WO2014097731A1 - 試料導入装置 - Google Patents

試料導入装置 Download PDF

Info

Publication number
WO2014097731A1
WO2014097731A1 PCT/JP2013/078407 JP2013078407W WO2014097731A1 WO 2014097731 A1 WO2014097731 A1 WO 2014097731A1 JP 2013078407 W JP2013078407 W JP 2013078407W WO 2014097731 A1 WO2014097731 A1 WO 2014097731A1
Authority
WO
WIPO (PCT)
Prior art keywords
sample
liquid
detector
air layer
flow path
Prior art date
Application number
PCT/JP2013/078407
Other languages
English (en)
French (fr)
Inventor
伊藤 伸也
茂雄 武藤
Original Assignee
株式会社 日立ハイテクノロジーズ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 日立ハイテクノロジーズ filed Critical 株式会社 日立ハイテクノロジーズ
Priority to EP13865867.9A priority Critical patent/EP2937687A4/en
Priority to CN201380066520.6A priority patent/CN104870993B/zh
Priority to US14/651,247 priority patent/US20150308986A1/en
Publication of WO2014097731A1 publication Critical patent/WO2014097731A1/ja
Priority to US15/730,936 priority patent/US10794874B2/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/16Injection
    • G01N30/20Injection using a sampling valve
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/24Automatic injection systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/08Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a stream of discrete samples flowing along a tube system, e.g. flow injection analysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/04Arrangements for introducing or extracting samples to be analysed, e.g. vacuum locks; Arrangements for external adjustment of electron- or ion-optical components
    • H01J49/0431Arrangements for introducing or extracting samples to be analysed, e.g. vacuum locks; Arrangements for external adjustment of electron- or ion-optical components for liquid samples
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N2030/009Extraction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/16Injection
    • G01N30/20Injection using a sampling valve
    • G01N2030/207Injection using a sampling valve with metering cavity, e.g. sample loop
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/62Detectors specially adapted therefor
    • G01N30/72Mass spectrometers
    • G01N30/7233Mass spectrometers interfaced to liquid or supercritical fluid chromatograph
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/62Detectors specially adapted therefor
    • G01N30/72Mass spectrometers
    • G01N30/7233Mass spectrometers interfaced to liquid or supercritical fluid chromatograph
    • G01N30/724Nebulising, aerosol formation or ionisation
    • G01N30/7266Nebulising, aerosol formation or ionisation by electric field, e.g. electrospray

Definitions

  • the present invention relates to a sample introduction device for introducing a sample into a mass spectrometer, and more particularly to a sample introduction device for a mass spectrometer by a flow injection method for introducing a sample solution using a liquid-sending solvent.
  • MS mass spectrometer
  • LC-connected to a sample introduction device online with a separation means such as high performance liquid chromatography (High Liquid Chromatography, HPLC) or capillary electrophoresis (Capillary Electrophoresis, CE) MS or CE-MS is frequently used.
  • separation means such as LC and CE
  • the sample solution is introduced into the flow path through which the solvent continuously flows.
  • the target chemical species in the sample solution is introduced into the MS after being separated from the contaminating components in the separation section at the subsequent stage of the flow path.
  • the chemical species introduced into the MS are ionized by the ion source and separated and detected based on the mass.
  • an atmospheric pressure ionization method typified by electrospray ionization (ESI) is used as an ion source for ionizing target chemical species by MS.
  • ESI electrospray ionization
  • MS connected on-line with these separation means can perform analysis with high sensitivity and high accuracy since the target chemical species is separated from the contaminating components.
  • the sample solution When analyzing a biological sample, the sample solution is often a very small amount.
  • introducing a small amount of sample liquid into the LC-MS there is a method that uses a small sample loop to fill the sample loop with the sample liquid and weighs it. In this case, a sample liquid several times the sample loop volume is required.
  • the method of measuring the sample solution using a syringe installed in the sample introduction device and introducing it into the sample loop is also used, but it is diluted with the solvent before and after the sample solution in the introduction process, and the measurement component The amount of liquid that contains is increased. This lowers the concentration of the measurement component, which not only leads to a decrease in detection sensitivity for a concentration-sensitive detector such as MS, but also increases the measurement time.
  • FIA Flow Injection Analysis
  • a reaction reagent solution is steadily flowed into a thin tube of about 0.5 mm, a solution sample is injected into the continuous flow, and a target chemical species that is a reaction product is detected by a detector installed downstream.
  • a target chemical species that is a reaction product is detected by a detector installed downstream.
  • the analyzer can be configured at low cost, can be quickly and highly sensitively measured with a simple operation, and can be easily automated.
  • FIA-MS In many cases, an absorptiometer is used for detection, but FIA-MS using MS is also used in the environmental field requiring high-sensitivity analysis or measurement of biological components.
  • FIA-MS As a method of introducing a small amount of liquid sample by FIA, for example, in Patent Document 3, sample liquid and air are alternately arranged in a thin tube and introduced into a flow cell as a detection unit, thereby diffusing the sample liquid generated during the introduction. And dilution with cleaning solution.
  • JP 62-50659 A Japanese Patent Publication No. 2573678 JP-A-7-159415
  • An object of the present invention is to realize a method for introducing a sample into an MS that achieves both the introduction of the entire amount of a small amount of sample liquid and the reduction of measurement time.
  • the present invention provides a sample aspirating apparatus comprising a sample aspirating means, a sample loop, a flow path switching means, and a solvent transporting means for introducing a sample into a detector in a solvent flow. This is realized by sometimes introducing the sample into the sample loop with the air layer sandwiched between the front and back of the sample, and introducing the entire sample into the detector together with the front and back air layers.
  • the present invention by sandwiching the sample between the air layers, sample diffusion in the flow path is suppressed, and the signal strength of the sample at the detection unit is increased. Further, by detecting a change in signal intensity due to the air layer, it is possible to facilitate the transition to the cleaning process and to shorten the time required for measurement.
  • Configuration diagram of an automatic analyzer showing an embodiment of the present invention Flow path diagram of sample introduction part showing one embodiment of the present invention Schematic diagram inside the sample loop with the extracted sample liquid and air layer introduced Measurement results using one embodiment of the present invention Measurement result by conventional method
  • Configuration diagram of an automatic analyzer showing another embodiment of the present invention Flow path diagram of sample introduction section showing another embodiment of the present invention
  • An automatic analyzer according to an embodiment of the present invention will be described with reference to FIG. Specifically, in order to automatically and continuously analyze trace components contained in biological samples such as serum and urine, a solid-phase extraction mechanism that performs pretreatment by solid-phase extraction and sample introduction that delivers the extracted sample
  • a solid-phase extraction mechanism that performs pretreatment by solid-phase extraction and sample introduction that delivers the extracted sample
  • An example of analysis of the immunosuppressive agent tacrolimus which is an automatic analyzer comprising an apparatus and an MS equipped with an ESI ion source, more specifically, will be described.
  • the automatic analyzer shown in FIG. 1 performs a process for sequentially performing a solid phase extraction process using a sample placement unit 102 in which a sample container 101 into which a biological sample to be subjected to a solid phase extraction process is dispensed and a solid phase extraction cartridge 103 are disposed.
  • Unit 104 reagent placement unit 106 for placing various reagent containers 105 such as a cleaning solution 203 and an eluate used for extraction processing, and a sample fraction for dispensing biological samples dispensed in these sample containers 101 into a solid phase extraction cartridge 103
  • An extraction container in which an injection mechanism 107, a reagent dispensing mechanism 108 for dispensing various reagents in the reagent container 105 to the solid phase extraction cartridge 103, a solid phase extraction processing unit 109 for performing solid phase extraction processing, and an extraction container 110 are disposed.
  • 111, a solid-phase extraction cartridge 103 and an installation part 112 for consumables such as an extraction container 110, and an extraction sample in the extraction container 110 are dispensed to the ion source 114.
  • a sample introduction unit 113 that supplies liquid and a mass analysis unit 115 that performs mass analysis on components ionized by the ion source 114 are configured.
  • a predetermined amount is dispensed into the solid phase extraction cartridge 103 by the sample dispensing mechanism 107.
  • the solid phase extraction cartridge 103 into which the biological sample has been dispensed moves to the position of the solid phase extraction processing unit 109 as the processing unit 104 rotates.
  • a liquid-dispersed sample is passed through the solid-phase extraction cartridge 103 into which the sample has been dispensed, so that the dispensed sample passes through the solid-phase extraction cartridge, and the component to be measured is solid-phase extracted.
  • the solid phase of the cartridge 103 is held.
  • the washing liquid 203 prepared in the reagent container 105 is dispensed to the solid phase extraction cartridge 103 by the reagent dispensing mechanism 108, and the solid phase extraction cartridge 103 is washed by performing a liquid passing process.
  • the eluate is dispensed by the reagent dispensing mechanism 108 to the solid phase extraction cartridge 103 into which the sample has been dispensed, and the measurement is held on the solid phase of the solid phase extraction cartridge 103 by performing a liquid passing treatment.
  • the target component is eluted and collected in the extraction container 110 as an extraction sample solution.
  • the extraction container 110 that collects the extracted sample solution is moved to the position of the sample introduction part 113 by the rotation of the extraction container installation part 111.
  • the extracted sample solution in the extraction container 110 is introduced into the ion source 114 by the sample introduction unit 113.
  • the component to be measured is ionized by the ion source 114, and the component is detected by the mass analyzer 115.
  • the sample introduction unit 113 sucks the extraction sample liquid and the cleaning liquid 203, sucks the extraction sample liquid and the cleaning liquid 203 in the extraction container 110, the liquid feeding pump 202 that transports the liquid transmission solvent 201, and sends it to the flow path.
  • the needle 205, the sample loop 206 that stores the extracted sample liquid that has been sucked, the liquid feed pump 202, the syringe pump 204, both ends of the needle 205, the sample loop 206, and the ion source 114 are connected, and the extracted sample liquid stored in the sample loop 206 is ionized.
  • FIG. 2 also shows a mass analysis unit 115 that detects components ionized by the ion source 114.
  • the flow path switching valve 207 has 6 flow path connection portions, and can switch the flow path so as to be connected to any of the two adjacent positions.
  • a flow path indicated by a solid line in FIG. 2 is Inject.
  • the liquid feed pump 202 and the sample loop 206, the sample loop 206 and the ion source 114, and the needle 205 and the syringe pump 204 are connected to each other.
  • a flow path indicated by a dotted line in FIG. 2 is Load.
  • the needle 205 moves and immerses its tip in either the extracted sample liquid or the cleaning liquid 203 collected in the extraction container 110, and sucks the liquid into the needle 205 by the operation of the syringe pump 204. Alternatively, the needle 205 moves to the position of the waste liquid receiver 208 and discharges the needle 205 and the liquid in the flow path.
  • the operation of the sample introduction unit 113 in this embodiment will be described with reference to FIGS.
  • the solution feeding pump 202 sends the solution sending solvent 201 to the ion source 114 at a predetermined constant flow rate.
  • the flow path of the flow path switching valve 207 is at the Inject position, and the liquid sending solvent 201 passes through the sample loop 206 and is sent to the ion source 114.
  • the syringe pump 204 repeatedly sucks the cleaning liquid 203 and discharges it to the waste liquid receiver 208, thereby filling the flow path from the syringe pump 204 to the needle 205 with the liquid (cleaning liquid 203) and removing the air.
  • the sample injection operation to the sample introduction unit 113 is started.
  • the flow path of the flow path switching valve 207 is switched from Inject to Load (dotted line in FIG. 2).
  • the syringe pump 204 and the needle 205 are connected with the sample loop 206 interposed therebetween.
  • the needle 205 moves to a place where there is no liquid above the extraction container 110, and air is introduced from the tip of the needle 205 by the syringe pump 204 performing a suction operation (first air layer). .
  • FIG. 3 is a schematic diagram of the inside of the sample loop 206 after the sample injection operation is performed.
  • the extraction sample liquid is sent to the ion source 114 by the operation of the liquid feed pump 202 by switching the flow path of the flow path switching valve 207 from Load to Inject.
  • the ion source 114 each component in the extracted sample solution is ionized and sent to the mass analyzer 115.
  • the mass analyzer 115 the ionized components are separated and detected for each mass to charge (m / z).
  • FIG. 4 shows the time change of the signal intensity detected by the mass spectrometer 115 using the present embodiment.
  • the horizontal axis in FIG. 4 is the time after the flow path of the flow path switching valve 207 is switched to Inject, and the vertical axis is the signal intensity of ionized tacrolimus.
  • a 70% methanol aqueous solution containing 10 mmol / L ammonium acetate was used as the liquid delivery solvent 201, the flow rate of the liquid delivery pump 202 was 100 ⁇ L per minute, the capacity of the sample loop 206 was 60 ⁇ L, and the first inside the sample loop 206 5 ⁇ L of the air layer, 10 ⁇ L of the extraction sample liquid injection amount, 15 ⁇ L of the second air layer, and 30 ⁇ L of 2-propanol as the cleaning solution 203 were introduced by the sample injection operation.
  • the signal intensity rapidly increased or decreased because the extraction sample liquid was sandwiched between two air layers, so that the extraction sample liquid did not intersect with the liquid sending solvent 201 or the cleaning liquid 203, and as a result, the extraction sample liquid was not diluted. This is because.
  • the air layer was being sent to the ion source 114, the extracted sample liquid was not present in the ion source 114, so that the signal intensity decreased to 0 count.
  • an integrated value of signal intensity that is, a peak area is usually used.
  • the flow rate of the liquid delivery solvent 201 is increased by increasing the flow rate of the liquid delivery pump 202, and the time required for cleaning the flow path is shortened. Is possible.
  • the flow rate of the liquid feed pump 202 changes, so the ionization efficiency in the ion source 114 changes, so the signal intensity obtained by the mass analyzer 115 varies, but the signal intensity becomes 0 count for peak area calculation. Since only the signal intensity from the point (air layer) to the point where the signal intensity is reduced to 0 count is used, the quantitative result is not affected.
  • the sample injection method according to the conventional method in which two air layers are eliminated from the measurement conditions of this embodiment that is, the extraction sample solution is brought into contact with the extraction solution in a state where the extraction sample solution, the liquid feeding solvent 201 and the cleaning solution 203 are in contact
  • strength when liquid feeding to 114 is shown.
  • the signal intensity gradually increased from about 10 seconds after switching the flow path, and shows a peak waveform with the maximum after about 24 seconds, and no signal was detected after about 45 seconds.
  • the result of FIG. 4 which is the present example shows that the signal intensity is more than twice as large, and the time until the signal intensity of the component is not detected is shortened by about 10 seconds. It was done.
  • FIG. 6 shows a solid phase extraction mechanism for performing pretreatment by solid phase extraction in order to automatically and continuously analyze a trace component contained in a biological sample such as serum and urine, and a sample introduction device for feeding the extracted sample.
  • a biological sample such as serum and urine
  • a sample introduction device for feeding the extracted sample.
  • the configuration of the sample introduction unit 301 is different, and the configuration other than the sample introduction unit 301 is the same as that of the first embodiment.
  • FIG. 7 shows details of the sample introduction unit 301.
  • the sample introduction unit 301 includes a liquid feeding pump 202 that transports the liquid feeding solvent 201, a syringe pump 204 that sucks the extraction sample liquid and the cleaning liquid 203 in the extraction container 110, and an extraction sample liquid and the cleaning liquid 203 in the liquid.
  • the needle 205 to be sent, the sample loop 206 for storing the aspirated extracted sample liquid, the liquid feed pump 202, the syringe pump 204, the needle 205, the sample loop 206, and the ion source 114 are connected, and the extracted sample liquid stored in the sample loop 206 is ionized.
  • a flow path switching valve 207 capable of switching the flow path to supply liquid to the source 114, a waste liquid receiver 208 for recovering the liquid when the liquid in the needle 205 is discharged, a cleaning pump 303 for transporting the cleaning liquid 302, Connects the flow path of the liquid pump 202, the cleaning pump 303, and the flow path switching valve 207 That three-way joint 304, consists of.
  • FIG. 7 also shows a mass analysis unit 115 that detects components ionized by the ion source 114.
  • the configuration of the flow path switching valve 207 is the same as that of the first embodiment.
  • the solution feed pump 202 sends the solution delivery solvent 201 to the ion source 114 at a predetermined fixed flow rate.
  • the cleaning pump 303 is stopped in a state where the cleaning liquid 302 fills the flow path to the three-way joint 304.
  • the liquid sending solvent 201 passes through the sample loop 206 and is sent to the ion source 114.
  • the syringe pump 204 repeats the suction of the cleaning liquid 203 and the discharge to the waste liquid receiver 208, thereby filling the flow path from the syringe pump 204 to the needle 205 with the liquid and removing the air.
  • the sample injection operation is started.
  • the flow path of the flow path switching valve 207 is switched from Inject (solid line in FIG. 7) to Load (dotted line in FIG. 7).
  • the syringe pump 204 and the needle 205 are connected with the sample loop 206 interposed therebetween.
  • the needle 205 moves to a place where there is no liquid above the extraction container, and the syringe pump 204 performs a suction operation of a certain amount, so that air is introduced from the tip of the needle 205 (first air layer).
  • the needle 205 is lowered to move the tip into the extracted sample solution, and the syringe pump 204 performs a suction operation of a certain amount, whereby the extracted sample solution is introduced from the tip of the needle 205.
  • the needle 205 is raised to move the tip out of the extracted sample solution, and the syringe pump 204 performs a suction operation of a certain amount, whereby air is introduced from the tip of the needle 205 (second air layer).
  • the tip of the needle 205 is moved into the cleaning liquid 203, and a fixed amount of the syringe pump 204 is sucked so that air is introduced from the tip of the needle 205, and at the same time, an extraction sample liquid sandwiched between two air layers. Is introduced into the sample loop 206.
  • the flow path of the flow path switching valve 207 is switched from Load to Inject, and the extraction sample liquid is sent to the ion source 114 by the operation of the liquid feed pump 202.
  • the ion source 114 each component in the extracted sample solution is ionized and sent to the mass analyzer 115.
  • the mass analyzer 115 the ionized components are separated and detected for each mass to charge (m / z).
  • the extracted sample liquid is sent to the ion source 114 while being sandwiched between two air layers. Therefore, as shown in FIG. 4, the signal intensity rapidly increases when the ion source shifts from the air layer to the extracted sample solution as shown in FIG. 4, and after a certain period of time, the signal intensity rapidly changes from the extracted sample solution to the air layer. To drop.
  • cleaning of the flow path is started. That is, the cleaning liquid 302 is supplied by operating the cleaning pump 303.
  • the cleaning liquid 302 reaches the ion source 114 through the flow path switching valve 207 and the sample loop 206.
  • the cleaning liquid 302 it is desirable to use a solvent that has a strong dissolving power for contaminating components and drugs in the whole blood contained in the extracted sample liquid.
  • the contaminating components of whole blood are mainly lipids, and tacrolimus is a highly lipid-soluble drug. Therefore, an organic solvent such as 2-propanol or acetone can be used for the cleaning liquid 302.
  • the flow rate of the cleaning liquid 302 is increased with respect to the flow path after the three-way joint 304. It can be expected that the cleaning time can be shortened by increasing the flow rate of the liquid feeding pump 202 in 1 to increase the cleaning liquid feeding speed.
  • the ionization efficiency in the ion source 114 changes, so the signal intensity obtained by the mass analyzer 115 varies, but the peak area Since only the signal intensity from the point where the signal intensity is 0 count (air layer) to the point where the signal intensity is reduced to 0 count is used for the calculation, the quantitative result is not affected.
  • the three-way joint 304 is installed between the liquid feed pump 202 and the flow path switching valve 207.
  • the ion source 114 is a place where impurities or chemicals remain, the three-way joint 304 is used.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

本発明の目的は、微量な試料液の全量導入と測定時間短縮を両立する、MSへの試料導入装置を実現することである。本発明の試料導入装置は、ニードル(205)とサンプルループ(206)と流路切り替えバルブ(207)及び送液ポンプ(202)を備えており、試料液の前後を空気層で挟んでサンプルループ(206)内に導入し、前後の空気層ごと試料液全量を検出器(115)に導入する。本発明によれば、試料液の前後を空気層で挟むことにより、流路内での試料液拡散が抑えられ、検出器(115)での試料の信号強度が増加する。そして、空気層が検出器(115)に導入されるときに生じる検出信号の強度変化により、データ収集の開始・終了を判定し、送液速度を上げることで測定時間を短縮する。さらに、空気層の後に洗浄液(203)を導入しておき、洗浄効率を上げることで洗浄にかかる時間を短縮する。

Description

試料導入装置
 本発明は、質量分析計に試料を導入する試料導入装置に関するものであり、特に試料液を送液溶媒を用いて導入するフローインジェクション法による質量分析計の試料導入装置に関する。
 質量分析計(Mass Spectrometer,MS)は、液体あるいは気体成分中の微量化学種成分を高感度に測定できる分析装置である。生体試料(血清、尿、組織抽出液など)、環境試料(河川水、工業排水など)など、様々な試料液中の微量化学種の定性および定量分析に利用されている。
 一般に溶液試料をMSを用いて測定する場合、試料導入装置に高速液体クロマトグラフ(High Performance Liquid Chromatograph, HPLC)やキャピラリー電気泳動(Capillary Electrophoresis, CE)のような分離手段とオンラインで接続するLC-MSあるいはCE-MSが多用される。LCやCEなどの分離手段では、連続的に溶媒が流れる流路内に試料液を導入する。試料液中の目的とする化学種は、流路の後段にある分離部で夾雑成分と分離された後にMSに導入される。MSに導入された化学種は、イオン源にてイオン化され、質量に基づいて分離検出される。またMSで目的化学種をイオン化するイオン源には、エレクトロスプレーイオン化法(Electrospray Ionization, ESI)に代表される大気圧イオン化法が用いられる。これら分離手段とオンラインで接続されたMSは、目的化学種は夾雑成分と分離されるため、高感度かつ精度の高い分析が可能である。
 生体試料を分析する場合、試料液は微量であることが多い。微量の試料液をLC-MSに導入する場合、容量の小さなサンプルループを用いて試料液でサンプルループを満たして計量する方法があるが、この場合はサンプルループ容量の数倍の試料液を必要とする。また試料導入装置に設置されたシリンジを用いて試料液を計量して、サンプルループに導入する方法も用いられるが、導入する過程で試料液前後にある溶媒と混ざって希釈されてしまい、測定成分が含まれる液量が増加してしまう。これは測定成分の濃度が低くなるため、MSのような濃度感応型の検出器にとって検出感度の低下につながるだけでなく、測定時間もそれだけ長くなる。
 そこで微量の試料液を効率よくHPLCあるいはLC-MSに導入する手段として、試料液の前後を気泡ではさみサンプルループに送ることで、溶媒による試料液の希釈を抑える方式が提案されている。例えば特許文献1および特許文献2では、試料液の前後に気泡を挟み、試料液のみをサンプルループに送るように設定することで、試料液の拡散による損失を減らしている。
 一方、分離を伴わずに短時間で分析可能な分析法として、フローインジェクション分析法(Flow Injection Analysis, FIA)がある。FIAは、0.5mm程度の細管に反応試薬溶液を定常的に流し、その連続した流れの中に溶液試料を注入し、下流に設置された検出器にて反応生成物である目的の化学種やその誘導体を検出する分析法である(例えば非特許文献1、非特許文献2など)。分析装置を安価に構成できる、簡単な操作で迅速な高感度測定が可能、自動化が容易などの特長を有する。検出には吸光光度計が用いられることが多いが、高感度分析を要する環境分野や、生体成分の測定などではMSを用いたFIA-MSも用いられる。FIAで微量の液体試料を導入する方法として、例えば特許文献3では試料液と空気を細管内に交互に配置して検出部であるフローセルに導入することで、導入途中で発生する試料液の拡散や洗浄液による希釈を抑えている。
特開昭62-50659号 特許公報2573678号 特開平7-159415号
H. B. Kim et al.; Analytical Science, 16, 871-876, 2000. K. Kameyama et al.; Biophysical Journal, 90, 2164-2169, 2006.
 LC-MSやCE-MSの場合、カラムによる成分分離や電気泳動を行う分離部に気泡が混入すると、分離能が低下し、電気泳動が正しく行えなくなるため、分析に支障が生じる。そのため、特許文献1あるいは特許文献2では、試料液の前後の気泡はサンプルループ内には留めず、分析を行う流路に気泡を入れないようにしている。これはすなわち、サンプルループの外側にも試料液の一部が存在するが、サンプルループ外側の試料液は分析には使われずに洗浄され、廃液として捨てられることになる。また特許文献3の場合、試料液の置換は効率的に行われているものの、空気層に挟まれた試料液はやはり分析には用いられず無駄になっている。
 本発明の目的は、微量な試料液の全量導入と測定時間短縮を両立する、MSへの試料導入方法を実現することである。
  上記目的を達成するために、本発明は、試料吸引手段とサンプルループと流路切り替え手段と溶媒輸送手段から構成され溶媒の流れに乗せて試料を検出器へ導入する試料導入装置において、試料吸引時に試料の前後を空気層で挟んでサンプルループ内に導入し、前後の空気層ごと試料全量を検出器に導入することにより実現したものである。
 本発明によれば、試料を空気層で挟むことにより、流路内での試料拡散が抑えられ、検出部での試料の信号強度が増加する。また空気層による信号強度変化を検知することで、洗浄工程への移行を容易にし、測定にかかる時間が短縮される。
本発明の一実施例を示す自動分析装置の構成図 本発明の一実施例を示す試料導入部の流路図 抽出試料液と空気層が導入されたサンプルループ内部の模式図 本発明の一実施例を用いた測定結果 従来法による測定結果 本発明の別の実施例を示す自動分析装置の構成図 本発明の別の実施例を示す試料導入部の流路図
 本発明の実施例を、以下に詳細に説明する。ただし、本発明は以下の実施例のみに限定されるものではない。
 本発明の一実施例に係る自動分析装置について図1を用いて説明する。具体的には、血清、尿などの生体試料中に含まれる微量成分を自動で連続的に分析するために、固相抽出による前処理を行う固相抽出機構、抽出試料を送液する試料導入装置、ESIイオン源を備えたMS、からなる自動分析装置であり、より具体的には全血試料中に含まれる免疫抑制剤タクロリムスの分析例について説明する。
 図1に示す自動分析装置は、固相抽出処理を受ける生体試料が分注された試料容器101が配置される試料設置部102、固相抽出カートリッジ103を用いて順次固相抽出処理を行う処理部104、抽出処理に使用する洗浄液203や溶出液等の各種試薬容器105を配置する試薬配置部106、これら試料容器101に分注された生体試料を固相抽出カートリッジ103に分注する試料分注機構107、試薬容器105内の各種試薬を固相抽出カートリッジ103に分注する試薬分注機構108、固相抽出処理を行う固相抽出処理部109、抽出容器110が配置される抽出容器設置部111、固相抽出カートリッジ103および抽出容器110などの消耗品の設置部112、抽出容器110内の抽出試料を分注し、イオン源114への送液を行う試料導入部113、イオン源114でイオン化された成分を質量分析する質量分析部115、により構成される。
 次に、自動分析装置による生体試料分析の手順について説明する。試料容器101に分注された状態で試料設置部102に設置された生体試料から、あらかじめ設定された一定量を試料分注機構107により固相抽出カートリッジ103に分注する。生体試料が分注された固相抽出カートリッジ103は、処理部104の回転により固相抽出処理部109の位置に移動する。固相抽出処理部109では、試料が分注された固相抽出カートリッジ103に通液処理を行うことで、分注された試料が固相抽出カートリッジを通液し、測定対象成分を固相抽出カートリッジ103の固相に保持する。試薬分注機構108により試薬容器105に準備された洗浄液203を固相抽出カートリッジ103に分注し、通液処理を行うことで固相抽出カートリッジ103を洗浄する。洗浄後、同様に試薬分注機構108により溶出液を試料が分注された固相抽出カートリッジ103に分注し、通液処理を行うことで固相抽出カートリッジ103の固相に保持された測定対象成分を溶出させ、抽出試料液として抽出容器110に回収する。
 抽出試料液を回収した抽出容器110を、抽出容器設置部111の回転により試料導入部113の位置に移動する。抽出容器110内の抽出試料液は試料導入部113によりイオン源114に導入される。イオン源114で測定対象成分がイオン化され、質量分析部115にて成分が検出される。
 試料導入部113の詳細について、図2を用いて説明する。試料導入部113は、送液溶媒201を輸送する送液ポンプ202、抽出容器110内の抽出試料液および洗浄液203を吸引するシリンジポンプ204、抽出試料液および洗浄液203を吸引し、流路に送るニードル205、吸引された抽出試料液を蓄えるサンプルループ206、送液ポンプ202とシリンジポンプ204とニードル205とサンプルループ206の両端とイオン源114を接続しサンプルループ206に蓄えた抽出試料液をイオン源114に送液するために流路を切り替えることが可能な流路切り替えバルブ207、ニードル205内部の液を吐出するときに液を回収する廃液受け208、から構成される。図2には、イオン源114にてイオン化された成分を検出する質量分析部115も記載してある。
 流路切り替えバルブ207は、6箇所の流路接続部を有し、隣接する2箇所のいずれかと接続するように流路を切り替えることが出来る。流路切り替えバルブ207内には切り替え可能な2種類の流路InjectとLoadがある。図2で実線で示す流路がInjectである。流路をInjectにすることにより、送液ポンプ202とサンプルループ206、サンプルループ206とイオン源114、ニードル205とシリンジポンプ204がそれぞれ接続された状態となる。同様に図2に点線で示す流路がLoadである。ニードル205は、抽出容器110に回収された抽出試料液あるいは洗浄液203のいずれかの液中に先端部を移動して浸し、シリンジポンプ204の動作により液をニードル205の内部に吸引させる。あるいは、ニードル205は、廃液受け208の位置に移動して、ニードル205および流路内の液を吐出させる。
 ここで、本実施例における試料導入部113の動作について、図2および図3を用いて説明する。試料導入部113に抽出試料液を回収した抽出容器110が送られる前は準備状態であり、送液ポンプ202はあらかじめ定められた一定の流速で送液溶媒201をイオン源114に送る。このとき流路切り替えバルブ207の流路はInjectの位置にあり、送液溶媒201はサンプルループ206を通過してイオン源114に送られる。シリンジポンプ204は、洗浄液203の吸引と廃液受け208への吐出を繰り返すことで、シリンジポンプ204からニードル205までの流路を液体(洗浄液203)で満たし空気を除く。
 準備状態の試料導入部113に抽出試料液を回収した抽出容器110が送られると、試料導入部113への試料注入動作が開始される。はじめに、流路切り替えバルブ207の流路をInjectからLoad(図2の点線)に切り替える。これにより、シリンジポンプ204とニードル205は、その間にサンプルループ206を挟んで接続される。次に、ニードル205は抽出容器110の上方の液体の無い場所に移動し、シリンジポンプ204が一定量吸引動作をすることで、ニードル205の先端から空気が導入される(第一の空気層)。次に、ニードル205を下降させて先端を抽出試料液内に移動し、シリンジポンプ204が一定量吸引動作をすることで、ニードル205の先端から抽出試料液が導入される。次に、ニードル205を上昇させて先端を抽出試料液から外に移動し、シリンジポンプ204が一定量吸引動作をすることで、ニードル205の先端から空気が導入される(第二の空気層)。次に、ニードル205の先端を洗浄液203内に移動し、シリンジポンプ204を一定量吸引することで、ニードル205の先端から空気が導入されると同時に、二つの空気層に挟まれた抽出試料液がサンプルループ206に導入される。図3は試料注入動作が行われた後のサンプルループ206内部の模式図である。
 試料注入動作終了後、流路切り替えバルブ207の流路をLoadからInjectに切換えることによって、送液ポンプ202の動作により抽出試料液がイオン源114に送られる。イオン源114では、抽出試料液中の各成分はイオン化されて質量分析部115に送られる。質量分析部115では、イオン化された成分は質量対電荷(m/z)毎に分離され検出される。
 図4に、本実施例を用いて質量分析部115にて検出された信号強度の時間変化を示す。図4の横軸は流路切り替えバルブ207の流路をInjectに切り替えてからの時間、縦軸はイオン化されたタクロリムスの信号強度である。送液溶媒201には10mmol/L濃度の酢酸アンモニウムを含む70%メタノール水溶液を用い、送液ポンプ202の流量は毎分100μL、サンプルループ206の容量は60μL、サンプルループ206の内部には第一の空気層5μL,抽出試料液の注入量10μL、第二の空気層15μL,洗浄液203として2-プロパノール30μLが試料注入動作により導入された。
 流路切り替えバルブ207の流路を切り替えてから、抽出試料液中に含まれるタクロリムスが質量分析部115で最初に検出されるまでに約16秒かかり、信号強度はほぼ垂直に増加した。流路切り替え約21秒後に、信号強度は急速に低下し一旦0カウントにまで低下した。その後すぐに再度信号が検出され、約10秒かけて信号は徐々に低下し、流路切り替え約35秒後に信号は検出されなくなった。流路切り替え後16秒から21秒の6秒間は、二つの空気層に挟まれた抽出試料液由来の信号が検出されており、流路切り替え後22秒以降は、サンプルループ206やイオン源114および配管に残留した抽出試料液が洗浄液203により洗い流されたものが検出されたものである。
 信号強度が急速に増加あるいは減少したのは、抽出試料液を二つの空気層で挟んだために抽出試料液が送液溶媒201あるいは洗浄液203と交わらず、その結果として抽出試料液が希釈されなかったためである。空気層がイオン源114に送られているとき、抽出試料液はイオン源114に存在していないため、信号強度は0カウントにまで低下した。質量分析で得られる信号から成分の定量分析をする場合、信号強度の積算値すなわちピーク面積を用いることが通常である。本実施例で得られた信号強度の波形から、信号強度が0カウントに低下した点を判定基準としてピーク面積を用いることにすることで、測定時間の更なる短縮化が実現できる。すなわち、信号強度が0カウントに低下したことを判定した時点から、送液ポンプ202の流量を大きくすることで送液溶媒201の送液速度を上げ、流路の洗浄にかかる時間を短縮することが可能である。送液ポンプ202の流量が変化すると、イオン源114でのイオン化効率が変化するため、質量分析部115で得られる信号強度は変動するが、ピーク面積の計算には信号強度が0カウントになっている点(空気層)から、信号強度が0カウントに低下した点までの信号強度のみ用いるため定量結果には影響を与えない。
 図5に比較として、本実施例の測定条件から二つの空気層を無くした従来法による試料注入方法、すなわち抽出試料液と送液溶媒201および洗浄液203が接触した状態で抽出試料液をイオン源114まで送液したときの信号強度の時間変化を示す。図5では、流路切り替え約10秒後から徐々に信号強度が増加し、約24秒後を最大としたピーク波形を示し、約45秒後に信号が検出されなくなった。ここで図4と図5の測定結果を比較すると、本実施例である図4の結果は、信号強度が2倍以上大きく、また成分の信号強度が検出されなくなるまでの時間は約10秒短縮された。
 本発明による別の実施例を、図6および図7を用いて説明する。
 図6は、血清、尿などの生体試料中に含まれる微量成分を自動で連続的に分析するために、固相抽出による前処理を行う固相抽出機構、抽出試料を送液する試料導入装置、ESIイオン源を備えたMS、からなる自動分析装置であり、より具体的には全血試料中に含まれる免疫抑制剤タクロリムスの分析例である。試料導入部301の構成が異なり、試料導入部301以外の構成は実施例1と同様である。
図7は、試料導入部301の詳細を示したものである。試料導入部301は、送液溶媒201を輸送する送液ポンプ202、抽出容器内110の抽出試料液および洗浄液203を吸引するシリンジポンプ204、抽出試料液および洗浄液203を吸引するときに液中に送られるニードル205、吸引された抽出試料液を蓄えるサンプルループ206、送液ポンプ202とシリンジポンプ204とニードル205とサンプルループ206とイオン源114を接続しサンプルループ206に蓄えた抽出試料液をイオン源114に送液するために流路を切り替えることが可能な流路切り替えバルブ207、ニードル205内部の液を吐出するときに液を回収する廃液受け208、洗浄液302を輸送する洗浄ポンプ303、送液ポンプ202と洗浄ポンプ303と流路切り替えバルブ207の流路を接続する三方ジョイント304、から構成される。図7には、イオン源114にてイオン化された成分を検出する質量分析部115も記載してある。流路切り替えバルブ207の構成は実施例1と同様である。
 ここで、本実施例における試料導入部301の動作について説明する。試料導入部113に抽出試料液を回収した抽出容器110が送られる前は準備状態であり、送液ポンプ202はあらかじめ定められた一定の流量で送液溶媒201をイオン源114に送る。洗浄ポンプ303は洗浄液302を三方ジョイント304までの流路を満たした状態で停止している。このとき流路切り替えバルブ207の流路はInjectにすることによって、送液溶媒201はサンプルループ206を通過してイオン源114に送られる。シリンジポンプ204は、洗浄液203の吸引と廃液受け208への吐出を繰り返すことで、シリンジポンプ204からニードル205までの流路を液体で満たし空気を除く。
 準備状態の試料導入部301に抽出試料液110が送られると、試料注入動作が開始される。はじめに、流路切り替えバルブ207の流路をInject(図7の実線)からLoad(図7の点線)に切り替える。これにより、シリンジポンプ204とニードル205は、その間にサンプルループ206を挟んで接続される。次に、ニードル205は抽出容器上方の液体の無い場所に移動し、シリンジポンプ204が一定量吸引動作をすることで、ニードル205の先端から空気が導入される(第一の空気層)。次に、ニードル205を下降させて先端を抽出試料液内に移動し、シリンジポンプ204が一定量吸引動作をすることで、ニードル205の先端から抽出試料液が導入される。次に、ニードル205を上昇させて先端を抽出試料液から外に移動し、シリンジポンプ204が一定量吸引動作をすることで、ニードル205の先端から空気が導入される(第二の空気層)。次に、ニードル205の先端を洗浄液203内に移動し、シリンジポンプ204を一定量吸引することで、ニードル205の先端から空気が導入されると同時に、二つの空気層に挟まれた抽出試料液がサンプルループ206に導入される。
 試料注入動作が終了すると、流路切り替えバルブ207の流路をLoadからInjectに切換え、送液ポンプ202の動作により抽出試料液がイオン源114に送られる。イオン源114では、抽出試料液中の各成分はイオン化されて質量分析部115に送られる。質量分析部115では、イオン化された成分は質量対電荷(m/z)毎に分離され検出される。
 抽出試料液は2つの空気層で挟まれた状態でイオン源114に送られる。そのため、信号強度は図4に示したようにイオン源において空気層から抽出試料液に移行した際急速に信号強度が急速に増加し、一定時間後、抽出試料液から空気層に移行したところで急速に低下する。信号強度が急速に低下したことを信号処理により判断することで、流路の洗浄を開始する。すなわち、洗浄ポンプ303を動作させることで洗浄液302の送液を行う。洗浄液302は流路切り替えバルブ207、サンプルループ206を通りイオン源114に到達する。洗浄液302には、抽出試料液に含まれる全血中の夾雑成分や薬剤に対して溶解力の強い溶媒を用いることが望ましい。本実施例において全血の夾雑成分は脂質が主であり、またタクロリムスは脂溶性の高い薬剤であるため、洗浄液302には2-プロパノールあるいはアセトンなどの有機溶媒が使用可能である。
 流路の途中から洗浄ポンプ303と三方ジョイント304を用いて洗浄液302を導入することで、三方ジョイント304以降の流路に対して流量が大きくなることから洗浄液302の送液速度が上がり、実施例1における送液ポンプ202の流量を大きくすることによって洗浄液送液速度を上げることと同じ洗浄時間の短縮が期待できる。洗浄液302と送液溶媒201とが混合されてイオン源114に導入されると、イオン源114でのイオン化効率が変化するため、質量分析部115で得られる信号強度は変動するが、ピーク面積の計算には信号強度が0カウントになっている点(空気層)から、信号強度が0カウントに低下した点までの信号強度のみ用いるため定量結果には影響を与えない。
 本実施例では三方ジョイント304を送液ポンプ202と流路切り替えバルブ207の間に設置したが、夾雑成分あるいは薬剤が残留する個所がイオン源114であることが明確な場合は、三方ジョイント304を流路切り替えバルブ207とイオン源114の間に設置することで、洗浄に要する時間をより短縮することもできる。
101・・・試料容器
102・・・試料設置部
103・・・固相抽出カートリッジ
104・・・処理部
105・・・試薬容器
106・・・試薬配置部
107・・・試料分注機構
108・・・試薬分注機構
109・・・固相抽出処理部
110・・・抽出容器
111・・・抽出容器設置部
112・・・設置部
113・・・試料導入部
114・・・イオン源
115・・・質量分析部
201・・・送液溶媒
202・・・送液ポンプ
203・・・洗浄液
204・・・シリンジポンプ
205・・・ニードル
206・・・サンプルループ
207・・・流路切り替えバルブ
208・・・廃液受け
301・・・試料導入部
302・・・洗浄液
303・・・洗浄ポンプ
304・・・三方ジョイント

Claims (14)

  1. 試料導入装置において
    送液溶媒を流路内に吸引する溶媒輸送手段
     検出器に試料を導入する試料導入装置であって、
     液体を保持するサンプルループと、
     送液溶媒を収容する収容部と、
     サンプルを吸引する吸引部と、
     液体を送液する送液部と、
     送液溶媒とサンプルループを繋ぐ第1の流路、吸引部とサンプルループを繋ぐ第2の流路を切り替える、流路切替部、を備え、
     両端に空気層を挟んだサンプルを送液部によりサンプルループから空気層ごと検出器へ導入するように制御する、試料導入装置。
  2.  請求項1において、
     サンプルを検出器へ導入するとき、空気層の後に洗浄液を配置させ、洗浄液ごと検出器へ導入することを特徴とする、試料導入装置。
  3.  請求項1において、
     検出器から空気層を検出した信号を基に、送液部の送液速度を上げることを特徴とする、試料導入装置。
  4.  請求項1において、
     検出器は、質量分析器であることを特徴とする、試料導入装置。
  5.  検出器と、検出器に試料を導入する試料導入装置とを備えた自動分析装置であって、
     液体を保持するサンプルループと、
     送液溶媒を収容する収容部と、
     サンプルを吸引する吸引部と、
     液体を送液する送液部と、
     送液溶媒とサンプルループを繋ぐ第1の流路、吸引部とサンプルループを繋ぐ第2の流路を切り替える、流路切替部、を備え、
     両端に空気層を挟んだサンプルを送液部によりサンプルループから空気層ごと検出器へ導入するように制御する、自動分析装置。
  6.  請求項5において、
     サンプルを検出器へ導入するとき、空気層の後に洗浄液を配置させ、洗浄液ごと検出器へ導入することを特徴とする、自動分析装置。
  7.  請求項5において、
     検出器が空気層を検出した信号を基に、送液部の送液速度を上げることを特徴とする、自動分析装置。
  8.  請求項5において、
     検出器は、質量分析器であることを特徴とする、自動分析装置。
  9.  請求項5において、
     検出器が空気層を検出した信号を基に、データ収集の開始および終了を判定する、自動分析装置。
  10.  検出器に試料を導入する試料導入方法であって、
     両端に空気層を挟んだ試料を空気層ごと検出器へ導入することを特徴とする、試料導入方法。
  11.  請求項10において、
     サンプルを検出器へ導入するとき、空気層の後に洗浄液を配置させ、洗浄液ごと検出器へ導入することを特徴とする、試料導入方法。
  12.  請求項10において、
     検出器から空気層を検出した信号を基に、送液部の送液速度を上げることを特徴とする、試料導入方法。
  13.  請求項10において、
     検出器が空気層を検出した信号を基に、データ収集の開始および終了を判定する、試料導入方法。
  14.  請求項10において、
     サンプルループに空気層を挟んだサンプルを配置させ、流路を切替バルブを用いて、流路を切り替え、上記サンプルを洗浄液を用いて検出器側へ送液することを特徴とする、試料導入方法。
PCT/JP2013/078407 2012-12-19 2013-10-21 試料導入装置 WO2014097731A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP13865867.9A EP2937687A4 (en) 2012-12-19 2013-10-21 sample injector
CN201380066520.6A CN104870993B (zh) 2012-12-19 2013-10-21 试料导入装置
US14/651,247 US20150308986A1 (en) 2012-12-19 2013-10-21 Sample injection device
US15/730,936 US10794874B2 (en) 2012-12-19 2017-10-12 Sample injection device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-276356 2012-12-19
JP2012276356A JP6035603B2 (ja) 2012-12-19 2012-12-19 試料導入装置

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/651,247 A-371-Of-International US20150308986A1 (en) 2012-12-19 2013-10-21 Sample injection device
US15/730,936 Division US10794874B2 (en) 2012-12-19 2017-10-12 Sample injection device

Publications (1)

Publication Number Publication Date
WO2014097731A1 true WO2014097731A1 (ja) 2014-06-26

Family

ID=50978079

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/078407 WO2014097731A1 (ja) 2012-12-19 2013-10-21 試料導入装置

Country Status (5)

Country Link
US (2) US20150308986A1 (ja)
EP (1) EP2937687A4 (ja)
JP (1) JP6035603B2 (ja)
CN (1) CN104870993B (ja)
WO (1) WO2014097731A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104730216A (zh) * 2015-04-16 2015-06-24 肖巍 一种分析计量装置及液体分析系统
CN108603864A (zh) * 2016-01-15 2018-09-28 高丽大学校产学协力团 非连续样品分级和级联装置以及具有该装置的双在线多功能液相色谱系统
CN109115579A (zh) * 2018-10-16 2019-01-01 湖北工业大学 一种高通量样品前处理平台及加液方法

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0724736D0 (en) 2007-12-19 2008-01-30 Oxford Nanolabs Ltd Formation of layers of amphiphilic molecules
WO2016006609A1 (ja) * 2014-07-08 2016-01-14 国立研究開発法人産業技術総合研究所 採水装置兼粘性係数測定装置および粘性係数測定方法
US10241013B2 (en) * 2015-12-08 2019-03-26 Elemental Scientific, Inc. Inline dilution and autocalibration for ICP-MS speciation analysis
WO2019043907A1 (ja) * 2017-09-01 2019-03-07 株式会社島津製作所 オートサンプラ及び液体クロマトグラフ
JP2019074371A (ja) * 2017-10-13 2019-05-16 株式会社島津製作所 質量分析装置を用いた特定物質監視システム
JP6864609B2 (ja) * 2017-11-27 2021-04-28 株式会社日立製作所 光学分析装置、物質の製造システム、物質の製造方法、及びプログラム
EP3522201B1 (en) * 2018-02-02 2020-10-07 Tofwerk AG Autosampler
CN111936838A (zh) 2018-04-10 2020-11-13 基础科学公司 用于收集液体样本并在保持液体样本段的同时远距离运输的系统
CN111979087B (zh) * 2019-05-22 2023-08-15 湖南乐准智芯生物科技有限公司 一种pcr微反应室芯片及其进样方法
WO2021158674A1 (en) * 2020-02-03 2021-08-12 Elemental Scientific, Inc. Inline chemical agent addition for inline reaction with fluid sample for analytic determinations
CN115516319A (zh) * 2020-05-29 2022-12-23 株式会社日立高新技术 自动分析装置的控制方法
CN113640364A (zh) * 2021-07-21 2021-11-12 长江存储科技有限责任公司 一种传输方法和装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6250659A (ja) 1985-08-29 1987-03-05 Shimadzu Corp 液体クロマトグラフへの試料導入方法
JPH07159415A (ja) 1993-12-08 1995-06-23 Hitachi Ltd 自動試料導入方法
JPH07311187A (ja) * 1994-05-13 1995-11-28 Shiseido Co Ltd 液体クロマトグラフィ装置における試料注入方法及び注入装置
JP2573678B2 (ja) 1988-11-14 1997-01-22 日本分光株式会社 液体クロマトグラフ用試料注入方法
WO2010119801A1 (ja) * 2009-04-16 2010-10-21 株式会社島津製作所 液体クロマトグラフ

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3504799A (en) * 1968-04-02 1970-04-07 Beckman Instruments Inc Sample injector
US3918913A (en) * 1974-12-02 1975-11-11 Lilly Co Eli Sampler-injector for liquid chromatography
US4311484A (en) * 1980-04-09 1982-01-19 Cortex Research Corporation Specimen sampling apparatus
CN1009765B (zh) * 1983-12-29 1990-09-26 株式会社岛津制作所 自动进料方法
JPS62138753A (ja) * 1985-12-12 1987-06-22 Hitachi Ltd 液体クロマトグラフイによる分画・分取方法および装置
US4957009A (en) * 1988-09-23 1990-09-18 Spectra-Physics, Inc. Pushloop liquid sampling method
US5134445A (en) * 1989-02-14 1992-07-28 Canon Kabushiki Kaisha Sample inspecting method and apparatus
US5468643A (en) * 1991-08-28 1995-11-21 The United States Of America As Represented By The Department Of Health And Human Services Switching valve system for direct biological sample injection for LC analysis
EP0686848A1 (en) * 1994-05-09 1995-12-13 Shiseido Company Limited Liquid chromatograph having a micro and semi-micro column
US6136195A (en) * 1998-04-10 2000-10-24 Transgenomic, Inc. MIPC column cleaning system and process
DE19926163B4 (de) * 1998-06-19 2008-07-03 Shimadzu Corp. Flüssigchromatograph
JP2004283083A (ja) * 2003-03-24 2004-10-14 Hitachi Ltd オンライン化学反応装置、及び解析システム
JP4522432B2 (ja) * 2006-05-17 2010-08-11 エーエムアール株式会社 サンプルインジェクション用ニードルユニットおよびそれを用いたシリンジのサンプル吸引、洗浄装置
JP2010014559A (ja) * 2008-07-04 2010-01-21 Shimadzu Corp 分取液体クロマトグラフ装置
AU2008243144A1 (en) * 2008-11-06 2010-05-20 Quark Technologies Australia Pty Ltd Improvements in Radiopharmaceutical Purification

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6250659A (ja) 1985-08-29 1987-03-05 Shimadzu Corp 液体クロマトグラフへの試料導入方法
JP2573678B2 (ja) 1988-11-14 1997-01-22 日本分光株式会社 液体クロマトグラフ用試料注入方法
JPH07159415A (ja) 1993-12-08 1995-06-23 Hitachi Ltd 自動試料導入方法
JPH07311187A (ja) * 1994-05-13 1995-11-28 Shiseido Co Ltd 液体クロマトグラフィ装置における試料注入方法及び注入装置
WO2010119801A1 (ja) * 2009-04-16 2010-10-21 株式会社島津製作所 液体クロマトグラフ

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
H. B. KIM ET AL., ANALYTICAL SCIENCE, vol. 16, 2000, pages 871 - 876
K. KAMEYAMA ET AL., BIOPHYSICAL JOURNAL, vol. 90, 2006, pages 2164 - 2169
See also references of EP2937687A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104730216A (zh) * 2015-04-16 2015-06-24 肖巍 一种分析计量装置及液体分析系统
CN104730216B (zh) * 2015-04-16 2016-12-07 肖巍 一种分析计量装置及液体分析系统
CN108603864A (zh) * 2016-01-15 2018-09-28 高丽大学校产学协力团 非连续样品分级和级联装置以及具有该装置的双在线多功能液相色谱系统
CN109115579A (zh) * 2018-10-16 2019-01-01 湖北工业大学 一种高通量样品前处理平台及加液方法

Also Published As

Publication number Publication date
US10794874B2 (en) 2020-10-06
US20180038837A1 (en) 2018-02-08
CN104870993B (zh) 2017-09-22
EP2937687A1 (en) 2015-10-28
JP2014119400A (ja) 2014-06-30
CN104870993A (zh) 2015-08-26
EP2937687A4 (en) 2016-10-05
JP6035603B2 (ja) 2016-11-30
US20150308986A1 (en) 2015-10-29

Similar Documents

Publication Publication Date Title
JP6035603B2 (ja) 試料導入装置
US8926903B2 (en) Pretreatment apparatus and mass spectrometer equipped with the same apparatus
JP5433580B2 (ja) 試料注入システム
US20150111300A1 (en) Apparatus for pretreating biological samples, and mass spectrometer equipped with same
JP7354140B2 (ja) 液体サンプルセグメントを維持しつつ、液体サンプルを収集し、距離に渡って搬送するためのシステム
CN108780064B (zh) 分析装置
JP6843932B2 (ja) サンプルインジェクタ
EP3995832A1 (en) Automatic analysis device
JP2020038205A5 (ja)
JP5707264B2 (ja) 試料導入装置
JP5948630B2 (ja) 質量分析を用いた定量分析方法と定量分析装置
JP6180827B2 (ja) 試料導入装置
JP7232841B2 (ja) 自動分析装置
WO2017122261A1 (ja) 液体クロマトグラフ分析装置
US20240094236A1 (en) Flow path washing method of auto sampler and flow path washing apparatus of auto sampler
JP7357787B2 (ja) 自動分析装置の制御方法
JP5639959B2 (ja) 前処理装置及びそれを用いた自動分析装置
US11326990B2 (en) Autonomous preprocessing device and analysis system provided with the autonomous preprocessing device
JP7247286B2 (ja) 試料注入器
JP2010139448A (ja) 液体クロマトグラフ、液体クロマトグラフ用送液ポンプおよび液体クロマトグラフの洗浄方法
JPH08152426A (ja) 液体クロマトグラフィ装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13865867

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14651247

Country of ref document: US

Ref document number: 2013865867

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE