WO2014092108A1 - 治療機器 - Google Patents
治療機器 Download PDFInfo
- Publication number
- WO2014092108A1 WO2014092108A1 PCT/JP2013/083167 JP2013083167W WO2014092108A1 WO 2014092108 A1 WO2014092108 A1 WO 2014092108A1 JP 2013083167 W JP2013083167 W JP 2013083167W WO 2014092108 A1 WO2014092108 A1 WO 2014092108A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- treatment
- unit
- ultrasonic
- probe
- cross
- Prior art date
Links
- 230000005540 biological transmission Effects 0.000 claims abstract description 62
- 230000005484 gravity Effects 0.000 claims description 4
- 230000001225 therapeutic effect Effects 0.000 claims 1
- 239000000523 sample Substances 0.000 description 89
- 238000010586 diagram Methods 0.000 description 15
- 230000004048 modification Effects 0.000 description 8
- 238000012986 modification Methods 0.000 description 8
- 238000007789 sealing Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- 210000004204 blood vessel Anatomy 0.000 description 3
- 238000009210 therapy by ultrasound Methods 0.000 description 3
- 210000000683 abdominal cavity Anatomy 0.000 description 2
- 210000003815 abdominal wall Anatomy 0.000 description 2
- 238000006073 displacement reaction Methods 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 230000000149 penetrating effect Effects 0.000 description 2
- 230000035515 penetration Effects 0.000 description 2
- 102000004169 proteins and genes Human genes 0.000 description 2
- 108090000623 proteins and genes Proteins 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 1
- 230000001112 coagulating effect Effects 0.000 description 1
- 230000015271 coagulation Effects 0.000 description 1
- 238000005345 coagulation Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000002674 endoscopic surgery Methods 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000001356 surgical procedure Methods 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/04—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
- A61B18/12—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
- A61B18/14—Probes or electrodes therefor
- A61B18/1442—Probes having pivoting end effectors, e.g. forceps
- A61B18/1445—Probes having pivoting end effectors, e.g. forceps at the distal end of a shaft, e.g. forceps or scissors at the end of a rigid rod
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/32—Surgical cutting instruments
- A61B17/320068—Surgical cutting instruments using mechanical vibrations, e.g. ultrasonic
- A61B2017/320071—Surgical cutting instruments using mechanical vibrations, e.g. ultrasonic with articulating means for working tip
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/32—Surgical cutting instruments
- A61B17/320068—Surgical cutting instruments using mechanical vibrations, e.g. ultrasonic
- A61B17/320092—Surgical cutting instruments using mechanical vibrations, e.g. ultrasonic with additional movable means for clamping or cutting tissue, e.g. with a pivoting jaw
- A61B2017/320093—Surgical cutting instruments using mechanical vibrations, e.g. ultrasonic with additional movable means for clamping or cutting tissue, e.g. with a pivoting jaw additional movable means performing cutting operation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/32—Surgical cutting instruments
- A61B17/320068—Surgical cutting instruments using mechanical vibrations, e.g. ultrasonic
- A61B17/320092—Surgical cutting instruments using mechanical vibrations, e.g. ultrasonic with additional movable means for clamping or cutting tissue, e.g. with a pivoting jaw
- A61B2017/320095—Surgical cutting instruments using mechanical vibrations, e.g. ultrasonic with additional movable means for clamping or cutting tissue, e.g. with a pivoting jaw with sealing or cauterizing means
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00571—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
- A61B2018/00589—Coagulation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00571—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
- A61B2018/0063—Sealing
Definitions
- the present invention relates to a treatment device.
- an ultrasonic treatment tool for grasping a living tissue with a probe that transmits ultrasonic vibration and a grasping member, and coagulating or incising the grasped living tissue by the ultrasonic vibration of the probe is known.
- An example of such an ultrasonic treatment tool is disclosed in, for example, Japanese Patent Application Laid-Open No. 11-113922.
- Japanese Patent Application Laid-Open No. 11-113922 discloses that the value of the section modulus of the probe is made larger toward the proximal end portion than at the distal end portion in order to improve the strength of the probe.
- the ultrasonic treatment tool in order to expand the ultrasonic vibration of the probe which is an ultrasonic transmission part, it is necessary to reduce the cross-sectional area near the probe tip rather than the ultrasonic transducer part.
- the cross-sectional area is decreased, the strength of the probe is reduced, and the probe is easily bent when the living tissue is grasped. As a result, the visibility of the probe tip may be degraded, or the vibration characteristics of the probe may change.
- An object of the present invention is to provide a treatment device including an ultrasonic transmission unit that maintains a sufficient strength even if the tip is thin.
- the treatment device is displaced with respect to the grasping member so as to grasp a living tissue as a treatment target between the grasping member and the grasping member,
- An elongated ultrasonic vibration part that vibrates ultrasonically, the tip of the ultrasonic vibration part being one end, the length being shorter than 1 ⁇ 4 of the wavelength of the ultrasonic wave, and the treatment facing the gripping member
- the first node position when the position of the first node seen from the tip of the ultrasonic vibration unit is the first node position, the first node position is one end, and the proximal end is more than the first node position.
- a transmission part having a length that is 1 ⁇ 4 of the wavelength of the ultrasonic wave, and the center of gravity of the treatment part and the gripping member in a cross section perpendicular to the longitudinal axis of the ultrasonic vibration part The cross-sectional secondary model in the treatment part calculated with reference to an axis perpendicular to the straight line passing through the center of gravity
- the instrument I 1, the cross-sectional area A 1 in the treatment unit, the moment of inertia I 2 the cross-sectional area of the transmission portion when the A 2 in the transfer unit, I 1 / A 1 in the treatment unit mean value of 2 is larger than the average value of I 2 / a 2 2 in the transfer unit comprises an ultrasonic vibration unit.
- a treatment device including an ultrasonic transmission unit that maintains a sufficient strength even if the tip is thin.
- FIG. 1 is a diagram illustrating a configuration example of a treatment apparatus according to an embodiment.
- FIG. 2 is a top view illustrating a configuration example of a treatment unit, a shaft, and an operation unit according to an embodiment.
- FIG. 3 is a diagram illustrating a configuration example of the treatment unit according to the first embodiment.
- FIG. 4 is a diagram illustrating a configuration example of the distal treatment section according to the first embodiment.
- FIG. 5 is a diagram illustrating a configuration example of the ultrasonic transducer according to the first embodiment.
- FIG. 6 is a diagram illustrating a configuration example of the electrode member according to the first embodiment.
- FIG. 7 is a diagram illustrating a configuration example of the ultrasonic transmission member according to the first embodiment.
- FIG. 1 is a diagram illustrating a configuration example of a treatment apparatus according to an embodiment.
- FIG. 2 is a top view illustrating a configuration example of a treatment unit, a shaft, and an operation unit according to an embodiment.
- FIG. 8 is a diagram illustrating a configuration example of the ultrasonic transmission member according to the first embodiment.
- FIG. 9 is a diagram illustrating a configuration example of the ultrasonic transmission member according to the first embodiment.
- FIG. 10 is a diagram illustrating an example of a relationship between a distance from the distal end of the treatment unit according to the first embodiment and a value obtained by dividing the sectional moment of inertia by the square of the sectional area.
- FIG. 11 is a diagram illustrating a configuration example of an ultrasonic transmission member according to a modification of the first embodiment.
- FIG. 12 is a diagram illustrating a configuration example of a probe according to a modified example of the first embodiment.
- FIG. 13 is a diagram for explaining a configuration example of the ultrasonic transmission member according to the second embodiment.
- FIG. 14 is a diagram for explaining a configuration example of an ultrasonic transmission member according to the second embodiment.
- FIG. 15 is a diagram for explaining a configuration example of an ultrasonic transmission member according to the third embodiment.
- FIG. 16 is a diagram for explaining a configuration example of an ultrasonic transmission member according to the third embodiment.
- FIG. 1 An outline of the treatment apparatus 10 according to this embodiment is shown in FIG.
- the treatment apparatus 10 includes a treatment unit 100, a shaft 190, an operation unit 200, and a power supply unit 300.
- the treatment unit 100 side is referred to as the distal end side
- the operation unit 200 side is referred to as the proximal end side.
- FIG. 1 the treatment unit 100, the shaft 190, and the operation unit 200 are shown in side views.
- a top view of the treatment section 100, the shaft 190, and the operation section 200 is shown in FIG.
- the treatment apparatus 10 is used for, for example, endoscopic surgery.
- the treatment unit 100 and the shaft 190 are inserted into the abdominal cavity through a small hole formed in the abdominal wall of the person to be treated, for example.
- the surgeon operates the operation unit 200 outside the body of the person to be treated to operate the treatment unit 100.
- the shaft 190 has an elongated shape.
- the treatment unit 100 of the treatment apparatus 10 grasps a biological tissue such as a blood vessel that is a treatment target.
- the treatment unit 100 applies a high-frequency current to the grasped biological tissue to seal or solidify the biological tissue.
- the treatment unit 100 cuts the grasped living tissue while sealing or the like using ultrasonic vibration.
- the treatment unit 100 includes an ultrasonic transducer 110, a probe 140 that is a part of an ultrasonic transmission member that transmits ultrasonic waves generated by the ultrasonic transducer 110, and a jaw 170.
- the ultrasonic transducer 110 has a configuration in which a plurality of piezoelectric elements are stacked, and generates ultrasonic vibrations.
- the probe 140 is provided on the distal end side of the ultrasonic transducer 110 and has an elongated shape. The probe 140 transmits the ultrasonic vibration generated by the ultrasonic vibrator 110 and vibrates in the longitudinal direction thereof.
- the jaw 170 moves so as to open and close with respect to the probe 140.
- the probe 140 and the jaw 170 hold a living tissue that is a treatment target.
- the distal treatment section 160 is formed by the probe 140 and the jaw 170.
- a part of the probe 140 and a part of the jaw 170 also function as a bipolar electrode that applies a high-frequency voltage to the grasped living tissue.
- a joint 195 is provided at a connecting portion between the treatment portion 100 and the shaft 190.
- the orientation of the treatment unit 100 with respect to the shaft 190 varies depending on the joint 195.
- the treatment unit 100 includes a rotation mechanism that rotates about the longitudinal axis with respect to the shaft 190 on the distal end side from the joint 195.
- the operation unit 200 includes an operation unit main body 210, a fixed handle 242, a movable handle 244, a rotation knob 252, a joint knob 254, and an output switch 260.
- the fixed handle 242 is fixed with respect to the operation unit main body 210
- the movable handle 244 is displaced with respect to the operation unit main body 210.
- the movement of the movable handle 244 is transmitted to the jaw 170 via the shaft 190.
- the jaw 170 is displaced with respect to the probe 140 in accordance with the operation of the movable handle 244.
- the distal treatment section 160 opens and closes.
- the rotation knob 252 is a knob for rotating the treatment unit 100 around the longitudinal axis. As shown in FIG. 2, the rotation mechanism provided in the treatment unit 100 operates according to the rotation of the rotation knob 252, and the treatment unit 100 rotates.
- the joint knob 254 is a knob for driving the joint 195.
- the joint 195 operates according to the displacement of the joint knob 254, and the orientation of the treatment unit 100 with respect to the shaft 190 changes.
- the output switch 260 includes a first switch 262 and a second switch 264.
- the first switch 262 When the first switch 262 is pressed, the first switch 262 outputs a signal for causing the treatment unit 100 to drive only the ultrasonic transducer. As a result, the probe 140 of the treatment unit 100 is ultrasonically vibrated, and the living tissue grasped by the distal treatment unit 160 is cut.
- the second switch 264 When the second switch 264 is pressed, the second switch 264 outputs a signal for causing the treatment unit 100 to apply a high-frequency voltage and drive the ultrasonic transducer. As a result, a high frequency voltage is applied to the distal treatment section 160, and the living tissue grasped by the distal treatment section 160 is sealed or coagulated. Further, the probe 140 is ultrasonically vibrated, and the living tissue grasped by the distal treatment section 160 is cut.
- the power supply unit 300 includes a control unit 310, an ultrasonic drive unit 320, and a high frequency drive unit 330.
- the control unit 310 controls each unit of the treatment apparatus 10. For example, the control unit 310 controls the operations of the ultrasonic driving unit 320 and the high frequency driving unit 330 according to the input from the output switch 260.
- the ultrasonic drive unit 320 drives the ultrasonic transducer 110 under the control of the control unit 310.
- the high frequency driving unit 330 supplies a high frequency current to the distal treatment unit 160 under the control of the control unit 310.
- the operation of the treatment apparatus 10 will be described.
- the surgeon operates the input unit of the power supply unit 300 to set the output conditions of the treatment device, for example, the output power of high-frequency energy, the output power of ultrasonic energy, and the like.
- the treatment device 10 may be configured such that each value is set individually, or a set of setting values corresponding to the surgical procedure may be selected.
- the treatment unit 100 and the shaft 190 are inserted into the abdominal cavity through the abdominal wall, for example.
- the surgeon operates the rotary knob 252 and the joint knob 254 to bring the treatment unit 100 closer to the biological tissue that is the treatment target.
- the surgeon operates the movable handle 244 to open and close the treatment unit 100 and grasps the living tissue to be treated with the probe 140 and the jaw 170.
- a biological tissue to be treated for example, a blood vessel is assumed.
- various tissues other than blood vessels are assumed.
- the surgeon operates the output switch 260 after grasping the biological tissue to be treated with the treatment unit 100. For example, when the second switch 264 is pressed, the second switch 264 outputs a signal for causing the treatment unit 100 to apply a high-frequency voltage and drive the ultrasonic transducer.
- the control unit 310 of the power supply unit 300 that has acquired this signal outputs a driving instruction to the ultrasonic driving unit 320 and the high frequency driving unit 330.
- the high-frequency drive unit 330 applies a high-frequency voltage to the probe 140 and the jaw 170 of the treatment unit 100 under the control of the control unit 310, and causes a high-frequency current to flow through the living tissue to be treated.
- a high frequency current flows, the living tissue becomes an electrical resistance, so heat is generated in the living tissue and the temperature of the living tissue rises.
- the temperature of the living tissue at this time is about 100 ° C. to 200 ° C., for example. As a result, the protein is denatured, and the living tissue is coagulated and sealed.
- the ultrasonic drive unit 320 drives the ultrasonic transducer 110 under the control of the control unit 310.
- the probe 140 vibrates at an ultrasonic frequency in the longitudinal direction. Due to frictional heat between the living tissue and the probe 140, the temperature of the living tissue rises. As a result, the protein is denatured, and the living tissue is coagulated and sealed. In addition, the sealing effect of the living tissue by this ultrasonic vibration is weaker than the sealing effect by applying a high frequency voltage.
- the temperature of a biological tissue will be about 200 degreeC, for example. As a result, the living tissue collapses and the living tissue is cut. Thus, the living tissue grasped by the distal treatment section 160 is cut while being solidified and sealed. Thus, the treatment of the living tissue is completed.
- the ultrasonic transducer 110 includes seven piezoelectric elements 112. These piezoelectric elements 112 have an annular shape, and are stacked by being sandwiched between annular electrodes 115. Ring-shaped insulating plates 114 are provided at both ends of the ultrasonic transducer 110. In this way, the ring-shaped piezoelectric element 112, the electrode, and the insulating plate 114 are laminated, whereby the vibration member 111 having a hollow cylindrical shape as a whole is configured.
- the treatment unit 100 is provided with an ultrasonic transmission member 135.
- the distal end side of the ultrasonic transmission member 135 constitutes the probe 140.
- a convex portion 137 is provided at the proximal end of the probe 140 of the ultrasonic transmission member 135.
- the vibration member 111 including the piezoelectric element 112 and the like is pressed against the convex portion 137.
- a penetrating portion 139 is provided on the proximal end side of the convex portion 137 of the ultrasonic transmission member 135.
- the penetration part 139 penetrates the center part of the vibration member 111 having a cylindrical shape. That is, the penetration part 139 penetrates the piezoelectric element 112, the insulating plate 114, the electrode 115, and the like.
- the through portion 139 is in contact with the piezoelectric element 112 and the insulating plate 114, but not in contact with the electrode 115.
- a backing plate 122 is provided on the base end side of the penetrating portion 139. The backing plate 122 presses the ultrasonic transducer 110 against the convex portion 137 of the ultrasonic transmission member 135.
- the ultrasonic vibrator 110 is disposed in the cylinder 124.
- the cylinder 124 is a cover that covers the ultrasonic transducer 110.
- An O-ring 126 is provided at the end on the tip side of the cylinder 124. The O-ring 126 prevents a liquid from entering the cylinder 124 by sealing a gap between the ultrasonic transmission member 135 and the cylinder 124.
- a connecting member 162 is provided on the distal end side of the cylinder 124.
- the connection member 162 is provided with a support member 172 for the jaw 170 so as to be rotatable about a first rotation shaft 164 provided on the connection member 162.
- a second rotating shaft 174 is provided, and a gripping member 176 is provided so as to be rotatable about the second rotating shaft 174 as a central axis.
- the gripping member 176 can rotate relative to the support member 172 depending on the position of the support member 172.
- the distal treatment section 160 can grasp the living tissue with the same pressure on the distal end side and the proximal end side even if the thickness of the living tissue grasped on the distal end side and the proximal end side is different. Applying uniform pressure to the living tissue to be treated has an effect on stable sealing and coagulation of the living tissue and excision.
- FIG 4 is a cross-sectional view of the probe 140 and the gripping member 176 viewed from the distal end side in a state where the distal treatment section 160 is closed.
- the surface facing the gripping member 176 of the probe 140 is a gripping surface
- a groove is provided on the surface that is the back surface of the gripping surface with respect to the central axis of the probe 140.
- the cross-sectional shape of 140 is U-shaped. That is, the U-shaped bottom portion of the probe 140 faces the grip member 176.
- the gripping member 176 is provided with a contact member 178.
- the contact member 178 is formed of an insulating material such as a fluororesin.
- the probe 140 and the contact member 178 come into contact with each other, and a gap is formed between the probe 140 and the gripping member 176.
- the probe 140 and the holding member 176 function as bipolar electrodes.
- the living tissue where the current flows is sealed or solidified.
- the ultrasonic transducer 110 vibrates the probe 140 vibrates in the longitudinal axis direction, and the living tissue is rubbed with the probe 140 and cut at a portion sandwiched between the probe 140 and the gripping member 176.
- FIG. 6 is a perspective view of the electrode member 116 constituting the electrode 115 provided at both ends of each piezoelectric element 112 of the ultrasonic transducer 110.
- the ultrasonic transducer 110 is provided with two electrode members 116 alternately.
- the end of one electrode member 116 is referred to as a + electrode 117, and the end of the other electrode member 116 is referred to as a ⁇ electrode 118.
- a voltage as shown in FIG. 5 is applied to both ends of each piezoelectric element 112, for example.
- each piezoelectric element 112 vibrates and generates an ultrasonic wave.
- the ultrasonic transducer 110 generates a large displacement because the seven piezoelectric elements 112 are laminated.
- the electrode member used as the plus electrode and the electrode member used as the minus electrode can have the same shape as the electrode member 116 shown in FIG. As a result, the manufacturing cost can be suppressed.
- a high-frequency electrode 119 that is in contact with the ultrasonic transmission member 135 is provided between the insulating plate 114 and the backing plate 122.
- a high frequency voltage is applied to the ultrasonic transmission member 135 via the high frequency electrode 119.
- the insulating plate 114 insulates the ultrasonic transmission member 135 from the electrode member 116.
- FIGS. 7 is a front view of the ultrasonic transmission member 135 as seen from the distal end side.
- the width of the probe 140 is, for example, 1.7 mm
- the width of the groove provided in the probe 140 is, for example, 1.2 mm.
- FIG. 8 is a side view of the ultrasonic transmission member 135 and the like
- FIG. 9 is a cross-sectional view of the ultrasonic transmission member 135 and the like.
- the tip position of the probe 140 is the origin, and the length is defined toward the base end side.
- the length of the grip portion facing the grip member 176 of the probe 140 is 15 mm.
- the length from the tip to the insulating plate 114 is, for example, 26.5 mm.
- the length of the ultrasonic transmission member 135 is 41 mm, for example.
- the probe 140 has a lower height at the tip.
- a gripping surface of the probe 140 facing the gripping member 176 is parallel to the longitudinal central axis of the ultrasonic transmission member 135.
- the back surface opposite to the surface facing the gripping member 176 of the probe 140 is inclined, for example, 4 ° with respect to the central axis.
- the height of the probe 140 at the distal end is, for example, 1.4 mm, and the height of the probe 140 at the proximal end is 3.2 mm.
- the depth of the groove of the probe 140 at the proximal end is, for example, 2.5 mm.
- the bottom of the groove is parallel to the central axis.
- the outer diameter of the piezoelectric element 112 is, for example, 5 mm.
- the outer diameter of the shaft 190 is 10.5 mm, for example.
- the vibration speed of the ultrasonic vibration generated by the ultrasonic vibrator 110 represents the vibration speed of the ultrasonic vibration generated by the ultrasonic vibrator 110.
- a vibration node occurs in the convex portion 137 where the ultrasonic transmission member 135 is in contact with the ultrasonic transducer 110.
- the vibration frequency is 75 kHz.
- the vibration speed at the distal end portion of the probe 140 is, for example, 18 m / sp-p, and the vibration speed at the proximal end portion of the probe 140 is, for example, 1.5 m / sp-p.
- a gripping portion where the probe 140 and the gripping member 176 from the tip to 15 mm face each other is referred to as a treatment portion.
- a portion on the proximal end side from the treatment portion to the convex portion 137, that is, a portion of 15 mm to 25 mm from the distal end is referred to as a moment transition portion.
- the base end side from the moment transition portion, that is, the base end side from the convex portion 137 will be referred to as a transmission portion.
- the length of the treatment portion is shorter than 1/4 of the wavelength of the ultrasonic wave.
- the length of the transmission unit is 1/4 of the wavelength of the ultrasonic wave.
- the length of the ultrasonic transmission member 135 is also 1 ⁇ 2 of the wavelength of the ultrasonic wave, including the portion where the ultrasonic transducer 110 is provided.
- the cross-sectional shape of the probe 140 is U-shaped for the following reason. Since the probe 140 and the jaw 170 sandwich the living tissue, a gripping load is applied to the probe 140 in the direction of the white arrow shown in FIG. For this reason, the probe treatment unit 120 is required to be difficult to bend when a gripping load is applied. On the other hand, the tip of the probe 140 is required to be thin so that a fine portion can be treated and the ultrasonic vibration speed is increased at the tip. In this embodiment, the cross-sectional shape of the probe 140 is U-shaped so that the probe 140 is not easily bent when a gripping load is applied to the thin probe 140.
- the cross-sectional secondary moment calculated with reference to the axis perpendicular to the gripping load is Ix.
- a cross-sectional area at each position where the distance from the tip is x is Ax. That is, when the y-axis is provided in a cross section perpendicular to the central axis and the z-axis is provided in a direction perpendicular to the y-axis in parallel to the gripping load direction, the cross-sectional secondary moment Ix is
- FIG. 10 shows the relationship between the distance x from the tip of the probe 140 and the value obtained by dividing the sectional secondary moment Ix of the portion composed of the probe 140 and the ultrasonic transducer 110 by the square of the sectional area Ax.
- the value obtained by dividing the cross-sectional secondary moment I by the square of the cross-sectional area A is a value obtained by making the cross-sectional secondary moment non-dimensional, and represents the rigidity per unit cross-sectional area with respect to the gripping load.
- the value obtained by dividing the cross-sectional secondary moment Ix at the arbitrary position of the treatment section having a U-shaped cross section by the square of the cross-sectional area Ax is arbitrary for the transmission section having a circular cross section.
- the average value of the value obtained by dividing the sectional secondary moment Ix in the treatment section by the square of the sectional area Ax is larger than the average value of the value obtained by dividing the sectional secondary moment Ix in the transmitting section by the square of the sectional area Ax. large.
- the probe 140 and the ultrasonic transducer 110 function as an elongated ultrasonic vibration section that ultrasonically vibrates.
- the jaw 170 functions as a grasping member that moves relative to the ultrasonic vibration unit and grasps a living tissue that is a treatment target between the jaw 170 and the ultrasonic vibration unit.
- the cross-sectional shape of the probe 140 U-shaped As in this embodiment, by making the cross-sectional shape of the probe 140 U-shaped, the value obtained by dividing the cross-sectional secondary moment Ix in the gripping load direction of the probe 140 by the square of the cross-sectional area Ax, that is, the unit cross-sectional area The hit rigidity is higher than that when the cross-sectional shape is circular. Thus, by making the cross-sectional shape of the probe 140 U-shaped, the probe 140 which is not easily bent can be realized. As described above, the strength of the probe 140 with respect to the gripping load is improved by appropriately setting the shape of the probe 140 that is desired to be thin as in the present embodiment.
- the value obtained by dividing the sectional secondary moment Ix at an arbitrary position of the treatment portion by the square of the sectional area Ax is the sectional secondary moment Ix at an arbitrary position of the transmitting portion by the square of the sectional area Ax. Greater than the divided value.
- the present invention is not limited to this, and a representative value of a value obtained by dividing the sectional secondary moment Ix in the treatment portion by the square of the sectional area Ax (described as I 1 / A 1 2 ) is a sectional secondary moment Ix in the transmission portion.
- the representative value of the transfer portion is set to the average value of the values I 2 / A 2 2
- a representative value of the treatment portion for example, other or values I 1 / A 1 2 sites large stress is applied as compared to the grip may be or value I 1 / a 1 2 of the portion load is applied, the biological tissue is the value I 1 / a 1 2, etc. of the portion in contact.
- FIG. 11 A sectional view of the ultrasonic transducer 110 and the ultrasonic transmission member 135 according to this modification is shown in FIG. 11, and a top view thereof is shown in FIG.
- the probe 140 according to this modification is thicker on the base end side than the probe 140 according to the first embodiment.
- the bottom of the groove is inclined with respect to the central axis so that the depth of the U-shaped groove is deep on the base end side.
- the base end side of the probe 140 is thick due to the structure as in this modification, the stress due to the grip load is dispersed and the maximum stress related to the probe 140 is reduced. As a result, the probe 140 according to the present modification is strong against the grip load. Further, since the U-shaped groove bottom portion is inclined with respect to the central axis and the groove is deep on the proximal end side, the cross-sectional area gradually decreases toward the distal end portion of the probe 140. The vibration speed in the treatment section is increased.
- FIGS. 13 is a perspective view showing the shape of the ultrasonic transmission member 135 and the like
- FIG. 14 is a front view of the ultrasonic transmission member 135 and the like as viewed from the front end side.
- the probe 140 according to the present embodiment has a quadrangular prism shape.
- FIGS. 15 and 16 are perspective views showing the shape of the ultrasonic transmission member 135 and the like
- FIG. 16 is a front view of the ultrasonic transmission member 135 and the like as viewed from the distal end side.
- the probe 140 which is a treatment section according to the present embodiment has a hollow cylindrical shape.
- the transmission part has a cylindrical shape.
Landscapes
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- Veterinary Medicine (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Public Health (AREA)
- Biomedical Technology (AREA)
- General Health & Medical Sciences (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Heart & Thoracic Surgery (AREA)
- Physics & Mathematics (AREA)
- Otolaryngology (AREA)
- Plasma & Fusion (AREA)
- Surgical Instruments (AREA)
- Radiology & Medical Imaging (AREA)
- Dentistry (AREA)
- Mechanical Engineering (AREA)
Abstract
治療機器(10)は、把持部材(170)と超音波振動部(140)とを含む。前記把持部材(170)と前記超音波振動部(140)とは、生体組織を把持する。前記超音波振動部(140)は、前記超音波振動部の先端を一端とし、長さが前記超音波の波長の1/4よりも短い処置部と、前記先端からみて最初に節が生じる第1の節位置を一端とし、前記第1の節位置よりも基端側であって、長さが前記超音波の波長の1/4である伝達部とを含む。前記処置部における断面2次モーメント及び断面積をそれぞれI1及びA1とし、前記伝達部における断面2次モーメント及び断面積をそれぞれI2及びA2としたときに、I1/A1
2の平均値は、I2/A2
2の平均値よりも大きい。
Description
本発明は、治療機器に関する。
一般に、超音波振動を伝達するプローブと把持部材とで生体組織を把持し、プローブの超音波振動により、把持した生体組織を凝固させたり切開したりするための超音波処置具が知られている。このような超音波処置具の一例が、例えば日本国特開平11-113922号公報に開示されている。日本国特開平11-113922号公報には、プローブの強度を向上させるため、プローブの断面係数の値を先端側部分よりも基端側部分の方ほど大きくすることが開示されている。
超音波処置具において、超音波伝達部であるプローブの超音波振動を拡大するためには、超音波振動子部分よりもプローブ先端付近で断面積を減少させる必要がある。しかしながら、断面積を減少させると、プローブの強度が低下し、生体組織を把持したときに、プローブが撓みやすい。その結果、プローブ先端部の視認性が低下したり、プローブの振動特性が変化したりする恐れがある。
本発明は、先端が細くても十分な強度を維持した超音波伝達部を備える治療機器を提供することを目的とする。
前記目的を果たすため、本発明の一態様によれば、治療機器は、把持部材と、前記把持部材との間に処置対象である生体組織を把持するように前記把持部材に対して変位し、超音波振動する細長形状の超音波振動部であって、当該超音波振動部の先端を一端とし、長さが前記超音波の波長の1/4よりも短くて、前記把持部材と対向する処置部と、当該超音波振動部の前記先端からみて最初に生じる節の位置を第1の節位置としたときに、前記第1の節位置を一端とし、前記第1の節位置よりも基端側であって、長さが前記超音波の波長の1/4である伝達部と、を含み、当該超音波振動部の長手軸と垂直な断面における、前記処置部の重心と前記把持部材の重心とを通る直線と垂直な軸を基準として計算した前記処置部における断面2次モーメントをI1、前記処置部における断面積をA1、前記伝達部における断面2次モーメントをI2、前記伝達部における断面積をA2としたときに、前記処置部におけるI1/A1
2の平均値は、前記伝達部におけるI2/A2
2の平均値よりも大きい、超音波振動部とを具備する。
本発明によれば、先端が細くても十分な強度を維持した超音波伝達部を備える治療機器が提供され得る。
[第1の実施形態]
本発明の第1の実施形態について図面を参照して説明する。本実施形態に係る処置装置10の概略を図1に示す。この図に示されるように、処置装置10は、処置部100と、シャフト190と、操作部200と、電源ユニット300とを備える。以降説明のため、処置部100側を先端側、操作部200側を基端側と称することにする。図1において、処置部100と、シャフト190と、操作部200とは、それらの側面図が示されている。処置部100と、シャフト190と、操作部200との上面図を図2に示す。
本発明の第1の実施形態について図面を参照して説明する。本実施形態に係る処置装置10の概略を図1に示す。この図に示されるように、処置装置10は、処置部100と、シャフト190と、操作部200と、電源ユニット300とを備える。以降説明のため、処置部100側を先端側、操作部200側を基端側と称することにする。図1において、処置部100と、シャフト190と、操作部200とは、それらの側面図が示されている。処置部100と、シャフト190と、操作部200との上面図を図2に示す。
本実施形態に係る処置装置10は、例えば内視鏡下外科手術に用いられる。処置部100及びシャフト190は、例えば、被処置者の腹壁に開けられた小さな孔を通して腹腔内に挿入される。術者は、被処置者の体外で操作部200を操作して、処置部100を動作させる。このため、シャフト190は、細長形状をしている。
処置装置10の処置部100は、処置対象である例えば血管といった生体組織を把持する。処置部100は、把持した生体組織に高周波電流を流して、この生体組織を封止したり凝固させたりする。また、処置部100は、超音波振動を用いて、把持された生体組織を封止等しながら切断する。
処置部100には、超音波振動子110と、超音波振動子110で発生した超音波を伝達する超音波伝達部材の一部であるプローブ140と、ジョー170とが設けられている。超音波振動子110は、後述するように複数の圧電素子が積層された構成を有し、超音波振動を発生する。プローブ140は、超音波振動子110の先端側に設けられており、細長形状をしている。プローブ140は、超音波振動子110で発生した超音波振動を伝達し、その長手方向に振動する。ジョー170は、プローブ140に対して開閉するように移動する。プローブ140とジョー170とは、処置対象である生体組織を把持する。このように、プローブ140とジョー170とによって、先端処置部160が形成される。なお、プローブ140の一部とジョー170の一部とは、把持された生体組織に高周波電圧を印加するバイポーラ電極としても機能する。
処置部100とシャフト190との連結部には、関節195が設けられている。シャフト190に対する処置部100の向きは、関節195によって変化する。また、処置部100は、関節195より先端側でシャフト190に対して長手軸回りに回転する回転機構を有する。
操作部200には、操作部本体210と、固定ハンドル242と、可動ハンドル244と、回転ノブ252と、関節ノブ254と、出力スイッチ260とが設けられている。固定ハンドル242は、操作部本体210に対して固定されており、可動ハンドル244は、操作部本体210に対して変位する。可動ハンドル244の動作は、シャフト190を介してジョー170に伝達される。ジョー170は、可動ハンドル244の動作に応じて、プローブ140に対して変位する。その結果、先端処置部160は開閉する。
回転ノブ252は、処置部100を長手軸回りに回転させるためのノブである。図2に示されるように、回転ノブ252の回転に応じて処置部100に設けられた回転機構は動作し、処置部100が回転する。関節ノブ254は、関節195を駆動させるためのノブである。関節ノブ254の変位に応じて関節195は動作し、シャフト190に対する処置部100の向きが変化する。
出力スイッチ260は、第1のスイッチ262と第2のスイッチ264とを含む。第1のスイッチ262が押圧されたとき、第1のスイッチ262は、処置部100によって超音波振動子の駆動のみが行われるための信号を出力する。その結果、処置部100のプローブ140は超音波振動し、先端処置部160で把持された生体組織は切断される。第2のスイッチ264が押圧されたとき、第2のスイッチ264は、処置部100によって高周波電圧の印加と超音波振動子の駆動とが行われるための信号を出力する。その結果、先端処置部160には、高周波電圧が印加され、先端処置部160で把持された生体組織は封止や凝固される。また、プローブ140は超音波振動し、先端処置部160で把持された生体組織は切断される。
操作部200には、ケーブル290の一端が接続されている。ケーブル290の他端は、電源ユニット300に接続されている。電源ユニット300は、制御部310と、超音波駆動部320と、高周波駆動部330とを含む。制御部310は、処置装置10の各部の制御を行う。例えば制御部310は、出力スイッチ260からの入力に応じて、超音波駆動部320や高周波駆動部330の動作を制御する。超音波駆動部320は、制御部310の制御下で、超音波振動子110を駆動させる。高周波駆動部330は、制御部310の制御下で、先端処置部160に高周波電流を供給する。
本実施形態に係る処置装置10の動作について説明する。術者は、電源ユニット300の入力部を操作して、処置装置の出力条件、例えば、高周波エネルギの出力電力や、超音波エネルギの出力電力等を設定しておく。処置装置10は、それぞれの値が個別に設定されるようになっていてもよいし、術式に応じた設定値のセットが選択されるようになっていてもよい。
処置部100及びシャフト190は、例えば、腹壁を通して腹腔内に挿入される。術者は、回転ノブ252及び関節ノブ254を操作して、処置部100を処置対象である生体組織に近づける。術者は、可動ハンドル244を操作して処置部100を開閉させ、プローブ140とジョー170とによって処置対象の生体組織を把持する。処置対象の生体組織としては、例えば血管が想定される。生体組織としては、血管以外にも種々の組織が想定される。
術者は、処置部100で処置対象の生体組織を把持したら、出力スイッチ260を操作する。例えば第2のスイッチ264が押圧されたとき、第2のスイッチ264は、処置部100によって高周波電圧の印加と超音波振動子の駆動とが行われるための信号を出力する。この信号を取得した電源ユニット300の制御部310は、超音波駆動部320及び高周波駆動部330に、駆動に係る指示を出力する。
高周波駆動部330は、制御部310の制御下で、処置部100のプローブ140及びジョー170に高周波電圧を印加し、処置対象である生体組織に高周波電流を流す。高周波電流が流れると、生体組織が電気的な抵抗となるため、生体組織で熱が発生し、生体組織の温度が上昇する。このときの生体組織の温度は、例えば100℃乃至200℃程度になる。その結果、タンパク質が変成し、生体組織が凝固し封止される。
また、超音波駆動部320は、制御部310の制御下で、超音波振動子110を駆動する。その結果、プローブ140は、その長手方向に超音波周波数で振動する。生体組織とプローブ140との摩擦熱により、生体組織の温度が上昇する。その結果、タンパク質が変成し、生体組織が凝固し封止される。なお、この超音波振動による生体組織の封止効果は、高周波電圧の印加による封止効果よりも弱い。また、生体組織の温度は、例えば200℃程度になる。その結果、生体組織は崩壊し、生体組織は切断される。このように、先端処置部160で把持された生体組織は、凝固し及び封止されながら切断される。以上によって生体組織の処置は完了する。
処置部100について図3を参照してさらに説明する。この図に示されるように、超音波振動子110には、7つの圧電素子112が含まれる。これら圧電素子112は、環形状をしており、それぞれ環形状の電極115に挟まれて積層されている。超音波振動子110の両端には、環形状の絶縁板114が設けられている。このようにして、環形状の圧電素子112、電極及び絶縁板114が積層されることによって、全体として中空の円筒形状をした振動部材111が構成される。
処置部100には、超音波伝達部材135が設けられている。超音波伝達部材135の先端側は、プローブ140を構成する。超音波伝達部材135のプローブ140の基端には、凸部137が設けられている。この凸部137には、圧電素子112等を含む振動部材111が押し付けられている。超音波伝達部材135の凸部137よりも基端側には、貫通部139が設けられている。貫通部139は、円筒形状をした振動部材111の中心部を貫通する。すなわち、貫通部139は、圧電素子112、絶縁板114、電極115等を貫通する。貫通部139は、圧電素子112及び絶縁板114には接触しているが、電極115には接触していない。貫通部139の基端側には、裏打板122が設けられている。裏打板122は、超音波振動子110を超音波伝達部材135の凸部137に押し付ける。
超音波振動子110は、シリンダ124内に配置されている。このシリンダ124は、超音波振動子110を覆うカバーとなっている。シリンダ124の先端側の端部には、Oリング126が設けられている。Oリング126は、超音波伝達部材135とシリンダ124との隙間を封止することで、シリンダ124内部への液体の侵入を防止する。シリンダ124の先端側には、連結部材162が設けられている。連結部材162には、連結部材162に設けられた第1の回転軸164を中心軸として回転可能にジョー170の支持部材172が設けられている。
支持部材172の先端付近には、第2の回転軸174が設けられており、第2の回転軸174を中心軸として回転可能に把持部材176が設けられている。把持部材176は、支持部材172の位置に応じて、支持部材172に対して回転できる。その結果、先端処置部160は、先端側と基端側とで把持する生体組織の厚みが異なっても、生体組織を先端側と基端側とで同じ圧力で把持することができる。処置対象である生体組織に均一な圧力を加えることは、生体組織の安定した封止及び凝固、並びに切除に効果を奏する。
先端処置部160が閉じた状態における、先端側から見たプローブ140及び把持部材176の断面図を図4に示す。この図に示されるように、プローブ140の把持部材176と対向する面を把持面としたときに、プローブ140の中心軸に対して把持面の裏面となる面に溝が設けられており、プローブ140の断面形状は、U字型をしている。すなわち、プローブ140のU字型の底部は、把持部材176と対向している。
把持部材176には、接触部材178が設けられている。接触部材178は、フッ素樹脂等の絶縁性の材料によって形成されている。先端処置部160が閉じられた状態において、プローブ140と接触部材178とが当接し、プローブ140と把持部材176との間には、間隙が形成される。処置装置10の使用時において、先端処置部160が生体組織を把持し高周波電圧を印加するとき、プローブ140と把持部材176とが対向する間隙部分に位置する生体組織内を電流が流れる。すなわち、プローブ140と把持部材176とは、バイポーラ電極として機能する。その結果、電流が流れた部分の生体組織は封止又は凝固する。また、超音波振動子110が振動するとき、プローブ140がその長手軸方向に振動し、プローブ140と把持部材176とに挟まれた部分において、生体組織はプローブ140と摩擦し切断される。
超音波振動子110の振動部材111について、図5及び図6を参照してさらに説明する。図6は、超音波振動子110の各圧電素子112の両端に設けられた電極115を構成する電極部材116の斜視図である。図5に示されるように、超音波振動子110には、電極部材116が2つ互い違いに設けられている。一方の電極部材116の端部を+電極117とし、他方の電極部材116の端部を-電極118とする。+電極117と-電極118との間に電圧を印加すると、各圧電素子112の両端には、例えば図5に示されるような電圧が印加される。このように、各圧電素子112の両端に超音波に相当する周波数の交流電圧が印加されることで、各圧電素子112は振動し、超音波を発生する。超音波振動子110は、7つの圧電素子112が積層されていることで、大きな変位を発生する。また、圧電素子112が奇数枚であることにより、プラス電極として用いられる電極部材とマイナス電極として用いられる電極部材とが、図6に示される電極部材116のような同一の形状とされ得る。その結果、製造コストが抑制され得る。
また、絶縁板114と裏打板122との間には、超音波伝達部材135と接する高周波電極119が設けられている。この高周波電極119を介して、超音波伝達部材135には、高周波電圧が印加される。図5に示されるように、絶縁板114は、超音波伝達部材135と、電極部材116とを絶縁している。
超音波伝達部材135等の各部の寸法を図7乃至図9に示す。これら図に示された長さの単位はmmである。図7は、超音波伝達部材135を先端側から見た正面図である。この図に示されるように、プローブ140の幅は例えば1.7mmであり、プローブ140に設けられた溝の幅は、例えば1.2mmである。
図8は超音波伝達部材135等の側面図であり、図9は超音波伝達部材135等の断面図である。プローブ140の先端位置を原点とし、基端側に向けて長さを定義する。プローブ140の把持部材176と対向する把持部分の長さは15mmである。先端から絶縁板114までの長さは、例えば26.5mmである。超音波伝達部材135の長さは例えば41mmである。プローブ140は、先端程高さが低くなっている。プローブ140の把持部材176と対向する把持面は、超音波伝達部材135の長手方向の中心軸と平行である。一方、プローブ140の把持部材176と対向する面と反対側である裏面は、中心軸に対して例えば4°傾いている。先端部におけるプローブ140の高さは例えば1.4mmであり、基端部におけるプローブ140の高さは3.2mmである。基端部におけるプローブ140の溝の深さは、例えば2.5mmである。溝の底部は、中心軸と平行である。圧電素子112の外径は、例えば5mmである。なお、シャフト190の外径は例えば10.5mmである。
図8の2点鎖線は超音波振動子110によって発生した超音波振動の振動速度を表す。本実施形態では、超音波伝達部材135が超音波振動子110と接する凸部137において、振動の節が生じる。図8に示されるように、プローブ140は、先端程細くなっているので、先端程振動速度が拡大されている。本実施形態では、振動周波数は75kHzである。プローブ140の先端部における振動速度は、例えば18m/sp-pであり、プローブ140の基端部における振動速度は、例えば1.5m/sp-pである。
本実施形態では、先端から15mmまでのプローブ140と把持部材176とが対向する把持部分を処置部と称することにする。処置部より基端側であり凸部137までの部分、すなわち、先端から15mmから25mmの部分をモーメント移行部と称することにする。モーメント移行部よりも基端側、すなわち凸部137より基端側を伝達部と称することにする。このように、処置部の長さは、超音波の波長の1/4よりも短い。伝達部の長さは、超音波の波長の1/4である。なお、超音波振動子110が設けられた部分も含み、超音波伝達部材135の長さは、超音波の波長の1/2となっている。
本実施形態において、プローブ140の断面形状がU字型であるのは、次の理由による。プローブ140とジョー170とは生体組織を挟むので、プローブ140には図5に示した白抜き矢印の方向に把持荷重が掛かる。このため、プローブ処置部120には、把持荷重が掛かったときに撓みにくいことが求められる。一方で、細かい部分の処置を行えるように、また、先端部で超音波の振動速度が拡大するように、プローブ140の先端は細いことが要求される。細いプローブ140において把持荷重が掛かったときに、プローブ140が撓みにくいように、本実施形態では、プローブ140の断面形状はU字型をしている。
先端からの距離がxである各位置における中心軸と垂直な断面について、把持荷重に対して垂直な軸を基準として計算した断面2次モーメントをIxとする。また、先端からの距離がxである各位置における断面積をAxとする。すなわち、中心軸に対して垂直な断面に、把持荷重方向と平行にy軸を、y軸と垂直な方向にz軸を設けたとき、断面2次モーメントIxは、
で与えられる。プローブ140の先端からの距離xと、プローブ140及び超音波振動子110からなる部分の断面2次モーメントIxを断面積Axの2乗で除した値との関係を図10に示す。ここで、断面2次モーメントIを断面積Aの2乗で除した値は、断面2次モーメントを無次元化した値であり、把持荷重に対する単位断面積当たりの剛性を表す。図10に示されるように、断面がU字型である処置部の任意の位置における断面2次モーメントIxを断面積Axの2乗で除した値は、断面が円形である伝達部の任意の位置における断面2次モーメントIxを断面積Axの2乗で除した値よりも大きい。したがって、処置部における断面2次モーメントIxを断面積Axの2乗で除した値の平均値は、伝達部における断面2次モーメントIxを断面積Axの2乗で除した値の平均値よりも大きい。
このように、例えばプローブ140及び超音波振動子110は、超音波振動する細長形状の超音波振動部として機能する。例えばジョー170は、前記超音波振動部に対して移動して、前記超音波振動部との間に処置対象である生体組織を把持する把持部材として機能する。
本実施形態のように、プローブ140の断面形状をU字型とすることで、プローブ140の把持荷重方向の断面2次モーメントIxを断面積Axの2乗で除した値、すなわち、単位断面積当たりの剛性は、断面形状が円形の場合のそれよりも高くなる。このように、プローブ140の断面形状をU字型とすることで、撓みにくいプローブ140が実現され得る。上述の通り、細くすることが望まれるプローブ140において、本実施形態のように形状を適切に設定することで、プローブ140の把持荷重に対する強度が向上する。
本実施形態では、処置部の任意の位置における断面2次モーメントIxを断面積Axの2乗で除した値は、伝達部の任意の位置における断面2次モーメントIxを断面積Axの2乗で除した値よりも大きい。しかしながら、これに限らず、処置部における断面2次モーメントIxを断面積Axの2乗で除した値(I1/A1
2と記載する)の代表値が、伝達部における断面2次モーメントIxを断面積Axの2乗で除した値(I2/A2
2と記載する)の代表値よりも大きければ、本実施形態の場合と同様の効果が得られる。ここで、伝達部の代表値は値I2/A2
2の平均値とし、処置部の代表値は、例えば、他に比べて大きな応力が掛かる部位の値I1/A1
2や、把持荷重が掛かる部位の値I1/A1
2や、生体組織が接触する部位の値I1/A1
2等とすることができる。大きな応力が掛かる部位や、把持荷重が掛かる部位や、生体組織が接触する部位等において、高い剛性が求められるからである。したがって、例えば処置部の一部分において値I2/A2
2が伝達部の値I2/A2
2よりも小さくなっても問題とならない場合もある。
[第1の実施形態の変形例]
本発明の第1の実施形態の変形例について説明する。ここでは、第1の実施形態との相違点について説明し、同一の部分については、同一の符号を付してその説明を省略する。本変形例に係る超音波振動子110及び超音波伝達部材135の断面図を図11に、上面図を図12に示す。この図に示されるように、本変形例に係るプローブ140は、第1の実施形態に係るプローブ140よりも基端側が太い。また、本変形例に係るプローブ140は、基端側でU字型の溝の深さが深くなるように、溝底部が中心軸に対して傾いている。
本発明の第1の実施形態の変形例について説明する。ここでは、第1の実施形態との相違点について説明し、同一の部分については、同一の符号を付してその説明を省略する。本変形例に係る超音波振動子110及び超音波伝達部材135の断面図を図11に、上面図を図12に示す。この図に示されるように、本変形例に係るプローブ140は、第1の実施形態に係るプローブ140よりも基端側が太い。また、本変形例に係るプローブ140は、基端側でU字型の溝の深さが深くなるように、溝底部が中心軸に対して傾いている。
本変形例のような構造を有することで、プローブ140の基端側が太くなっているため、把持荷重による応力が分散し、プローブ140に係る最大応力が低下する。その結果、本変形例に係るプローブ140は、把持荷重に対して強くなる。また、U字型の溝底部が中心軸に対して傾いており、基端側で溝が深くなっているため、プローブ140の先端部に向けて徐々に断面積が小さくなっており、プローブ140の処置部における振動速度は高められる。
[第2の実施形態]
本発明の第2の実施形態について説明する。ここでは、第2の実施形態との相違点について説明し、同一の部分については、同一の符号を付してその説明を省略する。本実施形態に係る超音波伝達部材135等の形状を図13及び図14に示す。図13は、超音波伝達部材135等の形状を示す斜視図であり、図14は、超音波伝達部材135等を先端側から見た正面図である。これら図に示されるように、本実施形態に係るプローブ140は、四角柱形状をしている。ここで、図13に矢印で示された荷重方向のプローブ140の長さを高さhとし、荷重方向及び中心軸と垂直な方向の長さを幅bとする。このとき、処置部であるプローブ140の荷重方向に係る断面2次モーメントI1は、I1=(b・h3)/12で表される。また、処置部であるプローブ140の中心軸と垂直な面の断面積A1は、A1=b・hで表される。したがって、I1/A1 2=h/12bである。
本発明の第2の実施形態について説明する。ここでは、第2の実施形態との相違点について説明し、同一の部分については、同一の符号を付してその説明を省略する。本実施形態に係る超音波伝達部材135等の形状を図13及び図14に示す。図13は、超音波伝達部材135等の形状を示す斜視図であり、図14は、超音波伝達部材135等を先端側から見た正面図である。これら図に示されるように、本実施形態に係るプローブ140は、四角柱形状をしている。ここで、図13に矢印で示された荷重方向のプローブ140の長さを高さhとし、荷重方向及び中心軸と垂直な方向の長さを幅bとする。このとき、処置部であるプローブ140の荷重方向に係る断面2次モーメントI1は、I1=(b・h3)/12で表される。また、処置部であるプローブ140の中心軸と垂直な面の断面積A1は、A1=b・hで表される。したがって、I1/A1 2=h/12bである。
一方、超音波振動子110を含む伝達部の中心軸に対して垂直な面における断面形状を直径D0の円とする。このとき、伝達部の断面2次モーメントI0は、I0=πD0
4/64で表される。また、伝達部の断面積A0は、A0=πD0
2/4で表される。したがって、I0/A0
2=1/4πである。
以上より、h/b>3/πの場合、I1/A1
2>I0/A0
2となる。すなわち、h/b>3/πの場合、伝達部よりも処置部の単位断面積当たりの剛性は高くなる。すなわち、プローブ140の断面形状をh/b>3/πとすることで、プローブ140は撓みにくくなり、プローブ140の把持荷重に対する強度が向上する。
[第3の実施形態]
本発明の第3の実施形態について説明する。ここでは、第1の実施形態との相違点について説明し、同一の部分については、同一の符号を付してその説明を省略する。本実施形態に係る超音波伝達部材135等の形状を図15及び図16に示す。図15は、超音波伝達部材135等の形状を示す斜視図であり、図16は、超音波伝達部材135等を先端側から見た正面図である。これら図に示されるように、本実施形態に係る処置部であるプローブ140は、中空の円筒形状をしている。また、本実施形態では、伝達部も円筒形状をしているものとする。
本発明の第3の実施形態について説明する。ここでは、第1の実施形態との相違点について説明し、同一の部分については、同一の符号を付してその説明を省略する。本実施形態に係る超音波伝達部材135等の形状を図15及び図16に示す。図15は、超音波伝達部材135等の形状を示す斜視図であり、図16は、超音波伝達部材135等を先端側から見た正面図である。これら図に示されるように、本実施形態に係る処置部であるプローブ140は、中空の円筒形状をしている。また、本実施形態では、伝達部も円筒形状をしているものとする。
処置部の円筒形状の外径をD1とし、内径をd1とする。また、伝達部の外径をD0とし、内径をd0とする。このとき、処置部であるプローブ140の荷重方向に係る断面2次モーメントI1は、I1=(D1
4-d1
4)π/64で表される。また、処置部であるプローブ140の中心軸と垂直な面の断面積A1は、A1=(D1
2-d1
2)π/4で表される。したがって、I1/A1
2=(D1
2+d1
2)/(8π(d1
2-d1
2))である。
一方、超音波振動子110を含む伝達部の断面2次モーメントI0は、I0=(D0
4-d0
4)π/64で表される。また、伝達部の断面積A0は、A0=(D0
2-d0
2)π/4で表される。したがって、I0/A0
2=(D0
2+d0
2)/(8π(d0
2-d0
2))である。
以上より、(D1
2+d1
2)(D0
2-d0
2)>(D1
2-d1
2)(D0
2+d0
2)の場合、I1/A1
2>I0/A0
2となる。すなわち、(D1
2+d1
2)(D0
2-d0
2)>(D1
2-d1
2)(D0
2+d0
2)の場合、伝達部よりも処置部の単位断面積当たりの剛性は高くなる。すなわち、プローブ140の断面形状を(D1
2+d1
2)(D0
2-d0
2)>(D1
2-d1
2)(D0
2+d0
2)とすることで、プローブ140は撓みにくくなり、プローブ140の把持荷重に対する強度が向上する。
Claims (8)
- 把持部材と、
前記把持部材との間に処置対象である生体組織を把持するように前記把持部材に対して変位し、超音波振動する超音波振動部であって、
当該超音波振動部の先端を一端とし、長さが前記超音波の波長の1/4よりも短くて、前記把持部材と対向する処置部と、
当該超音波振動部の前記先端からみて最初に生じる節の位置を第1の節位置としたときに、前記第1の節位置を一端とし、前記第1の節位置よりも基端側であって、長さが前記超音波の波長の1/4である伝達部と、
を含み、
当該超音波振動部の長手軸と垂直な断面における、前記処置部の重心と前記把持部材の重心とを通る直線と垂直な軸を基準として計算した前記処置部における断面2次モーメントをI1、前記処置部における断面積をA1、前記伝達部における断面2次モーメントをI2、前記伝達部における断面積をA2としたときに、前記処置部におけるI1/A1 2の平均値は、前記伝達部におけるI2/A2 2の平均値よりも大きい、
超音波振動部と
を具備する治療機器。 - 前記処置部の任意の位置における前記I1/A1 2の値は、前記伝達部の任意の位置における前記I2/A2 2の値よりも大きい、請求項1に記載の治療機器。
- 前記超音波振動部と前記把持部材とは、高周波電極として機能し、
超音波振動エネルギと高周波電流エネルギとを用いて前記生体組織を処置する、
請求項1に記載の治療機器。 - 前記処置部の前記把持部材と対向する面を把持面とし、前記処置部の中心軸に対して前記把持面と反対側の面を裏面としたときに、
前記処置部は、前記処置部の長手方向と垂直な断面形状がU字型形状となるように、前記裏面に溝を有する形状をしており、
前記溝の底部は、前記処置部の中心軸と平行である、又は前記処置部の先端側よりも前記処置部の基端側の方が前記把持面側に傾いており、
前記処置部は、前記把持面から前記裏面までの高さが基端側よりも先端側の方が低い、
請求項1に記載の治療機器。 - 前記伝達部は、超音波振動子を含み、
前記超音波振動部の全長は、前記超音波の波長の1/2である、
請求項4に記載の治療機器。 - 前記超音波振動部の基端側に設けられた関節をさらに具備する請求項5に記載の治療機器。
- 前記処置部の長手方向と垂直な断面の形状は、前記把持部材と対向する横辺の長さである幅がbであり、前記横辺と垂直な辺の長さである高さがhである長方形であり、
前記伝達部の長手方向と垂直な断面形状は円形であり、
前記幅bと前記高さhとは、h/b>3/πである、
請求項1に記載の治療機器。 - 前記処置部は、外径がD1であり内径がd1である円筒形状であり、
前記伝達部は、外径がD0であり内径がd0である円筒形状であり、
(D1 2+d1 2)(D0 2-d0 2)>(D1 2-d1 2)(D0 2+d0 2)である、
請求項1に記載の治療機器。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201380065110.XA CN104853687B (zh) | 2012-12-13 | 2013-12-11 | 治疗设备 |
EP13862178.4A EP2932930B1 (en) | 2012-12-13 | 2013-12-11 | Treatment instrument |
JP2014548227A JP5750670B2 (ja) | 2012-12-13 | 2013-12-11 | 治療機器 |
US14/513,874 US9352173B2 (en) | 2012-12-13 | 2014-10-14 | Treatment device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201261736811P | 2012-12-13 | 2012-12-13 | |
US61/736,811 | 2012-12-13 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/513,874 Continuation US9352173B2 (en) | 2012-12-13 | 2014-10-14 | Treatment device |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014092108A1 true WO2014092108A1 (ja) | 2014-06-19 |
Family
ID=50934395
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/083167 WO2014092108A1 (ja) | 2012-12-13 | 2013-12-11 | 治療機器 |
Country Status (5)
Country | Link |
---|---|
US (1) | US9352173B2 (ja) |
EP (1) | EP2932930B1 (ja) |
JP (1) | JP5750670B2 (ja) |
CN (1) | CN104853687B (ja) |
WO (1) | WO2014092108A1 (ja) |
Cited By (70)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016018596A1 (en) * | 2014-07-31 | 2016-02-04 | Ethicon Endo-Surgery, Inc. | Actuation mechanisms and load adjustment assemblies for surgical instruments |
US9623237B2 (en) | 2009-10-09 | 2017-04-18 | Ethicon Endo-Surgery, Llc | Surgical generator for ultrasonic and electrosurgical devices |
US9649126B2 (en) | 2010-02-11 | 2017-05-16 | Ethicon Endo-Surgery, Llc | Seal arrangements for ultrasonically powered surgical instruments |
US9700343B2 (en) | 2012-04-09 | 2017-07-11 | Ethicon Endo-Surgery, Llc | Devices and techniques for cutting and coagulating tissue |
US9700339B2 (en) | 2009-05-20 | 2017-07-11 | Ethicon Endo-Surgery, Inc. | Coupling arrangements and methods for attaching tools to ultrasonic surgical instruments |
US9713507B2 (en) | 2012-06-29 | 2017-07-25 | Ethicon Endo-Surgery, Llc | Closed feedback control for electrosurgical device |
US9724118B2 (en) | 2012-04-09 | 2017-08-08 | Ethicon Endo-Surgery, Llc | Techniques for cutting and coagulating tissue for ultrasonic surgical instruments |
US9737326B2 (en) | 2012-06-29 | 2017-08-22 | Ethicon Endo-Surgery, Llc | Haptic feedback devices for surgical robot |
US9743947B2 (en) | 2013-03-15 | 2017-08-29 | Ethicon Endo-Surgery, Llc | End effector with a clamp arm assembly and blade |
US9764164B2 (en) | 2009-07-15 | 2017-09-19 | Ethicon Llc | Ultrasonic surgical instruments |
US9795405B2 (en) | 2012-10-22 | 2017-10-24 | Ethicon Llc | Surgical instrument |
US9795808B2 (en) | 2008-08-06 | 2017-10-24 | Ethicon Llc | Devices and techniques for cutting and coagulating tissue |
US9848901B2 (en) | 2010-02-11 | 2017-12-26 | Ethicon Llc | Dual purpose surgical instrument for cutting and coagulating tissue |
US9848902B2 (en) | 2007-10-05 | 2017-12-26 | Ethicon Llc | Ergonomic surgical instruments |
US9883884B2 (en) | 2007-03-22 | 2018-02-06 | Ethicon Llc | Ultrasonic surgical instruments |
US9913656B2 (en) | 2007-07-27 | 2018-03-13 | Ethicon Llc | Ultrasonic surgical instruments |
US9925003B2 (en) | 2012-02-10 | 2018-03-27 | Ethicon Endo-Surgery, Llc | Robotically controlled surgical instrument |
US9962182B2 (en) | 2010-02-11 | 2018-05-08 | Ethicon Llc | Ultrasonic surgical instruments with moving cutting implement |
US10010339B2 (en) | 2007-11-30 | 2018-07-03 | Ethicon Llc | Ultrasonic surgical blades |
US10034704B2 (en) | 2015-06-30 | 2018-07-31 | Ethicon Llc | Surgical instrument with user adaptable algorithms |
US10034684B2 (en) | 2015-06-15 | 2018-07-31 | Ethicon Llc | Apparatus and method for dissecting and coagulating tissue |
US10154852B2 (en) | 2015-07-01 | 2018-12-18 | Ethicon Llc | Ultrasonic surgical blade with improved cutting and coagulation features |
US10179022B2 (en) | 2015-12-30 | 2019-01-15 | Ethicon Llc | Jaw position impedance limiter for electrosurgical instrument |
US10194973B2 (en) | 2015-09-30 | 2019-02-05 | Ethicon Llc | Generator for digitally generating electrical signal waveforms for electrosurgical and ultrasonic surgical instruments |
US10201382B2 (en) | 2009-10-09 | 2019-02-12 | Ethicon Llc | Surgical generator for ultrasonic and electrosurgical devices |
US10226273B2 (en) | 2013-03-14 | 2019-03-12 | Ethicon Llc | Mechanical fasteners for use with surgical energy devices |
US10245064B2 (en) | 2016-07-12 | 2019-04-02 | Ethicon Llc | Ultrasonic surgical instrument with piezoelectric central lumen transducer |
US10251664B2 (en) | 2016-01-15 | 2019-04-09 | Ethicon Llc | Modular battery powered handheld surgical instrument with multi-function motor via shifting gear assembly |
US10278721B2 (en) | 2010-07-22 | 2019-05-07 | Ethicon Llc | Electrosurgical instrument with separate closure and cutting members |
USD847990S1 (en) | 2016-08-16 | 2019-05-07 | Ethicon Llc | Surgical instrument |
US10285723B2 (en) | 2016-08-09 | 2019-05-14 | Ethicon Llc | Ultrasonic surgical blade with improved heel portion |
US10299810B2 (en) | 2010-02-11 | 2019-05-28 | Ethicon Llc | Rotatable cutting implements with friction reducing material for ultrasonic surgical instruments |
US10321950B2 (en) | 2015-03-17 | 2019-06-18 | Ethicon Llc | Managing tissue treatment |
US10335182B2 (en) | 2012-06-29 | 2019-07-02 | Ethicon Llc | Surgical instruments with articulating shafts |
US10342602B2 (en) | 2015-03-17 | 2019-07-09 | Ethicon Llc | Managing tissue treatment |
US10349999B2 (en) | 2014-03-31 | 2019-07-16 | Ethicon Llc | Controlling impedance rise in electrosurgical medical devices |
US10357303B2 (en) | 2015-06-30 | 2019-07-23 | Ethicon Llc | Translatable outer tube for sealing using shielded lap chole dissector |
US10376305B2 (en) | 2016-08-05 | 2019-08-13 | Ethicon Llc | Methods and systems for advanced harmonic energy |
US10398497B2 (en) | 2012-06-29 | 2019-09-03 | Ethicon Llc | Lockout mechanism for use with robotic electrosurgical device |
US10398466B2 (en) | 2007-07-27 | 2019-09-03 | Ethicon Llc | Ultrasonic end effectors with increased active length |
US10420580B2 (en) | 2016-08-25 | 2019-09-24 | Ethicon Llc | Ultrasonic transducer for surgical instrument |
US10420579B2 (en) | 2007-07-31 | 2019-09-24 | Ethicon Llc | Surgical instruments |
US10426507B2 (en) | 2007-07-31 | 2019-10-01 | Ethicon Llc | Ultrasonic surgical instruments |
US10433900B2 (en) | 2011-07-22 | 2019-10-08 | Ethicon Llc | Surgical instruments for tensioning tissue |
US10441308B2 (en) | 2007-11-30 | 2019-10-15 | Ethicon Llc | Ultrasonic surgical instrument blades |
US10441310B2 (en) | 2012-06-29 | 2019-10-15 | Ethicon Llc | Surgical instruments with curved section |
US10441345B2 (en) | 2009-10-09 | 2019-10-15 | Ethicon Llc | Surgical generator for ultrasonic and electrosurgical devices |
US10456193B2 (en) | 2016-05-03 | 2019-10-29 | Ethicon Llc | Medical device with a bilateral jaw configuration for nerve stimulation |
US10463421B2 (en) | 2014-03-27 | 2019-11-05 | Ethicon Llc | Two stage trigger, clamp and cut bipolar vessel sealer |
US10485607B2 (en) | 2016-04-29 | 2019-11-26 | Ethicon Llc | Jaw structure with distal closure for electrosurgical instruments |
US10517627B2 (en) | 2012-04-09 | 2019-12-31 | Ethicon Llc | Switch arrangements for ultrasonic surgical instruments |
US10524854B2 (en) | 2010-07-23 | 2020-01-07 | Ethicon Llc | Surgical instrument |
US10537352B2 (en) | 2004-10-08 | 2020-01-21 | Ethicon Llc | Tissue pads for use with surgical instruments |
US10543008B2 (en) | 2012-06-29 | 2020-01-28 | Ethicon Llc | Ultrasonic surgical instruments with distally positioned jaw assemblies |
US10555769B2 (en) | 2016-02-22 | 2020-02-11 | Ethicon Llc | Flexible circuits for electrosurgical instrument |
US10575892B2 (en) | 2015-12-31 | 2020-03-03 | Ethicon Llc | Adapter for electrical surgical instruments |
US10595929B2 (en) | 2015-03-24 | 2020-03-24 | Ethicon Llc | Surgical instruments with firing system overload protection mechanisms |
US10595930B2 (en) | 2015-10-16 | 2020-03-24 | Ethicon Llc | Electrode wiping surgical device |
US10639092B2 (en) | 2014-12-08 | 2020-05-05 | Ethicon Llc | Electrode configurations for surgical instruments |
US10646269B2 (en) | 2016-04-29 | 2020-05-12 | Ethicon Llc | Non-linear jaw gap for electrosurgical instruments |
USRE47996E1 (en) | 2009-10-09 | 2020-05-19 | Ethicon Llc | Surgical generator for ultrasonic and electrosurgical devices |
US10702329B2 (en) | 2016-04-29 | 2020-07-07 | Ethicon Llc | Jaw structure with distal post for electrosurgical instruments |
US10842522B2 (en) | 2016-07-15 | 2020-11-24 | Ethicon Llc | Ultrasonic surgical instruments having offset blades |
US10881449B2 (en) | 2012-09-28 | 2021-01-05 | Ethicon Llc | Multi-function bi-polar forceps |
US10893883B2 (en) | 2016-07-13 | 2021-01-19 | Ethicon Llc | Ultrasonic assembly for use with ultrasonic surgical instruments |
US11020140B2 (en) | 2015-06-17 | 2021-06-01 | Cilag Gmbh International | Ultrasonic surgical blade for use with ultrasonic surgical instruments |
US11058447B2 (en) | 2007-07-31 | 2021-07-13 | Cilag Gmbh International | Temperature controlled ultrasonic surgical instruments |
US11266430B2 (en) | 2016-11-29 | 2022-03-08 | Cilag Gmbh International | End effector control and calibration |
WO2022074790A1 (ja) * | 2020-10-08 | 2022-04-14 | オリンパス株式会社 | 振動伝達部材及び処置具 |
US11324527B2 (en) | 2012-11-15 | 2022-05-10 | Cilag Gmbh International | Ultrasonic and electrosurgical devices |
Families Citing this family (57)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11229472B2 (en) | 2001-06-12 | 2022-01-25 | Cilag Gmbh International | Modular battery powered handheld surgical instrument with multiple magnetic position sensors |
US8182501B2 (en) | 2004-02-27 | 2012-05-22 | Ethicon Endo-Surgery, Inc. | Ultrasonic surgical shears and method for sealing a blood vessel using same |
US20070191713A1 (en) | 2005-10-14 | 2007-08-16 | Eichmann Stephen E | Ultrasonic device for cutting and coagulating |
US7621930B2 (en) | 2006-01-20 | 2009-11-24 | Ethicon Endo-Surgery, Inc. | Ultrasound medical instrument having a medical ultrasonic blade |
US8142461B2 (en) | 2007-03-22 | 2012-03-27 | Ethicon Endo-Surgery, Inc. | Surgical instruments |
US8808319B2 (en) | 2007-07-27 | 2014-08-19 | Ethicon Endo-Surgery, Inc. | Surgical instruments |
US11090104B2 (en) | 2009-10-09 | 2021-08-17 | Cilag Gmbh International | Surgical generator for ultrasonic and electrosurgical devices |
US20140005705A1 (en) | 2012-06-29 | 2014-01-02 | Ethicon Endo-Surgery, Inc. | Surgical instruments with articulating shafts |
US20140005702A1 (en) | 2012-06-29 | 2014-01-02 | Ethicon Endo-Surgery, Inc. | Ultrasonic surgical instruments with distally positioned transducers |
US9820768B2 (en) | 2012-06-29 | 2017-11-21 | Ethicon Llc | Ultrasonic surgical instruments with control mechanisms |
US9814514B2 (en) | 2013-09-13 | 2017-11-14 | Ethicon Llc | Electrosurgical (RF) medical instruments for cutting and coagulating tissue |
US9265926B2 (en) | 2013-11-08 | 2016-02-23 | Ethicon Endo-Surgery, Llc | Electrosurgical devices |
GB2521229A (en) | 2013-12-16 | 2015-06-17 | Ethicon Endo Surgery Inc | Medical device |
GB2521228A (en) | 2013-12-16 | 2015-06-17 | Ethicon Endo Surgery Inc | Medical device |
US9795436B2 (en) | 2014-01-07 | 2017-10-24 | Ethicon Llc | Harvesting energy from a surgical generator |
US9554854B2 (en) | 2014-03-18 | 2017-01-31 | Ethicon Endo-Surgery, Llc | Detecting short circuits in electrosurgical medical devices |
US10092310B2 (en) | 2014-03-27 | 2018-10-09 | Ethicon Llc | Electrosurgical devices |
US9913680B2 (en) | 2014-04-15 | 2018-03-13 | Ethicon Llc | Software algorithms for electrosurgical instruments |
US10245095B2 (en) | 2015-02-06 | 2019-04-02 | Ethicon Llc | Electrosurgical instrument with rotation and articulation mechanisms |
US11129669B2 (en) | 2015-06-30 | 2021-09-28 | Cilag Gmbh International | Surgical system with user adaptable techniques based on tissue type |
US10898256B2 (en) | 2015-06-30 | 2021-01-26 | Ethicon Llc | Surgical system with user adaptable techniques based on tissue impedance |
US10765470B2 (en) | 2015-06-30 | 2020-09-08 | Ethicon Llc | Surgical system with user adaptable techniques employing simultaneous energy modalities based on tissue parameters |
US11051873B2 (en) | 2015-06-30 | 2021-07-06 | Cilag Gmbh International | Surgical system with user adaptable techniques employing multiple energy modalities based on tissue parameters |
EP3318209A4 (en) * | 2015-08-05 | 2019-03-27 | Olympus Corporation | TREATMENT TOOL |
US11229471B2 (en) | 2016-01-15 | 2022-01-25 | Cilag Gmbh International | Modular battery powered handheld surgical instrument with selective application of energy based on tissue characterization |
US11129670B2 (en) | 2016-01-15 | 2021-09-28 | Cilag Gmbh International | Modular battery powered handheld surgical instrument with selective application of energy based on button displacement, intensity, or local tissue characterization |
US10716615B2 (en) | 2016-01-15 | 2020-07-21 | Ethicon Llc | Modular battery powered handheld surgical instrument with curved end effectors having asymmetric engagement between jaw and blade |
US10952759B2 (en) | 2016-08-25 | 2021-03-23 | Ethicon Llc | Tissue loading of a surgical instrument |
US10603064B2 (en) | 2016-11-28 | 2020-03-31 | Ethicon Llc | Ultrasonic transducer |
EP3381402B1 (de) * | 2017-03-31 | 2019-07-17 | W & H Dentalwerk Bürmoos GmbH | Medizinische ultraschall-behandlungsvorrichtung |
US10820920B2 (en) | 2017-07-05 | 2020-11-03 | Ethicon Llc | Reusable ultrasonic medical devices and methods of their use |
USD904611S1 (en) | 2018-10-10 | 2020-12-08 | Bolder Surgical, Llc | Jaw design for a surgical instrument |
US11911063B2 (en) | 2019-12-30 | 2024-02-27 | Cilag Gmbh International | Techniques for detecting ultrasonic blade to electrode contact and reducing power to ultrasonic blade |
US11779387B2 (en) | 2019-12-30 | 2023-10-10 | Cilag Gmbh International | Clamp arm jaw to minimize tissue sticking and improve tissue control |
US11779329B2 (en) | 2019-12-30 | 2023-10-10 | Cilag Gmbh International | Surgical instrument comprising a flex circuit including a sensor system |
US12064109B2 (en) | 2019-12-30 | 2024-08-20 | Cilag Gmbh International | Surgical instrument comprising a feedback control circuit |
US11707318B2 (en) | 2019-12-30 | 2023-07-25 | Cilag Gmbh International | Surgical instrument with jaw alignment features |
US11786291B2 (en) | 2019-12-30 | 2023-10-17 | Cilag Gmbh International | Deflectable support of RF energy electrode with respect to opposing ultrasonic blade |
US11696776B2 (en) | 2019-12-30 | 2023-07-11 | Cilag Gmbh International | Articulatable surgical instrument |
US12053224B2 (en) | 2019-12-30 | 2024-08-06 | Cilag Gmbh International | Variation in electrode parameters and deflectable electrode to modify energy density and tissue interaction |
US11974801B2 (en) | 2019-12-30 | 2024-05-07 | Cilag Gmbh International | Electrosurgical instrument with flexible wiring assemblies |
US11950797B2 (en) | 2019-12-30 | 2024-04-09 | Cilag Gmbh International | Deflectable electrode with higher distal bias relative to proximal bias |
US11786294B2 (en) | 2019-12-30 | 2023-10-17 | Cilag Gmbh International | Control program for modular combination energy device |
US11937863B2 (en) | 2019-12-30 | 2024-03-26 | Cilag Gmbh International | Deflectable electrode with variable compression bias along the length of the deflectable electrode |
US11589916B2 (en) | 2019-12-30 | 2023-02-28 | Cilag Gmbh International | Electrosurgical instruments with electrodes having variable energy densities |
US12023086B2 (en) | 2019-12-30 | 2024-07-02 | Cilag Gmbh International | Electrosurgical instrument for delivering blended energy modalities to tissue |
US12114912B2 (en) | 2019-12-30 | 2024-10-15 | Cilag Gmbh International | Non-biased deflectable electrode to minimize contact between ultrasonic blade and electrode |
US11812957B2 (en) | 2019-12-30 | 2023-11-14 | Cilag Gmbh International | Surgical instrument comprising a signal interference resolution system |
US11452525B2 (en) | 2019-12-30 | 2022-09-27 | Cilag Gmbh International | Surgical instrument comprising an adjustment system |
US11944366B2 (en) | 2019-12-30 | 2024-04-02 | Cilag Gmbh International | Asymmetric segmented ultrasonic support pad for cooperative engagement with a movable RF electrode |
US11986201B2 (en) | 2019-12-30 | 2024-05-21 | Cilag Gmbh International | Method for operating a surgical instrument |
US12082808B2 (en) | 2019-12-30 | 2024-09-10 | Cilag Gmbh International | Surgical instrument comprising a control system responsive to software configurations |
US20210196363A1 (en) | 2019-12-30 | 2021-07-01 | Ethicon Llc | Electrosurgical instrument with electrodes operable in bipolar and monopolar modes |
US11660089B2 (en) | 2019-12-30 | 2023-05-30 | Cilag Gmbh International | Surgical instrument comprising a sensing system |
US12076006B2 (en) | 2019-12-30 | 2024-09-03 | Cilag Gmbh International | Surgical instrument comprising an orientation detection system |
USD934423S1 (en) | 2020-09-11 | 2021-10-26 | Bolder Surgical, Llc | End effector for a surgical device |
USD1046129S1 (en) | 2021-04-14 | 2024-10-08 | Bolder Surgical, Llc | End effector for a surgical instrument |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0321232A (ja) * | 1989-06-20 | 1991-01-30 | Olympus Optical Co Ltd | 超音波治療装置 |
JPH11113922A (ja) | 1997-10-15 | 1999-04-27 | Olympus Optical Co Ltd | 超音波処置具 |
JP2002085420A (ja) * | 2000-09-19 | 2002-03-26 | Olympus Optical Co Ltd | 超音波凝固切開装置とその方法 |
JP2005057583A (ja) * | 2003-08-06 | 2005-03-03 | Olympus Corp | 超音波振動伝達部材およびその製造方法 |
JP2005304685A (ja) * | 2004-04-20 | 2005-11-04 | Olympus Corp | 超音波処置具 |
JP2009240773A (ja) * | 2008-03-28 | 2009-10-22 | Olympus Medical Systems Corp | 外科手術装置 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6129735A (en) | 1996-06-21 | 2000-10-10 | Olympus Optical Co., Ltd. | Ultrasonic treatment appliance |
JP2003126109A (ja) * | 2001-10-19 | 2003-05-07 | Olympus Optical Co Ltd | 超音波処置具 |
CN100486542C (zh) * | 2004-01-13 | 2009-05-13 | 奥林巴斯株式会社 | 超声波处置器具 |
US20070016236A1 (en) * | 2005-07-18 | 2007-01-18 | Crescendo Technologies, Llc | Balanced ultrasonic curved blade |
US8025630B2 (en) * | 2006-02-22 | 2011-09-27 | Olympus Medical Systems Corp. | Treatment apparatus |
US20100063527A1 (en) * | 2008-09-05 | 2010-03-11 | Beaupre Jean Michael | Tissue pad |
-
2013
- 2013-12-11 EP EP13862178.4A patent/EP2932930B1/en not_active Not-in-force
- 2013-12-11 JP JP2014548227A patent/JP5750670B2/ja not_active Expired - Fee Related
- 2013-12-11 WO PCT/JP2013/083167 patent/WO2014092108A1/ja active Application Filing
- 2013-12-11 CN CN201380065110.XA patent/CN104853687B/zh active Active
-
2014
- 2014-10-14 US US14/513,874 patent/US9352173B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0321232A (ja) * | 1989-06-20 | 1991-01-30 | Olympus Optical Co Ltd | 超音波治療装置 |
JPH11113922A (ja) | 1997-10-15 | 1999-04-27 | Olympus Optical Co Ltd | 超音波処置具 |
JP2002085420A (ja) * | 2000-09-19 | 2002-03-26 | Olympus Optical Co Ltd | 超音波凝固切開装置とその方法 |
JP2005057583A (ja) * | 2003-08-06 | 2005-03-03 | Olympus Corp | 超音波振動伝達部材およびその製造方法 |
JP2005304685A (ja) * | 2004-04-20 | 2005-11-04 | Olympus Corp | 超音波処置具 |
JP2009240773A (ja) * | 2008-03-28 | 2009-10-22 | Olympus Medical Systems Corp | 外科手術装置 |
Cited By (93)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10537352B2 (en) | 2004-10-08 | 2020-01-21 | Ethicon Llc | Tissue pads for use with surgical instruments |
US9987033B2 (en) | 2007-03-22 | 2018-06-05 | Ethicon Llc | Ultrasonic surgical instruments |
US9883884B2 (en) | 2007-03-22 | 2018-02-06 | Ethicon Llc | Ultrasonic surgical instruments |
US10398466B2 (en) | 2007-07-27 | 2019-09-03 | Ethicon Llc | Ultrasonic end effectors with increased active length |
US9913656B2 (en) | 2007-07-27 | 2018-03-13 | Ethicon Llc | Ultrasonic surgical instruments |
US10420579B2 (en) | 2007-07-31 | 2019-09-24 | Ethicon Llc | Surgical instruments |
US10426507B2 (en) | 2007-07-31 | 2019-10-01 | Ethicon Llc | Ultrasonic surgical instruments |
US11058447B2 (en) | 2007-07-31 | 2021-07-13 | Cilag Gmbh International | Temperature controlled ultrasonic surgical instruments |
US9848902B2 (en) | 2007-10-05 | 2017-12-26 | Ethicon Llc | Ergonomic surgical instruments |
US10433865B2 (en) | 2007-11-30 | 2019-10-08 | Ethicon Llc | Ultrasonic surgical blades |
US10045794B2 (en) | 2007-11-30 | 2018-08-14 | Ethicon Llc | Ultrasonic surgical blades |
US10265094B2 (en) | 2007-11-30 | 2019-04-23 | Ethicon Llc | Ultrasonic surgical blades |
US10888347B2 (en) | 2007-11-30 | 2021-01-12 | Ethicon Llc | Ultrasonic surgical blades |
US10433866B2 (en) | 2007-11-30 | 2019-10-08 | Ethicon Llc | Ultrasonic surgical blades |
US10245065B2 (en) | 2007-11-30 | 2019-04-02 | Ethicon Llc | Ultrasonic surgical blades |
US10441308B2 (en) | 2007-11-30 | 2019-10-15 | Ethicon Llc | Ultrasonic surgical instrument blades |
US10463887B2 (en) | 2007-11-30 | 2019-11-05 | Ethicon Llc | Ultrasonic surgical blades |
US10010339B2 (en) | 2007-11-30 | 2018-07-03 | Ethicon Llc | Ultrasonic surgical blades |
US9795808B2 (en) | 2008-08-06 | 2017-10-24 | Ethicon Llc | Devices and techniques for cutting and coagulating tissue |
US10335614B2 (en) | 2008-08-06 | 2019-07-02 | Ethicon Llc | Devices and techniques for cutting and coagulating tissue |
US10022567B2 (en) | 2008-08-06 | 2018-07-17 | Ethicon Llc | Devices and techniques for cutting and coagulating tissue |
US10022568B2 (en) | 2008-08-06 | 2018-07-17 | Ethicon Llc | Devices and techniques for cutting and coagulating tissue |
US9700339B2 (en) | 2009-05-20 | 2017-07-11 | Ethicon Endo-Surgery, Inc. | Coupling arrangements and methods for attaching tools to ultrasonic surgical instruments |
US9764164B2 (en) | 2009-07-15 | 2017-09-19 | Ethicon Llc | Ultrasonic surgical instruments |
US10265117B2 (en) | 2009-10-09 | 2019-04-23 | Ethicon Llc | Surgical generator method for controlling and ultrasonic transducer waveform for ultrasonic and electrosurgical devices |
USRE47996E1 (en) | 2009-10-09 | 2020-05-19 | Ethicon Llc | Surgical generator for ultrasonic and electrosurgical devices |
US9623237B2 (en) | 2009-10-09 | 2017-04-18 | Ethicon Endo-Surgery, Llc | Surgical generator for ultrasonic and electrosurgical devices |
US10263171B2 (en) | 2009-10-09 | 2019-04-16 | Ethicon Llc | Surgical generator for ultrasonic and electrosurgical devices |
US10201382B2 (en) | 2009-10-09 | 2019-02-12 | Ethicon Llc | Surgical generator for ultrasonic and electrosurgical devices |
US10441345B2 (en) | 2009-10-09 | 2019-10-15 | Ethicon Llc | Surgical generator for ultrasonic and electrosurgical devices |
US9962182B2 (en) | 2010-02-11 | 2018-05-08 | Ethicon Llc | Ultrasonic surgical instruments with moving cutting implement |
US10299810B2 (en) | 2010-02-11 | 2019-05-28 | Ethicon Llc | Rotatable cutting implements with friction reducing material for ultrasonic surgical instruments |
US9649126B2 (en) | 2010-02-11 | 2017-05-16 | Ethicon Endo-Surgery, Llc | Seal arrangements for ultrasonically powered surgical instruments |
US9848901B2 (en) | 2010-02-11 | 2017-12-26 | Ethicon Llc | Dual purpose surgical instrument for cutting and coagulating tissue |
US10117667B2 (en) | 2010-02-11 | 2018-11-06 | Ethicon Llc | Control systems for ultrasonically powered surgical instruments |
US10278721B2 (en) | 2010-07-22 | 2019-05-07 | Ethicon Llc | Electrosurgical instrument with separate closure and cutting members |
US10524854B2 (en) | 2010-07-23 | 2020-01-07 | Ethicon Llc | Surgical instrument |
US10433900B2 (en) | 2011-07-22 | 2019-10-08 | Ethicon Llc | Surgical instruments for tensioning tissue |
US9925003B2 (en) | 2012-02-10 | 2018-03-27 | Ethicon Endo-Surgery, Llc | Robotically controlled surgical instrument |
US10517627B2 (en) | 2012-04-09 | 2019-12-31 | Ethicon Llc | Switch arrangements for ultrasonic surgical instruments |
US9700343B2 (en) | 2012-04-09 | 2017-07-11 | Ethicon Endo-Surgery, Llc | Devices and techniques for cutting and coagulating tissue |
US9724118B2 (en) | 2012-04-09 | 2017-08-08 | Ethicon Endo-Surgery, Llc | Techniques for cutting and coagulating tissue for ultrasonic surgical instruments |
US10335182B2 (en) | 2012-06-29 | 2019-07-02 | Ethicon Llc | Surgical instruments with articulating shafts |
US10335183B2 (en) | 2012-06-29 | 2019-07-02 | Ethicon Llc | Feedback devices for surgical control systems |
US10524872B2 (en) | 2012-06-29 | 2020-01-07 | Ethicon Llc | Closed feedback control for electrosurgical device |
US10441310B2 (en) | 2012-06-29 | 2019-10-15 | Ethicon Llc | Surgical instruments with curved section |
US9713507B2 (en) | 2012-06-29 | 2017-07-25 | Ethicon Endo-Surgery, Llc | Closed feedback control for electrosurgical device |
US9737326B2 (en) | 2012-06-29 | 2017-08-22 | Ethicon Endo-Surgery, Llc | Haptic feedback devices for surgical robot |
US10398497B2 (en) | 2012-06-29 | 2019-09-03 | Ethicon Llc | Lockout mechanism for use with robotic electrosurgical device |
US10543008B2 (en) | 2012-06-29 | 2020-01-28 | Ethicon Llc | Ultrasonic surgical instruments with distally positioned jaw assemblies |
US10881449B2 (en) | 2012-09-28 | 2021-01-05 | Ethicon Llc | Multi-function bi-polar forceps |
US9795405B2 (en) | 2012-10-22 | 2017-10-24 | Ethicon Llc | Surgical instrument |
US11324527B2 (en) | 2012-11-15 | 2022-05-10 | Cilag Gmbh International | Ultrasonic and electrosurgical devices |
US10226273B2 (en) | 2013-03-14 | 2019-03-12 | Ethicon Llc | Mechanical fasteners for use with surgical energy devices |
US9743947B2 (en) | 2013-03-15 | 2017-08-29 | Ethicon Endo-Surgery, Llc | End effector with a clamp arm assembly and blade |
US10463421B2 (en) | 2014-03-27 | 2019-11-05 | Ethicon Llc | Two stage trigger, clamp and cut bipolar vessel sealer |
US10349999B2 (en) | 2014-03-31 | 2019-07-16 | Ethicon Llc | Controlling impedance rise in electrosurgical medical devices |
US10285724B2 (en) | 2014-07-31 | 2019-05-14 | Ethicon Llc | Actuation mechanisms and load adjustment assemblies for surgical instruments |
WO2016018596A1 (en) * | 2014-07-31 | 2016-02-04 | Ethicon Endo-Surgery, Inc. | Actuation mechanisms and load adjustment assemblies for surgical instruments |
US10639092B2 (en) | 2014-12-08 | 2020-05-05 | Ethicon Llc | Electrode configurations for surgical instruments |
US10342602B2 (en) | 2015-03-17 | 2019-07-09 | Ethicon Llc | Managing tissue treatment |
US10321950B2 (en) | 2015-03-17 | 2019-06-18 | Ethicon Llc | Managing tissue treatment |
US10595929B2 (en) | 2015-03-24 | 2020-03-24 | Ethicon Llc | Surgical instruments with firing system overload protection mechanisms |
US10034684B2 (en) | 2015-06-15 | 2018-07-31 | Ethicon Llc | Apparatus and method for dissecting and coagulating tissue |
US11020140B2 (en) | 2015-06-17 | 2021-06-01 | Cilag Gmbh International | Ultrasonic surgical blade for use with ultrasonic surgical instruments |
US10034704B2 (en) | 2015-06-30 | 2018-07-31 | Ethicon Llc | Surgical instrument with user adaptable algorithms |
US10357303B2 (en) | 2015-06-30 | 2019-07-23 | Ethicon Llc | Translatable outer tube for sealing using shielded lap chole dissector |
US10154852B2 (en) | 2015-07-01 | 2018-12-18 | Ethicon Llc | Ultrasonic surgical blade with improved cutting and coagulation features |
US10610286B2 (en) | 2015-09-30 | 2020-04-07 | Ethicon Llc | Techniques for circuit topologies for combined generator |
US11033322B2 (en) | 2015-09-30 | 2021-06-15 | Ethicon Llc | Circuit topologies for combined generator |
US10687884B2 (en) | 2015-09-30 | 2020-06-23 | Ethicon Llc | Circuits for supplying isolated direct current (DC) voltage to surgical instruments |
US10194973B2 (en) | 2015-09-30 | 2019-02-05 | Ethicon Llc | Generator for digitally generating electrical signal waveforms for electrosurgical and ultrasonic surgical instruments |
US10624691B2 (en) | 2015-09-30 | 2020-04-21 | Ethicon Llc | Techniques for operating generator for digitally generating electrical signal waveforms and surgical instruments |
US10595930B2 (en) | 2015-10-16 | 2020-03-24 | Ethicon Llc | Electrode wiping surgical device |
US10179022B2 (en) | 2015-12-30 | 2019-01-15 | Ethicon Llc | Jaw position impedance limiter for electrosurgical instrument |
US10575892B2 (en) | 2015-12-31 | 2020-03-03 | Ethicon Llc | Adapter for electrical surgical instruments |
US10251664B2 (en) | 2016-01-15 | 2019-04-09 | Ethicon Llc | Modular battery powered handheld surgical instrument with multi-function motor via shifting gear assembly |
US10299821B2 (en) | 2016-01-15 | 2019-05-28 | Ethicon Llc | Modular battery powered handheld surgical instrument with motor control limit profile |
US10537351B2 (en) | 2016-01-15 | 2020-01-21 | Ethicon Llc | Modular battery powered handheld surgical instrument with variable motor control limits |
US10555769B2 (en) | 2016-02-22 | 2020-02-11 | Ethicon Llc | Flexible circuits for electrosurgical instrument |
US10646269B2 (en) | 2016-04-29 | 2020-05-12 | Ethicon Llc | Non-linear jaw gap for electrosurgical instruments |
US10702329B2 (en) | 2016-04-29 | 2020-07-07 | Ethicon Llc | Jaw structure with distal post for electrosurgical instruments |
US10485607B2 (en) | 2016-04-29 | 2019-11-26 | Ethicon Llc | Jaw structure with distal closure for electrosurgical instruments |
US10456193B2 (en) | 2016-05-03 | 2019-10-29 | Ethicon Llc | Medical device with a bilateral jaw configuration for nerve stimulation |
US10245064B2 (en) | 2016-07-12 | 2019-04-02 | Ethicon Llc | Ultrasonic surgical instrument with piezoelectric central lumen transducer |
US10893883B2 (en) | 2016-07-13 | 2021-01-19 | Ethicon Llc | Ultrasonic assembly for use with ultrasonic surgical instruments |
US10842522B2 (en) | 2016-07-15 | 2020-11-24 | Ethicon Llc | Ultrasonic surgical instruments having offset blades |
US10376305B2 (en) | 2016-08-05 | 2019-08-13 | Ethicon Llc | Methods and systems for advanced harmonic energy |
US10285723B2 (en) | 2016-08-09 | 2019-05-14 | Ethicon Llc | Ultrasonic surgical blade with improved heel portion |
USD847990S1 (en) | 2016-08-16 | 2019-05-07 | Ethicon Llc | Surgical instrument |
US10420580B2 (en) | 2016-08-25 | 2019-09-24 | Ethicon Llc | Ultrasonic transducer for surgical instrument |
US11266430B2 (en) | 2016-11-29 | 2022-03-08 | Cilag Gmbh International | End effector control and calibration |
WO2022074790A1 (ja) * | 2020-10-08 | 2022-04-14 | オリンパス株式会社 | 振動伝達部材及び処置具 |
Also Published As
Publication number | Publication date |
---|---|
EP2932930A1 (en) | 2015-10-21 |
US20150119761A1 (en) | 2015-04-30 |
CN104853687B (zh) | 2017-04-19 |
CN104853687A (zh) | 2015-08-19 |
US9352173B2 (en) | 2016-05-31 |
JP5750670B2 (ja) | 2015-07-22 |
JPWO2014092108A1 (ja) | 2017-01-12 |
EP2932930A4 (en) | 2016-08-03 |
EP2932930B1 (en) | 2018-06-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5750670B2 (ja) | 治療機器 | |
JP5659322B2 (ja) | 処置具 | |
JP6374979B2 (ja) | 医療用処置装置 | |
JP4493893B2 (ja) | 超音波外科器具と共に使用するための多機能な湾曲状ブレード | |
ES2201414T3 (es) | Aparato coagulador tipo pinza ultrasonico con elemento de soporte de guia de ondas. | |
US7479148B2 (en) | Ultrasonic shear with asymmetrical motion | |
EP2514376B1 (en) | Ultrasonic surgical instruments | |
JP6184253B2 (ja) | 外科用治療装置および外科用治療システム | |
US20060211943A1 (en) | Ultrasonic blade with terminal end balance features | |
US20070016236A1 (en) | Balanced ultrasonic curved blade | |
EP2316359A1 (en) | Apparatus for tissue sealing | |
US20090270891A1 (en) | Balanced ultrasonic curved blade | |
WO2010045158A2 (en) | Tool for incising tissue | |
JPH11197157A (ja) | 回転位置決め割出し超音波クランプコアギユレーター装置 | |
CN110141308B (zh) | 一种具有增强止血能力的超声刀 | |
EP2895128B1 (en) | Ultrasonic handpiece | |
WO2015159607A1 (ja) | 治療用処置装置 | |
WO2017191683A1 (ja) | 超音波医療装置、エネルギ処置具および制御装置 | |
WO2022049644A1 (ja) | 処置具及び処置システム | |
WO2023153363A1 (ja) | 超音波処置具 | |
WO2013042515A1 (ja) | 超音波処置具 | |
JP2003061973A (ja) | 超音波組織溶着装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13862178 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2014548227 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2013862178 Country of ref document: EP |