WO2014097851A1 - 眼鏡レンズ - Google Patents

眼鏡レンズ Download PDF

Info

Publication number
WO2014097851A1
WO2014097851A1 PCT/JP2013/082088 JP2013082088W WO2014097851A1 WO 2014097851 A1 WO2014097851 A1 WO 2014097851A1 JP 2013082088 W JP2013082088 W JP 2013082088W WO 2014097851 A1 WO2014097851 A1 WO 2014097851A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
power
refractive
prescription
spectacle
Prior art date
Application number
PCT/JP2013/082088
Other languages
English (en)
French (fr)
Inventor
和磨 神津
Original Assignee
Hoya株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya株式会社 filed Critical Hoya株式会社
Priority to AU2013365258A priority Critical patent/AU2013365258A1/en
Priority to KR1020157017470A priority patent/KR101779270B1/ko
Priority to JP2014553051A priority patent/JP5969631B2/ja
Priority to CN201380066900.XA priority patent/CN105026987B/zh
Priority to US14/653,350 priority patent/US10330952B2/en
Priority to ES13866155T priority patent/ES2963720T3/es
Priority to EP13866155.8A priority patent/EP2937730B1/en
Publication of WO2014097851A1 publication Critical patent/WO2014097851A1/ja
Priority to AU2017201961A priority patent/AU2017201961B2/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • G02C7/06Lenses; Lens systems ; Methods of designing lenses bifocal; multifocal ; progressive
    • G02C7/061Spectacle lenses with progressively varying focal power
    • G02C7/068Special properties achieved by the combination of the front and back surfaces
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • G02C7/024Methods of designing ophthalmic lenses
    • G02C7/027Methods of designing ophthalmic lenses considering wearer's parameters
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • G02C7/06Lenses; Lens systems ; Methods of designing lenses bifocal; multifocal ; progressive
    • G02C7/061Spectacle lenses with progressively varying focal power
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • G02C7/06Lenses; Lens systems ; Methods of designing lenses bifocal; multifocal ; progressive
    • G02C7/061Spectacle lenses with progressively varying focal power
    • G02C7/063Shape of the progressive surface
    • G02C7/065Properties on the principal line

Definitions

  • the present invention provides a first refractive part having a first refractive power, a second refractive part having a second refractive power stronger than the first refractive power, and a refractive power from the first refractive part to the second refractive part.
  • the present invention relates to a spectacle lens having a progressive refraction section that changes progressively.
  • An eyeglass lens having a progressive refraction part in which refractive power changes progressively is known.
  • a progressive-power lens for both near and far is designed such that the power gradually changes on the main line of sight so that the wearer can continuously and clearly see from a long distance to a short distance.
  • Many of this type of spectacle lenses are designed according to the individual prescription powers and wearing conditions of the left and right eyes, but are suitable when there is a difference in the left and right distance prescription powers, such as when the wearer is blind. It was not designed properly.
  • non-congruent refers to the case where there is a frequency difference between the left and right eyes regardless of the size.
  • a non-sighted wearer who wears eyeglasses with different distance power on the left and right, sees the index located on the side when the glasses are worn in the left and right gaze directions due to the difference in the prism action of the left and right lenses.
  • this type of convergence or diverging changes the position on the lens through which the line of sight passes from the position assumed in the design, thus deteriorating aberrations and the like for both eyes and hindering good binocular vision It was.
  • Patent Document 1 in US Pat. No. 8,162,478 (hereinafter referred to as “Patent Document 1”), good binocular vision is assured with a pair of progressive power lenses having different distance powers on the left and right. Things have been proposed. Specifically, Patent Document 1 discloses a pair of progressive power lens components having different distance powers on the left and right, a pair of progressive power lens components having the same distance power and addition power on the left and right, Dividing into a pair of monofocal lens components of different frequencies, and when viewing with binocular vision using a lens having a monofocal lens component, the line of sight is moved from a distance from the front to a distance other than the front toward a predetermined azimuth angle.
  • the ratio with respect to the average power distribution and astigmatism distribution of the lens component for one eye or both eyes of the lens having a progressive power lens component A technique for suppressing the occurrence of aberrations other than the left and right distance power differences in the difference between the average power and astigmatism with respect to the left and right lines of sight in binocular vision by adding a correction according to binocular vision is disclosed.
  • Patent Document 1 proposes a lens that guarantees good binocular vision by reducing the difference in aberration with respect to the left and right lines of sight in a pair of progressive power lenses having different distance powers on the left and right. Has been. However, there is a constant desire to guarantee good binocular vision at a higher level. Therefore, as a result of intensive studies, the present inventor has found a spectacle lens suitable for guaranteeing good binocular vision at a higher level.
  • An eyeglass lens includes a first refractive part having a first refractive power, a second refractive part having a second refractive power stronger than the first refractive power, and a first refractive part to a first refractive part.
  • a pair of spectacle lenses having a progressive refraction part in which the refractive power gradually changes to a birefringence part, the first refractive power being different on the left and right, and the first refraction when the wearer views the object through the spectacle lens
  • Additive effect that substantially acts on the left and right eyes of the wearer on the main line of sight from the first refracting part to the second refracting part when the left and right gaze directions are shifted depending on the force being different on the left and right Therefore, the length of the left and right progressive refracting portions and the rate of change of the addition power are different from each other according to the shift in the left and right gaze direction.
  • the difference in the addition effect that substantially acts on the left and right eyes of the wearer on the main gazing line from the first refracting portion to the second refracting portion can be suppressed.
  • the adjustment power required for the left and right eyes can be kept at the same level, and in this case, good intermediate vision and near vision with both eyes can be achieved.
  • the difference in aberrations on the left and right eyes is reduced, so that the quality of the images formed on the retinas of the left and right eyes can be made comparable. Suppression of factors that inhibit binocular visual function is achieved. Thereby, for example, it is possible to ensure good binocular vision at each object distance from far to near.
  • the spectacle lens having a weak first refractive power has a shorter progressive refractive part and a higher rate of change in addition.
  • the eyeglass lens having the weaker first refractive power among the pair of eyeglass lenses has, for example, a degree of addition as it approaches the second refractive part from the design center defined based on a predetermined hidden mark on the main gazing line.
  • the rate of change is high.
  • the spectacle lens having a higher first refractive power has, for example, a lower rate of change in addition as it approaches the second refracting portion from the design center on the main gazing line.
  • the left and right progressive refracting parts of the pair of spectacle lenses have different widths, for example.
  • the length of the left and right progressive refraction parts and the rate of change of the addition power differ from each other in accordance with the shift in the left and right gaze direction.
  • the difference in the addition effect that substantially acts on the left and right eyes of the wearer on the main gazing line from the first refracting part to the second refracting part is suppressed, and the left and right Since the difference in aberrations on each line of sight is reduced, it is possible to ensure good binocular vision at each object distance from far to near, for example.
  • FIG. 3 is a diagram mainly for explaining the processing step S2 of FIG. 2 and shows an example of a virtual optical model corresponding to a reference lens and a schematic lens layout. It is a figure for demonstrating mainly process step S3 and S4 of FIG. 2, and shows a reference
  • FIG. 3 is a diagram mainly for explaining the processing step S2 of FIG. 2 and shows an example of a virtual optical model corresponding to a reference lens and a schematic lens layout. It is a figure for demonstrating mainly process step S3 and S4 of FIG. 2, and shows a reference
  • FIG. 3 is a diagram mainly for explaining the processing steps S6 and S7 of FIG. 2 and shows a virtual optical model example corresponding to a prescription lens and a prescription side principal ray passing position. It is a figure mainly explaining process step S8 of FIG. 2, and it shows about a correction ratio.
  • FIG. 3 is a diagram mainly for explaining the processing step S9 of FIG. 2 and shows a transmission number distribution of each lens model.
  • FIG. 3 is a diagram mainly for explaining the processing step S ⁇ b> 11 of FIG. 2, and shows a curve of addition power before and after performing aspherical correction considering the wearing state.
  • FIG. 1 is a block diagram illustrating a configuration of a spectacle lens manufacturing system 1 according to the present embodiment.
  • a spectacle lens manufacturing system 1 includes a spectacle store 10 that orders spectacle lenses according to prescriptions for customers (wearers), and spectacle lenses that manufacture spectacle lenses in response to an order from the spectacle store 10. It has a lens manufacturing factory 20.
  • the order to the spectacle lens manufacturing factory 20 is made through a predetermined network such as the Internet or data transmission by FAX.
  • the orderer may include ophthalmologists and general consumers.
  • the spectacle store 10 is provided with a store computer 100.
  • the store computer 100 is, for example, a general PC (Personal Computer), and is installed with software for ordering eyeglass lenses from the eyeglass lens manufacturing factory 20.
  • Lens data and frame data are input to the store computer 100 through operation of a mouse, a keyboard, and the like by an eyeglass store staff.
  • the lens data includes, for example, prescription values (base curve, spherical power, astigmatism power, astigmatism axis direction, prism power, prism base direction, add power, pupil distance (PD), pupillary distance, etc.)
  • Wear conditions corneal apex distance, forward tilt angle, frame tilt angle
  • spectacle lens types single focal sphere, single focal aspheric, multifocal (double focal, progressive), coating (dyeing, hard coating, anti-reflection) Film, UV cut etc.
  • layout data according to customer's request, etc.
  • the frame data includes the shape data of the frame selected by the customer.
  • the frame data is managed by, for example, a barcode tag, and can be obtained by reading the barcode tag attached to the frame by a barcode reader.
  • the store computer 100 transmits order data (lens data and frame data) to the eyeglass lens manufacturing factory 20 via the Internet, for example.
  • FIG. 20 Glasses lens manufacturing factory 20
  • a LAN Local Area Network
  • the spectacle lens design computer 202 and the spectacle lens processing computer 204 are general PCs, and a spectacle lens design program and a spectacle lens processing program are installed, respectively.
  • Order data transmitted from the store computer 100 via the Internet is input to the host computer 200.
  • the host computer 200 transmits the input order data to the spectacle lens design computer 202.
  • the spectacle lens manufacturing factory 20 After receiving the ordering data, the spectacle lens manufacturing factory 20 designs and processes both the inner and outer surfaces of the unprocessed block piece so that the prescription of the wearer is satisfied.
  • the frequencies of the entire production range are divided into a plurality of groups, and the outer surface (convex surface) curve shape (spherical shape or aspherical shape) adapted to the frequency range of each group.
  • a semi-finished blank having a lens diameter may be prepared in advance for the order of spectacle lenses.
  • the spectacle lens manufacturing factory 20 manufactures spectacle lenses suitable for the wearer's prescription by only performing inner surface (concave surface) processing (and target lens processing).
  • the eyeglass lens design computer 202 is installed with a program for designing eyeglass lenses according to orders, creates lens design data based on order data (lens data), and based on order data (frame data). Create the target lens processing data.
  • the design of the spectacle lens by the spectacle lens design computer 202 will be described in detail later.
  • the spectacle lens design computer 202 transfers the created lens design data and target lens shape processing data to the spectacle lens processing computer 204.
  • the operator sets the block piece on the processing machine 206 such as a curve generator and inputs a processing start instruction to the spectacle lens processing computer 204.
  • the eyeglass lens processing computer 204 reads the lens design data and the target lens shape processing data transferred from the eyeglass lens design computer 202 and drives and controls the processing machine 206.
  • the processing machine 206 grinds and polishes the inner surface and the outer surface of the block piece according to the lens design data to produce the inner surface shape and the outer surface shape of the spectacle lens. Further, the processing machine 206 processes the outer peripheral surface of the uncut lens after the inner surface shape and the outer surface shape are manufactured into a peripheral shape corresponding to the target lens shape.
  • ⁇ Eyeglass lenses that have been processed into a lens shape are subjected to various coatings such as dyeing, hard coating, antireflection coating, and UV protection according to the order data. Thereby, the spectacle lens is completed and delivered to the spectacle store 10.
  • FIG. 2 is a flowchart showing a spectacle lens design process performed by the spectacle lens design computer 202.
  • it is a pair of spectacle lenses having different distance diopters that should be prescribed to a non-sighted wearer, and is a one-sided progressive type having a progressive refractive element on the inner surface or outer surface, or a progressive refractive element on the outer surface and inner surface.
  • double-sided progressive type distributed on both sides
  • double-sided composite progressive type with longitudinally progressive refractive elements distributed on the outer surface and laterally progressive refractive elements distributed on the inner surface .
  • this design process is a pair of spectacle lenses whose power at a predetermined reference point is different on the left and right sides.
  • the present invention can also be applied to a spectacle lens of another item group having a progressive refraction part in which refractive power gradually changes.
  • FIG. 12 shows a state in which a non-sighted wearer views a near object point through a spectacle lens having the following prescription power.
  • the left and right eyeglass lenses are shown as a single lens having a common shape, but in actuality, the left and right eyeglass lenses have different shapes depending on the prescription power.
  • the wearer places both near object points through points other than the near reference point N laid out on the lens (the power of the near portion is set and the addition power is 2.50D). You will see it visually.
  • the right eye directs its line of sight toward the near object point through a point P U (a point where the addition power is less than 2.50D) above the near reference point N, and the left eye uses the near reference point.
  • a line of sight is directed to a near object point through a point P D below the point N (a point where the addition power exceeds 2.50D or 2.50D).
  • the addition effect that substantially acts on the left and right eyes varies depending on the deviation of the left and right gaze directions. Therefore, theoretically, different accommodation powers are required for the left and right eyes.
  • the accommodation forces acting on the left and right eyes are always equal (Herring's law of equal innervation). Therefore, the wearer is forced to view the near object point in a state where the effect of joining which acts substantially on the left and right eyes is different and the eye is burdened.
  • the addition effect that substantially acts on the eye is also expressed as “substantial addition degree”.
  • the present inventor found that the difference in the left and right distance prescription powers and the closer the object distance, the larger the difference in the left and right substantial addition power.
  • FIG. As an example of the difference in addition, the state of viewing near object points is shown. That is, the present inventor has found that the above problem occurs not only in the near field but also in a distance (for example, a far distance or an intermediate distance) that is further away from the near field.
  • glasses that can solve the above problem and guarantee good binocular vision at each object distance (for example, from far to near).
  • a lens is designed.
  • the spectacle lens design process by the spectacle lens design computer 202 will be described in detail with reference to FIG.
  • the spectacle lens design computer 202 defines a reference lens based on the prescription value of the wearer received from the store computer 100 via the host computer 200.
  • the reference lens is a virtual eyeglass lens that is virtually defined corresponding to the physiologically equal adjustment power of the left and right eyes, and the distance power is a value obtained by averaging the distance prescription power on the left and right. Is set. That is, the reference lens is a spectacle lens having a progressive refraction part, and has a common distance power and addition power on the left and right.
  • the distance power of the reference lens is defined as the reference power.
  • Reference frequency (left): S + 3.00 ADD2.50 It becomes.
  • the procedure for designing the right-eye lens and the left-eye lens in parallel will be described.
  • one lens is designed, and then the other lens is designed. It is good also as a procedure to be performed.
  • FIG. 3A shows an example of a virtual optical model constructed by the spectacle lens design computer 202.
  • the eyeball model E is shown at an angle when viewed from above (that is, the inner side of the figure is the nose side for both the left and right eyes.
  • a subscript character R is attached to a code corresponding to the right eye
  • a subscript L is attached to a code corresponding to the left eye.
  • these subscripts are not attached
  • the axial length of the eyeball differs between hyperopia and myopia. Therefore, the spectacle lens design computer 202 stores in advance how much the axial length differs depending on the degree of hyperopia and myopia. Among them, the eyeglass lens design computer 202 selects an appropriate eyeball model E according to the wearer's prescription values (spherical refractive power, astigmatic refractive power) included in the order data, as shown in FIG. Then, the selected eyeball model E is placed in the virtual model space. More specifically, the eyeball model E R and the eyeball model E L is the eyeball rotation center O ER and eyeball rotating center O EL is placed in a position away pupillary distance PD.
  • the eyeball model E R and the eyeball model E L is the eyeball rotation center O ER and eyeball rotating center O EL is placed in a position away pupillary distance PD.
  • the eyeglass lens design computer 202 has reference lens models L BR and L BL corresponding to the reference lens at positions where predetermined intercorneal vertex distances CVD R and CVD L are spaced from the eyeball models E R and E L. Place.
  • Corneal vertex distance CVD is a distance between the rear vertex and corneal vertex of an eyeball model E of the reference lens model L B, for example, 12.5 mm.
  • the center thickness of the reference lens model L B is determined based on the refractive index or the like of the prescription values and glass material.
  • the reference lens model L B is the inclination of the spectacle lens (forward tilt, the frame tilt angle) may be placed in the virtual model space in consideration of.
  • the tangent plane of the outer surface vertex of the reference lens model L B is defined as a tangent plane TP
  • the intersection of the front view of the line of sight of the eyeball model E R and the tangent plane TP is defined as the reference point P TPR
  • the reference points PTP are at the lens design center, and the design center is an intermediate point between a pair of hidden marks (described later).
  • FIG. 3B schematically shows the layout of the spectacle lens designed in this design process.
  • the spectacle lens according to the present embodiment is on the main line of sight LL ′, and the distance reference point F (the power of the distance portion is set above the lens design center). Point) and a near reference point N is arranged below the lens design center.
  • the main gazing line LL ' is directed from the middle of the progressive zone toward the near reference point N and is inset to the nose side in consideration of eye convergence.
  • the positions of the near reference point N and the far reference point F are specified based on a pair of hidden marks M that are directly engraved on the lens surface.
  • the spectacle lens according to the present embodiment also has different positions on the lens surface of the near reference point N and the far reference point F.
  • the eyeglass lens design computer 202 corresponds to a reference object plane including a plurality of object planes arranged at different object distances based on the reference lens model L B and having physiologically equal adjustment powers for the left and right eyes. Define the same for both left and right.
  • FIGS. 4A and 4B are diagrams showing a common reference object plane defined in the virtual model space. As shown in FIG. 4B, the reference object plane is a continuous single plane that smoothly connects the object planes arranged on the respective object distances. In FIG. For convenience, only the discrete object surfaces used in the design of the spectacle lens are shown among the reference object surfaces. As illustrated in FIG.
  • the object plane used in the design of the spectacle lens has an object distance corresponding to the near power (a target working distance in the near field (distance for near work)). , 400 mm here), corresponding to the object distance (500 mm,... 1000 mm,%) Corresponding to the power at the sample point on the main gazing line LL ′ in the progressive zone, and the distance power (reference power).
  • Object surfaces arranged at each of the object distances are included. Incidentally, in FIG.
  • a common frequency distribution is set on the left and right, and when the left and right prescription frequencies are different, the prescription powers are different from each other with respect to the set frequency distribution.
  • the eyeglass lens was designed with the correction applied, and as a result of the correction, what distance (object distance) the wearer would finally look at was determined. For this reason, the object plane assumed in the design is different on the left and right due to the frequency difference between the left and right. However, when a person actually sees an object, the left and right lines of sight capture the same object to realize binocular vision.
  • the left and right common reference object plane is based on the virtual reference lens model L B. Defined.
  • the spectacle lens design computer 202 performs an optical calculation process using ray tracing or the like so that a principal ray (dashed line) from an arbitrary point P on the object plane is obtained.
  • the positions (reference side principal ray passing positions P LBR and P LBL ) on the left and right reference lens models L BR and L BL (here, on the lens outer surface) that pass through are calculated.
  • the principal ray is defined as light rays toward the eyeball rotation center O E from any point P on the reference object surface.
  • Eyeglass lens design computer 202 such that the reference lens model L reference side principal ray passing position P LB on the outer surface throughout the B is arranged, the reference-side principal ray passage position corresponding to any of the points P of the object plane Calculate P LB.
  • each arbitrary point P of each object plane used in the calculation in this processing step S4 is referred to as a principal ray start point P.
  • the lens design is performed assuming that the curvature distribution (curvature distribution corresponding to the transmittance number distribution) exists only on the outer surface of each lens model.
  • the spectacle lens design computer 202 defines a reference spherical surface SR as an evaluation surface for evaluating a target transmittance number.
  • Reference sphere SR is centered on the eyeball rotation center O E of the eye model E, is a spherical surface with a radius the distance from the eyeball rotation center O E to the rear apex of the reference lens model L B.
  • Eyeglass lens design computer 202 for light passing through the near reference point N of the reference lens model L B, to calculate the transmission power of the reference spherical surface SR.
  • Transmission power which is calculated here is near power at the reference lens model L B
  • power obtained by subtracting the distance power from the near dioptric power is defined as the reference diopter ADD S.
  • the standard add power ADD S is a target power (ADD2.. 50).
  • the spectacle lens design computer 202 uses the virtual optical model constructed in the processing step S2 (virtual optical model construction) in FIG. 2 as the spectacle lens (prescription lens (right): S + 2.00 ADD2.50,
  • the prescription lens (left) is changed to another virtual optical model composed of an eyeball and a spectacle lens, assuming a state where the prescription lens (S + 4.00 ADD2.50) is worn.
  • FIG. 6 shows an example of the virtual optical model after being changed by the spectacle lens design computer 202.
  • the spectacle lens design computer 202 arranges prescription lens models L PR and L PL corresponding to the prescription lenses (right and left) for each of the eyeball models E R and E R.
  • Prescription lens model L P is intended to be defined by a well-known design method based on prescription values, a detailed description thereof will be omitted.
  • prescription lens model L P of this stage the left and right viewing direction of displacement due to the difference of the left and right prism action occurs.
  • a spectacle lens design computer 202 a prescription lens model L PR, located on the outer surface vertex reference point P TPR and placed in contact with the tangent plane TP at the outer surface vertex, prescription lens model L PL are arranged so that the outer surface vertex is located on the reference point P TPL and the outer surface vertex is in contact with the tangent plane TP.
  • Even central thickness of the prescription lens model L P is determined based on the refractive index or the like of the prescription values and glass material.
  • the reference lens model L B are disposed in the virtual model space in consideration of the inclination of the spectacle lens (forward tilt, the frame tilt angle), it is also arranged in consideration of the same condition prescription lens model L P .
  • the spectacle lens design computer 202 performs optical calculation processing using ray tracing or the like, thereby performing processing step S ⁇ b > 4 in FIG. 2 (calculation of a principal ray passing position on the reference lens model LB).
  • the distance between the reference point P TP and the reference-side principal ray passing position P LB is defined as a reference side distance D LB
  • the reference point P TP and prescription side principal ray passing position P LP Is defined as the prescription-side distance D Lp
  • Side distance D LB is calculated.
  • Prescription lens model L PR since prescribed power (S + 2.00) is minus side of the reference power (S + 3.00), on the principal sight line LL ', formulated side principal ray passing position P criteria towards LPR
  • the side principal ray passing position P LBR is closer to the reference point P TPR (see FIG. 7A).
  • the correction ratio R R increases as the prescription side distance D LPR increases (the prescription side principal ray passing position P LPR moves away from the reference point P TPR to the near reference point N. close enough), smaller in accordance with the difference of the prismatic effect of the prescription lens model L PR and the reference lens model L BR.
  • prescription lens model L PL since prescribed power (S + 4.00) is positive than the reference power (S + 3.00), on the principal sight line LL ', than prescription side principal ray passing position P LPL
  • the reference chief ray passing position P LBL is closer to the reference point P TPL (see FIG. 7A).
  • the correction ratio R L increases as the prescription side distance D LPL increases (the prescription side principal ray passing position P LPL moves away from the reference point P TPL to the near reference point N. The closer it is, the greater the difference in prism action between the prescription lens model LPL and the reference lens model LBL .
  • Eyeglass lens design computer 202 is obtained by extracting only curvature distribution for adding progressive elements of the curvature distribution (lens overall curvature distribution resulting in progressive action expected by the reference lens model L B, or less, the referred to as "progressive distribution”.) by scaling operation based on the correction ratio R corresponding to the respective principal rays starting point P, and corrects the curvature distribution of the prescription lens model L P.
  • the prescription lens model L PR the change in diopter in the progressive zone is constant, indicated the curvature at each formulation side principal ray passing position P LPR disposed on the main fixation line LL 'in FIG. 7 (b) consider the case of correcting, based on the correction ratio R R to be.
  • (a curvature which eliminated the amount of distance power, the curvature component for adding a subscription effect) of curvature associated with the progressive refracting action at the position P LPR on prescription lens model L PR is the reference lens model L BR Manipulated to match the curvature associated with progressive refraction at the upper position P LBR .
  • the curvature of the subscriber effect partial in the reference-side principal ray passing position P LBR is rearranged in the formulation side principal ray passing position P LPR in accordance with the correction ratio R R. Since the correction ratio R R is different for each position, the change in diopter in the progressive band of the corrected will join change differently in the progressive band of the reference lens model L BR in accordance with the correction ratio R R (e.g.
  • the prescription lens model L PL the change in diopter in the progressive zone is constant, exhibit curvature in the main fixation line LL 'each formulation side principal ray passing position P LPL disposed on Figure 7 (c)
  • the curvature related to the progressive refraction at the position P LPL on the prescription lens model L PL is the reference lens model L BL.
  • the curvature of the addition effect at the reference side principal ray passage position P LBL is rearranged at the prescription side principal ray passage position P LPL corresponding to the correction ratio R L. Since the correction ratio R L differs depending on each position, the change in the addition in the progressive band after correction becomes different from the addition change in the progressive band of the reference lens model L BL according to the correction ratio R L (for example, the reference point). The closer to the near reference point N from PTPL, the lower the rate of change in addition.) In the prescription lens model L PL having a prescription power on the plus side with respect to the reference power, the entire progressive distribution follows the correction ratio R L and becomes a shape expanded with respect to the progressive distribution of the reference lens model L BL. Becomes longer, and the progressive zone becomes wider.
  • the problem shown in FIG. 12 (problem that places a burden on the wearer's eyes due to the difference between the right and left substantial addition powers) occurs, not as much as when viewing near. This is as described above.
  • the intermediate distance is viewed through an appropriate enlargement / reduction operation of the curvature distribution (progressive distribution) as grasped from the correction ratio R shown in FIGS. 7B and 7C.
  • the difference between the left and right real additions that occurred when the image is generated is preferably reduced.
  • FIG. 8 (a) is illustrates a transmission frequency distribution on the reference spherical surface SR of the reference lens model L B.
  • the transmission power distribution shown here is an astigmatism distribution and an average power distribution, and can be regarded as equivalent to a curvature distribution.
  • FIG. 8 (b) exemplary transmission frequency distribution on the reference spherical surface SR of the prescription lens model L PR
  • FIG. 8 (c) transmission frequency distribution on the reference spherical surface SR of the prescription lens model L PL Is illustrated.
  • Figure 8 transmission frequency distribution of a prescription lens model L PR illustrated in (b) (other words the curvature distribution) reduction operation in accordance with the correction ratio R R in each formulation side principal ray passing position P LPR is applied . That is, the contour and the average dioptric power distribution of the astigmatism distribution shape of the contour lines is reduced in accordance with the correction ratio R R, in principle, the reference point of the formulation side principal ray passing position P LPR as contour lines away from the P TPR The shape is further reduced.
  • transmission frequency distribution (other words the curvature distribution) of a prescription lens model L PL illustrated in FIG. 8 (c)
  • enlargement operation in accordance with the correction ratio R L at each formulation side principal ray passing position P LPL is subjected ing. That is, the shape of the contour line of the astigmatism distribution and the contour line of the average power distribution are enlarged according to the correction ratio R L , and in principle, the contour side of the prescription side principal ray passing position P LPL farther from the reference point P TPL The shape is further expanded.
  • Eyeglass lens design computer 202 the curvature distribution of the corrected prescription lens model L P at a processing step S9 2 (correction of the curvature distribution based on the correction ratio), the structure of the spectacle lens (inner surface aspherical type, the outer surface aspherical type, double-sided progressive type, is distributed to the outer surface and the inner surface of the prescription lens model L P in accordance with the double-sided complex type, etc.).
  • the determined provisional shape of a prescription lens model L P is determined provisional shape of a prescription lens model L P.
  • Eyeglass lens design computer 202 to the shape of the tentatively-determined prescription lens model L P at a processing step S10 FIG. 2 (allocation of curvature distribution), wearing conditions (e.g. corneal vertex distance, the forward inclination, An aspheric correction amount corresponding to the frame tilt angle is calculated and added.
  • wearing conditions e.g. corneal vertex distance, the forward inclination
  • An aspheric correction amount corresponding to the frame tilt angle is calculated and added.
  • FIGS. 9A and 9B respectively show the addition power (unit: D) before and after performing aspherical correction considering the wearing state, and the position (unit) on the progressive zone (on the main gazing line LL ′). : Mm).
  • the solid line indicates the addition of the spectacle lens of the present embodiment
  • the broken line indicates the addition of the conventional spectacle lens.
  • the conventional example refers to a lens that does not introduce the technical idea of enlarging or reducing the transmission power distribution in accordance with the difference between the left and right distance powers or the difference in substantial addition power. For this reason, in the conventional spectacle lens, as shown in FIG. 9A, the addition curves coincide with each other at least before the aspherical correction is performed.
  • the spectacle lens of the present embodiment has a curvature distribution correction by the processing step S9 (correction of curvature distribution based on the correction ratio) in FIG.
  • the addition curve is different on the left and right.
  • the conventional eyeglass lenses after performing the aspherical correction considering the wearing state, as shown in FIG. 9 (b), the conventional eyeglass lenses also have different addition curves on the left and right.
  • a lens with a distance power of zero such as an upper flat lens
  • aspherical correction considering the wearing state is substantially unnecessary.
  • a change in shape due to aspheric correction considering the wearing state is slight.
  • the left and right addition power curves are maintained substantially the same even after the aspherical correction is performed for items whose total power of the left and right distance dioptric powers is weak in the item group.
  • the item is independent of the total power of the left and right distance powers.
  • the addition curve is different on the left and right for all items included in the group (all items suitable for each prescription).
  • Eyeglass lens design computer 202 for light passing through the near reference point N of the prescription lens model aspherical correction is added by L P (aspherical correction considering the wearing condition) Processing step S11 in FIG. 2 Then, the actual addition ADD in actual calculation is obtained by calculating the transmission power (near power) on the reference spherical surface SR. Specifically, the prescription lens model L PR, by subtracting the transmission power of the reference spherical surface SR to (near power) was calculated, distance power from the calculated near power was (S + 2.00), substantially subscribing get a degree ADD R.
  • the transmission power (near power) on the reference spherical surface SR is calculated, and by subtracting the distance power (S + 4.00) from the calculated near power, the real addition power ADD L Get.
  • the real addition degrees ADD R and ADD L are values approximate to the target addition degree (ADD 2.50) as a result of performing the curvature distribution correction by the processing step S9 of FIG. 2 (correction of the curvature distribution based on the correction ratio). Has been corrected. Therefore, as described above, the difference in the joining effect that substantially acts on the left and right eyes of the wearer has already been reduced, and the burden on the wearer's eyes due to the difference in the left and right substantial addition power can be reduced. is there.
  • FIG. 11 is a diagram showing the relationship between the difference between the left and right real additions (unit: D) and the object side angle of view ⁇ (unit: °) along the main gazing line LL ′ (vertical direction). Note that the object-side angle of view ⁇ along the main gazing line LL ′ is based on the horizontal axis when viewed from the front, as shown in FIG.
  • the solid line indicates the difference between the left and right substantial additions in the present embodiment
  • the broken line indicates the difference between the left and right substantial additions in Patent Document 1
  • the dotted line indicates the left and right substantial additions in the conventional example. Indicates the difference.
  • FIG. 9 the conventional example in FIG.
  • FIG. 11 also indicates a lens that does not introduce the technical idea of enlarging or reducing the transmission power distribution according to the difference between the left and right distance powers or the difference in substantial addition power.
  • the difference between the left and right real additions increases.
  • patent document 1 the difference of the right and left substantial addition is suppressed satisfactorily over the entire progressive zone.
  • the difference of the right and left substantial addition is substantially zero over the whole progressive zone, and is suppressed more favorably. That is, according to the spectacle lens designed and manufactured by this design process, it is possible to guarantee good binocular vision at each object distance.

Landscapes

  • Health & Medical Sciences (AREA)
  • Ophthalmology & Optometry (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Eyeglasses (AREA)

Abstract

 第一の屈折力を有する第一屈折部、第一の屈折力よりも強い第二の屈折力を有する第二屈折部、及び第一屈折部から第二屈折部へ屈折力が累進的に変化する累進屈折部を有する、第一の屈折力が左右で異なる一対の眼鏡レンズであって、装用者が眼鏡レンズを通して物体を視たときに第一の屈折力が左右で異なることに依存して左右の視線方向がずれたときに、第一屈折部から第二屈折部にかけての主注視線上において装用者の左右夫々の眼に実質的に作用する加入効果の差が抑えられるように、左右の累進屈折部の長さ及び加入度の変化率が左右の視線方向のずれに応じて互いに異なるものを提供する。

Description

眼鏡レンズ
 本発明は、第一の屈折力を有する第一屈折部、第一の屈折力よりも強い第二の屈折力を有する第二屈折部、及び第一屈折部から第二屈折部へ屈折力が累進的に変化する累進屈折部を有する眼鏡レンズに関する。
 屈折力が累進的に変化する累進屈折部を有する眼鏡レンズが知られている。例えば遠近両用の累進屈折力レンズは、装用者が遠距離から近距離まで切れ目無く連続的に明視できるように主注視線上で度数が累進的に変化するデザインとなっている。この種の眼鏡レンズの多くは、左右眼の個々の処方度数や装用状態に応じて設計されているが、装用者が不同視の場合など、左右の遠用処方度数に差がある場合に好適な設計にはなっていなかった。なお、本明細書中、不同視は、その大小に拘わらず左右眼で度数差がある場合を指す。
 例えば、不同視の装用者は、遠用度数が左右で異なる眼鏡を装用したときに側方に位置する指標を両眼視すると、左右のレンズのプリズム作用の差に起因する左右の視線方向のずれを無くすため、調節緊張や調節弛緩を伴わない不自然な輻湊や開散を強いられていた。また、この種の輻湊や開散は、視線が通過するレンズ上の位置を設計上想定される位置から変えてしまうため、両眼に対する収差等を劣化させ、良好な両眼視を阻害する要因となっていた。
 そこで、米国特許第8,162,478号明細書(以下、「特許文献1」と記す。)に、遠用度数が左右で異なる一対の累進屈折力レンズにおいて、良好な両眼視を保証するものが提案されている。具体的には、特許文献1には、遠用度数が左右で異なる一対の累進屈折力レンズのレンズ成分を、遠用度数と加入度数とが左右で等しい一対の累進屈折力レンズ成分と、左右異なる度数の一対の単焦点レンズ成分とに分け、単焦点レンズ成分を有するレンズを装用して両眼視をする場合に、正面遠方から所定の方位角に向かって正面以外の遠方に視線を移すときの左右眼のレンズ上の視線移動距離の比率を算出し、累進屈折力レンズ成分を有するレンズの片眼用又は両眼用のレンズ成分の平均度数分布及び非点収差分布に対し、その比率に応じた補正を加えることにより、両眼視における左右の視線に対する平均度数及び非点収差の差において、左右の遠用度数差以外の収差の発生を抑制する、という技術が開示されている。
 このように、特許文献1には、遠用度数が左右で異なる一対の累進屈折力レンズにおいて、左右夫々の視線に対する収差の差を低減することで、良好な両眼視を保証するものが提案されている。しかし、良好な両眼視をより一層高いレベルで保証したいという要望は恒常的に存在する。そこで、本発明者は、鋭意検討を重ねた結果、良好な両眼視をより一層高いレベルで保証するのに好適な眼鏡レンズを見出した。
 本発明の一形態に係る眼鏡レンズは、第一の屈折力を有する第一屈折部、第一の屈折力よりも強い第二の屈折力を有する第二屈折部、及び第一屈折部から第二屈折部へ屈折力が累進的に変化する累進屈折部を有する、第一の屈折力が左右で異なる一対の眼鏡レンズであり、装用者が眼鏡レンズを通して物体を視たときに第一の屈折力が左右で異なることに依存して左右の視線方向がずれたときに、第一屈折部から第二屈折部にかけての主注視線上において装用者の左右夫々の眼に実質的に作用する加入効果の差が抑えられるように、左右の累進屈折部の長さ及び加入度の変化率が左右の視線方向のずれに応じて互いに異なる。
 本発明の一形態に係る眼鏡レンズによれば、第一屈折部から第二屈折部にかけての主注視線上において装用者の左右の眼に実質的に作用する加入効果の差が抑えられるため、例えば左右夫々の眼に必要な調節力を同程度に保つことができ、この場合、両眼での良好な中間視及び近方視が達成される。また、本発明の一形態に係る眼鏡レンズでは、左右夫々の視線上の収差の差が低減されているので、左右眼夫々の網膜上に形成される像の質を同程度にすることができ、両眼視機能を阻害する要因の抑制が達成される。これにより、例えば遠方から近方に至るまでの各物体距離で良好な両眼視を保証することが可能となる。
 また、例えば、一対の眼鏡レンズのうち第一の屈折力が弱い眼鏡レンズの方が累進屈折部の長さが短く且つ加入度の変化率が高い。
 また、一対の眼鏡レンズのうち第一の屈折力が弱い方の眼鏡レンズは、例えば、主注視線上において所定の隠しマークに基づいて定義される設計中心から第二屈折部へ近付くほど加入度の変化率が高い。また、一対の眼鏡レンズのうち第一の屈折力が高い方の眼鏡レンズは、例えば、主注視線上において設計中心から第二屈折部へ近付くほど加入度の変化率が低い。
 また、一対の眼鏡レンズが持つ左右の累進屈折部は、例えば幅も互いに異なる。
 また、眼鏡レンズのアイテム群は、例えば、夫々の処方に適するアイテムの全てにおいて、左右の累進屈折部の長さ及び加入度の変化率が左右の視線方向のずれに応じて互いに異なる。
 本発明の一形態に係る眼鏡レンズによれば、第一屈折部から第二屈折部にかけての主注視線上において装用者の左右の眼に実質的に作用する加入効果の差が抑えられると共に、左右夫々の視線上の収差の差が低減されるため、例えば遠方から近方に至るまでの各物体距離で良好な両眼視を保証することが可能となる。
本発明の実施形態の眼鏡レンズ製造システムの構成を示すブロック図である。 本発明の実施形態の眼鏡レンズ設計用コンピュータによる眼鏡レンズの設計工程のフローチャートを示す図である。 主に図2の処理ステップS2を説明するための図であり、基準レンズに対応する仮想光学モデル例及び概略的なレンズレイアウトを示す。 主に図2の処理ステップS3及びS4を説明するための図であり、基準物体面及び基準側主光線通過位置について示す。 主に図2の処理ステップS5を説明するための図であり、参照球面上の基準加入度について示す。 主に図2の処理ステップS6及びS7を説明するための図であり、処方レンズに対応する仮想光学モデル例及び処方側主光線通過位置について示す。 主に図2の処理ステップS8を説明するための図であり、補正比率について示す。 主に図2の処理ステップS9を説明するための図であり、各レンズモデルの透過度数分布を示す。 主に図2の処理ステップS11を説明するための図であり、装用状態を考慮した非球面補正を行う前後の加入度の曲線を示す。 主に図2の処理ステップS12を説明するための図であり、実質加入度の合わせ込みについて示す。 各例における左右の実質加入度の差を示す図である。 左右の実質加入度の差により装用者の眼に負担がかかるという従来の問題を説明するための図である。
 以下、図面を参照して、本発明の実施形態に係る眼鏡レンズ製造システムについて説明する。
[眼鏡レンズ製造システム1]
 図1は、本実施形態の眼鏡レンズ製造システム1の構成を示すブロック図である。図1に示されるように、眼鏡レンズ製造システム1は、顧客(装用者)に対する処方に応じた眼鏡レンズを発注する眼鏡店10と、眼鏡店10からの発注を受けて眼鏡レンズを製造する眼鏡レンズ製造工場20を有している。眼鏡レンズ製造工場20への発注は、インターネット等の所定のネットワークやFAX等によるデータ送信を通じて行われる。発注者には眼科医や一般消費者を含めてもよい。
[眼鏡店10]
 眼鏡店10には、店頭コンピュータ100が設置されている。店頭コンピュータ100は、例えば一般的なPC(Personal Computer)であり、眼鏡レンズ製造工場20への眼鏡レンズの発注を行うためのソフトウェアがインストールされている。店頭コンピュータ100には、眼鏡店スタッフによるマウスやキーボード等の操作を通じてレンズデータ及びフレームデータが入力される。レンズデータには、例えば処方値(ベースカーブ、球面屈折力、乱視屈折力、乱視軸方向、プリズム屈折力、プリズム基底方向、加入度数、瞳孔間距離(PD:Pupillary Distance)等)、眼鏡レンズの装用条件(角膜頂点間距離、前傾角、フレームあおり角)、眼鏡レンズの種類(単焦点球面、単焦点非球面、多焦点(二重焦点、累進)、コーティング(染色加工、ハードコート、反射防止膜、紫外線カット等))、顧客の要望に応じたレイアウトデータ等が含まれる。フレームデータには、顧客が選択したフレームの形状データが含まれる。フレームデータは、例えばバーコードタグで管理されており、バーコードリーダによるフレームに貼り付けられたバーコードタグの読み取りを通じて入手することができる。店頭コンピュータ100は、発注データ(レンズデータ及びフレームデータ)を例えばインターネット経由で眼鏡レンズ製造工場20に送信する。
[眼鏡レンズ製造工場20]
 眼鏡レンズ製造工場20には、ホストコンピュータ200を中心としたLAN(Local Area Network)が構築されており、眼鏡レンズ設計用コンピュータ202や眼鏡レンズ加工用コンピュータ204をはじめ多数の端末装置が接続されている。眼鏡レンズ設計用コンピュータ202、眼鏡レンズ加工用コンピュータ204は一般的なPCであり、それぞれ、眼鏡レンズ設計用のプログラム、眼鏡レンズ加工用のプログラムがインストールされている。ホストコンピュータ200には、店頭コンピュータ100からインターネット経由で送信された発注データが入力される。ホストコンピュータ200は、入力された発注データを眼鏡レンズ設計用コンピュータ202に送信する。
 眼鏡レンズ製造工場20では、発注データを受けた後、未加工のブロックピースに対し、装用者の処方が満たされるように、内面、外面の両面の設計及び加工が行われる。なお、眼鏡レンズ製造工場20では、生産性を向上させるため、全製作範囲の度数を複数のグループに区分し、各グループの度数範囲に適合した外面(凸面)カーブ形状(球面形状又は非球面形状)とレンズ径を有するセミフィニッシュトブランクが眼鏡レンズの注文に備えて予め用意されていてもよい。この場合、眼鏡レンズ製造工場20では、内面(凹面)加工(及び玉型加工)を行うだけで、装用者の処方に適した眼鏡レンズが製造される。
 眼鏡レンズ設計用コンピュータ202は、受注に応じた眼鏡レンズを設計するためのプログラムがインストールされており、発注データ(レンズデータ)に基づいてレンズ設計データを作成し、発注データ(フレームデータ)に基づいて玉型加工データを作成する。眼鏡レンズ設計用コンピュータ202による眼鏡レンズの設計は、後に詳細に説明する。眼鏡レンズ設計用コンピュータ202は、作成したレンズ設計データ及び玉型加工データを眼鏡レンズ加工用コンピュータ204に転送する。
 オペレータは、ブロックピースをカーブジェネレータ等の加工機206にセットして、眼鏡レンズ加工用コンピュータ204に対して加工開始の指示入力を行う。眼鏡レンズ加工用コンピュータ204は、眼鏡レンズ設計用コンピュータ202から転送されたレンズ設計データ及び玉型加工データを読み込み、加工機206を駆動制御する。加工機206は、ブロックピースの内面及び外面をレンズ設計データに従って研削・研磨して、眼鏡レンズの内面形状及び外面形状を作製する。また、加工機206は、内面形状及び外面形状作製後のアンカットレンズの外周面を玉型形状に対応した周縁形状に加工する。
 玉型加工後の眼鏡レンズには、発注データに従い、染色加工、ハードコート加工、反射防止膜、紫外線カット等の各種コーティングが施される。これにより、眼鏡レンズが完成して眼鏡店10に納品される。
[眼鏡レンズ設計用コンピュータ202による眼鏡レンズの具体的設計方法]
 図2は、眼鏡レンズ設計用コンピュータ202による眼鏡レンズの設計工程を示すフローチャートである。以下の説明では、不同視の装用者に処方すべき、遠用度数が左右で異なる一対の眼鏡レンズであり、累進屈折要素を内面若しくは外面に持つ片面累進型、又は累進屈折要素を外面と内面の両面に配分した両面累進型、又は縦方向の累進屈折要素を外面に配分し、横方向の累進屈折要素を内面に配分した両面複合累進型の、遠近両用の各種眼鏡レンズの設計を想定する。しかし、本設計工程は、所定の基準点における度数が左右で異なる一対の眼鏡レンズであり、片面累進型、両面累進型又は両面複合累進型の中近両用累進屈折力レンズや近々累進屈折力レンズなど、屈折力が累進的に変化する累進屈折部を有する他のアイテム群の眼鏡レンズにも適用することができる。
 また、眼光学上、厳密には、眼軸と視線の向きは僅かに異なるが、その差異による影響は実質的に無視できる程度である。そのため、本明細書においては、説明の便宜上、眼軸と視線の向きは眼光学上も一致するものと擬制し、眼軸と視線の向きとの相違はレンズのプリズム作用によってのみ引き起こされる前提とする。
 ここで、図12を用いて、遠用度数が左右で異なる一対の眼鏡レンズにて発生する問題点を説明する。図12では、不同視の装用者が次の処方度数の眼鏡レンズを通して近方物点を両眼視する状態を示す。
処方度数(右):S+2.00 ADD2.50
処方度数(左):S+4.00 ADD2.50
なお、図12では、便宜上、左右の眼鏡レンズを1枚の共通形状のレンズにて示すが、実際には、左右の眼鏡レンズは処方度数に応じて形状が異なる。
 図12に示されるように、不同視の装用者が近方物点を両眼視するとき、処方度数差に応じた左右のプリズム作用の差に起因して、左右の視線方向にずれが生じる。具体的には、装用者は、レンズ上にレイアウトされた近用基準点N(近用部の度数が設定される、加入度数が2.50Dの点)以外の点を通じて近方物点を両眼視することになる。図12の例では、右眼は、近用基準点Nよりも上方の点P(加入度数が2.50Dを下回る点)を通じて近方物点に視線を向け、左眼は、近用基準点Nよりも下方の点P(加入度数が2.50D又は2.50Dを上回る点)を通じて近方物点に視線を向ける。このように、左右の視線方向がずれることにより、左右の眼に実質的に作用する加入効果が異なる。そのため、理論上、左右の眼に対して異なる調節力が要求される。しかし、生理的には、左右の眼に働く調節力は常に等しい(ヘリングの等量神経支配の法則(Hering's law of equal innervation))。従って、装用者は、左右の眼に実質的に作用する加入効果が異なるという、眼に負担のかかる状態で近方物点を視ることを余儀なくされる。本明細書では、説明の便宜上、眼に実質的に作用する加入効果を「実質加入度」とも表現する。
 本発明者は、鋭意検討を重ねた結果、左右の遠用処方度数が異なるほど、また、物体距離が近いほど左右の実質加入度の差が大きくなることを見出し、図12では、左右の実質加入度の差が大きくなる例として近方物点を視る状態を示した。すなわち、本発明者は、上記問題が近方だけでなく、近方よりも離れた距離(例えば遠方や中間距離等)においても発生することを見出している。本実施形態では、以下に説明する設計工程を実施することにより、上記問題を解消して良好な両眼視を各物体距離(例えば遠方から近方に至るまで)で保証することが可能な眼鏡レンズが設計される。以下、図2を用いて、眼鏡レンズ設計用コンピュータ202による眼鏡レンズの設計工程を具体的に説明する。
[図2のS1(基準レンズの定義)]
 眼鏡レンズ設計用コンピュータ202は、ホストコンピュータ200を介して店頭コンピュータ100より受信した装用者の処方値に基づいて基準レンズを定義する。基準レンズは、生理的に左右眼の調節力が等しくなることに対応して、仮想的に定義される左右共通の眼鏡レンズであり、遠用度数が左右の遠用処方度数を平均した値に設定される。すなわち、基準レンズは累進屈折部を持つ眼鏡レンズであり、左右で共通の遠用度数及び加入度数を有するものである。以下、基準レンズの遠用度数を基準度数と定義する。例えば、
処方度数(右):S+2.00 ADD2.50
処方度数(左):S+4.00 ADD2.50
の場合、基準レンズは、
基準度数(右):S+3.00 ADD2.50
基準度数(左):S+3.00 ADD2.50
となる。なお、本実施形態では、右眼用レンズと左眼用レンズとが並行して設計される手順で説明するが、別の実施形態では、一方のレンズが設計され、その後、他方のレンズが設計される手順としてもよい。
[図2のS2(基準レンズに対応する仮想光学モデルの構築)]
 眼鏡レンズ設計用コンピュータ202は、装用者が眼鏡レンズ(基準レンズ:S+3.00 ADD2.50)を装用した状態を想定した、眼球及び眼鏡レンズからなる所定の仮想光学モデルを構築する。図3(a)は、眼鏡レンズ設計用コンピュータ202によって構築される仮想光学モデル例を示す。なお、図3(a)に例示されるように、仮想光学モデルを示す各図においては、眼球モデルEを頭上から眺める角度で示す(すなわち、左右眼共に、図の内側が鼻側となり、図の外側が耳側となる。)。また、以降の説明において、右眼に対応する符号には下付き文字Rを付し、左眼に対応する符号には下付き文字Lを付す。また、左右両方の眼に対応する説明には、これらの下付き文字を付さない。
 眼球の眼軸長は、遠視、近視で異なる。そこで、眼鏡レンズ設計用コンピュータ202は、遠視、近視の度合いで眼軸長がどれだけ異なるかを予め記憶している。その中から、眼鏡レンズ設計用コンピュータ202は、発注データに含まれる装用者の処方値(球面屈折力、乱視屈折力)に従って適切な眼球モデルEを選択し、図3(a)に示されるように、選択された眼球モデルEを仮想モデル空間に配置する。より詳細には、眼球モデルEと眼球モデルEは、眼球回旋中心OERと眼球回旋中心OELとが瞳孔間距離PDだけ離れた位置に配置される。
 眼鏡レンズ設計用コンピュータ202は、眼球モデルE、Eの夫々に対して所定の角膜頂点間距離CVD、CVDを空けた位置に、基準レンズに対応する基準レンズモデルLBR、LBLを配置する。角膜頂点間距離CVDは、基準レンズモデルLの後方頂点と眼球モデルEの角膜頂点との距離であり、例えば12.5mmである。なお、基準レンズモデルLの中心肉厚は、処方値や硝材の屈折率等に基づいて決定される。また、基準レンズモデルLは、眼鏡レンズの傾き(前傾角、フレームあおり角)を考慮して仮想モデル空間に配置されてもよい。また、説明の便宜上、基準レンズモデルLの外面頂点での接平面を接平面TPと定義し、眼球モデルEの正面視の視線と接平面TPとの交点を基準点PTPRと定義し、眼球モデルEの正面視の視線と接平面TPとの交点を基準点PTPLと定義する。これらの基準点PTPはレンズ設計中心にあり、設計中心は一対の隠しマーク(後述)の中間点である。
 図3(b)に、本設計工程にて設計される眼鏡レンズのレイアウトを概略的に示す。図3(b)に示されるように、本実施形態による眼鏡レンズは、主注視線LL’上であって、レンズ設計中心の上方に遠用基準点F(遠用部の度数が設定される点)が配置され、レンズ設計中心の下方に近用基準点Nが配置される。主注視線LL’は、累進帯の途中から近用基準点Nに向かい、眼の輻輳を考慮して鼻側へインセットされている。近用基準点N及び遠用基準点Fの位置は、レンズ面に直接刻印される一対の隠しマークMを基に特定される。本実施形態による眼鏡レンズは、後述するように、累進帯の長さ及び幅が左右で異なるため、近用基準点N及び遠用基準点Fのレンズ面上の位置も左右で異なる。
[図2のS3(左右共通の基準物体面の定義)]
 眼鏡レンズ設計用コンピュータ202は、異なる物体距離上に配置される複数の物体面を含む基準物体面を、基準レンズモデルLに基づき、生理的に左右眼の調節力が等しくなることに対応して左右共通に定義する。図4(a)及び図4(b)は、仮想モデル空間に定義される左右共通の基準物体面を示す図である。基準物体面は、図4(b)に示されるように、各物体距離上に配置される物体面を滑らかにつなぐ連続的な単一の面であるが、図4(a)では、説明の便宜上、基準物体面のうち、眼鏡レンズの設計上使用される離散的な物体面のみ示す。眼鏡レンズの設計上使用される物体面には、図4(a)に例示されるように、近用度数に対応する物体距離(目的とする近方の作業距離(近業目的距離)であり、ここでは400mm)、累進帯内の主注視線LL’上のサンプル点での度数に対応する物体距離(500mm、・・・1000mm、・・・)、遠用度数(基準度数)に対応する物体距離(5000mmなど無限遠とみなせる距離)の夫々に配置される物体面が含まれる。なお、図4(a)においては、眼球回旋中心OERと眼球回旋中心OELとを結ぶ線分に対して各度数に対応する物体距離だけ離れた位置に物体面を定義したが、別の実施形態では、眼球回旋中心OERと眼球回旋中心OELとの中点を中心とした、各度数に対応する物体距離を半径とする眼前半球面の位置に物体面を定義してもよい。
 従来の累進屈折部を有する眼鏡レンズの設計においては、一般に、左右で共通の度数分布が設定され、左右の処方度数が異なる場合には、設定された度数分布に対して夫々異なる処方度数に基づく補正がかけられて眼鏡レンズが設計されており、補正された結果として、装用者が最終的にどの距離を視るか(物体距離)が決まっていた。そのため、設計上想定する物体面は、左右の度数差に起因して左右で異なっていた。しかし、実際に人が物を見るときには、左右の視線が同一の物体を捉えて両眼視を実現している。このような、物体面が左右で異なる、すなわち遠方から近方にかけて加入屈折作用が左右で異なる眼鏡レンズを装用した場合であっても依然として、左右の眼には生理的に等しい調節力しか働かない。そのため、装用者は、両眼視した際に、左右レンズで想定した物体面の差、すなわち加入屈折作用の差に起因するボケを解消することはできない。一方、本実施形態では、上述したように、眼鏡レンズを設計する前に(又は眼鏡レンズの設計とは独立して)、左右共通の基準物体面が仮想的な基準レンズモデルLに基づいて定義される。すなわち、本実施形態では、左右の処方度数が異なる場合において、装用者がどの距離を視るかの指標を、生理的に左右の眼の調節力が等しくなることに対応して左右共通で予め定義した上で、以降のレンズ設計工程を実施する。そのため、左右で処方度数が異なる場合に、物体面が左右で異なるという、従来生じていた不都合が避けられる。
[図2のS4(基準レンズモデルL上の主光線通過位置の計算)]
 図4(a)に示されるように、眼鏡レンズ設計用コンピュータ202は、光線追跡等を用いた光学計算処理を行うことにより、物体面上の任意の点Pからの主光線(一点鎖線)が通過する、左右の各基準レンズモデルLBR、LBL上(ここではレンズ外面上)の位置(基準側主光線通過位置PLBR、PLBL)を計算する。ここで主光線は、基準物体面上の任意の点Pから眼球回旋中心Oに向かう光線として定義される。眼鏡レンズ設計用コンピュータ202は、基準レンズモデルLの外面全域に基準側主光線通過位置PLBが配置されるように、各物体面の任意の各点Pに対応する基準側主光線通過位置PLBを計算する。以下、説明の便宜上、本処理ステップS4にて計算に用いた各物体面の任意の各点Pを、主光線始点Pと記す。また、本工程以降の工程では、便宜上、原則、各種レンズモデルの外面にのみ曲率分布(透過度数分布に対応する曲率分布)が存在するものとしてレンズ設計が行われるものとする。
[図2のS5(基準加入度ADDの計算)]
 眼鏡レンズ設計用コンピュータ202は、図5に示されるように、目標とする透過度数を評価するための評価面として参照球面SRを定義する。参照球面SRは、眼球モデルEの眼球回旋中心Oを中心とし、眼球回旋中心Oから基準レンズモデルLの後方頂点までの距離を半径とした球面である。眼鏡レンズ設計用コンピュータ202は、基準レンズモデルLの近用基準点Nを通過する光線について、参照球面SR上の透過度数を計算する。ここで計算される透過度数は基準レンズモデルLにおける近用度数であり、近用度数から遠用度数を差し引いた度数が基準加入度ADDと定義される。参照球面SR上における近用度数と遠用度数との差が処方された加入度になることを想定して設計されたレンズにおいては、基準加入度ADDは左右共通の目標の度数(ADD2.50)となる。
[図2のS6(処方レンズに対応する仮想光学モデルの構築)]
 眼鏡レンズ設計用コンピュータ202は、図2の処理ステップS2(仮想光学モデルの構築)にて構築された仮想光学モデルを、装用者が眼鏡レンズ(処方レンズ(右):S+2.00 ADD2.50、処方レンズ(左):S+4.00 ADD2.50)を装用した状態を想定した、眼球及び眼鏡レンズからなる別の仮想光学モデルに変更する。図6は、眼鏡レンズ設計用コンピュータ202による変更後の仮想光学モデル例を示す。図6に示されるように、眼鏡レンズ設計用コンピュータ202は、眼球モデルE、Eの夫々に対して処方レンズ(右、左)に対応する処方レンズモデルLPR、LPLを配置する。処方レンズモデルLは、処方値に基づいて周知の設計方法により定義されるものであり、ここでの詳細な説明は省略する。なお、この段階の処方レンズモデルLでは、左右のプリズム作用の差に起因する左右の視線方向のずれが発生する。
 より詳細には、眼鏡レンズ設計用コンピュータ202は、処方レンズモデルLPRを、外面頂点が基準点PTPR上に位置しかつ外面頂点で接平面TPと接するように配置し、処方レンズモデルLPLを、外面頂点が基準点PTPL上に位置しかつ外面頂点で接平面TPと接するように配置する。なお、処方レンズモデルLの中心肉厚も、処方値や硝材の屈折率等に基づいて決定される。また、基準レンズモデルLが眼鏡レンズの傾き(前傾角、フレームあおり角)を考慮して仮想モデル空間に配置されている場合、処方レンズモデルLも同一の条件を考慮して配置される。
[図2のS7(処方レンズモデルL上の主光線通過位置の計算)]
 図6に示されるように、眼鏡レンズ設計用コンピュータ202は、光線追跡等を用いた光学計算処理を行うことにより、図2の処理ステップS4(基準レンズモデルL上の主光線通過位置の計算)で用いた各主光線始点P(すなわち、生理的に左右眼の調節力が等しくなることに対応して左右共通に定義された物体面上の任意の点P)からの主光線(実線)が通過する、左右の各処方レンズモデルLPR、LPL上(ここではレンズ外面上)の位置(処方側主光線通過位置PLPR、PLPL)を計算する。これにより、処方レンズモデルLの外面全域に処方側主光線通過位置PLPが配置される。
[図2のS8(補正比率Rの計算)]
 図7(a)に示されるように、基準点PTPと基準側主光線通過位置PLBとの距離を基準側距離DLBと定義し、基準点PTPと処方側主光線通過位置PLPとの距離を処方側距離DLpと定義する。この場合、眼鏡レンズ設計用コンピュータ202は、各主光線始点Pに対応する補正比率R(=ある主光線始点Pに対応する処方側距離DLp/これと同一の主光線始点Pに対応する基準側距離DLB)を計算する。図7(b)は、基準点PTPRと近用基準点Nとの間の主注視線LL’上の処方側距離DLpR(単位:mm)と、右眼側の補正比率R(=処方側距離DLpR/基準側距離DLBR)との関係を示す。また、図7(c)は、基準点PTPLと近用基準点Nとの間の主注視線LL’上の処方側距離DLpL(単位:mm)と、左眼側の補正比率R(=処方側距離DLpL/基準側距離DLBL)との関係を示す。
 処方レンズモデルLPRは、処方度数(S+2.00)が基準度数(S+3.00)よりもマイナス側であるため、主注視線LL’上において、処方側主光線通過位置PLPRの方が基準側主光線通過位置PLBRよりも基準点PTPRに近くなる(図7(a)参照)。図7(b)の実線に示されるように、補正比率Rは、処方側距離DLPRが長くなるほど(処方側主光線通過位置PLPRが基準点PTPRから離れて近用基準点Nに近付くほど)、処方レンズモデルLPRと基準レンズモデルLBRとのプリズム作用の差に応じて小さくなる。
 一方、処方レンズモデルLPLは、処方度数(S+4.00)が基準度数(S+3.00)よりもプラス側であるため、主注視線LL’上において、処方側主光線通過位置PLPLよりも基準側主光線通過位置PLBLの方が基準点PTPLに近くなる(図7(a)参照)。図7(c)の実線に示されるように、補正比率Rは、処方側距離DLPLが長くなるほど(処方側主光線通過位置PLPLが基準点PTPLから離れて近用基準点Nに近付くほど)、処方レンズモデルLPLと基準レンズモデルLBLとのプリズム作用の差に応じて大きくなる。
 なお、参考として、図7(b)、図7(c)の夫々に、本実施形態の補正比率Rを特許文献1に適用した例を破線にて示す。特許文献1の場合、図7(b)、図7(c)に示されるように、補正比率R、補正比率Rが共に処方側主光線通過位置PLBR、PLPLに拘わらず一定となる。
[図2のS9(補正比率Rに基づく曲率分布の補正)]
 眼鏡レンズ設計用コンピュータ202は、基準レンズモデルLで想定される累進屈折作用をもたらす曲率分布(レンズ全体の曲率分布のうち累進屈折要素を付加する曲率分布のみを抽出したものであり、以下、「累進分布」と記す。)を、各主光線始点Pに対応する補正比率Rに基づいて拡大縮小操作することにより、処方レンズモデルLの曲率分布を補正する。具体的には、次式に示されるように、基準となる累進分布(基準レンズモデルLの累進分布)を対応する補正比率Rに応じて拡大又は縮小させることにより補正し、補正された基準レンズモデルLの累進分布を処方レンズモデルLの累進分布として適用する。
処方レンズの累進分布の曲率K(x,y)=基準レンズの累進分布の曲率K(x/Rx,y/Ry)
ここで、x,yは、処方側主光線通過位置PLPの座標を示し、Rx、Ryはx方向及びy方向の補正比率Rを示す。
 例えば、処方レンズモデルLPRにおいて、累進帯における加入度の変化が一定であり、主注視線LL’上に配置された各処方側主光線通過位置PLPRにおける曲率を図7(b)に示される補正比率Rに基づいて補正する場合を考える。この場合、処方レンズモデルLPR上の位置PLPRにおける累進屈折作用に関連した曲率(遠用度数の分を排除した曲率であって、加入効果を付加する曲率成分)は、基準レンズモデルLBR上の位置PLBRにおける累進屈折作用に関連した曲率と一致するように操作される。別の表現によれば、基準側主光線通過位置PLBRにおける加入効果分の曲率が補正比率Rに応じた処方側主光線通過位置PLPRに再配置される。補正比率Rは各位置によって異なるため、補正後の累進帯における加入度の変化は、補正比率Rに応じて基準レンズモデルLBRの累進帯における加入変化と異なる形になる(例えば基準点PTPRから近用基準点Nに近付くほど加入度の変化率が高くなる。)。基準度数に対してマイナス側の処方度数を持つ処方レンズモデルLPRは、累進分布全体が補正比率Rに従い、基準レンズモデルLBRの累進分布に対して縮小した形になるので、累進帯長が短くなり、また、累進帯幅が狭くなる。
 また、処方レンズモデルLPLにおいて、累進帯における加入度の変化が一定であり、主注視線LL’上に配置された各処方側主光線通過位置PLPLにおける曲率を図7(c)に示される補正比率Rに基づいて補正する場合を考える。この場合、処方レンズモデルLPL上の位置PLPLにおける累進屈折作用に関連した曲率(遠用度数の分を排除した曲率であって、加入効果を付加する曲率成分)は、基準レンズモデルLBL上の位置PLBLにおける累進屈折作用に関連した曲率と一致するように操作される。別の表現によれば、基準側主光線通過位置PLBLにおける加入効果分の曲率が補正比率Rに応じた処方側主光線通過位置PLPLに再配置される。補正比率Rは各位置によって異なるため、補正後の累進帯における加入度の変化は、補正比率Rに応じて基準レンズモデルLBLの累進帯における加入変化と異なる形になる(例えば基準点PTPLから近用基準点Nに近付くほど加入度の変化率が低くなる。)。基準度数に対してプラス側の処方度数を持つ処方レンズモデルLPLは、累進分布全体が補正比率Rに従い、基準レンズモデルLBLの累進分布に対して拡大した形になるので、累進帯長が長くなり、また、累進帯幅が広くなる。
 図12を援用して、本実施形態における曲率分布補正の説明を補足する。図7(b)の補正比率Rに基づいて処方レンズモデルLPRの曲率分布(累進分布)が補正されると累進帯が短くなるため、加入度が実質的に2.50Dとなる点が右眼の視線通過点Pに近付く。また、図7(c)の補正比率Rに基づいて処方レンズモデルLPLの曲率分布(累進分布)が補正されると累進帯が長くなるため、加入度が実質的に2.50Dとなる点が左眼の視線通過点Pに近付く。すなわち、図12の例において、近方物点を視る装用者の左右の眼に実質的に作用する加入効果の差が軽減されるため、左右の実質加入度の差による装用者の眼に対する負担が軽減される。
 また、中間距離など他の物体距離においても、近方を視るときほどでないにしろ、図12に示す問題(左右の実質加入度の差により装用者の眼に負担がかかる問題)が発生することは、先に述べた通りである。このため、本実施形態では、図7(b)及び図7(c)に示される補正比率Rから把握されるように、曲率分布(累進分布)の適切な拡大縮小操作を通じて、中間距離を視るときに生じていた左右の実質加入度の差を好適に軽減させている。
 図8(a)は、基準レンズモデルLの参照球面SR上での透過度数分布を例示する。ここに示す透過度数分布は非点収差分布及び平均度数分布であり、曲率分布と等価に捉えることができる。また、図8(b)は、処方レンズモデルLPRの参照球面SR上での透過度数分布の例示し、図8(c)は、処方レンズモデルLPLの参照球面SR上での透過度数分布を例示する。
 図8(b)に例示される処方レンズモデルLPRの透過度数分布(換言すると曲率分布)は、各処方側主光線通過位置PLPRにおいて補正比率Rに応じた縮小操作が施されている。すなわち、非点収差分布の等高線及び平均度数分布の等高線の形状が補正比率Rに応じて縮小され、原則的には、基準点PTPRから離れた処方側主光線通過位置PLPRほど等高線の形状が一層縮小されている。
 また、図8(c)に例示される処方レンズモデルLPLの透過度数分布(換言すると曲率分布)は、各処方側主光線通過位置PLPLにおいて補正比率Rに応じた拡大操作が施されている。すなわち、非点収差分布の等高線及び平均度数分布の等高線の形状が補正比率Rに応じて拡大され、原則的には、基準点PTPLから離れた処方側主光線通過位置PLPLほど等高線の形状が一層拡大されている。
[図2のS10(各面への曲率分布の配分)]
 眼鏡レンズ設計用コンピュータ202は、図2の処理ステップS9(補正比率に基づく曲率分布の補正)にて補正された処方レンズモデルLの曲率分布を、眼鏡レンズの構造(内面非球面型、外面非球面型、両面累進型、両面複合型等)に応じて処方レンズモデルLの外面と内面に配分する。これにより、処方レンズモデルLの形状が暫定的に決まる。
[図2のS11(装用状態を考慮した非球面補正)]
 眼鏡レンズ設計用コンピュータ202は、図2の処理ステップS10(曲率分布の配分)にて暫定的に決められた処方レンズモデルLの形状に対し、装用条件(例えば角膜頂点間距離、前傾角、フレームあおり角等)に応じた非球面補正量を計算して付加する。
 図9(a)、図9(b)は夫々、装用状態を考慮した非球面補正を行う前後の加入度(単位:D)と、累進帯内(主注視線LL’上)の位置(単位:mm)との関係を示す図である。図9(a)及び図9(b)中、実線は、本実施形態の眼鏡レンズの加入度を示し、破線は、従来例の眼鏡レンズの加入度を示す。ここで、従来例は、左右の遠用度数差や実質加入度の差に応じて透過度数分布を拡大又は縮小操作するという技術的思想を導入していないレンズを指す。そのため、従来例の眼鏡レンズは、図9(a)に示されるように、少なくとも非球面補正を行う前段階では、加入度の曲線が左右で一致している。一方、本実施形態の眼鏡レンズは、図9(a)に示されるように、非球面補正を行う前段階で、図2の処理ステップS9(補正比率に基づく曲率分布の補正)による曲率分布補正が実施された結果、加入度の曲線が左右で異なっている。
 ところが、装用状態を考慮した非球面補正の実施後は、図9(b)に示されるように、従来の眼鏡レンズも加入度の曲線が左右で異なったものとなる。しかし、上平レンズ等の遠用度数がゼロのレンズでは、装用状態を考慮した非球面補正が実質不要である。また、遠用度数が弱いレンズでは、装用状態を考慮した非球面補正による形状の変化が軽微である。そのため、従来の眼鏡レンズでは、アイテム群のうち左右の遠用度数の合計度数が弱いアイテムについては、非球面補正の実施後であっても左右の加入度の曲線がほぼ同じに維持される。一方、本実施形態の眼鏡レンズでは、図2の処理ステップS9(補正比率に基づく曲率分布の補正)による曲率分布補正が実施されるため、左右の遠用度数の合計度数とは無関係に、アイテム群に含まれる全てのアイテム(夫々の処方に適するアイテムの全て)で加入度の曲線が左右で異なっている。
[図2のS12(基準加入度ADDへの合わせ込み)]
 眼鏡レンズ設計用コンピュータ202は、図2の処理ステップS11(装用状態を考慮した非球面補正)にて非球面補正量が付加された処方レンズモデルLの近用基準点Nを通過する光線について、参照球面SR上の透過度数(近用度数)を計算することにより、実計算上の実質加入度ADDを得る。具体的には、処方レンズモデルLPRについて、参照球面SR上の透過度数(近用度数)を計算し、計算された近用度数から遠用度数(S+2.00)を差し引くことにより、実質加入度ADDを得る。また、処方レンズモデルLPLについて、参照球面SR上の透過度数(近用度数)を計算し、計算された近用度数から遠用度数(S+4.00)を差し引くことにより、実質加入度ADDを得る。実質加入度ADD及びADDは、図2の処理ステップS9(補正比率に基づく曲率分布の補正)による曲率分布補正を実施した結果、目標とする加入度数(ADD2.50)に近似する値にまで補正されている。そのため、上述したように、装用者の左右の眼に実質的に作用する加入効果の差が既に軽減されており、左右の実質加入度の差による装用者の眼に対する負担が軽減可能な状態にある。本工程では、左右の実質加入度の差を更に軽減すべく、処方レンズモデルLの曲率分布を補正することにより、図10に示されるように、実質加入度ADD及びADDを基準加入度ADDへ合わせ込む(一致させる)。これにより、近方物点を視るときの実質加入度の差がほぼゼロとなる。
 図11は、左右の実質加入度の差(単位:D)と、主注視線LL’沿いの(上下方向)物体側画角β(単位:°)との関係を示す図である。なお、主注視線LL’沿いの物体側画角βは、図4(b)に示されるように、正面視したときの水平軸を基準とする。図11中、実線は、本実施形態における左右の実質加入度の差を示し、破線は、特許文献1における左右の実質加入度の差を示し、点線は、従来例における左右の実質加入度の差を示す。図11における従来例も図9と同じく、左右の遠用度数差や実質加入度の差に応じて透過度数分布を拡大又は縮小操作するという技術的思想を導入していないレンズを指す。図11に示されるように、従来例では、例えば遠用基準点F側から近用基準点N側へ視線を移動させるに従い、左右の実質加入度の差が大きくなる。これに対し、特許文献1では、左右の実質加入度の差が累進帯の全域に亘って良好に抑えられている。また、本実施形態では、左右の実質加入度の差が累進帯の全域に亘ってほぼゼロとなっており、一層良好に抑えられていることが判る。すなわち、本設計工程により設計・製造された眼鏡レンズによれば、良好な両眼視を各物体距離で保証することが可能となる。
 以上が本発明の例示的な実施形態の説明である。本発明の実施形態は、上記に説明したものに限定されず、本発明の技術的思想の範囲において様々な変形が可能である。例えば明細書中に例示的に明示される実施例や変形例又は自明な実施例や変形例を適宜組み合わせた内容も本願の実施形態に含まれる。

Claims (5)

  1.  第一の屈折力を有する第一屈折部、該第一の屈折力よりも強い第二の屈折力を有する第二屈折部、及び該第一屈折部から該第二屈折部へ屈折力が累進的に変化する累進屈折部を有する、該第一の屈折力が左右で異なる一対の眼鏡レンズであって、
     装用者が前記眼鏡レンズを通して物体を視たときに前記第一の屈折力が左右で異なることに依存して左右の視線方向がずれたときに、該第一屈折部から前記第二屈折部にかけての主注視線上において装用者の左右夫々の眼に実質的に作用する加入効果の差が抑えられるように、左右の該累進屈折部の長さ及び加入度の変化率が該左右の視線方向のずれに応じて互いに異なること
    を特徴とする、眼鏡レンズ。
  2.  前記一対の眼鏡レンズのうち前記第一の屈折力が弱い眼鏡レンズの方が前記累進屈折部の長さが短く且つ加入度の変化率が高いこと
    を特徴とする、請求項1に記載の眼鏡レンズ。
  3.  前記一対の眼鏡レンズのうち前記第一の屈折力が弱い方の眼鏡レンズは、
      前記主注視線上において所定の隠しマークに基づいて定義される設計中心から前記第二屈折部へ近付くほど加入度の変化率が高くなり、
     前記一対の眼鏡レンズのうち前記第一の屈折力が高い方の眼鏡レンズは、
      前記主注視線上において前記設計中心から前記第二屈折部へ近付くほど加入度の変化率が低くなること
    を特徴とする、請求項1又は請求項2に記載の眼鏡レンズ。
  4.  前記左右の累進屈折部は、幅も互いに異なること
    を特徴とする、請求項1から請求項3の何れか一項に記載の眼鏡レンズ。
  5.  請求項1から請求項4の何れか一項に記載の眼鏡レンズのアイテム群をなす、夫々の処方に適するアイテムの全てにおいて、前記左右の累進屈折部の長さ及び加入度の変化率が前記左右の視線方向のずれに応じて互いに異なること
    を特徴とする、眼鏡レンズのアイテム群。
PCT/JP2013/082088 2012-12-19 2013-11-28 眼鏡レンズ WO2014097851A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
AU2013365258A AU2013365258A1 (en) 2012-12-19 2013-11-28 Spectacle lenses
KR1020157017470A KR101779270B1 (ko) 2012-12-19 2013-11-28 안경 렌즈
JP2014553051A JP5969631B2 (ja) 2012-12-19 2013-11-28 眼鏡レンズ
CN201380066900.XA CN105026987B (zh) 2012-12-19 2013-11-28 眼镜镜片
US14/653,350 US10330952B2 (en) 2012-12-19 2013-11-28 Spectacle lenses
ES13866155T ES2963720T3 (es) 2012-12-19 2013-11-28 Lentes de gafas
EP13866155.8A EP2937730B1 (en) 2012-12-19 2013-11-28 Spectacle lenses
AU2017201961A AU2017201961B2 (en) 2012-12-19 2017-03-23 Spectacle Lenses

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012276543 2012-12-19
JP2012-276543 2012-12-19

Publications (1)

Publication Number Publication Date
WO2014097851A1 true WO2014097851A1 (ja) 2014-06-26

Family

ID=50978190

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/082088 WO2014097851A1 (ja) 2012-12-19 2013-11-28 眼鏡レンズ

Country Status (8)

Country Link
US (1) US10330952B2 (ja)
EP (1) EP2937730B1 (ja)
JP (1) JP5969631B2 (ja)
KR (1) KR101779270B1 (ja)
CN (1) CN105026987B (ja)
AU (2) AU2013365258A1 (ja)
ES (1) ES2963720T3 (ja)
WO (1) WO2014097851A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018220737A1 (ja) * 2017-05-31 2018-12-06 ホヤ レンズ タイランド リミテッド 眼鏡レンズ、眼鏡レンズの製造装置、設計方法及び設計プログラム

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10048511B2 (en) * 2016-10-08 2018-08-14 eyeBrain, Medical, Inc. Eye-strain reducing lens
US10048512B2 (en) 2016-10-08 2018-08-14 eyeBrain, Medical, Inc. Low-convergence spectacles
US10338409B2 (en) 2016-10-09 2019-07-02 eyeBrain Medical, Inc. Lens with off-axis curvature center
EP3355214A1 (de) * 2017-01-27 2018-08-01 Carl Zeiss Vision International GmbH Verfahren, recheneinrichtung und computerprogramm zum bereitstellen eines fassungsrandmodells
US12114930B2 (en) 2017-09-05 2024-10-15 Neurolens, Inc. System for measuring binocular alignment with adjustable displays and eye trackers
US10420467B2 (en) 2017-09-05 2019-09-24 eyeBrain Medical, Inc. Method and system for measuring binocular alignment
US11589745B2 (en) 2017-09-05 2023-02-28 Neurolens, Inc. Method and system for measuring binocular alignment
US10921614B2 (en) 2017-12-31 2021-02-16 Neurolens, Inc. Low-convergence negative power spectacles
US11360329B2 (en) 2017-12-31 2022-06-14 Neurolens, Inc. Negative power eye-strain reducing lens
US10908434B2 (en) 2018-01-01 2021-02-02 Neurolens, Inc. Negative power lens with off-axis curvature center

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006350381A (ja) * 2003-11-27 2006-12-28 Hoya Corp 両面非球面型累進屈折力レンズおよびその設計方法
WO2009072528A1 (ja) * 2007-12-04 2009-06-11 Hoya Corporation 一対の累進屈折力レンズ及びその設計方法
JP2011203705A (ja) * 2010-03-01 2011-10-13 Seiko Epson Corp 眼鏡レンズ及びその設計方法
JP2012173596A (ja) * 2011-02-23 2012-09-10 Seiko Epson Corp 眼鏡用レンズ
JP2012215639A (ja) * 2011-03-31 2012-11-08 Hoya Corp 眼鏡レンズの製造方法
JP2013171134A (ja) * 2012-02-20 2013-09-02 Yamaichiya:Kk 累進多焦点レンズ、累進多焦点レンズの設計方法、累進多焦点レンズの加工方法

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06138422A (ja) 1992-10-28 1994-05-20 Nikon Corp 度数測定補助具
EP0702257B1 (en) * 1994-08-26 2008-06-25 Tokai Kogaku Kabushiki Kaisha Progressive power presbyopia-correcting ophthalmic lenses
DE60206342T2 (de) 2001-09-06 2006-07-27 Hoya Corp. Verfahren zur Beurteilung der binokularen Eigenschaften von Brillengläsern, Vorrichtung zur Anzeige dieser Eigenschaften und zugehöriger Apparat
ES2328249T3 (es) 2003-11-27 2009-11-11 Hoya Corporation Lente para gafas progresivas para ambos lados.
CN100495124C (zh) 2003-11-27 2009-06-03 Hoya株式会社 两面非球面型渐变光焦度镜片及其设计方法
CN1815299B (zh) * 2005-02-04 2010-06-02 精工爱普生株式会社 组合眼镜镜片、辅助镜片和组合眼镜镜片的磨边加工方法
JP4400549B2 (ja) 2005-02-04 2010-01-20 セイコーエプソン株式会社 組み合わせ眼鏡レンズ及び組み合わせ眼鏡レンズの玉型加工方法
CN1831582A (zh) 2005-03-09 2006-09-13 精工爱普生株式会社 渐进屈光力镜片组的设计方法
JP4229118B2 (ja) 2005-03-09 2009-02-25 セイコーエプソン株式会社 累進屈折力レンズの設計方法
DE102006030204A1 (de) 2006-06-30 2008-01-03 Rodenstock Gmbh Brillenglaspaar bei Anisometropie
FR2941060B1 (fr) 2009-01-13 2011-04-22 Essilor Int Procede de determination d'une nappe d'aspherisation destinee a une lentille ophtalmique
BRPI1007918A2 (pt) 2009-02-05 2016-02-23 Hoya Corp métodos de projeto de lente de óculos, de avaliação de lente de óculos, e de fabricação de lente de óculos, sistema de fabricação de lente de óculos, e, lentes de óculos
DE102010007267B4 (de) 2010-02-08 2020-09-03 Carl Zeiss Vision International Gmbh Linsenelement mit verbesserter prismatischer Wirkung sowie Verfahren zur Herstellung eines Linsenelements
FR2956222B1 (fr) 2010-02-09 2012-07-27 Essilor Int Lentille ophtalmique multifocale progressive
EP2490065A1 (en) 2011-02-18 2012-08-22 ESSILOR INTERNATIONAL (Compagnie Générale d'Optique) A method for determining target optical functions
JP5822482B2 (ja) * 2011-02-23 2015-11-24 イーエイチエス レンズ フィリピン インク 眼鏡用レンズ
EP2678732B1 (en) 2011-02-23 2020-04-22 EHS Lens Philippines, Inc. Spectacle lens
JP5897260B2 (ja) 2011-02-24 2016-03-30 イーエイチエス レンズ フィリピン インク 累進屈折力レンズおよびその設計方法
JP2014071420A (ja) 2012-10-01 2014-04-21 Eyeglass Direct Co Ltd 眼鏡フレームのダミーレンズ及び眼鏡フレーム
KR101766563B1 (ko) 2012-12-19 2017-08-08 호야 가부시키가이샤 안경 렌즈의 제조 장치 및 제조 방법
JPWO2018220737A1 (ja) 2017-05-31 2019-11-07 ホヤ レンズ タイランド リミテッド 眼鏡レンズ、眼鏡レンズの製造装置、設計方法及び設計プログラム

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006350381A (ja) * 2003-11-27 2006-12-28 Hoya Corp 両面非球面型累進屈折力レンズおよびその設計方法
WO2009072528A1 (ja) * 2007-12-04 2009-06-11 Hoya Corporation 一対の累進屈折力レンズ及びその設計方法
US8162478B2 (en) 2007-12-04 2012-04-24 Hoya Corporation Pair of progressive power lens and method for designing same
JP2011203705A (ja) * 2010-03-01 2011-10-13 Seiko Epson Corp 眼鏡レンズ及びその設計方法
JP2012173596A (ja) * 2011-02-23 2012-09-10 Seiko Epson Corp 眼鏡用レンズ
JP2012215639A (ja) * 2011-03-31 2012-11-08 Hoya Corp 眼鏡レンズの製造方法
JP2013171134A (ja) * 2012-02-20 2013-09-02 Yamaichiya:Kk 累進多焦点レンズ、累進多焦点レンズの設計方法、累進多焦点レンズの加工方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018220737A1 (ja) * 2017-05-31 2018-12-06 ホヤ レンズ タイランド リミテッド 眼鏡レンズ、眼鏡レンズの製造装置、設計方法及び設計プログラム
JPWO2018220737A1 (ja) * 2017-05-31 2019-11-07 ホヤ レンズ タイランド リミテッド 眼鏡レンズ、眼鏡レンズの製造装置、設計方法及び設計プログラム

Also Published As

Publication number Publication date
US10330952B2 (en) 2019-06-25
EP2937730A4 (en) 2016-07-27
US20150346515A1 (en) 2015-12-03
ES2963720T3 (es) 2024-04-01
EP2937730B1 (en) 2023-09-27
JPWO2014097851A1 (ja) 2017-01-12
EP2937730C0 (en) 2023-09-27
JP5969631B2 (ja) 2016-08-17
KR20150094659A (ko) 2015-08-19
AU2017201961B2 (en) 2019-01-24
EP2937730A1 (en) 2015-10-28
CN105026987A (zh) 2015-11-04
CN105026987B (zh) 2017-03-22
AU2013365258A1 (en) 2015-07-16
KR101779270B1 (ko) 2017-09-18
AU2017201961A1 (en) 2017-04-13

Similar Documents

Publication Publication Date Title
JP5969631B2 (ja) 眼鏡レンズ
JP6294990B2 (ja) 眼鏡レンズの製造装置及び製造方法
CN106133584A (zh) 用于增强现实的系统和方法
WO2014097852A1 (ja) 眼鏡レンズの製造装置及び製造方法
WO2014097854A1 (ja) 乱視用眼鏡レンズの製造装置及び製造方法
EP3699675B1 (en) Computer implemented method of determining a base curve for a spectacle lens and method of manufacturing a spectacle lens
WO2018220737A1 (ja) 眼鏡レンズ、眼鏡レンズの製造装置、設計方法及び設計プログラム
WO2013141160A1 (ja) 眼鏡レンズ、並びに眼鏡レンズの設計方法、製造方法及び製造システム
JP2003140095A (ja) 眼鏡レンズの設計方法及び装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201380066900.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13866155

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2014553051

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14653350

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013866155

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20157017470

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2013365258

Country of ref document: AU

Date of ref document: 20131128

Kind code of ref document: A