WO2014097872A1 - 耐水素脆性に優れた高強度ばね用鋼線材およびその製造方法並びに高強度ばね - Google Patents

耐水素脆性に優れた高強度ばね用鋼線材およびその製造方法並びに高強度ばね Download PDF

Info

Publication number
WO2014097872A1
WO2014097872A1 PCT/JP2013/082380 JP2013082380W WO2014097872A1 WO 2014097872 A1 WO2014097872 A1 WO 2014097872A1 JP 2013082380 W JP2013082380 W JP 2013082380W WO 2014097872 A1 WO2014097872 A1 WO 2014097872A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
steel wire
tempering
heating temperature
strength
Prior art date
Application number
PCT/JP2013/082380
Other languages
English (en)
French (fr)
Inventor
敦彦 竹田
吉原 直
Original Assignee
株式会社神戸製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社神戸製鋼所 filed Critical 株式会社神戸製鋼所
Priority to CN201380060180.6A priority Critical patent/CN104797729B/zh
Priority to MX2015006912A priority patent/MX371408B/es
Priority to EP13864637.7A priority patent/EP2937434B1/en
Priority to KR1020157015364A priority patent/KR101768785B1/ko
Priority to US14/439,864 priority patent/US9970072B2/en
Publication of WO2014097872A1 publication Critical patent/WO2014097872A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/34Methods of heating
    • C21D1/42Induction heating
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/19Hardening; Quenching with or without subsequent tempering by interrupted quenching
    • C21D1/22Martempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/001Heat treatment of ferrous alloys containing Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
    • C21D8/065Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/02Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for springs
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/525Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length for wire, for rods
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/56Continuous furnaces for strip or wire
    • C21D9/60Continuous furnaces for strip or wire with induction heating
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F1/00Springs
    • F16F1/02Springs made of steel or other material having low internal friction; Wound, torsion, leaf, cup, ring or the like springs, the material of the spring not being relevant
    • F16F1/021Springs made of steel or other material having low internal friction; Wound, torsion, leaf, cup, ring or the like springs, the material of the spring not being relevant characterised by their composition, e.g. comprising materials providing for particular spring properties
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the present invention relates to a steel wire for a high-strength spring excellent in hydrogen embrittlement resistance (hydrogen embrittlement resistance), a manufacturing method thereof, and a high-strength spring. Specifically, it is a spring steel wire useful as a material for coil springs used in a tempered (quenched and tempered) state, and has excellent hydrogen brittleness resistance even when the tensile strength is as high as 1900 MPa or higher.
  • the present invention relates to a steel wire rod, a manufacturing method thereof, and a high-strength spring.
  • Coil springs used in automobiles are required to be lighter in order to reduce exhaust gas and improve fuel efficiency, and require higher strength. ing. Since the high strength spring is likely to cause hydrogen embrittlement, the spring steel wire used for manufacturing the spring is required to have excellent hydrogen embrittlement resistance.
  • a manufacturing method of a spring there are a method of heating to a quenching temperature, hot forming into a spring shape, then oil cooling and tempering, and a method of quenching and tempering a steel wire and then cold forming into a spring shape.
  • quenching and tempering before molding is performed by high-frequency heating.
  • high-frequency heating is performed after cold drawing and quenching and tempering is performed to adjust the structure.
  • Technology is known. This technology has improved delayed fracture characteristics, but it has a pearlite structure fraction of 30% or less, a martensite or bainite structure fraction of 70% or more, and then cold drawing at a predetermined area reduction rate.
  • Patent Document 2 in a working example, a rolled material is drawn, subjected to induction heating, and subjected to quenching and tempering.
  • This technique realizes a spring having high strength and high toughness while ensuring coiling properties.
  • this technique focuses on coiling properties and does not consider any hydrogen embrittlement resistance.
  • the present invention has been made paying attention to the above-mentioned circumstances, and the purpose thereof is to suppress the addition amount of the alloy element when producing a steel wire for a high strength spring having a tensile strength of 1900 MPa or more.
  • Another object of the present invention is to provide a steel wire for a high-strength spring ensuring hydrogen brittleness, a manufacturing method therefor, and a high-strength spring.
  • the steel wire for a spring of the present invention that can achieve the above object is a steel wire for a high strength spring having a tempered martensite of 80 area% or more and a tensile strength of 1900 MPa or more
  • the steel wire is C: 0.50 to 0.70% (meaning mass%, the same applies to the chemical composition) Si: 1.50-2.3%, Mn: 0.3 to 1.5%, P: 0.015% or less (excluding 0%), S: 0.015% or less (excluding 0%), and Al: 0.001 to 0.10%, respectively, and C and Si satisfy the relationship of the following formula (1), and the balance is It is iron and inevitable impurities, and has a gist in that the prior austenite grain size number is 10 or more and the hydrogen storage amount is 14.0 ppm or more. 0.73% ⁇ [C] + [Si] /8 ⁇ 0.90% (1) However, [C] and [Si] indicate the contents (mass%) of C and Si, respectively.
  • the spring steel wire rod of the present invention may further contain one or more elements belonging to any of the following (a) to (f) as necessary.
  • V 0.4% or less (0% Not included)
  • Cr 0.8% or less (excluding 0%)
  • the spring steel wire rod of the present invention has a diameter of about 7 to 20 mm.
  • the manufacturing method of the steel wire for springs of the present invention that can achieve the above object is to use a steel material that satisfies the chemical composition as described above, and to perform quenching and tempering treatment so that all of the following conditions are satisfied. It is characterized by manufacturing. (Quenching conditions) Quenching heating temperature T1: 850-1000 ° C Average heating rate from 100 ° C. to quenching heating temperature T1 HR1: 40 ° C./second or more Holding time at quenching heating temperature T1: 90 seconds or less Average cooling rate from 300 ° C. to 80 ° C.
  • Tempering heating temperature T2 350 to 550 ° C
  • Average heating rate HR2 from 100 ° C. to tempering heating temperature T2: 30 ° C./second or more Holding time t2 at tempering heating temperature T2: 90 seconds or less
  • Average cooling rate CR2 from tempering heating temperature T2 to 100 ° C. after tempering heating : 30 ° C / second or more
  • the present invention includes a high-strength spring formed by using the above-described high-strength spring steel wire, and even such a high-strength spring has excellent hydrogen embrittlement resistance.
  • a spring steel wire rod having a high tensile strength of 1900 MPa or more and excellent resistance to hydrogen embrittlement can be obtained without adding a large amount of alloy elements.
  • the steel material cost can be suppressed and the hydrogen embrittlement resistance is excellent.
  • a high-strength spring that hardly causes hydrogen embrittlement for example, a coil spring such as a suspension spring, which is one of automotive parts
  • a coil spring such as a suspension spring, which is one of automotive parts
  • the present inventors examined the influence of conditions such as quenching and tempering on the properties of steel wires from various angles. As a result, the amount of C and Si, which are inexpensive and the main elements, is controlled appropriately to make low alloy steel, and by heating for a short time by high frequency heating, the hydrogen trap sites are greatly increased and the hydrogen brittleness resistance is greatly increased.
  • the present invention was completed. Hereinafter, each requirement prescribed
  • the steel wire rod of the present invention has a structure mainly composed of tempered martensite (80% by area or more as a percentage of the entire structure).
  • tempered martensite is preferably 90 area% or more (more preferably 100 area%).
  • bainite, ferrite, pearlite, and the like may be included, but even if these are included, they are 10 area% or less. Preferably it is 5 area% or less (more preferably 0 area%).
  • the prior austenite grain size number is 10 or more
  • the prior austenite grain size number needs to be 10 or more.
  • it is 11 or more, more preferably 12 or more.
  • it is effective to perform quenching and tempering by high-frequency heating. In ordinary furnace heating, the heating rate and the heating time become longer, and the crystal grain growth by high-temperature heating increases. Since the crystal grains are remarkably coarsened, the prior austenite crystal grains cannot be refined.
  • the hydrogen storage amount is preferably 25 ppm or less, more preferably 20 ppm or less. is there.
  • the steel wire for springs of the present invention is basically a low alloy steel in which the content of alloy elements is suppressed, but the reasons for limiting the range of each component (element) in the chemical composition are as follows.
  • C is an element necessary for ensuring the high strength of the spring steel wire rod, and is also necessary for generating fine carbides that serve as hydrogen trap sites. From such a viewpoint, C needs to be contained by 0.50% or more.
  • a preferable lower limit of the C content is 0.54% or more (more preferably 0.58% or more).
  • C is also an element that deteriorates the corrosion resistance. Therefore, it is necessary to suppress the C content in order to improve the corrosion fatigue characteristics of a spring product (such as a suspension spring) that is a final product. From such a viewpoint, the C content needs to be 0.70% or less.
  • the upper limit with preferable C content is 0.65% or less (more preferably 0.62% or less).
  • Si is an element necessary for ensuring strength and has an effect of making carbide fine. In order to exhibit such an effect effectively, it is necessary to contain Si 1.50% or more. A preferable lower limit of the Si content is 1.7% or more (more preferably 1.9% or more). On the other hand, since Si is also an element that promotes decarburization, if Si is excessively contained, formation of a decarburized layer on the surface of the steel material is promoted, and a peeling process is required to remove the decarburized layer, resulting in an increase in manufacturing cost. . In addition, undissolved carbides increase, and hydrogen embrittlement resistance decreases. From such a viewpoint, in the present invention, the upper limit of the Si content is set to 2.3% or less. A preferable upper limit of the Si content is 2.2% or less (more preferably 2.1% or less).
  • a preferable lower limit of ([C] + [Si] / 8) is 0.75% or more (more preferably 0.78% or more, still more preferably 0.81% or more), and a preferable upper limit is 0.89. % Or less (more preferably 0.87% or less).
  • Mn 0.3-1.5%
  • Mn is used as a deoxidizing element and reacts with S, which is a harmful element in steel, to form MnS, which is an element useful for detoxification of S.
  • Mn is also an element contributing to strength improvement. In order to exhibit these effects effectively, it is necessary to contain 0.3% or more of Mn.
  • the minimum with preferable Mn content is 0.5% or more (more preferably 0.7% or more).
  • the Mn content needs to be 1.5% or less.
  • the upper limit with preferable Mn content is 1.3% or less (more preferably 1.1% or less).
  • P 0.015% or less (excluding 0%)
  • P is a harmful element that deteriorates the ductility (coiling property) of the steel wire, so it is desirable that P be as small as possible. Further, P is easily segregated at the grain boundary and causes embrittlement at the grain boundary. The grain boundary is easily broken by hydrogen, which adversely affects the resistance to hydrogen embrittlement. From such a viewpoint, the upper limit is made 0.015% or less. The upper limit with preferable P content is 0.010% or less (more preferably 0.008% or less).
  • S 0.015% or less (excluding 0%) Since S is also a harmful element that deteriorates the ductility (coiling property) of the steel wire material as in the case of P, it is desirable that S be as small as possible. In addition, S is easily segregated at the grain boundary and causes embrittlement of the grain boundary, and the grain boundary is easily broken by hydrogen, which adversely affects the resistance to hydrogen embrittlement. From such a viewpoint, the upper limit is made 0.015% or less. The upper limit with preferable S content is 0.010% or less (more preferably 0.008% or less).
  • Al 0.001 to 0.10%
  • Al is mainly added as a deoxidizing element.
  • it reacts with N to form AlN to render the solid solution N harmless and contribute to the refinement of the structure.
  • Al content 0.001% or more.
  • it is 0.002% or more.
  • Al is an element that promotes decarburization in the same manner as Si, it is necessary to suppress the Al content in a spring steel wire containing a large amount of Si.
  • the upper limit of Al content is 0.10% or less. did.
  • it is 0.07% or less, More preferably, it is 0.030% or less, Most preferably, it is 0.020% or less.
  • the chemical composition of the steel of the present invention is as described above, and the balance consists of iron and inevitable impurities.
  • the steel wire for springs of the present invention can achieve high strength and excellent coiling properties and hydrogen embrittlement resistance with the above chemical composition composition even if basically suppressing an alloy element such as Cu, but it has corrosion resistance depending on the application.
  • the following elements may be further included for the purpose of providing: The reason for setting a preferable range of these elements is as follows.
  • Cu 0.7% or less (not including 0%) and Ni: 0.7% (not including 0%)
  • Cu is an element effective for suppressing surface layer decarburization and improving corrosion resistance.
  • Ni like Cu, is an element effective for suppressing surface decarburization and improving corrosion resistance.
  • the upper limit of the Ni content is preferably 0.7% or less. More preferably it is 0.5% or less, still more preferably 0.3% or less (even more preferably 0.18% or less). In order to exert such an effect, it is preferable to contain 0.05% or more of Ni, and more preferably 0.10% or more.
  • Ti 0.10% or less (excluding 0%)
  • Ti is an element useful for making S harmless by reacting with S to form a sulfide.
  • Ti also has the effect of forming a carbonitride to refine the structure.
  • the upper limit with preferable Ti content was made into 0.10% or less. From the viewpoint of cost reduction, it is more preferable to suppress it to 0.07% or less.
  • B 0.010% or less (excluding 0%)
  • B is an element that improves hardenability, has an effect of strengthening the prior austenite grain boundaries, and contributes to suppression of fracture.
  • the upper limit of the B content is preferably 0.010% or less. More preferably, it is 0.0050% or less.
  • the B content is preferably 0.0005% or more, more preferably 0.0010% or more.
  • Nb is an element that forms carbonitrides with C and N and contributes mainly to refinement of the structure.
  • the upper limit of the Nb content is preferably 0.10% or less. From the viewpoint of cost reduction, it is more preferable to suppress it to 0.07% or less. In order to effectively exhibit the above effects, the Nb content is preferably 0.003% or more, more preferably 0.005% or more.
  • Mo is an element that contributes to refinement of the structure by forming carbonitrides with C and N. It is also an effective element for securing strength after tempering.
  • the upper limit of the Mo content is preferably 0.5% or less, and more preferably 0.4% or less.
  • Mo content shall be 0.15% or more, More preferably, it is 0.20% or more.
  • V 0.4% or less (excluding 0%)
  • V contributes to strength improvement and crystal grain refinement.
  • the upper limit of the V content is preferably 0.4% or less, and more preferably 0.3% or less.
  • V content shall be 0.1% or more, More preferably, it is 0.15% or more.
  • Cr 0.8% or less (excluding 0%) Cr is an element effective for improving corrosion resistance.
  • Cr has a strong tendency to generate carbides, forms unique carbides in steel, and is an element that easily dissolves in cementite at high concentrations.
  • it is effective to contain a small amount of Cr, since the heating time in the quenching process is short in high-frequency heating, austenitization in which carbide, cementite and the like are dissolved in the base material tends to be insufficient. For this reason, if a large amount of Cr is contained, undissolved cementite in which Cr-based carbides and metallic Cr are dissolved in a high concentration is generated and becomes a stress concentration source, so that it is easy to break down and hydrogen embrittlement resistance decreases. become.
  • the upper limit when Cr is contained is preferably 0.8% or less. More preferably, it is 0.5% or less (more preferably 0.4% or less). In addition, in order to exhibit said effect effectively, it is preferable that Cr content shall be 0.01% or more, More preferably, it is 0.05% or more.
  • the spring steel wire rod of the present invention is obtained by, for example, melting a steel material and rolling it to obtain a steel wire rod, then performing cold wire drawing as necessary (making it a steel wire), and then induction hardening and tempering. Can do.
  • it is necessary to perform quenching and tempering in the following manner.
  • the following heat processing conditions are the values measured on the steel material surface.
  • quenching heating temperature T1 When quenching heating temperature T1 becomes higher than 1000 degreeC, a prior austenite crystal grain will coarsen and a characteristic (hydrogen brittleness resistance) will fall. If the quenching heating temperature T1 is too high, the crystal grains become coarse and the amount of grain boundaries decreases, and fine carbides cannot be obtained (the carbides preferentially precipitate from the grain boundaries, so that there are many grain boundaries). However, carbides are easy to disperse). Accordingly, the quenching heating temperature T1 is set to 1000 ° C. or less. This temperature T1 is preferably 980 ° C. or lower, more preferably 930 ° C. or lower.
  • the quenching heating temperature T1 is lower than 850 ° C.
  • the carbides are not sufficiently dissolved, and austenitization cannot be sufficiently achieved. In this quenching and tempering process, a sufficient tempered martensite structure cannot be secured. Strength cannot be obtained.
  • the quenching heating temperature T1 is too low, the carbide is not sufficiently dissolved, the undissolved carbide remains, and the amount of carbide is insufficient.
  • the quenching heating temperature T1 is preferably 870 ° C. or higher, more preferably 900 ° C. or higher.
  • the average heating rate HR1 is set to 40 ° C./second or more. Preferably it is 50 degreeC / second or more, More preferably, it is 100 degreeC / second or more.
  • the upper limit of the average heating rate HR1 is about 400 ° C./second from the viewpoint of temperature control. In addition, it does not ask
  • the holding time t1 at the quenching heating temperature T1 is longer than 90 seconds, the prior austenite crystal grains become coarse and the characteristics (hydrogen embrittlement resistance) deteriorate.
  • the holding time t1 is preferably 60 seconds or shorter, more preferably 40 seconds or shorter.
  • this t1 is preferably set to 5 seconds or more.
  • carbonized_material when holding time t1 is too short, carbide
  • the average cooling rate CR1 needs to be 5 ° C./second or more.
  • the average cooling rate CR1 is preferably 10 ° C./second or more, more preferably 20 ° C./second or more.
  • the upper limit of the average cooling rate CR1 is about 100 ° C./second.
  • tempering heating temperature T2 If the tempering heating temperature T2 is too low, the tempering temperature is not sufficiently tempered, the strength becomes too high, and the aperture value is extremely lowered. On the other hand, when the tempering heating temperature T2 is increased, it becomes difficult to achieve a tensile strength of 1900 MPa or more (preferably 2000 MPa or more).
  • the range of the tempering heating temperature T2 is in the range of 350 to 550 ° C. (preferably 400 to 500 ° C.), and can be appropriately determined according to the required strength.
  • average temperature increase rate HR2 shall be 30 degrees C / sec or more. Preferably it is 40 degreeC / second or more, More preferably, it is 50 degreeC / second or more. However, if the average heating rate HR2 is too fast, it becomes difficult to control the temperature, and strength variations are likely to occur. Therefore, it is preferably 300 ° C./second or less, more preferably 200 ° C./second or less. . In addition, it does not ask
  • the holding time t2 is preferably 70 seconds or less, more preferably 50 seconds or less, still more preferably 40 seconds or less, and particularly preferably 12 seconds or less.
  • the present invention is based on the premise that high-frequency heating is performed. If the holding time t2 is too short, in the case of a large-diameter steel wire, hardness variation in the cross section in the circumferential direction is likely to occur, and stable strength is achieved. It becomes difficult to improve. Therefore, in the present invention, the holding time t2 is preferably 5 seconds or longer. This holding time t2 is more preferably 7 seconds or more, and further preferably 10 seconds or more. Note that the holding time t2 at this time may be appropriately adjusted in accordance with the required strength within the above range.
  • the average cooling rate CR2 is set to 30 ° C./second or more. Preferably it is 40 degreeC / second or more, More preferably, it is 50 degreeC / second or more.
  • the upper limit of the average cooling rate CR2 is about 300 ° C./second. Moreover, it does not specifically limit about the average cooling rate from 100 degreeC to room temperature.
  • the diameter of the spring steel wire rod of the present invention is, for example, 7 to 20 mm (preferably 10 to 15 mm).
  • This steel wire for spring is then formed into a high-strength spring by spring processing, and a high-strength spring having excellent hydrogen embrittlement resistance and exhibiting good mechanical properties is obtained.
  • Steel materials (steel materials No. 1 to 63) having the chemical composition shown in Tables 1 and 2 below are melted in a small vacuum melting furnace and forged into billets of 155 mm square (155 mm ⁇ 155 mm in cross section), 1200 ° C. Soaked for 1 hour.
  • segregation is reduced, and even in a component system in which C and Si are increased, undissolved carbides and coarse retained austenite can be reduced, and excellent hydrogen embrittlement resistance can be obtained.
  • the components in the steel become uniform, and in the tempered martensite structure, there is no uneven distribution of the generated carbides, which can be finely dispersed in the steel, increasing the amount of hydrogen trapped in the fine carbides. Can be made.
  • wire rod having a diameter of 14.3 mm.
  • the rolling temperature was adjusted so that the wire temperature was 900 ° C. or higher when the wire diameter was 30 mm or less.
  • the wire was cold drawn (drawn) to a diameter of 12.0 mm to obtain a steel wire, which was then quenched and tempered under the following conditions in a high-frequency induction heating furnace to obtain a spring steel wire.
  • Quenching heating temperature T1 930 ° C Average heating rate from 100 ° C. to quenching heating temperature T1: 200 ° C./second Holding time t1 at quenching heating temperature T1: 15 seconds Average cooling rate from 300 ° C. to 80 ° C. after quenching heating CR1: 80 ° C./second
  • Tempering heating temperature T2 Set to 2000 MPa in the range of 350 to 550 ° C. Average heating rate HR2 from 100 ° C to tempering heating temperature T2: 100 ° C / second Holding time t2 at tempering heating temperature T2: 10 seconds Tempering Average cooling rate CR2 from heating temperature T2 to 100 ° C after heating: 100 ° C / second
  • Quenching heating temperature T1 900 ° C Average heating rate from 100 ° C. to quenching heating temperature T1: 2 ° C./second Holding time at quenching heating temperature t1: 10 minutes Quenching cooling rate: 80 ° C./second
  • Tempering heating temperature T2 Set to 2000 MPa in the range of 300 to 500 ° C Average heating rate from 100 ° C to tempering heating temperature T2: 2 ° C / second Holding time at tempering heating temperature T2: 60 minutes Tempering heating Average cooling rate from later heating temperature T2 to 100 ° C .: 100 ° C./second
  • the specimen was processed into a JIS No. 14 test piece, and a tensile test was performed according to JIS Z 2241: 1998 using a universal testing machine under the condition of a crosshead speed of 10 mm / min to measure the tensile strength TS. And the tensile strength TS evaluated 1900 MPa or more as high intensity
  • steel No. Samples 1 to 4, 19 to 26, 28 to 30, and 43 to 56 are comparative examples that do not satisfy any of the requirements defined in the present invention, and have deteriorated hydrogen embrittlement resistance. That is, the steel material No. Examples 1 to 3 are examples in which the value of [C] + [Si] / 8 is less than the range specified in the present invention (the C content is insufficient, and the hydrogen amount determination is also “x”). The number of fine carbides is expected to be insufficient, and hydrogen embrittlement resistance is deteriorated.
  • Steel No. No. 4 is an example in which the C content is insufficient (hydrogen amount determination is also “x”), the number of fine carbides is expected to be insufficient, and hydrogen embrittlement resistance is deteriorated.
  • Steel No. No. 19 is an example in which the value of ([C] + [Si] / 8) exceeds the range specified in the present invention, and it is expected that the penetration of carbide during quenching will be insufficient. However, the hydrogen embrittlement resistance has deteriorated.
  • Steel No. Nos. 20 and 21 are examples in which the C content is excessive (the value of ([C] + [Si] / 8) is also beyond the range specified in the present invention). It is expected that the penetration will be insufficient, and the hydrogen amount judgment is “ ⁇ ”, but the hydrogen embrittlement resistance has deteriorated.
  • Steel No. No. 22 is an example in which the Si content is excessive (the value of ([C] + [Si] / 8) is also beyond the range specified in the present invention), and the penetration of carbides during quenching. Although it is expected to be insufficient, the hydrogen amount judgment is “ ⁇ ”, but the hydrogen embrittlement resistance is deteriorated.
  • Steel No. No. 23 is an example in which the value of ([C] + [Si] / 8) is less than the range specified in the present invention (hydrogen amount determination is also “x”), and the number of fine carbides may be insufficient. Expected, hydrogen brittleness resistance has deteriorated.
  • Steel No. No. 24 is an example in which the Si content is insufficient (the value of ([C] + [Si] / 8) is less than the range specified in the present invention, and the hydrogen content is also determined as “x”). It is expected that the number of carbon atoms will be insufficient, and the hydrogen embrittlement resistance has deteriorated.
  • Steel No. No. 25 is an example in which the Si content is excessive, and it is expected that the penetration of carbides will be insufficient at the time of quenching, and the hydrogen content judgment is “ ⁇ ”, but the hydrogen embrittlement resistance is deteriorated. .
  • Steel No. No. 26 is an example in which the Si content is insufficient (hydrogen amount determination is also “x”), and the number of fine carbides is expected to be insufficient, and hydrogen embrittlement resistance is deteriorated.
  • Steel No. No. 28 is an example in which the Mn content is excessive, and the hydrogen content determination is “ ⁇ ”, but the hydrogen embrittlement resistance is deteriorated.
  • Steel No. No. 29 is an example in which the P content is excessive. P is segregated at the grain boundary and the grain boundary becomes brittle. Brittleness has deteriorated.
  • Steel No. No. 30 is an example in which the S content is excessive, and it is expected that the grain boundary segregates and the grain boundary becomes brittle, and the hydrogen content judgment is “ ⁇ ”, but the hydrogen embrittlement resistance is low. It has deteriorated.
  • Steel No. Nos. 43 to 56 are examples of furnace heating, in which the crystal grain size number of the prior austenite is small (the crystal grains are coarse and the hydrogen amount is judged as “x”), and the hydrogen embrittlement resistance is low. It has deteriorated.
  • the steel wire for a high strength spring of the present invention is a steel wire for a high strength spring having a tempered martensite of 80 area% or more and a tensile strength of 1900 MPa or more, satisfying a predetermined chemical composition, and C and Si. Satisfies the relationship of the following formula (1), the old austenite grain size number is 10 or more, and the hydrogen storage amount is 14.0 ppm or more, thereby suppressing the addition amount of the alloy element. Also, excellent hydrogen embrittlement resistance can be secured. 0.73% ⁇ [C] + [Si] /8 ⁇ 0.90% (1) However, [C] and [Si] indicate the contents (mass%) of C and Si, respectively.

Abstract

 焼戻しマルテンサイトが80面積%以上、引張強度が1900MPa以上の高強度ばね用鋼線材であって、所定の化学成分組成を満足し、且つCとSiとが下記(1)式の関係を満足し、旧オーステナイト結晶粒度番号が10番以上であると共に、水素吸蔵量が14.0ppm以上であるものとすることによって、合金元素の添加量を抑制しても、耐水素脆性を確保した高強度ばね用鋼線材を提供する。 0.73%≦[C]+[Si]/8≦0.90% …(1) 但し、[C]および[Si]は、夫々CおよびSiの含有量(質量%)を示す。

Description

耐水素脆性に優れた高強度ばね用鋼線材およびその製造方法並びに高強度ばね
 本発明は、耐水素脆性(耐水素脆化特性)に優れた高強度ばね用鋼線材およびその製造方法並びに高強度ばねに関する。詳細には、調質(焼入れ焼戻し)した状態で使用されるコイルばねの素材として有用なばね用鋼線材であって、引張強度が1900MPa以上と高強度であっても、耐水素脆性に優れたばね用鋼線材、およびその製造方法、並びに高強度ばねに関する。
 自動車等に用いられるコイルばね(例えば、エンジンやサスペンション等に使用される弁ばね、懸架ばねなど)は、排ガスの低減や燃費向上のために軽量化が求められており、高強度化が要求されている。高強度化されたばねは、水素脆性が生じ易いため、ばねの製造に用いられるばね用鋼線材には、耐水素脆性に優れていることが要求される。
 高強度ばね用鋼線材の耐水素脆性を高める方法としては、化学成分組成や組織を制御することなどが知られている。しかし、これらの方法では、合金元素を多量に使用しており、製造コストや省資源の観点からすると必ずしも望ましくない。
 尚、ばねの製造方法としては、焼入れ温度に加熱し、ばね形状に熱間成形した後、油冷して焼戻しする方法と、鋼線材を焼入れ焼戻しした後、ばね形状に冷間成形する方法が知られている。また後者の冷間成形方法では、成形前の焼入れ焼戻しを高周波加熱で行うことも知られており、例えば特許文献1には、冷間引抜きした後高周波加熱して、焼入れ焼戻しして組織調整する技術が知られている。この技術では遅れ破壊特性を改善しているが、それは、パーライトの組織分率を30%以下、マルテンサイトまたはベイナイトの組織分率を70%以上とし、その後所定の減面率で冷間引抜きを行い、続いて焼入れ焼戻しを行うことによって、遅れ破壊の起点となる未溶解炭化物量を低減することによる。
 特許文献2では、実施例で、圧延材を伸線加工して高周波加熱して、焼入れ焼戻し処理をしている。この技術では、コイリング性を確保しつつ高強度且つ高靭性を有するばねを実現するものである。しかしながら、この技術では、コイリング性に主眼をおいており、耐水素脆性については何ら考慮されていない。
特開2004-143482号公報 特開2006-183137号公報
 本発明は上記の様な事情に着目してなされたものであって、その目的は、引張強度が1900MPa以上の高強度ばね用鋼線材を製造するに際して、合金元素の添加量を抑制しても、耐水素脆性を確保した高強度ばね用鋼線材、およびそのための製造方法並びに高強度ばねを提供することにある。
 上記目的を達成し得た本発明のばね用鋼線材とは、焼戻しマルテンサイトが80面積%以上、引張強度が1900MPa以上の高強度ばね用鋼線材であって、
 前記鋼線材は、
 C:0.50~0.70%(質量%の意味、化学成分組成について以下同じ)、
 Si:1.50~2.3%、
 Mn:0.3~1.5%、
 P:0.015%以下(0%を含まない)、
 S:0.015%以下(0%を含まない)、および
 Al:0.001~0.10%を夫々含有し、且つCとSiとが下記(1)式の関係を満足し、残部が鉄および不可避不純物であり、旧オーステナイト結晶粒度番号が10番以上であると共に、水素吸蔵量が14.0ppm以上である点に要旨を有する。
 0.73%≦[C]+[Si]/8≦0.90%  …(1)    
 但し、[C]および[Si]は、夫々CおよびSiの含有量(質量%)を示す。
 本発明のばね用鋼線材は、必要によって更に、下記(a)~(f)のいずれかに属する1種以上の元素を含有するものであってもよい。
 (a)Cu:0.7%以下(0%を含まない)およびNi:0.7%以下(0%を含まない)の少なくとも1種
 (b)Ti:0.10%以下(0%を含まない)
 (c)B:0.010%以下(0%を含まない)
 (d)Nb:0.10%以下(0%を含まない)およびMo:0.5%以下(0%を含まない)の少なくとも1種
 (e)V:0.4%以下(0%を含まない)
 (f)Cr:0.8%以下(0%を含まない)
 本発明のばね用鋼線材は、直径が7~20mm程度のものとなる。
 一方、上記目的を達成し得た本発明のばね用鋼線材の製造方法とは、上記のような化学成分組成を満たす鋼材を用い、焼入れおよび焼戻し処理を、下記の条件の全て満たすようにして製造することを特徴とする。
 (焼入れ条件)
 焼入れ加熱温度T1:850~1000℃
 100℃から焼入れ加熱温度T1までの平均昇温速度HR1:40℃/秒以上
 焼入れ加熱温度T1での保持時間t1:90秒以下
 焼入れ加熱後の300℃から80℃までの平均冷却速度CR1:5℃/秒以上、100℃/秒以下
 (焼戻し条件)
 焼戻し加熱温度T2:350~550℃
 100℃から焼戻し加熱温度T2までの平均昇温速度HR2:30℃/秒以上
 焼戻し加熱温度T2での保持時間t2:90秒以下
 焼戻し加熱後の焼戻し加熱温度T2から100℃までの平均冷却速度CR2:30℃/秒以上
 本発明は、上記のような高強度ばね鋼線材を用いて成形された高強度ばねを包含し、こうした高強度ばねにおいても耐水素脆性が優れたものとなる。
 本発明によれば、合金元素を多量に添加しなくとも、引張強度が1900MPa以上の高強度を示すと共に、耐水素脆性に優れたばね用鋼線材が得られる。このようなばね用鋼線材では、鋼材コストを抑えることができ、且つ耐水素脆性に優れたものとなる。その結果、水素脆化の極めて生じ難い高強度のばね(例えば自動車用部品の一つである、懸架ばね等のコイルばね)を、安価で供給することができる。
 本発明者らは、焼入れ焼戻し等の条件が、鋼線材の特性に与える影響について、様々な角度から検討した。その結果、安価で主要元素であるC,Si量を適正に制御して低合金鋼とすると共に、高周波加熱によって短時間加熱することで、水素トラップサイトを大幅に増加させ、耐水素脆性が大幅に向上することを見出し、本発明を完成した。以下、本発明で規定する各要件について説明する。
 (焼戻しマルテンサイト:80面積%以上)
 本発明の鋼線材は、組織が焼戻しマルテンサイトを主体(全組織に占める割合で80面積%以上)とするものである。鋼線材における高強度且つ高靭性を確保するために、焼入れ焼戻し処理を行うことによって、焼戻しマルテンサイト主体の組織とする必要がある。焼戻しマルテンサイトは、好ましくは90面積%以上である(より好ましくは、100面積%)。焼戻しマルテンサイト以外の組織として、ベイナイト、フェライト、パーライト等を含み得るが、これらは、含まれていても10面積%以下である。好ましくは5面積%以下(より好ましくは0面積%)である。
 (旧オーステナイト結晶粒度番号が10番以上)
 良好な耐水素脆性を確保するためには、旧オーステナイト結晶粒の微細化を図ることが有効である。こうした観点から、旧オーステナイト結晶粒度番号は10番以上とする必要がある。好ましくは、11番以上であり、より好ましくは12番以上である。尚、旧オーステナイト結晶粒度番号を10番以上とするには、高周波加熱による焼入れ焼戻しをすることが有効であり、通常の炉加熱では加熱速度、加熱時間が長くなり高温加熱での結晶粒成長が著しく、結晶粒の粗大化が生じるため、旧オーステナイト結晶粒の微細化を図ることができない。
 (水素吸蔵量:14.0ppm以上)
 本発明の鋼線材は、化学成分組成も適切に設定(後述する)する必要があるが、鋼線材中の水素吸蔵量も適切に設定する必要がある。この水素吸蔵量は、鋼線材中の許容水素量を示すものであり、水素吸蔵量が多いほど耐水素脆性が良好となるものである。こうした観点から、水素吸蔵量は14.0ppm以上とする必要がある。好ましくは14.5ppm以上であり、より好ましくは15.0ppm以上である。水素吸蔵量を適切に設定することによって、耐水素脆性が良好となる理由については、おそらく本試験での水素吸蔵量は微細炭化物にトラップされた水素量を表しており、微細炭化物にトラップされる水素量を増加させることで、粒界への水素侵入、蓄積を抑制でき、粒界破壊で割れが発生する耐水素割れ(耐水素脆性)の改善が図れると考えられる。尚、水素吸蔵量が多いと、鋼材への水素の侵入速度が速くなるので、過剰な水素の侵入を抑制するという観点から、水素吸蔵量は好ましくは25ppm以下であり、より好ましくは20ppm以下である。
 水素吸蔵量を増加させるためには、Fe-C系の炭化物(鋼中の炭化物はFe-C系の炭化物が支配的である)を鋼中に微細分散させることが重要となる。Fe-C系炭化物(以下、単に「炭化物」と呼ぶ)を微細分散させるためには、鋼中の粗大な炭化物の生成を抑制し(後記実施例による1200℃ソーキングも関係する)、炭化物の主要元素(Feを除く)であるCと、析出する炭化物のサイズに影響を及ぼすSiの量を適正な範囲とし、炭化物の量を増加させると共に、微細な炭化物を生成させる必要がある。また、焼入れ焼戻しを適切な範囲で制御し(後述する)、未固溶の炭化物の生成を抑制し、微細な炭化物を生成させる必要がある。
 本発明のばね用鋼線材は、基本的に合金元素の含有量を抑制した低合金鋼であるが、その化学成分組成における各成分(元素)における範囲限定理由は次の通りである。
 (C:0.50~0.70%)
 Cは、ばね用鋼線材の高強度を確保するのに必要な元素であると共に、水素トラップサイトとなる微細炭化物を生成させるためにも必要である。こうした観点から、Cは0.50%以上含有させる必要がある。C含有量の好ましい下限は0.54%以上(より好ましくは0.58%以上)である。しかしながら、C含有量が過剰になると、焼入れ焼戻し後も、粗大な残留オーステナイトや未固溶の炭化物が生成しやすくなり、耐水素脆性が却って低下する場合がある。またCは、耐食性を劣化させる元素でもあるため、最終製品であるばね製品(懸架ばね等)の腐食疲労特性を高めるにはC含有量を抑える必要がある。こうした観点から、C含有量は0.70%以下とする必要がある。C含有量の好ましい上限は0.65%以下(より好ましくは0.62%以下)である。
 (Si:1.50~2.3%)
 Siは、強度を確保するのに必要な元素である共に、炭化物を微細にする効果がある。こうした効果を有効に発揮させるためには、Siは1.50%以上含有させる必要がある。Si含有量の好ましい下限は1.7%以上(より好ましくは1.9%以上)である。一方、Siは脱炭を促進させる元素でもあるため、Siが過剰に含有されると、鋼材表面の脱炭層形成が促進され、脱炭層削除のためピーリング工程が必要となり、製造コストの増加を招く。また、未固溶炭化物も多くなり、耐水素脆性が低下する。こうした観点から、本発明ではSi含有量の上限を2.3%以下とした。Si含有量の好ましい上限は2.2%以下(より好ましくは2.1%以下)である。
 (0.73%≦[C]+[Si]/8≦0.90%:前記(1)式の関係)
 ([C]+[Si]/8)が0.73%以上、0.90%以下の範囲内では、水素トラップサイトとなる炭化物が微細且つ多量に析出し、耐水素脆性が向上する。([C]+[Si]/8)の値が0.73%よりも小さくなると、水素トラップサイトとなる微細な炭化物の量が減り、耐水素脆性が劣化する。一方、([C]+[Si]/8)の値が0.90%よりも大きくなると、粗大な残留オーステナイトや未固溶の炭化物が生成しやすくなり、耐水素脆性が劣化する。([C]+[Si]/8)の好ましい下限は、0.75%以上(より好ましくは0.78%以上、更に好ましくは0.81%以上)であり、好ましい上限は、0.89%以下(より好ましくは0.87%以下)である。
 (Mn:0.3~1.5%)
 Mnは、脱酸元素として利用されると共に、鋼中の有害元素であるSと反応してMnSを形成し、Sの無害化に有益な元素である。また、Mnは強度向上に寄与する元素でもある。これらの効果を有効に発揮させるため、Mnを0.3%以上含有させる必要がある。Mn含有量の好ましい下限は0.5%以上(より好ましくは0.7%以上)である。しかしながら、Mn含有量が過剰になると、焼入れ性が増大し、靭性が低下して耐水素脆性が劣化する。こうした観点から、Mn含有量は1.5%以下とする必要がある。Mn含有量の好ましい上限は1.3%以下(より好ましくは1.1%以下)である。
 (P:0.015%以下(0%を含まない))
 Pは、鋼線材の延性(コイリング性)を劣化させる有害元素であるため、できるだけ少ない方が望ましい。またPは粒界に偏析しやすく、粒界脆化を招き、水素により粒界が破壊されやすくなり、耐水素脆性に悪影響を及ぼす。こうした観点から、その上限を0.015%以下とする。P含有量の好ましい上限は0.010%以下(より好ましくは0.008%以下)である。
 (S:0.015%以下(0%を含まない))
 Sも、上記Pと同様に鋼線材の延性(コイリング性)を劣化させる有害元素であるため、できるだけ少ない方が望ましい。またSは粒界に偏析しやすく、粒界脆化を招き、水素により粒界が破壊しやすくなり、耐水素脆性に悪影響を及ぼす。こうした観点から、その上限を0.015%以下とする。S含有量の好ましい上限は0.010%以下(より好ましくは0.008%以下)である。
 (Al:0.001~0.10%)
 Alは、主に脱酸元素として添加される。またNと反応してAlNを形成して固溶Nを無害化すると共に、組織の微細化にも寄与する。これらの効果を十分に発揮させるには、Al含有量を0.001%以上とする必要がある。好ましくは0.002%以上である。しかしながら、AlはSiと同様に脱炭を促進させる元素でもあるため、Siを多く含有するばね鋼線ではAl量を抑える必要があり、本発明ではAl含有量の上限を0.10%以下とした。好ましくは0.07%以下、より好ましくは0.030%以下、特に好ましくは0.020%以下である。
 本発明鋼材の化学成分組成は上記の通りであり、残部は鉄および不可避不純物からなるものである。本発明のばね用鋼線材は、基本的にCu等の合金元素を抑制しても、上記化学成分組成で、高強度で優れたコイリング性と耐水素脆性を達成できるが、用途に応じて耐食性の具備等を目的に、下記元素を更に含有させてもよい。これらの元素の好ましい範囲設定理由は下記の通りである。
 (Cu:0.7%以下(0%を含まない)およびNi:0.7%(0%を含まない)の少なくとも1種)
 Cuは、表層脱炭の抑制や耐食性の向上に有効な元素である。しかしながら、Cuが過剰に含まれると、熱間加工時に割れが発生したり、コストが増加する。よって、本発明では、Cu含有量の上限を0.7%以下とすることが好ましい。より好ましくは0.5%以下、更に好ましくは0.3%以下(更により好ましくは0.18%以下)である。尚、この様な効果を発揮させるには、Cuを0.05%以上含有させることが好ましく、より好ましくは0.10%以上である。
 Niは、Cuと同様に表層脱炭の抑制や耐食性の向上に有効な元素である。しかしながら、Niが過剰に含まれると、コストが増加する。よって、本発明ではNi含有量の上限を0.7%以下とすることが好ましい。より好ましくは0.5%以下であり、更に好ましくは0.3%以下(更により好ましくは0.18%以下)である。尚、この様な効果を発揮させるには、Niを0.05%以上含有させることが好ましく、より好ましくは0.10%以上である。
 (Ti:0.10%以下(0%を含まない))
 Tiは、Sと反応して硫化物を形成してSの無害化を図るのに有用な元素である。またTiは炭窒化物を形成して組織を微細化する効果も有する。しかしながら、Ti含有量が過剰になると、粗大なTi硫化物が形成され延性が劣化することがある。よって本発明では、Ti含有量の好ましい上限を0.10%以下とした。コスト低減の観点からは0.07%以下に抑えることがより好ましい。尚、上記の効果を発揮させるには、Tiは0.02%以上含有させることが好ましく、より好ましくは0.05%以上である。
 (B:0.010%以下(0%を含まない))
 Bは、焼入れ性向上元素であり、また旧オーステナイト結晶粒界を強化する効果があり、破壊の抑制に寄与する元素である。しかしながら、Bを過剰に含有させても上記効果は飽和するため、B含有量の上限は0.010%以下とすることが好ましい。より好ましくは0.0050%以下である。尚、上記の効果を有効に発揮させるためには、B含有量は0.0005%以上とすることが好ましく、より好ましくは0.0010%以上である。
 (Nb:0.10%以下(0%を含まない)およびMo:0.5%以下(0%を含まない)の少なくとも1種)
 Nbは、CやNと炭窒化物を形成し、主に組織微細化に寄与する元素である。しかしながら、Nb含有量が過剰になると、粗大炭窒化物が形成されて鋼材の延性が劣化する。そのためNb含有量の上限を0.10%以下とすることが好ましい。コスト低減の観点からは0.07%以下に抑えることがより好ましい。尚、上記の様な効果を有効に発揮させるためには、Nb含有量は0.003%以上とするのが好ましく、より好ましくは0.005%以上である。
 MoもNbと同様に、CやNと炭窒化物を形成し組織微細化に寄与する元素である。また焼戻し後の強度確保にも有効な元素でもある。しかしながら、Mo含有量が過剰になると、粗大炭窒化物が形成されて鋼材の延性(コイリング性)が劣化する。よってMo含有量の上限を0.5%以下とすることが好ましく、より好ましくは0.4%以下である。尚、上記の効果を有効に発揮させるには、Mo含有量は0.15%以上とすることが好ましく、より好ましくは0.20%以上である。
 (V:0.4%以下(0%を含まない))
 Vは強度向上、結晶粒微細化に寄与する。しかしながら、V含有量が過剰になると、コストが増加する。よってV含有量の上限は0.4%以下とすることが好ましく、より好ましくは0.3%以下である。尚、上記の効果を有効に発揮させるには、V含有量は0.1%以上とすることが好ましく、より好ましくは0.15%以上である。
 (Cr:0.8%以下(0%を含まない))
 Crは、耐食性の向上に有効な元素である。しかしながら、Crは炭化物生成傾向が強く、鋼材中で独自の炭化物を形成すると共に、セメンタイト中に高濃度で溶け込みやすい元素である。少量のCrを含有することは有効であるが、高周波加熱では、焼入れ工程の加熱時間が短時間となるので、炭化物、セメンタイト等を母材に溶け込ませるオーステナイト化が不十分となりやすい。そのため、Crを多く含有していると、Cr系炭化物や金属Crが高濃度に固溶したセメンタイトの溶け残りが発生し、応力集中源となるため、破壊しやすく、耐水素脆性が低下することになる。こうした観点から、Crを含有させるときの上限は、0.8%以下とすることが好ましい。より好ましくは0.5%以下(更に好ましくは0.4%以下)である。尚、上記の効果を有効に発揮させるには、Cr含有量は0.01%以上とすることが好ましく、より好ましくは0.05%以上である。
 次に、本発明のばね用鋼線材を製造するための方法について説明する。本発明のばね用鋼線材は、例えば鋼材を溶製後、圧延して鋼線材を得た後に、必要によって冷間伸線加工を施し(鋼線とし)、次いで高周波焼入れ焼戻し処理して得ることができる。高強度を確保すると共に、耐水素脆性を同時に高め得る上記組織を容易に形成するには、下記要領で焼入れ焼戻し処理を行う必要がある。尚、下記の熱処理条件は、鋼材表面で測定した値である。
 (焼入れ条件)
 焼入れ加熱温度T1が1000℃よりも高くなると、旧オーステナイト結晶粒が粗大化し、特性(耐水素脆性)が低下する。また、焼入れ加熱温度T1が高すぎると、結晶粒が粗大化して粒界の量が減少し、微細な炭化物が得られない(粒界から優先的に炭化物が析出するので、粒界が多い方が、炭化物が分散しやすい)。よって焼入れ加熱温度T1を1000℃以下とする。この温度T1は、好ましくは980℃以下、より好ましくは930℃以下である。一方、焼入れ加熱温度T1が850℃よりも低くなると、炭化物が十分に固溶せず、オーステナイト化を十分図ることができず、この焼入れ焼戻し工程で、焼戻しマルテンサイト組織を十分確保できず、高強度が得られない。また、焼入れ加熱温度T1が低すぎると、炭化物が十分に固溶せず、未固溶の炭化物が残り、炭化物量が不足する。焼入れ加熱温度T1は、好ましくは870℃以上、より好ましくは900℃以上である。
 100℃から焼入れ加熱温度T1までの平均昇温速度HR1が40℃/秒よりも遅くなると、旧オーステナイト結晶粒が粗大化し、特性が低下する。また、平均昇温速度HR1が遅過ぎると、結晶粒が粗大化して粒界の量が減少し、微細な炭化物が得られない。よって、平均昇温速度HR1は40℃/秒以上とする。好ましくは50℃/秒以上、より好ましくは100℃/秒以上である。一方、上記平均昇温速度HR1の上限は、温度制御の観点から400℃/秒程度である。尚、室温から100℃までの平均昇温速度については特に問わない。
 焼入れ加熱温度T1での保持時間t1が90秒よりも長くなると、旧オーステナイト結晶粒が粗大化し、特性(耐水素脆性)が低下する。また、保持時間t1が長過ぎると、結晶粒が粗大化して粒界の量が減少し、微細な炭化物が得られない。よって保持時間t1は90秒以下とする必要がある。保持時間t1は、好ましくは60秒以下、より好ましくは40秒以下である。尚、炭化物の溶け込み不足によるオーステナイト化の不足を防止して、所望の組織(焼戻しマルテンサイト主体の組織)を得るには、このt1を5秒以上とすることが好ましい。また、保持時間t1が短過ぎると、炭化物が十分に固溶せず、未固溶の炭化物が残り、炭化物量が不足する。より好ましくは10秒以上、更に好ましくは15秒以上である。
 焼入れ加熱後の300℃から80℃までの平均冷却速度(CR1)が遅過ぎると、焼入れが不十分となり、強度が確保できない。そのため、平均冷却速度CR1は5℃/秒以上とする必要がある。平均冷却速度CR1は、好ましくは10℃/秒以上、より好ましくは20℃/秒以上である。尚、平均冷却速度CR1の上限は、100℃/秒程度である。
 (焼戻し条件)
 焼戻し加熱温度T2が低過ぎると、十分焼戻されず、強度が高くなりすぎて、絞り値が極端に低下するといった不具合が生じる。一方、焼戻し加熱温度T2が高くなると、引張強度:1900MPa以上(好ましくは2000MPa以上)を達成することが困難となる。焼戻し加熱温度T2の範囲は、350~550℃の範囲(好ましくは400~500℃)であり、要求強度に応じて適宜決定することができる。
 100℃から焼戻し加熱温度T2までの平均昇温速度HR2が遅いと、炭化物が粗大化し、希望する特性が確保できない。また、平均昇温速度HR2が遅過ぎると、粒界からの炭化物の生成頻度が低下し、微細な炭化物が得られない。よって本発明では、平均昇温速度HR2を30℃/秒以上とする。好ましくは40℃/秒以上、より好ましくは50℃/秒以上である。但し、平均昇温速度HR2が速過ぎると、温度制御が困難になり、強度的なバラツキが生じ易くなるため、300℃/秒以下とすることが好ましく、より好ましくは200℃/秒以下である。尚、室温から100℃までの平均昇温速度については特に問わない。
 焼戻し加熱温度T2での保持時間t2が90秒よりも長くなると、炭化物が粗大化し、耐水素脆性が低下する。保持時間t2は、好ましくは70秒以下、より好ましくは50秒以下、更に好ましくは40秒以下、特に好ましくは12秒以下である。一方、本発明は高周波加熱を行うことを前提とするものであり、保持時間t2が短過ぎると、太径鋼線材の場合、円周方向の断面内の硬さバラツキが生じ易く、安定した強度向上を図ることが困難となる。よって本発明では、保持時間t2を5秒以上とすることが好ましい。この保持時間t2は、より好ましくは7秒以上、更に好ましくは10秒以上である。尚、このときの保持時間t2は、上記範囲内において要求強度に応じて適宜調整すればよい。
 焼戻し加熱後の焼戻し加熱温度T2(但し、上記T2が400℃以上の場合は400℃)から100℃までの平均冷却速度CR2が遅いと、炭化物が粗大化し所望の特性を確保できない(粒界からの炭化物の生成頻度が低下し、微細な炭化物が得られない)。よって本発明では、上記平均冷却速度CR2を30℃/秒以上とする。好ましくは40℃/秒以上、より好ましくは50℃/秒以上である。尚、平均冷却速度CR2の上限は、300℃/秒程度である。また100℃から室温までの平均冷却速度については特に限定されない。
 本発明のばね用鋼線材は、直径が例えば7~20mm(好ましくは10~15mm)である。このばね用鋼線材は、その後ばね加工で高強度ばねに成形され、耐水素脆性に優れ、且つ良好な機械的特性を発揮する高強度ばねが得られる。
 優れた耐水素脆性を得るためには、溶製した鋼材の偏析を低減して、C,Siを高めた成分系であっても未固溶炭化物や粗大な残留オーステナイトを低減する必要がある。また、偏析を低減し、鋼中の成分を均一になるようにし、焼戻しマルテンサイト組織において、生成する炭化物の偏析を抑制し、鋼中に炭化物をより微細分散させ、微細炭化物にトラップされる水素量を増加させる必要がある。そのためには、溶製後に1200℃以上で加熱するソーキングを実施することが重要となる。また、圧延中、低温でも偏析の低減効果のある30mm以下となった後に、線材温度(線温)が900℃以上となるように、圧延温度を調整することが重要となる。
 本願は、2012年12月21日に出願された日本国特許出願第2012-279437号に基づく優先権の利益を主張するものである。2012年12月21日に出願された日本国特許出願第2012-279437号の明細書の全内容が、本願に参考のため援用される。
 以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。
 下記表1、2に示す化学成分組成の鋼材(鋼材No.1~63)を小型真空溶解炉にて溶製し、155mm角(断面形状が155mm×155mm)のビレットに鍛造した後、1200℃で1時間のソーキングを実施した。ソーキングを実施することで、偏析が低減され、C,Siを高めた成分系であっても未固溶炭化物や粗大な残留オーステナイトを低減でき、優れた耐水素脆性を得ることができる。また、偏析の低減により、鋼中の成分が均一になり、焼戻しマルテンサイト組織において、生成する炭化物の偏在がなくなり、鋼中により微細分散させることができ、微細炭化物にトラップされる水素量を増加させることができる。ソーキング後、熱間圧延して直径14.3mmの線材を得た。圧延中、30mm以下の線径になった段階で、線温が900℃以上となるように、圧延温度を調整した。そして該線材を直径12.0mmまで冷間引き抜き加工(伸線)して鋼線としてから、高周波誘導加熱炉にて、下記の条件で焼入れ焼戻しを行い、ばね用鋼線を得た。
 (高周波による焼入れ条件)
 焼入れ加熱温度T1:930℃
 100℃から焼入れ加熱温度T1までの平均昇温速度:200℃/秒
 焼入れ加熱温度T1での保持時間t1:15秒
 焼入れ加熱後の300℃から80℃までの平均冷却速度CR1:80℃/秒
 (高周波による焼戻し条件)
 焼戻し加熱温度T2:350~550℃の範囲で2000MPaになるように設定
 100℃から焼戻し加熱温度T2までの平均昇温速度HR2:100℃/秒
 焼戻し加熱温度T2での保持時間t2:10秒
 焼戻し加熱後の加熱温度T2から100℃までの平均冷却速度CR2:100℃/秒
 (炉加熱による焼入れ条件)
 焼入れ加熱温度T1:900℃
 100℃から焼入れ加熱温度T1までの平均昇温速度:2℃/秒
 焼入れ加熱温度での保持時間t1:10分
 焼入れ冷却速度:80℃/秒
 (炉加熱による焼戻し条件)
 焼戻し加熱温度T2:300~500℃の範囲で2000MPaになるように設定
 100℃から焼戻し加熱温度T2までの平均昇温速度:2℃/秒
 焼戻し加熱温度T2での保持時間t2:60分
 焼戻し加熱後の加熱温度T2から100℃までの平均冷却速度:100℃/秒
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 得られた鋼線を用い、以下の方法で、鋼組織の評価(旧オーステナイト結晶粒度番号の測定、焼戻しマルテンサイト分率の測定)、引張特性の評価(引張強度の測定)、耐水素脆性、鋼材中の水素量の評価を行った。
 (旧オーステナイト結晶粒度番号の測定)
 鋼線の横断面D/4位置が観察面となるように試料を採取し、この採取した試料を樹脂に埋め込み、研磨後にピクリン酸系の腐食液を用いて旧オーステナイト結晶粒界を現出させ、JIS G 0551:2005に規定の方法で旧オーステナイト結晶粒度番号を求めた。このとき光学顕微鏡にて400倍で確認し、いずれの組織も、全組織に対し、焼戻しマルテンサイトが80面積%以上であることを確認した。
 (引張特性の評価(コイリング性の評価))
 JIS14号試験片に加工して、JIS Z 2241:1998に従って、万能試験機にてクロスヘッドスピード:10mm/分の条件で引張試験を行い、引張強度TSを測定した。そして、引張強度TSが1900MPa以上を高強度(合格)と評価した。
 (耐水素脆性の評価(水素脆化試験))
 鋼線から幅:10mm×厚さ:1.5mm×長さ:65mmの試験片を切り出した。そして、試験片に対して4点曲げにより1400MPaの応力を作用させた状態で、試験片を、1L中に硫酸が0.5mol、チオシアン酸カリウムが0.01molとなるような混合溶液に浸漬した。ポテンションスタットを用いてSCE電極(飽和カロメル電極)よりも卑な-700mVの電圧をかけ、割れが発生するまでの時間(破断時間)を測定した。そして、破断時間が1100秒以上の場合を耐水素脆性に優れる(判定「○」)と評価した。
 (鋼線中の水素吸蔵量の測定)
 鋼線から幅:10mm×厚さ:1.0mm×長さ:30mmの試験片を切り出した。そして、試験片を無応力の状態で、1L中に硫酸が0.5mol、チオシアン酸カリウムが0.01molとなるような混合溶液に浸漬した。ポテンションスタットを用いてSCE電極よりも卑な-700mVの電圧をかけた状態で、15時間保持し、取り出した後、直ぐに、放出水素量の測定を実施した。放出水素量は、ガスクロマトグラフィ装置にて昇温分析により測定した。昇温速度は100℃/時で測定し、300℃までの放出水素量を水素吸蔵量とした。この水素吸貯蔵量が14.0ppm以上のときに、水素量判定「○」とした。
 その結果を、熱処理条件と共に、下記表3、4に示す。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 この結果から、次のように考察できる。鋼材No.5~18、27、31~42、57~63は、本発明で規定する要件を満足する実施例であり、良好な耐水素脆性が発揮されていることが分かる。
 これに対し、鋼材No.1~4、19~26、28~30、43~56のものは、本発明で規定するいずれかの要件を満足しない比較例であり、耐水素脆性が劣化している。即ち、鋼材No.1~3のものは、[C]+[Si]/8の値が本発明で規定する範囲に満たない例であり(C含有量も不足しており、水素量判定も「×」)、微細炭化物の個数が不足することが予想され、耐水素脆性が劣化している。また鋼材No.4のものは、C含有量が不足する例であり(水素量判定も「×」)、微細炭化物の個数が不足することが予想され、耐水素脆性が劣化している。
 鋼材No.19のものは、([C]+[Si]/8)の値が本発明で規定する範囲を超える例であり、焼入れ時に炭化物の溶け込みが不足することが予想され、水素量判定は「○」ではあるが、耐水素脆性が劣化している。鋼材No.20、21のものは、C含有量が過剰となっている例であり(([C]+[Si]/8)の値も本発明で規定する範囲を超えている)、焼入れ時に炭化物の溶け込みが不足することが予想され、水素量判定は「○」ではあるが、耐水素脆性が劣化している。
 鋼材No.22のものは、Si含有量が過剰となっている例であり(([C]+[Si]/8)の値も本発明で規定する範囲を超えている)、焼入れ時に炭化物の溶け込みが不足することが予想され、水素量判定は「○」ではあるが、耐水素脆性が劣化している。鋼材No.23のものは、([C]+[Si]/8)の値が本発明で規定する範囲に満たない例であり(水素量判定も「×」)、微細炭化物の個数が不足することが予想され、耐水素脆性が劣化している。
 鋼材No.24のものは、Si含有量が不足する例であり(([C]+[Si]/8)の値も本発明で規定する範囲に満たない、水素量判定も「×」)、微細炭化物の個数が不足することが予想され、耐水素脆性が劣化している。鋼材No.25のものは、Si含有量が過剰となっている例であり、焼入れ時に炭化物の溶け込みが不足することが予想され、水素量判定は「○」ではあるが、耐水素脆性が劣化している。
 鋼材No.26のものは、Si含有量が不足する例であり(水素量判定も「×」)、微細炭化物の個数が不足することが予想され、耐水素脆性が劣化している。鋼材No.28のものは、Mn含有量が過剰となっている例であり、水素量判定は「○」ではあるが、耐水素脆性が劣化している。
 鋼材No.29のものは、P含有量が過剰となっている例であり、Pが粒界に偏析して粒界が脆化することが予想され、水素量判定は「○」ではあるが、耐水素脆性が劣化している。鋼材No.30のものは、S含有量が過剰となっている例であり、粒界に偏析して粒界が脆化することが予想され、水素量判定は「○」ではあるが、耐水素脆性が劣化している。
 鋼材No.43~56のものは、炉加熱を行った例であり、旧オーステナイトの結晶粒度番号が小さくなっており(結晶粒が粗大化しており、且つ水素量判定も「×」)、耐水素脆性が劣化している。
 本発明の高強度ばね用鋼線材は、焼戻しマルテンサイトが80面積%以上、引張強度が1900MPa以上の高強度ばね用鋼線材であって、所定の化学成分組成を満足し、且つCとSiとが下記(1)式の関係を満足し、旧オーステナイト結晶粒度番号が10番以上であると共に、水素吸蔵量が14.0ppm以上であるものとすることによって、合金元素の添加量を抑制しても、優れた耐水素脆性を確保できる。
 0.73%≦[C]+[Si]/8≦0.90%  …(1)    
 但し、[C]および[Si]は、夫々CおよびSiの含有量(質量%)を示す。

Claims (5)

  1.  焼戻しマルテンサイトが80面積%以上、引張強度が1900MPa以上の高強度ばね用鋼線材であって、
     前記鋼線材は、
     C:0.50~0.70%(質量%の意味、化学成分組成について以下同じ)、
     Si:1.50~2.3%、
     Mn:0.3~1.5%、
     P:0.015%以下(0%を含まない)、
     S:0.015%以下(0%を含まない)、および
     Al:0.001~0.10%を夫々含有し、且つCとSiとが下記(1)式の関係を満足し、残部が鉄および不可避不純物であり、旧オーステナイト結晶粒度番号が10番以上であると共に、水素吸蔵量が14.0ppm以上であることを特徴とする高強度ばね用鋼線材。
     0.73%≦[C]+[Si]/8≦0.90% …(1)    
     但し、[C]および[Si]は、夫々CおよびSiの含有量(質量%)を示す。
  2.  更に、下記(a)~(f)のいずれかに属する1種以上の元素を含有するものである請求項1に記載の高強度ばね用鋼線材。
     (a)Cu:0.7%以下(0%を含まない)およびNi:0.7%以下(0%を含まない)の少なくとも1種
     (b)Ti:0.10%以下(0%を含まない)
     (c)B:0.010%以下(0%を含まない)
     (d)Nb:0.10%以下(0%を含まない)およびMo:0.5%以下(0%を含まない)の少なくとも1種
     (e)V:0.4%以下(0%を含まない)
     (f)Cr:0.8%以下(0%を含まない)
  3.  直径が7~20mmである請求項1または2に記載の高強度ばね用鋼線材。
  4.  請求項1または2に記載の化学成分組成を満たす線材または鋼線を、下記の条件で高周波焼入れおよび焼戻しすることを特徴とする耐水素脆性に優れた高強度ばね用鋼線材の製造方法。
     (焼入れ条件)
     焼入れ加熱温度T1:850~1000℃
     100℃から焼入れ加熱温度T1までの平均昇温速度HR1:40℃/秒以上
     焼入れ加熱温度T1での保持時間t1:90秒以下
     焼入れ加熱後の300℃から80℃までの平均冷却速度CR1:5℃/秒以上、100℃/秒以下
     (焼戻し条件)
     焼戻し加熱温度T2:350~550℃
     100℃から焼戻し加熱温度T2までの平均昇温速度HR2:30℃/秒以上
     焼戻し加熱温度T2での保持時間t2:90秒以下
     焼戻し加熱後の焼戻し加熱温度T2から100℃までの平均冷却速度CR2:30℃/秒以上
  5.  請求項1または2に記載の高強度ばね用鋼線材を用いて得られた高強度ばね。
     
PCT/JP2013/082380 2012-12-21 2013-12-02 耐水素脆性に優れた高強度ばね用鋼線材およびその製造方法並びに高強度ばね WO2014097872A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201380060180.6A CN104797729B (zh) 2012-12-21 2013-12-02 耐氢脆性优异的高强度弹簧用钢线材及其制造方法以及高强度弹簧
MX2015006912A MX371408B (es) 2012-12-21 2013-12-02 Alambre de acero para muelles de alta tenacidad con excelente resistencia a fragilidad por hidrogeno, proceso de fabricacion del mismo y muelle de alta tenacidad.
EP13864637.7A EP2937434B1 (en) 2012-12-21 2013-12-02 Steel wire rod for high-strength spring with excellent hydrogen embrittlement resistance and manufacturing process therefor and high-strength spring
KR1020157015364A KR101768785B1 (ko) 2012-12-21 2013-12-02 내수소취성이 우수한 고강도 스프링용 강선재 및 그의 제조 방법, 및 고강도 스프링
US14/439,864 US9970072B2 (en) 2012-12-21 2013-12-02 High-strength spring steel wire with excellent hydrogen embrittlement resistance, manufacturing process therefor, and high-strength spring

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-279437 2012-12-21
JP2012279437A JP5973903B2 (ja) 2012-12-21 2012-12-21 耐水素脆性に優れた高強度ばね用鋼線およびその製造方法並びに高強度ばね

Publications (1)

Publication Number Publication Date
WO2014097872A1 true WO2014097872A1 (ja) 2014-06-26

Family

ID=50978208

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/082380 WO2014097872A1 (ja) 2012-12-21 2013-12-02 耐水素脆性に優れた高強度ばね用鋼線材およびその製造方法並びに高強度ばね

Country Status (8)

Country Link
US (1) US9970072B2 (ja)
EP (1) EP2937434B1 (ja)
JP (1) JP5973903B2 (ja)
KR (1) KR101768785B1 (ja)
CN (1) CN104797729B (ja)
MX (1) MX371408B (ja)
TW (1) TWI551693B (ja)
WO (1) WO2014097872A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017122827A1 (ja) * 2016-01-15 2017-07-20 株式会社神戸製鋼所 高強度ばね用ワイヤおよびその製造方法
WO2017122828A1 (ja) * 2016-01-15 2017-07-20 株式会社神戸製鋼所 高強度ばね用圧延材

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10557388B2 (en) * 2015-01-26 2020-02-11 Daido Steel Co., Ltd. Engine exhaust valve for large ship and method for manufacturing the same
US20180230566A1 (en) * 2015-07-27 2018-08-16 Nippon Steel & Sumitomo Metal Corporation Spring steel for suspension and method for producing same
CN106048451A (zh) * 2016-07-06 2016-10-26 安徽红桥金属制造有限公司 一种耐磨损合金弹簧钢及其热处理工艺
CN106011634A (zh) * 2016-07-26 2016-10-12 路望培 一种弹簧机械材料及其制备方法
KR101867689B1 (ko) * 2016-09-01 2018-06-15 주식회사 포스코 수소취성 저항성이 우수한 고강도 스프링용 강재 및 그 제조방법
KR101867709B1 (ko) * 2016-12-06 2018-06-14 주식회사 포스코 부식피로 저항성이 우수한 스프링용 선재, 강선 및 그들의 제조방법
KR101940873B1 (ko) * 2016-12-22 2019-01-21 주식회사 포스코 인성이 우수한 선재, 강선 및 그 제조 방법
KR20180074008A (ko) * 2016-12-23 2018-07-03 주식회사 포스코 수소취성 저항성이 우수한 고강도 스프링용 강재 및 그 제조방법
WO2018230717A1 (ja) * 2017-06-15 2018-12-20 新日鐵住金株式会社 ばね鋼用圧延線材
CN109972038B (zh) * 2019-04-01 2021-07-20 宝钢特钢韶关有限公司 一种超深井钻杆接头用钢及其制造方法
KR102355675B1 (ko) * 2019-07-12 2022-01-27 주식회사 포스코 고강도 스프링용 선재, 강선 및 그 제조방법
CN111979388A (zh) * 2020-07-28 2020-11-24 常州龙腾光热科技股份有限公司 槽式太阳能集热器65Mn弹簧板制造方法
KR102531464B1 (ko) * 2020-12-18 2023-05-12 주식회사 포스코 초고강도 스프링용 선재, 강선 및 그 제조방법
CN115074627A (zh) * 2022-06-28 2022-09-20 南京钢铁股份有限公司 一种卷尺用弹簧钢带及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002180198A (ja) * 2000-12-20 2002-06-26 Nippon Steel Corp 高強度ばね用鋼線
JP2004143482A (ja) 2002-10-22 2004-05-20 Nippon Steel Corp 高強度冷間成形ばね用鋼線とその製造方法
JP2006183137A (ja) 2004-11-30 2006-07-13 Nippon Steel Corp 高強度ばね用鋼線
JP2007191776A (ja) * 2006-01-23 2007-08-02 Kobe Steel Ltd 耐脆性破壊特性に優れた高強度ばね鋼およびその製造方法
JP2009256771A (ja) * 2008-03-27 2009-11-05 Jfe Steel Corp 耐遅れ破壊特性に優れた高強度ばね用鋼およびその製造方法
JP2011246811A (ja) * 2010-03-29 2011-12-08 Jfe Steel Corp ばね鋼およびその製造方法
WO2013179934A1 (ja) * 2012-05-31 2013-12-05 株式会社神戸製鋼所 コイリング性と耐水素脆性に優れた高強度ばね用鋼線およびその製造方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3817105B2 (ja) 2000-02-23 2006-08-30 新日本製鐵株式会社 疲労特性の優れた高強度鋼およびその製造方法
JP3934303B2 (ja) 2000-03-31 2007-06-20 株式会社神戸製鋼所 高強度マルテンサイト鋼の製造方法
JP3749656B2 (ja) 2000-09-19 2006-03-01 株式会社神戸製鋼所 靭性に優れた鋼材
EP1347069B1 (en) 2000-12-20 2007-11-07 Nippon Steel Corporation High-strength spring steel and spring steel wire
JP2002212665A (ja) 2001-01-11 2002-07-31 Kobe Steel Ltd 高強度高靭性鋼
JP2003003241A (ja) * 2001-06-26 2003-01-08 Nippon Steel Corp 高強度ばね用鋼線
US10131973B2 (en) 2004-11-30 2018-11-20 Nippon Steel & Sumitomo Metal Corporation High strength spring steel and steel wire
JP4476863B2 (ja) 2005-04-11 2010-06-09 株式会社神戸製鋼所 耐食性に優れた冷間成形ばね用鋼線
JP4423254B2 (ja) * 2005-12-02 2010-03-03 株式会社神戸製鋼所 コイリング性と耐水素脆化特性に優れた高強度ばね鋼線
CN101484601B (zh) * 2006-05-10 2012-07-25 住友金属工业株式会社 热挤压成形钢板构件及其制造方法
US8936236B2 (en) 2009-09-29 2015-01-20 Chuo Hatsujo Kabushiki Kaisha Coil spring for automobile suspension and method of manufacturing the same
JP5653022B2 (ja) 2009-09-29 2015-01-14 中央発條株式会社 腐食疲労強度に優れるばね用鋼、及びばね
JP5711539B2 (ja) 2011-01-06 2015-05-07 中央発條株式会社 腐食疲労強度に優れるばね

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002180198A (ja) * 2000-12-20 2002-06-26 Nippon Steel Corp 高強度ばね用鋼線
JP2004143482A (ja) 2002-10-22 2004-05-20 Nippon Steel Corp 高強度冷間成形ばね用鋼線とその製造方法
JP2006183137A (ja) 2004-11-30 2006-07-13 Nippon Steel Corp 高強度ばね用鋼線
JP2007191776A (ja) * 2006-01-23 2007-08-02 Kobe Steel Ltd 耐脆性破壊特性に優れた高強度ばね鋼およびその製造方法
JP2009256771A (ja) * 2008-03-27 2009-11-05 Jfe Steel Corp 耐遅れ破壊特性に優れた高強度ばね用鋼およびその製造方法
JP2011246811A (ja) * 2010-03-29 2011-12-08 Jfe Steel Corp ばね鋼およびその製造方法
WO2013179934A1 (ja) * 2012-05-31 2013-12-05 株式会社神戸製鋼所 コイリング性と耐水素脆性に優れた高強度ばね用鋼線およびその製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017122827A1 (ja) * 2016-01-15 2017-07-20 株式会社神戸製鋼所 高強度ばね用ワイヤおよびその製造方法
WO2017122828A1 (ja) * 2016-01-15 2017-07-20 株式会社神戸製鋼所 高強度ばね用圧延材

Also Published As

Publication number Publication date
MX2015006912A (es) 2015-09-16
EP2937434B1 (en) 2019-02-20
JP5973903B2 (ja) 2016-08-23
EP2937434A1 (en) 2015-10-28
CN104797729B (zh) 2018-01-02
KR20150081366A (ko) 2015-07-13
KR101768785B1 (ko) 2017-08-17
TWI551693B (zh) 2016-10-01
CN104797729A (zh) 2015-07-22
US9970072B2 (en) 2018-05-15
MX371408B (es) 2020-01-29
TW201441382A (zh) 2014-11-01
JP2014122393A (ja) 2014-07-03
EP2937434A4 (en) 2017-01-04
US20150292052A1 (en) 2015-10-15

Similar Documents

Publication Publication Date Title
JP5973903B2 (ja) 耐水素脆性に優れた高強度ばね用鋼線およびその製造方法並びに高強度ばね
JP5364859B1 (ja) コイリング性と耐水素脆性に優れた高強度ばね用鋼線およびその製造方法
JP4423254B2 (ja) コイリング性と耐水素脆化特性に優れた高強度ばね鋼線
JP6452454B2 (ja) 高強度ばね用圧延材および高強度ばね用ワイヤ
JP6027302B2 (ja) 高強度焼戻し省略ばね用鋼
WO2011111872A1 (ja) 耐遅れ破壊特性に優れた高強度鋼材と高強度ボルト、及び、その製造方法
JP5608145B2 (ja) 耐遅れ破壊性に優れたボロン添加高強度ボルト用鋼および高強度ボルト
JP6212473B2 (ja) 高強度ばね用圧延材及びこれを用いた高強度ばね用ワイヤ
JP2008202124A (ja) 高強度ばね用鋼線及び高強度ばね並びにそれらの製造方法
JP5913214B2 (ja) ボルト用鋼およびボルト、並びにそれらの製造方法
JP5543814B2 (ja) 熱処理用鋼板及び鋼部材の製造方法
JP5655627B2 (ja) 耐水素脆化特性に優れた高強度ばね用鋼
JP5146063B2 (ja) 耐内部疲労損傷特性に優れた高強度鋼及びその製造方法
JP4133515B2 (ja) 耐へたり性及び耐割れ性に優れたばね用鋼線
JP2012132097A (ja) ばね用鋼、ばね用鋼線及びばね
JP5601861B2 (ja) ボロン鋼圧延焼鈍鋼板の製造法
JP2020509158A (ja) 耐腐食疲労性に優れたばね用線材及び鋼線並びにそれらの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13864637

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14439864

Country of ref document: US

Ref document number: 2013864637

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: MX/A/2015/006912

Country of ref document: MX

ENP Entry into the national phase

Ref document number: 20157015364

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE