、多孔質体の高温時の寸法安定性が向上する。
 上記式1のポリエーテルイミドの数平均分子量は特に制限されないが、通常5000~50000程度である。
 これらポリエーテルイミドは公知の方法により合成することができる。これらポリエーテルイミドの市販品としては例えば、SABIC Innovative Plastics社製の商品名「Ultem1000-1000」、「UltemXH-6050」が挙げられる。
 また、本発明の目的を損なわない範囲で、例えば、ポリアミド、ポリカーボネート、ポリブチレンテレフタレート、ポリエチレンテレフタレート、ポリフェニレンサルファイド、ポリスルホン、ポリエーテルスルホン、ポリエーテルエーテルケトン、ポリアミドイミド、及びポリイミドなどを多孔質体の素材として併用してもよい。
 ポリアミン化合物は、ポリエーテルイミドのイミド基を開環させて、ポリマーの分子間架橋を形成するものであれば特に制限なく用いることができる。このようなポリアミン化合物としては、例えば、イミノビスプロピルアミン、ビス(ヘキサメチレン)トリアミン、1,3,6-トリスアミノメチルヘキサン、ポリメチレンジアミン、トリメチルヘキサメチレンジアミン、ポリエーテルジアミン、1,3-ビス(3-アミノプロピル)テトラメチルジシロキサンなどの脂肪族ポリアミン;イソホロンジアミン、メンタンジアミン、N-アミノエチルピペラジン、3,9-ビス(3-アミノプロピル)2,4,8,10-テトラオキサスピロ(5,5)ウンデカンアダクト、ビス(4-アミノ-3-メチルシクロヘキシル)メタン、ビス(4-アミノシクロヘキシル)メタンなどの脂環族ポリアミン;アミノ変性シリコーンなどが挙げられる。これらは単独で使用してもよく、2種以上混合して使用してもよい。
 ポリアミン化合物としてジアミン化合物を用いることが好ましく、脂肪族ジアミン、脂環族ジアミン、及びシロキサンジアミンからなる群より選択される少なくとも1種を用いることがより好ましく、特に塩基性度が高い脂肪族ジアミンを用いることが好ましい。これらは、分子中に芳香環、又はヘテロ原子を含んでいてもよい。
 脂肪族ジアミンとしては、例えば、下記式4の化合物が挙げられる。
〈式4〉
Figure JPOXMLDOC01-appb-I000012

 式4中、nは通常1~50の整数である。nが小さすぎると反応性が低く、大きすぎると添加量が多くなるため、nは好ましくは4~30の整数であり、より好ましくは6~20の整数である。
 脂環族ジアミンとしては、例えば、下記式5の化合物が挙げられる。
〈式5〉
Figure JPOXMLDOC01-appb-I000013
 シロキサンジアミンとしては、例えば、下記式6、7の化合物が挙げられる。
〈式6〉
Figure JPOXMLDOC01-appb-I000014

 式6中、nは通常1~50の整数である。nが小さすぎると反応性が低く、大きすぎると添加量が多くなるため、nは好ましくは4~30の整数であり、より好ましくは6~20の整数である。
〈式7〉
Figure JPOXMLDOC01-appb-I000015

 式7中、p及びqは通常1~25の整数である。p及びqが小さすぎると反応性が低く、大きすぎると添加量が多くなるため、p及びqは好ましくは1~15の整数であり、より好ましくは2~10の整数である。pとqの割合は、p/q=1/9~5/5程度であり、好ましくは2/8~4/6である。
 ポリアミン化合物の添加量は、イミド基1モル当量に対してアミノ基が0.001~2モル当量となる量であることが好ましく、より好ましくは0.005~0.5モル当量である。アミノ基が0.001当量未満の場合は、イミド基の開環反応が十分に進行しないため、目的とするポリエーテルイミド架橋体を得にくい傾向にある。一方、アミノ基が2モル当量を超えると、原料の混合時に混合物がゲル化するため製膜が困難になる。
 ポリエーテルイミドをジアミン化合物で開環架橋した架橋体の化学構造としては、例えば、下記式8の化学構造が挙げられる。
〈式8〉
Figure JPOXMLDOC01-appb-I000016

 式8中、Zはジアミン化合物の残基である。
 相分離化剤は、ミクロ相分離構造の非連続相を構成し、前記ポリマーを混合した場合にミクロ相分離構造を形成可能な成分であって、抽出溶剤で抽出可能なものであれば特に限定されない。例えば、ポリエチレングリコール、ポリプロピレングリコールなどのポリアルキレングリコール;前記ポリアルキレングリコールの片末端もしくは両末端メチル封鎖物、又は片末端もしくは両末端(メタ)アクリレート封鎖物;ウレタンプレポリマー;フェノキシポリエチレングリコール(メタ)アクリレート、ε-カプロラクトン(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ウレタン(メタ)アクリレート、エポキシ(メタ)アクリレート、オリゴエステル(メタ)アクリレートなどの(メタ)アクリレート系化合物などが挙げられる。これらは単独で使用してもよく、2種以上混合して使用してもよい。
 相分離化剤の分子量は特に制限されないが、抽出除去操作が容易になることから、重量平均分子量が10000以下(例えば100~10000程度)であるのが好ましく、より好ましくは100~2000である。重量平均分子量が100未満の場合には、ポリマーの硬化体と相分離し難くなる。一方、重量平均分子量が10000を超えると、ミクロ相分離構造が大きくなりすぎたり、相分離構造体中から相分離化剤を抽出除去し難くなる。相分離化剤としてはオリゴマーを用いる場合が多い。
 相分離化剤の添加量は、相分離化剤と前記ポリマーとの組み合わせに応じて適宜選択出来るが、平均気泡径が0.1~10μm、体積空孔率が20~90%の多孔質体を作製するには、ポリマー100重量部に対して20~300重量部用いることが好ましく、より好ましくは30~100重量部である。
 ポリマー溶液は、前記ポリマーと相分離化剤と溶媒とを混合して調製する。溶媒としては、例えば、N-メチル-2-ピロリドン、N,N-ジメチルアセトアミド、N,N-ジメチルホルムアミド等のアミド類が挙げられる。溶媒の使用量は、ポリマー100重量部に対して、150~2000重量部程度であり、好ましくは150~400重量部であり、より好ましくは300~350重量部である。
 ポリマー溶液には、相分離化剤以外の添加剤を添加してもよい。添加剤としては、例えば、粘着付与樹脂、難燃剤、酸化防止剤、無機フィラー、気泡核剤、結晶核剤、熱安定剤、光安定剤、紫外線吸収剤、可塑剤、滑剤、顔料、架橋剤、架橋助剤、及びシランカップリング剤などが挙げられる。
 本発明の多孔質体の製造方法においては、まず、前記ポリマー溶液を基板上に塗布し、乾燥させてミクロ相分離構造を有する相分離構造体(例えば、シート状又はフィルム状)を作製する。
 基材は、平滑な表面を有するものであれば特に制限されない。連続的に塗布する方法としては、例えば、ワイヤーバー、キスコート、及びグラビアなどが挙げられ、バッチで塗布する方法としては、例えば、アプリケーター、ワイヤーバー、及びナイフコーターなどが挙げられる。
 基板上に塗布したポリマー溶液を乾燥させて溶媒を蒸発させることにより、相分離化剤がミクロ相分離した相分離構造体が得られる。溶媒を蒸発(乾燥)させる際の温度は特に制限されず、用いた溶媒の種類により適宜調整すれば良いが、通常60~200℃である。ミクロ相分離構造は、通常、ポリマーを海、相分離化剤を島とする海島構造となる。
 ポリエーテルイミドとポリアミン化合物の開環架橋反応は、前記溶媒の蒸発工程で進行するため、溶媒を蒸発させた後に開環架橋反応させるための特別な処理は不要である。
 次に、相分離構造体からミクロ相分離した相分離化剤を除去して多孔質体を作製する。なお、相分離化剤を除去する前に相分離構造体を基材から剥離しておいてもよい。
 相分離構造体から相分離化剤を除去する方法は特に制限されないが、溶剤で抽出する方法が好ましい。溶剤は、相分離化剤に対して良溶媒であり、かつポリマーを溶解しないものを用いる必要があり、例えば、水;トルエン、エタノール、酢酸エチル、及びヘプタンなどの有機溶剤;液化二酸化炭素、亜臨界二酸化炭素、及び超臨界二酸化炭素などの二酸化炭素流体が挙げられる。二酸化炭素流体は、相分離構造体内に浸透しやすいため相分離化剤を効率よく除去することができる。また、水又は有機溶剤と、二酸化炭素流体とを併用して抽出することもできる。
 抽出溶剤として二酸化炭素流体を用いる場合には、通常、圧力容器を用いる。圧力容器としては、例えば、バッチ式の圧力容器、耐圧性のシート繰り出し・巻き取り装置を備えた圧力容器などを用いることができる。圧力容器には、通常、ポンプ、配管、及びバルブなどにより構成される二酸化炭素流体供給手段が設けられている。
 相分離化剤の抽出は、相分離構造体を入れた圧力容器に、二酸化炭素流体を連続的に供給・排出して行ってもよく、圧力容器を閉鎖系(投入した相分離構造体と二酸化炭素流体とが容器外に移動しない状態)にして行ってもよい。亜臨界二酸化炭素又は超臨界二酸化炭素を用いた場合には、相分離構造体の膨潤が促進され、かつ不溶化した相分離化剤の拡散係数の向上によって効率的に相分離構造体から相分離化剤が除去される。液化二酸化炭素を用いた場合には、前記拡散係数は低下するが、相分離構造体内への浸透性が向上するため効率的に相分離構造体から相分離化剤が除去される。
 二酸化炭素流体で相分離化剤を抽出する際の温度及び圧力は、二酸化炭素が各状態(液体、亜臨界又は超臨界)となる温度及び圧力であればよいが、通常、20~230℃、7.3~100MPaであり、好ましくは25~200℃、10~50MPaである。
 抽出時間は、抽出時の温度及び圧力、相分離化剤の配合量、及び相分離構造体の厚みなどにより適宜調整する必要があるが、通常1~15時間であり、好ましくは2~15時間である。
 水又は有機溶剤を用いた抽出方法としては、例えば、水又は有機溶剤中に相分離構造体を浸漬する方法、相分離構造体に水又は有機溶剤を吹き付ける方法などが挙げられる。相分離化剤の除去効率の観点から浸漬法が好ましい。また、数回にわたって水又は有機溶剤を交換したり、撹拌しながら抽出することで効率的に相分離化剤を除去することができる。
 相分離化剤を抽出除去して多孔質体を作製した後に、乾燥処理等を行ってもよい。
 本発明の多孔質体は、平均気泡径が0.1~10μmであることが好ましく、より好ましくは0.1~5μmであり、さらに好ましくは0.1~3μmである。
 また、本発明の多孔質体は、体積空孔率が20~90%であることが好ましく、より好ましくは30~80%であり、さらに好ましくは35~70%である。体積空孔率が20%未満の場合には、多孔質体の剛性が高くなるため、多孔質体を折り曲げ難くなったり、折り曲げたとしても外力を取り除くと元の形状に戻りやすくなる。そのため、モーター等に多孔質体(絶縁シート)を取り付けることが困難になったり、取り付け精度が低下する傾向にある。また、比誘電率を低くすることが難しくなる。一方、体積空孔率が90%を超えると機械的強度が低下する傾向にある。
 また、本発明の多孔質体は、絶縁破壊電圧が30kV/mm以上であることが好ましく、より好ましくは40kV/mm以上である。絶縁破壊電圧の上限値は通常200kV/mm程度である。
 また、本発明の多孔質体は、ゲル分率が10%以上であることが好ましく、より好ましくは30%以上であり、さらに好ましくは40%以上である。
 また、本発明の多孔質体は、比誘電率が1.4~2.5程度であり、好ましくは1.4~1.8である。
 多孔質体の形状は用途によって適宜変更できるが、シート状又はフィルム状の場合、厚さは通常1~500μmであり、好ましくは10~250μmであり、より好ましくは30~200μmである。
 本発明の多孔質体は、モーター用の絶縁シートとして好適に用いられる。
 本発明のモーター用絶縁積層シートは、前記多孔質体であるモーター用絶縁シートの少なくとも片面にシート材を有するものである。
 モーター用絶縁積層シートの形状は特に限定されず、シート状又はテープ状であってもよく、必要な形状に打ち抜き加工されてもよく、又は3次元的に折り曲げ加工がなされていても良い。
 シート材を設けることにより、モーター用絶縁積層シートの強度及び滑り性が向上する。
 シート材としては、例えば、不織布、紙、又はフィルム等が挙げられるが、モーター用絶縁積層シートの耐熱性を向上させるために、不織布、紙又は耐熱性を有するフィルムを用いることが好ましい。
 シート材の厚さは特に制限されないが、通常5~100μm、好ましくは5~50μmである。シート材の厚さが5μm未満であると、モーター用絶縁積層シートに強度を付与することが困難となり、100μmを超えるとコイル線の巻数が低下してモーター出力が低下したり、モーター用絶縁積層シートの比誘電率を低くすることが困難になる。
 以下に実施例をあげて本発明を説明するが、本発明はこれら実施例によりなんら限定されるものではない。
 〔測定及び評価方法〕
 (平均気泡径)
 多孔質体を液体窒素で冷却し、刃物を用いてシート面に対して垂直に切断して評価サンプルを作製した。サンプルの切断面にPd-Pt蒸着処理を施し、該切断面を走査型電子顕微鏡(SEM)(日本電子社製「JSM-6510LV」)で観察した。その画像を画像処理ソフト(ナノシステム社製「NanoHunter NS2K-Lt」)で二値化処理し、気泡部と樹脂部とに分離して気泡の最大水平弦長を測定した。気泡径の大きいほうから40個の気泡について平均値をとり、その値を平均気泡径とした。
 (体積空孔率)
 電子比重計(アルファーミラージュ社製、MD-300S)を用いて多孔質体の比重と無孔体の比重を測定し、下記式により体積空孔率を計算した。 
 体積空孔率(%)={1-(多孔質体の比重)/(無孔体の比重)}×100
 (絶縁破壊電圧)
 JlS C2110の規格に準拠した方法により、多孔質体の絶縁破壊電圧を測定した。昇圧速度は1kV/secとした。
 (ゲル分率)
 多孔質体(0.5g)を樹脂フィルム(日東電工株式会社製、TEMISH NTF1133)で包んで容器内に入れ、そこに溶媒であるN-メチル-2-ピロリドンを約50ml添加し、スターラー撹拌を24時間行った。その後、樹脂フィルムの溶媒を拭き取り、240℃で3時間加熱乾燥させた後にゲル体の重量を測定した。ゲル分率は、下記式により算出した。 
 ゲル分率(%)=(ゲル体の重量 /多孔質体の重量)×100
 (比誘電率)
 空洞共振器摂動法により、周波数1GHzにおける複素誘電率を測定し、その実数部を比誘電率とした。測定機器は、円筒空洞共振機(アジレント・テクノロジー社製「ネットワークアナライザ N5230C」、関東電子応用開発社製「空洞共振器1GHz」)を用い、短冊状のサンプル(サンプルサイズ2mm×70mm長さ)を用いて測定した。
 実施例1
 1000m1の4つ口フラスコに、N-メチル-2-ピロリドン(NMP)730gを加えて70℃に加熱した。そこにポリエーテルイミド(PEI)樹脂(SABIC Innovative Plastics社製、UItem1000-1000)189gとPEI樹脂(SABIC Innovative Plastics社製、UItemXH-6050)81gとを加え、5時間撹拌してPEI樹脂溶液(I)を得た。
 得られたPEI樹脂溶液(I)に重量平均分子量400のポリプロピレングリコールをPEI樹脂100重量部に対して45重量部、及びPEI樹脂のイミド基1モル当量に対してアミノ基0.04モル当量になる量の1,4-ブタンジアミンを添加し、撹拌して透明な均一のPEI樹脂溶液(II)を得た。PEI樹脂溶液(II)をコンマダイレクト方式で、PETフィルム上に塗布し、その後130℃で8分間乾燥させてNMPを蒸発除去し、ミクロ相分離構造を有する相分離構造体を作製した。相分離構造体を30Lの耐圧容器に入れ、35℃の雰囲気中で二酸化炭素を注入し、30MPaに加圧し、その圧力を保ったまま60分間保持した。その後、約90kg/hrの流量で、総使用量が180kgになるまで二酸化炭素流体を注入、排出して残存溶媒およびポリプロピレングリコールを抽出する操作を行った。その後、雰囲気温度を85℃に設定して二酸化炭素流体を昇温させながら、さらに320kgの二酸化炭素流体を注入、排出して抽出処理を行い、PEI多孔質体を作製した。
 実施例2
 1,4-ブタンジアミンの代わりに、1,6-ヘキサンジアミンを用いた以外は実施例1と同様の方法でPEI多孔質体を作製した。
 実施例3
 1,4-ブタンジアミンの代わりに、1,10-デカンジアミンを用いた以外は実施例1と同様の方法でPEI多孔質体を作製した。
 実施例4
 PEI樹脂のイミド基1モル当量に対してアミノ基0.04モル当量になる量の1,4-ブタンジアミンを添加する代わりに、PEI樹脂のイミド基1モル当量に対してアミノ基0.02モル当量になる量の両末端アミン変性ジメチルシロキサン(信越シリコーン社製、KF-8010)を添加した以外は実施例1と同様の方法でPEI多孔質体を作製した。
 実施例5
 PEI樹脂のイミド基1モル当量に対してアミノ基0.04モル当量になる量の1,4-ブタンジアミンを添加する代わりに、PEI樹脂のイミド基1モル当量に対してアミノ基0.02モル当量になる量の側鎖の一部がフェニル基に置換された両末端アミン変性ジメチルシロキサン(信越シリコーン社製、X-22-9409)を添加した以外は実施例1と同様の方法でPEI多孔質体を作製した。
 比較例1
 1,4-ブタンジアミンを添加しなかった以外は実施例1と同様の方法でPEI多孔質体を作製した。
Figure JPOXMLDOC01-appb-T000017
 本発明の多孔質体はインバータ制御を伴う自動車用又は産業用モーターなどに組み込まれる絶縁シートとして有用である。
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Claims (8)

  1.  下記式1に示す繰り返し構造単位を有するポリエーテルイミドをポリアミン化合物で開環架橋した架橋体を含むポリエーテルイミド多孔質体。
    〈式1〉
    Figure JPOXMLDOC01-appb-I000001

    (式1中、Xは下記式2に示す化学構造の少なくとも1種を含み、Yは下記式3に示す化学構造の少なくとも1種を含む。ただし、式2及び3に示す化学構造のベンゼン環は置換基を有していてもよい。)
     
    〈式2〉
    Figure JPOXMLDOC01-appb-I000002
     
    〈式3〉
    Figure JPOXMLDOC01-appb-I000003
  2.  ポリアミン化合物はジアミン化合物である請求項1記載のポリエーテルイミド多孔質体。
  3.  ジアミン化合物が脂肪族ジアミン、脂環族ジアミン、及びシロキサンジアミンからなる群より選択される少なくとも1種である請求項2記載のポリエーテルイミド多孔質体。
  4.  平均気泡径が0.1~10μm、かつ絶縁破壊電圧が30kV/mm以上である請求項1~3のいずれかに記載のポリエーテルイミド多孔質体。
  5.  ゲル分率が10%以上である請求項1~4のいずれかに記載のポリエーテルイミド多孔質体。
  6.  モーター用の絶縁シートとして用いられる請求項1~5のいずれかに記載のポリエーテルイミド多孔質体。
  7.  請求項6に記載のポリエーテルイミド多孔質体の少なくとも片面にシート材を有するモーター用絶縁積層シート。
  8.  上記式1にて示す繰り返し構造単位を有するポリエーテルイミド、当該ポリエーテルイミドと相分離する相分離化剤、及びポリアミン化合物を含有するポリマー溶液を基板上に塗布し、乾燥させてミクロ相分離構造を有する相分離構造体を作製する工程、相分離構造体から相分離化剤を除去して多孔質体を作製する工程を含む請求項1~6のいずれかに記載のポリエーテルイミド多孔質体の製造方法。
     
     
PCT/JP2013/082981 2012-12-17 2013-12-09 ポリエーテルイミド多孔質体及びその製造方法 WO2014097919A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020157016740A KR20150096428A (ko) 2012-12-17 2013-12-09 폴리에테르이미드 다공질체 및 그 제조 방법
CN201380065938.5A CN104884514A (zh) 2012-12-17 2013-12-09 聚醚酰亚胺多孔体及其制造方法
EP13864343.2A EP2933288A4 (en) 2012-12-17 2013-12-09 POROUS POLYETHERIMID BODY AND METHOD FOR THE PRODUCTION THEREOF
US14/652,527 US20150344662A1 (en) 2012-12-17 2013-12-09 Polyetherimide porous body and method for producing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012274840A JP5919184B2 (ja) 2012-12-17 2012-12-17 ポリエーテルイミド多孔質体及びその製造方法
JP2012-274840 2012-12-17

Publications (1)

Publication Number Publication Date
WO2014097919A1 true WO2014097919A1 (ja) 2014-06-26

Family

ID=50978254

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/082981 WO2014097919A1 (ja) 2012-12-17 2013-12-09 ポリエーテルイミド多孔質体及びその製造方法

Country Status (6)

Country Link
US (1) US20150344662A1 (ja)
EP (1) EP2933288A4 (ja)
JP (1) JP5919184B2 (ja)
KR (1) KR20150096428A (ja)
CN (1) CN104884514A (ja)
WO (1) WO2014097919A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015147892A (ja) * 2014-02-07 2015-08-20 株式会社カネカ 多孔性ポリイミドフィルム
JP7537326B2 (ja) * 2020-05-14 2024-08-21 味の素株式会社 樹脂組成物
CN113292816B (zh) * 2021-05-21 2022-12-27 吉林大学 一种交联型聚醚酰亚胺/聚醚醚酮共混材料及其制备方法和应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05310931A (ja) * 1991-12-24 1993-11-22 Matsushita Electric Works Ltd 熱硬化型ポリイミド樹脂組成物と熱硬化品およびその製造方法
JPH06322168A (ja) 1993-02-11 1994-11-22 Minnesota Mining & Mfg Co <3M> 熱可塑性発泡物品およびその製造方法
JPH09100363A (ja) 1995-10-05 1997-04-15 Matsushita Electric Ind Co Ltd 低誘電率プラスチック絶縁フィルムおよびその製造方法
JPH1045936A (ja) 1996-08-06 1998-02-17 Otsuka Chem Co Ltd シンジオタクチックポリスチレン発泡体、その製造方法及び該発泡体を用いた電気回路用基板
JP2001081225A (ja) 1999-09-16 2001-03-27 Nitto Denko Corp 多孔質体及び多孔質体の製造方法
JP2011508017A (ja) * 2007-12-20 2011-03-10 サビック イノベーティブ プラスチックス イーペー ベスローテン フェンノートシャップ ポリエーテルイミド発泡材料の連続製造法およびその製造物品
JP2012182116A (ja) * 2011-02-03 2012-09-20 Nitto Denko Corp モーター用電気絶縁性樹脂シート及びその製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060249018A1 (en) * 2005-05-04 2006-11-09 Hua Wang Nucleophilic modifier functionalized and/or crosslinked solvent-resistant polymide and copolymer membranes
US8399573B2 (en) * 2006-11-22 2013-03-19 Sabic Innovative Plastics Ip B.V. Polymer blend compositions
WO2010111755A2 (en) * 2009-04-01 2010-10-07 Katholieke Universiteit Leuven - K.U.Leuven R & D Improved method for making cross-linked polyimide membranes
US20130020117A1 (en) * 2009-12-14 2013-01-24 Daicel Corporation Laminated body comprising porous layer and functional laminate using same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05310931A (ja) * 1991-12-24 1993-11-22 Matsushita Electric Works Ltd 熱硬化型ポリイミド樹脂組成物と熱硬化品およびその製造方法
JPH06322168A (ja) 1993-02-11 1994-11-22 Minnesota Mining & Mfg Co <3M> 熱可塑性発泡物品およびその製造方法
JPH09100363A (ja) 1995-10-05 1997-04-15 Matsushita Electric Ind Co Ltd 低誘電率プラスチック絶縁フィルムおよびその製造方法
JPH1045936A (ja) 1996-08-06 1998-02-17 Otsuka Chem Co Ltd シンジオタクチックポリスチレン発泡体、その製造方法及び該発泡体を用いた電気回路用基板
JP2001081225A (ja) 1999-09-16 2001-03-27 Nitto Denko Corp 多孔質体及び多孔質体の製造方法
JP2011508017A (ja) * 2007-12-20 2011-03-10 サビック イノベーティブ プラスチックス イーペー ベスローテン フェンノートシャップ ポリエーテルイミド発泡材料の連続製造法およびその製造物品
JP2012182116A (ja) * 2011-02-03 2012-09-20 Nitto Denko Corp モーター用電気絶縁性樹脂シート及びその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2933288A4

Also Published As

Publication number Publication date
US20150344662A1 (en) 2015-12-03
KR20150096428A (ko) 2015-08-24
CN104884514A (zh) 2015-09-02
JP5919184B2 (ja) 2016-05-18
EP2933288A1 (en) 2015-10-21
EP2933288A4 (en) 2015-12-16
JP2014118488A (ja) 2014-06-30

Similar Documents

Publication Publication Date Title
JP5916498B2 (ja) ポリイミド多孔質体及びその製造方法
TWI241316B (en) Process for producing porous article
KR100859275B1 (ko) 다공질 폴리이미드 수지의 제조방법 및 다공질 폴리이미드수지
WO2012105650A1 (ja) モーター用電気絶縁性樹脂シート及びその製造方法
TW201811884A (zh) 毫米波天線用薄膜
JP5458137B2 (ja) 電気絶縁性樹脂シート
JP5919184B2 (ja) ポリエーテルイミド多孔質体及びその製造方法
JP5919185B2 (ja) ポリエーテルイミド多孔質体及びその製造方法
US20230348284A1 (en) Low thermal conductivity and low-k dielectric aerogel material and preparation method therefor
EP4261187A1 (en) Aerogel and preparation method therefor
Jiang et al. Grafted Epoxide Functionalized Polypropylene Carbonate Porogen for Low Dielectric Constant Epoxy Films
JP6005552B2 (ja) 多孔質体及びその製造方法
KR102139544B1 (ko) 폴리이미드 폼 제조방법 및 이를 통해 제조된 폴리이미드 폼
TWI829147B (zh) 兼具低熱傳與低介電氣凝膠複合材及其製備方法
JP2008063451A (ja) 芳香族エチニル化合物、樹脂組成物、ワニス、樹脂膜、半導体装置
JP2018012805A (ja) シリカ−シアネート樹脂有機無機ハイブリッド材料及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13864343

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14652527

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20157016740

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2013864343

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013864343

Country of ref document: EP