WO2014092052A1 - レーダ装置 - Google Patents

レーダ装置 Download PDF

Info

Publication number
WO2014092052A1
WO2014092052A1 PCT/JP2013/082988 JP2013082988W WO2014092052A1 WO 2014092052 A1 WO2014092052 A1 WO 2014092052A1 JP 2013082988 W JP2013082988 W JP 2013082988W WO 2014092052 A1 WO2014092052 A1 WO 2014092052A1
Authority
WO
WIPO (PCT)
Prior art keywords
pulse
range
signal
fourier transform
block
Prior art date
Application number
PCT/JP2013/082988
Other languages
English (en)
French (fr)
Inventor
赳寛 星野
啓 諏訪
若山 俊夫
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2014552035A priority Critical patent/JP5823062B2/ja
Publication of WO2014092052A1 publication Critical patent/WO2014092052A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/50Systems of measurement based on relative movement of target
    • G01S13/58Velocity or trajectory determination systems; Sense-of-movement determination systems
    • G01S13/583Velocity or trajectory determination systems; Sense-of-movement determination systems using transmission of continuous unmodulated waves, amplitude-, frequency-, or phase-modulated waves and based upon the Doppler effect resulting from movement of targets
    • G01S13/584Velocity or trajectory determination systems; Sense-of-movement determination systems using transmission of continuous unmodulated waves, amplitude-, frequency-, or phase-modulated waves and based upon the Doppler effect resulting from movement of targets adapted for simultaneous range and velocity measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/003Bistatic radar systems; Multistatic radar systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/491Details of non-pulse systems
    • G01S7/4912Receivers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/497Means for monitoring or calibrating

Definitions

  • the present invention relates to a radar apparatus that increases the resolution of a Doppler frequency and the signal-to-noise power ratio by extending the observation time when observing a target radar image.
  • a radar apparatus there is a passive radar which observes a target radar image by using radio waves transmitted from an existing radio wave transmission source. Since passive radar does not emit radio waves by itself, it is attracting attention as a system that contributes to power saving and radio wave saving resources.
  • radio wave transmission sources in addition to radio wave transmission sources such as television and radio, GNSS (Global Navigation Satellite System) and the like are being studied. In the passive radar, as shown in FIG.
  • Non-Patent Document 1 systematically describes conventional developmental results on passive radar, and advantages and disadvantages of passive radar.
  • the biggest problem with passive radar is the extension of detection distance.
  • Patent Documents 1 to 3 disclose methods for improving the signal to noise ratio (SNR) by extending the integration time of the signal in order to extend the detection distance.
  • SNR signal to noise ratio
  • the integration time of the signal is extended, a problem occurs in which the target moves the range cell within the integration time.
  • Patent Documents 1 to 3 disclose methods for coping with this problem.
  • Non-Patent Documents 2 and 3 the processing of “Stretch Processing” is applied to the direct wave signal arriving from the radio wave source directly to the receiving station, so that the direct wave signal is There is a method to compensate for the movement of the range cell and extend the time that can be integrated by generating a reference signal in which movement of the range cell according to the speed has been incorporated beforehand and calculating the cross correlation between this reference signal and the scattered wave signal. It is disclosed.
  • Non-Patent Document 4 a reference signal in which the movement of the range cell according to the target acceleration is woven in advance is generated in consideration of the acceleration-like influence due to the change of the Doppler frequency, and this reference signal and the scattered wave signal A scheme is disclosed that compensates for the movement of the range cell and extends the integrable time more than the schemes disclosed in Non-Patent Documents 2 and 3 by determining the cross-correlation with.
  • the methods disclosed in Non-Patent Documents 2 to 4 have a problem that the amount of calculation increases.
  • the biggest problem with passive radars is the extension of the detection distance, but in passive radar, the following two causes are the difficulty in extending the detection distance.
  • the signal to noise ratio (SNR) is extremely low because the transmission power of the radio wave (broadcast wave) transmitted from the radio wave transmission source is weak compared to the security control radar and the like.
  • SNR signal to noise ratio
  • SIR signal to interference ratio
  • Patent Documents 1 to 3 disclose a method for coping with this problem, the target can be detected because it is premised that the target can be detected to some extent in a relatively short integration time. Without this, there were issues that could not be addressed. Further, although Non-Patent Documents 2 to 4 disclose methods for extending the time that can be integrated, there is a problem that the amount of calculation increases.
  • the present invention has been made to solve the above-described problems, and a radar device capable of extending a target detection distance without causing a movement of a target range cell within an integration time and an increase in the amount of calculation.
  • the purpose is to get.
  • the radar apparatus receives the scattered wave of the transmission radio wave scattered by the target and outputs the signal of the scattered wave, and the scattered wave output from the signal of the transmission radio wave and the radio wave acquisition means
  • pulse-by-pulse range compression means for dividing the pulse signal into pulses and calculating the cross-correlation between the signal of the transmission radio wave and the signal of the scattered wave on a pulse-by-pulse basis and generating the pulse-by-pulse range profile indicating the cross-correlation;
  • Phase compensation means for compensating for phase variation in the hit direction superimposed on the pulse-to-pulse range profile generated by the pulse-by-pulse range compression means, and range profile for which phase variation is compensated for by the phase compensation means in the hit direction
  • the signal of the transmission radio wave and the signal of the scattered wave are divided into pulses, and the cross correlation of the signal of the transmission radio wave and the signal of the scattered wave is determined for each pulse, and each pulse showing the cross correlation Pulse-to-pulse range compression means for generating a range profile of the pulse pattern, and the phase compensation means is configured to compensate for phase variation in the hit direction superimposed on the pulse-to-pulse range profile generated by the pulse-to-pulse range compression means. Therefore, the target detection distance can be extended without causing the movement of the target range cell within the integration time and the increase in the amount of calculation.
  • Embodiment 1 In the first embodiment, a radar apparatus adopting a passive radar system will be described. However, in the process of obtaining a signal, if the radio wave transmission source is under control of the radar apparatus, an antenna for direct wave reception is used. It can be omitted and can be treated as an active radar.
  • FIG. 1 is a conceptual view showing a passive radar type radar apparatus.
  • a radio wave source 1 is a source that continuously transmits (broadcasts) a signal (radio wave) having a carrier frequency f c and a signal band B.
  • the direct wave receiving antenna 2 is disposed to point to the radio wave source 1, and receives the direct wave of the radio wave transmitted from the radio wave source 1.
  • the direct wave receiver 3 amplifies the received signal of the direct wave receiving antenna 2, passes the amplified received signal through a band pass filter, extracts a signal of a desired band, and downconverts the signal of the desired band. Perform the sampling process.
  • the scattered wave receiving antenna 4 is disposed to point to the observation area where the target exists, and after being transmitted from the radio wave source 1, receives the scattered wave of the radio wave scattered by the target.
  • the scattered wave receiver 5 amplifies the received signal of the scattered wave receiving antenna 4, passes the amplified received signal through a band pass filter, extracts a signal of a desired band, and downconverts the signal of a desired band. Perform the sampling process.
  • the direct wave receiving antenna 2, the direct wave receiver 3, the scattered wave receiving antenna 4 and the scattered wave receiver 5 constitute a radio wave acquiring means.
  • the signal band is known or variable and the sampling frequency is variable or known, it is possible to sample the signal in the desired band without down-converting by selecting the signal band or sampling frequency. It is. Needless to say, if the signal of the radio wave source 1 is known, the direct wave receiving antenna 2 and the direct wave receiver 3 can be omitted.
  • the direct wave receiving antenna 2 and the scattered wave receiving antenna 4 are described as separate entities, direct waves and scattering are performed by digital beam forming using signals received by two or more antennas. It may be configured to separate the waves.
  • p s bar (in the document of the specification, “ -s bar” is indicated because the upper part of the character can not be marked with “-” due to the relationship of electronic application) is fixed It is a position vector representing the position of the radio wave source 1.
  • p r bar is a position vector representing the position of the scattered wave receiving antenna 4 which is a receiving station.
  • the pt bar is a position vector that represents the position of the center of gravity of the target, and the v bar is a velocity vector that represents the speed of the target.
  • FIG. 1 shows an example in which the direct wave receiving antenna 2 and the scattered wave receiving antenna 4 are installed at different positions, the direct wave receiving antenna 2 and the scattered wave receiving antenna 4 are installed at the same position. It may be done. Further, the direct wave receiver 3 and the scattered wave receiver 5 may be installed at the same position.
  • i s hat (in the document of the specification, “i s hat” is indicated because the letter “ ⁇ ” can not be added to the upper part of the letter because of the electronic application). It is a unit vector representing the direction to the radio wave source 1. i r hat is a unit vector representing the direction from the target to the scattered wave receiving antenna 4.
  • the distance r s of the target radio wave source 1, the distance r r, wave source 1 and the direct wave receiving antenna 2 or scattered wave received from the target and direct wave receiving antenna 2 or scattered wave receiving antenna 4 can be expressed by the following equation (2).
  • pt bar, v bar, i s hat, i r hat, and r r are functions of time t, and in the following description, p t bar (explicitly if necessary) t) and so on.
  • FIG. 2 is a block diagram showing a radar apparatus according to Embodiment 1 of the present invention.
  • the radar apparatus of FIG. 2 includes a signal acquisition unit 11 and a signal processing unit 12.
  • the signal acquisition unit 11 comprises a transmission signal acquisition unit 21 and a reception signal acquisition unit 22.
  • the transmission signal acquisition unit 21 comprises the direct wave receiving antenna 2 and the direct wave receiver 3 of FIG. (See Figure 7).
  • the received signal acquisition unit 22 is composed of the scattered wave receiving antenna 4 and the scattered wave receiver 5 shown in FIG. 1 (see FIG. 7).
  • the signal processor 12 includes a pulse-by-pulse range compressor 31, a clutter suppressor 32, a block-by-block Doppler processor 33, a primary range migration compensation unit 34, a signal interference type phase compensator 35, a block direction Doppler processor 36, and a target detection It comprises a section 37.
  • the pulse range compression unit 31 divides the transmission radio wave signal acquired by the transmission signal acquisition unit 21 and the scattered wave signal acquired by the reception signal acquisition unit 22 into pulses, and transmits the transmission radio signal in units of pulses. A cross-correlation with the scattered wave signal is determined, and a process of generating a pulse-by-pulse range profile indicating the cross-correlation is performed.
  • the per-pulse range compression unit 31 constitutes a per-pulse range compression means.
  • the clutter suppression unit 32 performs processing for suppressing clutter, which is an unnecessary signal included in the range profile for each pulse generated by the per-pulse range compression unit 31.
  • the clutter suppression unit 32 constitutes clutter suppression means.
  • the block-by-block Doppler processing unit 33 groups the pulse-based range profiles whose clutter has been suppressed by the clutter suppression unit 32 in block units, and Fourier-transforms the block-based range profiles in the hit direction.
  • Implement processing to output the Doppler frequency spectrum of The block-by-block Doppler processing unit 33 constructs a block-by-block Doppler processing unit.
  • the primary range migration compensation unit 34 compensates for the primary range migration occurring in the block direction in the Doppler frequency spectrum for each block output from the block-by-block Doppler unit 33, and the Doppler after range migration compensation A process of performing inverse Fourier transform on the frequency spectrum in the range direction and outputting a range profile that is the result of the inverse Fourier transform is performed.
  • the primary range migration compensation unit 34 constitutes primary range migration compensation means.
  • the signal interference type phase compensation unit 35 carries out a process of compensating for the phase fluctuation in the block direction superimposed on the range profile output from the primary range migration compensation unit 34.
  • the signal interference type phase compensation unit 35 constitutes a phase compensation unit.
  • the block direction Doppler processing unit 36 Fourier-transforms the range profile whose phase variation has been compensated by the signal interference type phase compensation unit 35 in the block direction, and outputs a Doppler frequency spectrum that is the result of the Fourier transformation.
  • the block direction Doppler processing unit 36 constitutes block direction Doppler processing means.
  • the target detection unit 37 performs processing for detecting a target from the Doppler frequency spectrum output from the block direction Doppler processing unit 36.
  • the target detection unit 37 constitutes a target detection means.
  • each of the unit 35, the block direction Doppler processing unit 36, and the target detection unit 37 is configured by dedicated hardware (for example, a semiconductor integrated circuit on which a CPU is mounted, or a one-chip microcomputer).
  • the signal processing device 12 may be configured by a computer.
  • a program describing the processing contents of the Doppler processing unit 36 and the target detection unit 37 may be stored in the memory of the computer, and the CPU of the computer may execute the program stored in the memory.
  • the signal processing device 12 mounts the clutter suppression unit 32 .
  • the clutter suppression unit 32 is mounted.
  • the device configuration may be simplified without the need to do so.
  • the target detection accuracy is improved if the clutter suppression unit 32 is mounted.
  • the signal processor 12 has the block-by-block Doppler processing unit 33 and the primary range migration compensation unit 34 mounted will be described, but as shown in FIG.
  • the device configuration may be simplified without mounting the primary range migration compensation unit 34.
  • the phase is performed by the signal interference type phase compensation unit 35 as Doppler processing means instead of the block direction Doppler processing unit 36.
  • the signal interference type phase compensation unit 35 in this case does not compensate for the phase variation in the block direction superimposed on the range profile for each block, but the hit direction superimposed on the range profile for each pulse. It compensates for phase variations.
  • the configuration in which the block-by-block Doppler processing unit 33 and the primary range migration compensation unit 34 are implemented can cope with observation for a longer time.
  • FIG. 4 is a block diagram showing the pulse-by-pulse range compression unit 31 of the radar device according to the first embodiment of the present invention.
  • the transmission signal FFT unit 41 performs a process of dividing the transmission radio signal into pulses by performing Fourier transform on the transmission radio signal acquired by the transmission signal acquisition unit 21 in the range direction.
  • the transmission signal FFT unit 41 constitutes a transmission radio signal Fourier transform unit.
  • the received signal FFT unit 42 performs a process of dividing the scattered wave signal into pulses by subjecting the scattered wave signal acquired by the received signal acquisition unit 22 to Fourier transform in the range direction.
  • the received signal FFT unit 42 constitutes a scattered wave signal Fourier transform unit.
  • the complex conjugate multiplication unit 43 performs a process of performing complex conjugate multiplication of the pulse divided by the transmission signal FFT unit 41 and the pulse divided by the reception signal FFT unit 42.
  • the pulse-by-pulse IFFT unit 44 performs inverse Fourier transform on the multiplication result of the complex conjugate multiplication unit 43 in the range direction, and outputs the range profile for each pulse, which is the inverse Fourier transform result, to the clutter suppression unit 32.
  • the pulse-by-pulse IFFT unit 44 constitutes a pulse-by-pulse inverse Fourier transform unit.
  • FIG. 5 is a block diagram showing a primary range migration compensation unit 34 of the radar device according to Embodiment 1 of the present invention.
  • the primary range migration phase compensation function storage unit 51 is used to compensate for the phase change corresponding to the amount of primary range migration in the block direction corresponding to each Doppler frequency cell in the Doppler frequency spectrum for each block. It is a memory that stores the next range migration phase compensation function.
  • the phase compensation function multiplication unit 52 multiplies the Doppler frequency spectrum for each block output from the block-by-block Doppler unit 33 by the primary range migration phase compensation function stored in the primary range migration phase compensation function storage unit 51 Conduct.
  • the pulse-by-pulse IFFT unit 53 performs inverse Fourier transform on the multiplication result of the phase compensation function multiplication unit 52 in the range direction, and outputs a range profile that is the inverse Fourier transform result to the signal interference type phase compensation unit 35.
  • the pulse-by-pulse IFFT unit 53 constitutes a pulse-by-pulse inverse Fourier transform unit.
  • FIG. 6 is a block diagram showing the signal interference type phase compensation unit 35 of the radar device according to the first embodiment of the present invention.
  • the time reversal range profile generation unit 61 performs time reversal processing of the range profile outputted from the primary range migration compensation unit 34 in the block direction to generate a time reversal range profile.
  • the time reversal range profile generation unit 61 is applied to the signal interference type phase compensation unit 35 implemented in the signal processing device 12 of FIG. 3, the range profile for each pulse in which the clutter is suppressed by the clutter suppression unit 32. Is time-reversed in the hit direction to perform processing for generating a time-reversed range profile.
  • the complex conjugate multiplication unit 62 performs complex conjugate multiplication of the time reversal range profile generated by the time reversal range profile generation unit 61 and the range profile output from the primary range migration compensation unit 34 to obtain the range profile. A process is performed to compensate for phase fluctuation in the block direction that is superimposed. However, when the complex conjugate multiplication unit 62 is applied to the signal interference type phase compensation unit 35 implemented in the signal processing device 12 of FIG. 3, the time inversion range profile and clutter generated by the time inversion range profile generation unit 61 The complex conjugate multiplication with the range profile for each pulse in which the clutter is suppressed by the suppression unit 32 is performed to perform processing of compensating for the fluctuation of the phase in the hit direction superimposed on the range profile.
  • the radio wave source 1 continuously transmits radio waves in the carrier frequency f c and the signal band B
  • the direct wave receiving antenna 2 receives the direct wave of the radio waves transmitted from the radio wave source 1.
  • the scattered wave receiving antenna 4 receives the scattered wave of the radio wave scattered by the target.
  • the direct wave receiver 3 amplifies the reception signal of the direct wave reception antenna 2 for observation time T [sec], passes the amplified reception signal through a band pass filter, and transmits a signal of a desired band. After taking out, the signal of the desired band is downconverted and sampled.
  • the scattered wave receiver 5 amplifies the received signal of the scattered wave receiving antenna 4 during the observation time T [sec], passes the amplified received signal through a band-pass filter, and takes out a signal of a desired band. After that, the signal of the desired band is downconverted and sampled.
  • the per-pulse range compression unit 31 of the signal processing device 12 divides the reception signals of the direct wave and the scattered wave into blocks of time width T b [sec] (N Divided into blocks). Also, each block is divided into pulses of time width T 0 [sec] (divided into M pulses).
  • the time width T b is referred to as a block width
  • the time width T 0 is referred to as a pulse width. Since the pulse and the pulse are adjacent to each other, the repetition cycle of the pulse coincides with the pulse width T 0 . Therefore, the time width T 0 [sec] may be referred to as a pulse repetition cycle (PRI: Pulse Repetition Interval) as necessary.
  • PRI Pulse Repetition Interval
  • the signal is divided into pulses or put into blocks in order to speed up the process.
  • FFT Fast Fourier Transform
  • the direct wave signal transmitted from the radio wave source 1 and the scattered wave signal scattered by the target are formulated. Since the signal transmitted from the radio wave source 1 is a narrow band signal having a signal bandwidth of B, a center frequency of f c and a baseband signal of w (t), the direct wave signal is s d (t), Assuming that the signal of the scattered wave is s s (t), it can be expressed as follows. In the following, wide-sense stationary (WSS) shall be established.
  • a d is the amplitude of the signal at the time of direct wave reception
  • a s is the amplitude of the signal at the time of scattered wave reception
  • ⁇ d is the delay until the direct wave reaches the direct wave receiver 3 Time
  • R 0 (t) is the delay distance of the scattered wave
  • c is the speed of the electromagnetic wave in the propagation line
  • t is a time variable
  • f d is the Doppler frequency.
  • the delay distance difference R (t) between the direct wave signal s d (t) and the scattered wave signal s s (t) is defined as the following formula (8).
  • the target Doppler frequency f d (t) changes with time of the first order. Therefore, the change rate ⁇ [Hz / s] of the Doppler frequency is introduced, and the target Doppler frequency f d (t) is modeled by the following equation.
  • the Doppler frequency can be considered to be constant during the block width T b [sec].
  • T b the center time of the m-th pulse in a block
  • t m and t n are defined by the following equations (13) and (14).
  • R (t) in the domain of t m the following linear function R n (t m).
  • the per-pulse range compression unit 31 receives the signal s d (t) of the transmission radio wave (direct wave) from the direct wave receiver 3 of the transmission signal acquisition unit 21 and scatters the scattered wave from the scattered wave receiver 5 of the reception signal acquisition unit 22.
  • the direct wave signal s d (t) and the scattered wave signal s s (t) are divided into short-time pulses, and the direct wave signal Cross-correlation with the scattered wave signal is determined to generate a pulse-by-pulse range profile that indicates the cross-correlation.
  • the transmission signal FFT unit 41 of the per-pulse range compression unit 31 receives the direct wave signal s d (t) from the direct wave receiver 3 of the transmission signal acquisition unit 21, the direct wave signal s d (t) Is subjected to Fourier transform in the range direction to divide the direct wave signal s d (t) into short-time pulses.
  • the received signal FFT unit 42 of the pulse-by-pulse range compressing unit 31 receives the scattered wave signal s s (t) from the scattered wave receiver 5 of the received signal acquiring unit 22, and thereby the scattered wave signal s s (t) Is subjected to Fourier transform in the range direction to divide the scattered wave signal s s (t) into short-time pulses.
  • the complex conjugate multiplication unit 43 of the per-pulse range compression unit 31 performs complex conjugate multiplication of the pulse divided by the transmission signal FFT unit 41 and the pulse divided by the reception signal FFT unit 42, thereby The cross correlation between the direct wave signal and the scattered wave signal is determined.
  • the cross correlation function x ( ⁇ , t m , t n ) indicating the cross correlation obtained by the complex conjugate multiplier 43 is expressed as the following equation (16), and is called a range profile.
  • x ( ⁇ , t m , t n ) is the range profile at the m th pulse of the n th block.
  • C f (f) is a Fourier transform of the autocorrelation function C ( ⁇ ).
  • F [g ( ⁇ )] ⁇ represents the Fourier transform of variable g of function g ( ⁇ ).
  • the pulse-by-pulse IFFT unit 44 of the pulse-by-pulse range compression unit 31 performs inverse Fourier transform on the multiplication result of the complex conjugate multiplication unit 43 in the range direction, and outputs the inverse Fourier transform result to the clutter suppression unit 32 as a range profile for each pulse.
  • the clutter suppression unit 32 When the clutter suppression unit 32 receives the range profile for each pulse from the range compression unit for each pulse 31, the clutter suppression unit 32 performs a process of subtracting the pulse direction average of the range profile of each pulse from the range profile for each pulse. Suppress the reflection signal (clutter) from the object. That is, the clutter suppression unit 32 suppresses the clutter by performing the process shown in the following equation (20).
  • signals with zero Doppler frequency are extracted by averaging the range profile of N pulses, and signals with zero Doppler frequency are calculated by subtracting the signal with zero Doppler frequency from each range profile. It is suppressing. This makes it possible to suppress the reflected signal from the background stationary object.
  • the clutter suppression unit 32 is not an essential function of the first embodiment. Even if the processing of the clutter suppression unit 32 is omitted, the same processing can be performed for the other components.
  • the block-by-block Doppler processing unit 33 receives the range profile X reverse arc (f, t m , t n ) for each pulse after clutter suppression from the clutter suppression unit 32, and then the range profile X reverse arc for each pulse after clutter suppression (F, t m , t n ) are grouped in block units, the range profile in block units is subjected to Fourier transform in the hit direction, and the Doppler frequency spectrum for each block, which is the result of the Fourier transform, is converted to the first range migration compensation unit 34 Output.
  • the processing contents of the block-by-block Doppler processing unit 33 will be specifically described below.
  • the signal X (f, t m , t n ) after range compression in the n-th block can be expressed as the following equation (21) by substituting the equation (15) into the equation (19) Can.
  • the signal X (f, t m , t n ) after range compression is expressed by the equation (21)
  • the range in which the clutter is suppressed by substituting the equation (15) into the equation (20)
  • the compressed signal X reverse arc (f, t m , t n ) can be represented.
  • f dk is the center frequency of the k-th Doppler frequency cell, and is defined by the following equation (23).
  • Equation (22) The approximation in equation (22) is according to the following relationship: f c >> f ⁇ [-B / 2, B / 2] (24) Equation (24) indicates that the approximation of Equation (22) holds, if the fractional bandwidth of the signal is small.
  • Equation (25) it is necessary to satisfy the relationship of the following equation (25) which indicates that the target movement amount at the block width T b is equal to or less than the range resolution.
  • the primary range migration compensation unit 34 compensates for the primary range migration occurring in the block direction in the Doppler frequency spectrum for each block. Then, the Doppler frequency spectrum after range migration compensation is inverse Fourier transformed in the range direction, and a range profile X cmp1 ( ⁇ , f dk , t n ) that is the result of the inverse Fourier transformation is output.
  • the processing contents of the primary range migration compensation unit 34 will be specifically described below.
  • the primary range migration compensation unit 34 compensates for the primary change amount. Since the Doppler frequency of the signal included in the k-th Doppler frequency cell is f dk , the first-order component ⁇ R n (t n ) of the delay amount in the n-th block is represented by the following equation (28).
  • the first-order range migration phase compensation function ⁇ cmp1 (f, f dk , t n ) for the equation (27) is expressed by the following equation (29), and the first-order range migration phase compensation function ⁇ cmp1 (f, f) dk and t n ) are stored in the primary range migration phase compensation function storage unit 51 of the primary range migration compensation unit 34.
  • * is a complex conjugate.
  • phase compensation function multiplication unit 52 of the primary range migration compensation unit 34 receives the Doppler frequency spectrum for each block from the block-by-block Doppler processing unit 33, the primary order stored in the primary range migration phase compensation function storage unit 51
  • the range migration phase compensation function ⁇ cmp1 (f, f dk , t n ) is multiplied by the Doppler frequency spectrum for each block to compensate for the first order range migration.
  • the pulse-by-pulse IFFT unit 53 of the primary range migration compensation unit 34 performs inverse Fourier transform on the multiplication result of the phase compensation function multiplication unit 52 in the range direction, and a range profile X cmp1 ( ⁇ , f dk , It outputs t n ) to the signal interference type phase compensation unit 35.
  • the signal interference type phase compensation portion 35 When receiving the range profile X cmp1 ( ⁇ , f dk , t n ) from the primary range migration compensation portion 34, the signal interference type phase compensation portion 35 superimposes the range profile X cmp 1 ( ⁇ , f dk , t n ) Compensates for phase variations in the block direction.
  • the processing content of the signal interference type phase compensation unit 35 will be specifically described.
  • the signal interference type phase compensation function ⁇ cmp2fast (f, t m , t n ) is expressed by the following equation (32) using block time inversion of the signal, and the signal interference type phase compensation unit 35
  • the time inversion range profile generation unit 61 generates a time inversion range profile ⁇ cmp2fast ( ⁇ , f dk , t n ).
  • the complex conjugate multiplication unit 62 of the signal interference type phase compensation unit 35 is expressed by the following equation (33) as such, the time-reversed range profile ⁇ cmp2fast ( ⁇ , f dk, t n) and the primary-range migration compensation unit 34 range profile X outputted from cmp1 ( ⁇ , f dk, t n) of the complex conjugate multiplication of the Implementation compensates for even-order phase fluctuations in the block direction superimposed on the range profile.
  • the approximation of the following equation (34) is used.
  • block direction Doppler processing unit 36 receives range profile X cmp2 ( ⁇ , f dk , t n ) whose phase variation has been compensated for by signal interference type phase compensation portion 35, range profile X cmp 2 ( ⁇ , f dk , T n ) in the block direction, and the Doppler frequency spectrum f di , which is the result of the Fourier transform, is output to the target detection unit 37.
  • the processing contents of the block direction Doppler processing unit 36 will be specifically described below.
  • equation (35) is obtained.
  • f dn is expressed by the following equation (36).
  • f dk is the center frequency of the k th Doppler frequency cell and is defined by the following equation.
  • f di is defined as the following equation (37).
  • m (i) and n (i) are defined as the following equation (38).
  • the floor (i) is an operator that rounds off the decimal part of i
  • the mod (i, N) is an operator that obtains the remainder by dividing i by N.
  • Formula (35) becomes like following formula (39) from Formula (37), (38).
  • the substantial frequency resolution ⁇ f d becomes the following equation (40) by the first sinc function.
  • the target detection unit 37 detects the target using the Doppler frequency spectrum f di . That is, the target detection unit 37 calculates the intensity P 1 ( ⁇ , f dk , f dl ) of the signal x cmp 2 ( ⁇ , f dk , f dl ) calculated by the equation (35) or the equation (39) is the signal x cmp2 ( ⁇ , f di) is the intensity P 2 ( ⁇ , f di) of calculating a.
  • the target detection unit 37 applies detection processing such as constant false alarm rate (CFAR) processing to the signal intensity P 1 ( ⁇ , f dk , f dl ) or the signal intensity P 2 ( ⁇ , f di ). To detect the target signal.
  • detection processing such as constant false alarm rate (CFAR) processing to the signal intensity P 1 ( ⁇ , f dk , f dl ) or the signal intensity P 2 ( ⁇ , f di ).
  • CFAR constant false alarm rate
  • the signal interference type phase compensation unit 35 generates the range profile X cmp1 ( ⁇ , f dk , t n ) output from the primary range migration compensation unit 34. Since it is configured to compensate for even-order phase fluctuation in the block direction that is superimposed, it is possible to extend the target detection distance without causing the movement of the target range cell within the integration time and the increase of the calculation amount. The effect can be achieved. That is, by performing signal interference type phase compensation after compensation for first-order range migration, coherent integration can be performed accurately and efficiently for a long time, so that detection of a target can be performed without increasing the amount of calculation. The effect of extending the distance is exhibited.
  • the transmission signal acquisition unit 21 of the signal acquisition unit 11 is configured of the direct wave receiving antenna 2 and the direct wave receiver 3 of FIG. 1, and the reception signal acquisition unit 22 of the signal acquisition unit 11 is FIG.
  • the transmission signal acquisition unit 21 of the signal acquisition unit 11 transmits in advance from the radio wave source 1 as shown in FIG. 8. comprising a radio transmission source signal storage section 71 (memory) which stores the radio signal s d (t) of (direct wave) that is, the direct wave is stored by radio transmission source signal storage 71 signal s d (t ) May be output to the pulse-by-pulse range compression unit 31 of the signal processing device 12.
  • the direct wave receiving antenna 2 and the direct wave receiver 3 shown in FIG. 1 can be omitted, the device configuration can be simplified.
  • the existing radio wave transmission source 1 is present separately from the radar device.
  • the received signal acquisition unit 22 of the signal acquisition unit 11 transmits radio waves.
  • a radio wave transmitter 81 for transmitting a radio wave corresponding to a radio wave transmitted from the source 1, a transmission / reception antenna 82, and a duplexer 83 for alternately connecting the radio wave transmitter 81 or the scattered wave receiver 5 to the transmission / reception antenna 82 It may be provided.
  • the radio wave transmitter 81 is connected to the transmission / reception antenna 82 by the duplexer 83, the radio wave corresponding to the radio wave transmitted from the radio wave source 1 is transmitted toward the target, and the scattered wave receiver 5 transmits / receives.
  • the switching device 83 When the switching device 83 is connected to the transmitting / receiving antenna 82, the scattered wave of the radio wave scattered by the target is received, and the signal of the scattered wave is output to the pulse-by-pulse range compression unit 31 of the signal processing device 12.
  • the transmission signal storage unit 84 of the transmission signal acquisition unit 21 stores the radio wave signal transmitted from the radio wave transmitter 81, and outputs the signal to the pulse-by-pulse range compression unit 31 of the signal processing device 12.
  • the device configuration can be simplified.
  • the target detection process can be performed.
  • Fourth Embodiment 10 is a block diagram showing a radar system according to the fourth embodiment of the present invention.
  • the range division processing unit 91 performs a process of dividing the range profile output from the primary range migration compensation unit 34 into two ranges.
  • the range division processing unit 91 constitutes range division processing means.
  • the search type phase compensation unit 92 executes a process of compensating for the variation of the phase in the block direction superimposed on the range profile of the other range divided by the range division processing unit 91 by a second or higher order phase compensation function.
  • the search type phase compensation unit 92 constitutes a search type phase compensation unit.
  • the range integration processing unit 93 includes a range profile of one range in which the phase variation is compensated by the signal interference type phase compensation unit 35 and a range profile of the other range in which the variation of phase is compensated by the search type phase compensation unit 92. Implement the process of integrating
  • the range integration processing unit 93 constitutes range integration processing means.
  • the pulse-by-pulse compression unit 31, the clutter suppression unit 32, the block-by-block Doppler processing unit 33, the primary range migration compensation unit 34, and the range division processing unit 91 which are components of the signal processing apparatus 12 in the radar apparatus.
  • the signal interference type phase compensation unit 35, the search type phase compensation unit 92, the range integration processing unit 93, the block direction Doppler processing unit 36, and the target detection unit 37 are each dedicated hardware (for example, a semiconductor on which a CPU is mounted) Although what is comprised from an integrated circuit or a one-chip microcomputer etc. is assumed, the signal processing apparatus 12 may be comprised by computer.
  • the pulse-by-pulse range compression unit 31, clutter suppression unit 32, block-by-block Doppler processing unit 33, primary range migration compensation unit 34, range division processing unit 91, signal interference type phase A program describing the processing contents of the compensation unit 35, search type phase compensation unit 92, range integration processing unit 93, block direction Doppler processing unit 36, and target detection unit 37 is stored in the memory of the computer, and the CPU of the computer The program stored in the memory may be executed.
  • FIG. 11 is a block diagram showing a search type phase compensation unit 92 of the radar device according to the fourth embodiment of the present invention.
  • a search type phase compensation function storage unit 101 is a memory that stores a second or higher order phase compensation function for compensating for the phase fluctuation in the block direction superimposed on the range profile.
  • the phase compensation function multiplication unit 102 multiplies the second or higher order phase compensation function stored in the search type phase compensation function storage unit 101 by the range profile of the other range divided by the range division processing unit 91, thereby A process of compensating for phase fluctuation in the block direction superimposed on the range profile is performed.
  • the configuration is the same as that of the first embodiment, so here the range division processing unit 91, the search
  • the processing contents of the phase compensation unit 92 and the range integration processing unit 93 will be mainly described.
  • the primary range migration compensation unit 34 compensates for the primary range migration occurring in the block direction in the Doppler frequency spectrum for each block, as in the first embodiment.
  • inverse Fourier transform is performed on the Doppler frequency spectrum after range migration compensation in the range direction, and a range profile X cmp1 ( ⁇ , f dk , t n ) that is the result of the inverse Fourier transform is output, the range profile X cmp1 ( ⁇ , F dk , t n ) are divided into two ranges.
  • Range division processing unit 91 range profile X cmp1 ( ⁇ , f dk, t n) Splitting into two ranges, range profile of one of the range X cmp1 ( ⁇ , f dk, t n) signal interference phase
  • the range profile X cmp1 ( ⁇ , f dk , t n ) of the other range is output to the search type phase compensation unit 92.
  • the signal interference type phase compensation unit 35 When receiving the range profile X cmp1 ( ⁇ , f dk , t n ) of one range from the range division processing unit 91, the signal interference type phase compensation unit 35 performs complex multiplication as in the first embodiment. Thus, even-order phase fluctuation in the block direction superimposed on the range profile X cmp1 ( ⁇ , f dk , t n ) is compensated.
  • the search type phase compensation unit 92 receives the range profile X cmp1 ( ⁇ , f dk , t n ) of the other range from the range division processing unit 91, the range profile X cmp 1 ( ⁇ , f dk , t n )
  • the phase fluctuation in the block direction superimposed is compensated by a second or higher order phase compensation function. That is, the phase compensation function multiplication unit 102 of the search type phase compensation unit 92 is the other range obtained by dividing the second or higher order phase compensation function stored by the search type phase compensation function storage unit 101 by the range division processing unit 91.
  • the range profile X cmp1 ( ⁇ , f dk , t n ) of V the fluctuation of the phase in the block direction superimposed on the range profile is compensated.
  • the range integration processing unit 93 compensates for the variation of the phase in the block direction in which the signal interference type phase compensation unit 35 is superimposed on the range profile X cmp1 ( ⁇ , f dk , t n ) of one range, and the search type phase
  • the compensation unit 92 compensates for the phase variation in the block direction superimposed on the range profile X cmp1 ( ⁇ , f dk , t n ) of the other range
  • the range profile of one range after phase variation compensation and the phase is integrated, and the integrated range profile is output to the block direction Doppler processing unit 36.
  • the search type phase compensation unit 92 is configured to compensate for the phase variation in the block direction superimposed on the range profile X cmp1 ( ⁇ , f dk , t n ) of the other range. This has the effect of being able to enhance the compensation accuracy of the phase variation in the block direction superimposed on the range profile X cmp1 ( ⁇ , f dk , t n ).
  • Embodiment 5 12 is a block diagram showing a radar system according to a fifth embodiment of the present invention.
  • the radar apparatus shown in FIG. 12 includes the pulse-by-pulse compression unit 31, the clutter suppression unit 32, the block-by-block Doppler processing unit 33, the primary range migration compensation unit 34, and the signal interference type phase compensation unit described in the first embodiment.
  • 35 which comprises a block direction Doppler processing unit 36 and a target detection unit 37, and discloses specific configurations of the pulse range compression unit 31, primary range migration compensation unit 34 and signal interference type phase compensation unit 35.
  • the present invention allows free combination of each embodiment, or modification of any component of each embodiment, or omission of any component in each embodiment. .
  • the radar apparatus determines the cross correlation between the signal of the transmission radio wave and the signal of the scattered wave, and generates a pulse range profile for each pulse indicating the cross correlation, and the pulse range compression means.
  • a phase compensation means is provided to compensate for phase variation in the hit direction superimposed on the generated pulse-by-pulse range profile, and detection of the target without causing movement of the target range cell in the integration time and increase in the amount of calculation. Since the distance can be extended, it is suitable for use in a passive radar type radar device.
  • 1 radio wave source 2 direct wave reception antenna (radio wave acquisition means), 3 direct wave receiver (radio wave acquisition means), 4 scattered wave reception antenna (radio wave acquisition means), 5 scattered wave receiver (radio wave acquisition means) 11 signal acquisition unit 12 signal processing apparatus 21 transmission signal acquisition unit 22 reception signal acquisition unit 31 pulse-by-pulse range compression unit (pulse-by-pulse range compression unit) 32 clutter suppression unit (clutter suppression unit) 33 blocks Doppler processing unit (per-block Doppler processing unit) 34 primary range migration compensation unit (primary range migration compensation unit) 35 signal interference type phase compensation unit (phase compensating unit) 36 block directional Doppler processing unit (block directional Doppler Processing means), 37 Target detection unit (target detection means), 38 Doppler processing unit Puller processing means), 41 transmit signal FFT unit (transmission radio signal Fourier transform unit), 42 receive signal FFT unit (scattered wave signal Fourier transform unit), 43 complex conjugate multiplication unit, 44 pulses IFFT unit (per pulse inverse Fourier transform 51) primary range migration phase compensation function storage unit, 52

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

 信号干渉型位相補償部35が、1次レンジマイグレーション補償部34から出力されたレンジプロフィールXcmp1(τ,fdk,t)に重畳されているブロック方向の偶数次の位相の変動を補償するように構成する。これにより、積分時間内の目標のレンジセルの移動や演算量の増大を招くことなく、目標の探知距離を延伸させることができる。

Description

レーダ装置
 この発明は、目標のレーダ画像を観測するに際して、観測時間を長くすることでドップラー周波数の分解能と信号対雑音電力比を高めるレーダ装置に関するものである。
 レーダ装置として、既存の電波発信源から発信される電波を利用して、目標のレーダ画像を観測するパッシブレーダがある。
 パッシブレーダは、自ら電波を放射しないため、省電力・省電波資源に資する方式として注目されている。電波発信源としては、テレビやラジオなどの電波発信源に加えて、GNSS(Global Navigation Satellite System)などが検討されている。
 パッシブレーダでは、図1に示すように、電波発信源から送信された電波のうち、その電波発信源から直接受信局に到来する直接波と、目標に散乱された後に受信局に到来する散乱波とを受信局で受信することで、その直接波の経路と散乱波の経路との差(経路長差)や、散乱波のドップラー周波数シフトを計測する方式を採用している。
 例えば、以下の非特許文献1には、パッシブレーダに関する従来の開発成果や、パッシブレーダの利点・欠点などが体系的に記載されている。
 パッシブレーダの最大の課題は、探知距離の延伸である。
 探知距離を延伸させるために、信号の積分時間を延長して、SNR(Signal to Noise Ratio)を改善する方式が、例えば、以下の特許文献1~3に開示されている。
 信号の積分時間を延長すると、目標が積分時間内にレンジセルを移動してしまう問題が発生するが、以下の特許文献1~3には、この問題に対処する方法が開示されている。
 以下の特許文献1~3に開示されている対処方法は、初めに、比較的短い積分時間でドップラー処理を実施し、その処理結果を用いて目標候補を検出する。
 次に、目標候補の検出信号のドップラー周波数をもって、目標信号の補償処理を実施する方式である。
 したがって、この対処方法では、比較的短い積分時間で、ある程度、目標が検出されていることが前提となる。
 また、以下の非特許文献2,3には、電波発信源から直接受信局に到来する直接波の信号に対して、“Stretch Processing”という処理を施すことにより、直接波の信号から、目標の速度に応じたレンジセルの移動を予め織り込んだ参照信号を生成し、この参照信号と散乱波の信号との相互相関を求めることによって、レンジセルの移動を補償し、積分可能な時間を延長する方式が開示されている。
 以下の非特許文献4には、ドップラー周波数の変化による加速度的な影響を考慮して、目標の加速度に応じたレンジセルの移動を予め織り込んだ参照信号を生成し、この参照信号と散乱波の信号との相互相関を求めることによって、レンジセルの移動を補償し、非特許文献2,3に開示されている方式よりも、さらに積分可能な時間を延長する方式が開示されている。
 しかし、非特許文献2~4に開示されている方式では、演算量が多くなってしまう問題がある。
 パッシブレーダの最大の課題は、上述したように、探知距離の延伸であるが、パッシブレーダにおいて、探知距離の延伸が困難である原因は以下の2つである。
(1)警戒管制レーダなどと比較して、電波発信源から発信される電波(放送波)の送信電力が微弱であるため、SNR(Signal to Noise Ratio)が極めて低い。
(2)散乱波の観測チャネルにおいては、直接波が干渉波として振舞うが、直接波の信号レベルが散乱波に対してはるかに大きいため、SIR(Signal to Interference Ratio)が極めて低い。
 したがって、探知距離を延伸させるには、SNRの向上とSIRの向上が課題となる。
特開平8-179037号公報 特開2006-258786号公報 特開2009-270827号公報
N.J. Willis and H.D. Griffiths, "Advances in Bistatic Radar," Scitech publishing Inc., 2007. K.S. Kulpa,  J. Misiurewicz, "Stretch Processing for Long Integration Time Passive Covert Radar," International Conference on Radar, 2006. R.M. Admard, H. Habibi, M.H. Bastani, F. Behnia,"Target's range migration compensation in passive radar,"European Radar Conference, 2009. EuRAD 2009. M. Malanowski、K. Kulpa、K.E. Olsen、"Extending the integration time in DVB-T-based passive radar、" European Radar Conference、2011.EuRAD 2011.
 従来のレーダ装置は以上のように構成されているので、信号の積分時間を延長すれば、探知距離を延伸させることができるが、信号の積分時間を延長すると、目標が積分時間内にレンジセルを移動してしまう問題が発生する。
 特許文献1~3では、この問題に対処する方法を開示しているが、初めに、比較的短い積分時間で、ある程度、目標を検出できていることが前提であるため、目標を検出できていなければ、この問題に対処することができない課題があった。
 また、非特許文献2~4にも、積分可能な時間を延長する方式が開示されているが、演算量が多くなってしまう課題があった。
 この発明は上記のような課題を解決するためになされたもので、積分時間内の目標のレンジセルの移動や演算量の増大を招くことなく、目標の探知距離を延伸させることができるレーダ装置を得ることを目的とする。
 この発明に係るレーダ装置は、目標によって散乱された送信電波の散乱波を受信して、その散乱波の信号を出力する電波取得手段と、送信電波の信号及び電波取得手段から出力された散乱波の信号をパルスに分割して、パルス単位で、その送信電波の信号と散乱波の信号との相互相関を求め、その相互相関を示すパルス毎のレンジプロフィールを生成するパルス毎レンジ圧縮手段と、パルス毎レンジ圧縮手段により生成されたパルス毎のレンジプロフィールに重畳されているヒット方向の位相の変動を補償する位相補償手段と、位相補償手段により位相の変動が補償されたレンジプロフィールをヒット方向にフーリエ変換し、そのフーリエ変換結果であるドップラー周波数スペクトルを出力するドップラー処理手段とを設け、目標検出手段が、ドップラー処理手段より出力されたドップラー周波数スペクトルから目標を検出するようにしたものである。
 この発明によれば、送信電波の信号及び散乱波の信号をパルスに分割して、パルス単位で、その送信電波の信号と散乱波の信号との相互相関を求め、その相互相関を示すパルス毎のレンジプロフィールを生成するパルス毎レンジ圧縮手段を設け、位相補償手段が、パルス毎レンジ圧縮手段により生成されたパルス毎のレンジプロフィールに重畳されているヒット方向の位相の変動を補償するように構成したので、積分時間内の目標のレンジセルの移動や演算量の増大を招くことなく、目標の探知距離を延伸させることができる効果がある。
パッシブレーダ方式のレーダ装置を示す概念図である。 この発明の実施の形態1によるレーダ装置を示す構成図である。 この発明の実施の形態1による他のレーダ装置を示す構成図である。 この発明の実施の形態1によるレーダ装置のパルス毎レンジ圧縮部31を示す構成図である。 この発明の実施の形態1によるレーダ装置の1次レンジマイグレーション補償部34を示す構成図である。 この発明の実施の形態1によるレーダ装置の信号干渉型位相補償部35を示す構成図である。 この発明の実施の形態1によるレーダ装置の信号取得部11における送信信号取得部21及び受信信号取得部22を示す構成図である。 この発明の実施の形態2によるレーダ装置の信号取得部11における送信信号取得部21及び受信信号取得部22を示す構成図である。 この発明の実施の形態3によるレーダ装置の信号取得部11における送信信号取得部21及び受信信号取得部22を示す構成図である。 この発明の実施の形態4によるレーダ装置を示す構成図である。 この発明の実施の形態4によるレーダ装置の探索型位相補償部92を示す構成図である。 この発明の実施の形態5によるレーダ装置を示す構成図である。
 以下、この発明をより詳細に説明するために、この発明を実施するための形態について、添付の図面に従って説明する。
実施の形態1.
 この実施の形態1では、パッシブレーダ方式を採用しているレーダ装置について説明するが、信号を得るまでの過程において、電波発信源がレーダ装置の制御下にあれば、直接波受信用のアンテナを省略することが可能であり、アクティブレーダとして扱えることが可能である。
 図1はパッシブレーダ方式のレーダ装置を示す概念図である。
 図1において、電波発信源1は搬送波周波数がf、信号帯域がBの信号(電波)を継続的に発信(放送)している発信源である。
 直接波受信用アンテナ2は電波発信源1を指向するように配置されており、電波発信源1から送信された電波の直接波を受信する。
 直接波受信機3は直接波受信用アンテナ2の受信信号を増幅し、増幅後の受信信号を帯域フィルタに通して、所望の帯域の信号を取り出した後、所望の帯域の信号をダウンコンバートしてサンプリングする処理を実施する。
 散乱波受信用アンテナ4は目標が存在している観測領域を指向するように配置されており、電波発信源1から送信された後、目標によって散乱された電波の散乱波を受信する。
 散乱波受信機5は散乱波受信用アンテナ4の受信信号を増幅し、増幅後の受信信号を帯域フィルタに通して、所望の帯域の信号を取り出した後、所望の帯域の信号をダウンコンバートしてサンプリングする処理を実施する。
 直接波受信用アンテナ2、直接波受信機3、散乱波受信用アンテナ4及び散乱波受信機5から電波取得手段が構成されている。
 ただし、信号帯域が既知又は可変であり、かつ、サンプリング周波数が可変又は既知であれば、信号帯域やサンプリング周波数を選択することで、所望の帯域の信号をダウンコンバートせずにサンプリングすることも可能である。
 また、電波発信源1の信号が既知であれば、直接波受信用アンテナ2及び直接波受信機3を省略することが可能であることは言うまでもない。
 この実施の形態1では、直接波受信用アンテナ2と散乱波受信用アンテナ4を別の実体として説明するが、2つ以上のアンテナで受信した信号を用いて、デジタルビームフォーミングによって直接波と散乱波を分離するように構成しても構わない。
 また、散乱波受信用アンテナ4として、互いに直交する偏波特性を有する2つの受信アンテナを用いることによって、目標によって散乱された散乱波の偏波特性を計測することも可能である。
 この場合、以下に説明する各処理を、2つの散乱波受信用アンテナで得られた信号に対して各々適用することによって、偏波特性の異なる2つのレーダ画像を生成することが可能である。
 pバー(明細書の文書中では、電子出願の関係上、文字の上部に“-”の記号を付することができないため、「pバー」のように表記している)は固定の電波発信源1の位置を表す位置ベクトルである。
 pバーは受信局である散乱波受信用アンテナ4の位置を表す位置ベクトルである。
 pバーは目標の重心位置を表す位置ベクトルであり、vバーは目標の速度を表す速度ベクトルである。
 図1では、直接波受信用アンテナ2と散乱波受信用アンテナ4が異なる位置に設置されている例を示しているが、直接波受信用アンテナ2と散乱波受信用アンテナ4が同じ位置に設置されていてもよい。また、直接波受信機3と散乱波受信機5が同じ位置に設置されていてもよい。
 iハット(明細書の文書中では、電子出願の関係上、文字の上部に“^”の記号を付することができないため、「iハット」のように表記している)は目標から電波発信源1への向きを表す単位ベクトルである。
 iハットは目標から散乱波受信用アンテナ4への向きを表す単位ベクトルである。
Figure JPOXMLDOC01-appb-I000001
 このとき、目標と電波発信源1の距離r、目標と直接波受信用アンテナ2又は散乱波受信用アンテナ4との距離r、電波発信源1と直接波受信用アンテナ2又は散乱波受信用アンテナ4との距離rは、下記の式(2)で表すことができる。
Figure JPOXMLDOC01-appb-I000002
 ただし、目標は移動しているので、pバー、vバー、iハット、iハット及びrは時刻tの関数であり、以下の説明では必要に応じて明示的にpバー(t)などのように表記する。
 図2はこの発明の実施の形態1によるレーダ装置を示す構成図である。
 図2のレーダ装置は、信号取得部11と信号処理装置12から構成されている。
 図2において、信号取得部11は送信信号取得部21と受信信号取得部22から構成されており、送信信号取得部21は図1の直接波受信用アンテナ2と直接波受信機3から構成されている(図7を参照)。
 受信信号取得部22は図1の散乱波受信用アンテナ4及び散乱波受信機5から構成されている(図7を参照)。
 信号処理装置12は、パルス毎レンジ圧縮部31、クラッタ抑圧部32、ブロック毎ドップラー処理部33、1次レンジマイグレーション補償部34、信号干渉型位相補償部35、ブロック方向ドップラー処理部36及び目標検出部37から構成されている。
 パルス毎レンジ圧縮部31は送信信号取得部21により取得された送信電波の信号及び受信信号取得部22により取得された散乱波の信号をパルスに分割して、パルス単位で、送信電波の信号と散乱波の信号との相互相関を求め、その相互相関を示すパルス毎のレンジプロフィールを生成する処理を実施する。なお、パルス毎レンジ圧縮部31はパルス毎レンジ圧縮手段を構成している。
 クラッタ抑圧部32はパルス毎レンジ圧縮部31により生成されたパルス毎のレンジプロフィールに含まれている不要信号であるクラッタを抑圧する処理を実施する。なお、クラッタ抑圧部32はクラッタ抑圧手段を構成している。
 ブロック毎ドップラー処理部33はクラッタ抑圧部32によりクラッタが抑圧されたパルス毎のレンジプロフィールをブロック単位にまとめて、ブロック単位のレンジプロフィールをヒット方向にフーリエ変換し、そのフーリエ変換結果であるブロック毎のドップラー周波数スペクトルを出力する処理を実施する。なお、ブロック毎ドップラー処理部33はブロック毎ドップラー処理手段を構成している。
 1次レンジマイグレーション補償部34はブロック毎ドップラー処理部33から出力されたブロック毎のドップラー周波数スペクトルの中で、ブロック方向に発生している1次のレンジマイグレーションを補償し、レンジマイグレーション補償後のドップラー周波数スペクトルをレンジ方向に逆フーリエ変換して、その逆フーリエ変換結果であるレンジプロフィールを出力する処理を実施する。なお、1次レンジマイグレーション補償部34は1次レンジマイグレーション補償手段を構成している。
 信号干渉型位相補償部35は1次レンジマイグレーション補償部34から出力されたレンジプロフィールに重畳されているブロック方向の位相の変動を補償する処理を実施する。なお、信号干渉型位相補償部35は位相補償手段を構成している。
 ブロック方向ドップラー処理部36は信号干渉型位相補償部35により位相の変動が補償されたレンジプロフィールをブロック方向にフーリエ変換し、そのフーリエ変換結果であるドップラー周波数スペクトルを出力する処理を実施する。なお、ブロック方向ドップラー処理部36はブロック方向ドップラー処理手段を構成している。
 目標検出部37はブロック方向ドップラー処理部36より出力されたドップラー周波数スペクトルから目標を検出する処理を実施する。なお、目標検出部37は目標検出手段を構成している。
 図2の例では、レーダ装置における信号処理装置12の構成要素であるパルス毎レンジ圧縮部31、クラッタ抑圧部32、ブロック毎ドップラー処理部33、1次レンジマイグレーション補償部34、信号干渉型位相補償部35、ブロック方向ドップラー処理部36及び目標検出部37のそれぞれが専用のハードウェア(例えば、CPUを実装している半導体集積回路、あるいは、ワンチップマイコンなど)から構成されているものを想定しているが、信号処理装置12がコンピュータで構成されていてもよい。
 信号処理装置12がコンピュータで構成されている場合、パルス毎レンジ圧縮部31、クラッタ抑圧部32、ブロック毎ドップラー処理部33、1次レンジマイグレーション補償部34、信号干渉型位相補償部35、ブロック方向ドップラー処理部36及び目標検出部37の処理内容を記述しているプログラムをコンピュータのメモリに格納し、当該コンピュータのCPUが当該メモリに格納されているプログラムを実行するようにすればよい。
 この実施の形態1では、信号処理装置12がクラッタ抑圧部32を実装している例を説明するが、例えば、不要信号であるクラッタの影響が少ないような場合には、クラッタ抑圧部32を実装せずに、装置構成を簡略化するようにしてもよい。ただし、クラッタ抑圧部32を実装している方が、目標の検出精度が向上することは言うまでもない。
 この実施の形態1では、信号処理装置12がブロック毎ドップラー処理部33及び1次レンジマイグレーション補償部34を実装している例を説明するが、図3に示すように、ブロック毎ドップラー処理部33及び1次レンジマイグレーション補償部34を実装せずに、装置構成を簡略化するようにしてもよい。
 ブロック毎ドップラー処理部33及び1次レンジマイグレーション補償部34を実装しない場合、図3に示すように、ブロック方向ドップラー処理部36の代わりに、ドップラー処理手段として、信号干渉型位相補償部35により位相の変動が補償されたレンジプロフィールをヒット方向にフーリエ変換し、そのフーリエ変換結果であるドップラー周波数スペクトルを出力するドップラー処理部38を実装する必要がある。
 なお、この場合の信号干渉型位相補償部35は、ブロック毎のレンジプロフィールに重畳されているブロック方向の位相の変動を補償するのではなく、パルス毎のレンジプロフィールに重畳されているヒット方向の位相の変動を補償することになる。
 ブロック毎ドップラー処理部33及び1次レンジマイグレーション補償部34を実装する構成の方が、より長時間の観測に対応することができる。
 図4はこの発明の実施の形態1によるレーダ装置のパルス毎レンジ圧縮部31を示す構成図である。
 図4において、送信信号FFT部41は送信信号取得部21により取得された送信電波の信号をレンジ方向にフーリエ変換することで、送信電波の信号をパルスに分割する処理を実施する。なお、送信信号FFT部41は送信電波信号フーリエ変換部を構成している。
 受信信号FFT部42は受信信号取得部22により取得された散乱波の信号をレンジ方向にフーリエ変換することで、散乱波の信号をパルスに分割する処理を実施する。なお、受信信号FFT部42は散乱波信号フーリエ変換部を構成している。
 複素共役乗算部43は送信信号FFT部41により分割されたパルスと受信信号FFT部42により分割されたパルスとの複素共役乗算を実施する処理を実施する。
 パルス毎IFFT部44は複素共役乗算部43の乗算結果をレンジ方向に逆フーリエ変換し、その逆フーリエ変換結果であるパルス毎のレンジプロフィールをクラッタ抑圧部32に出力する処理を実施する。なお、パルス毎IFFT部44はパルス毎逆フーリエ変換部を構成している。
 図5はこの発明の実施の形態1によるレーダ装置の1次レンジマイグレーション補償部34を示す構成図である。
 図5において、1次レンジマイグレーション位相補償関数格納部51はブロック毎のドップラー周波数スペクトルにおける各々のドップラー周波数セルに対応するブロック方向の1次のレンジマイグレーションの量に相当する位相変化の補償に用いる1次レンジマイグレーション位相補償関数を格納するメモリである。
 位相補償関数乗算部52は1次レンジマイグレーション位相補償関数格納部51に格納されている1次レンジマイグレーション位相補償関数をブロック毎ドップラー処理部33から出力されたブロック毎のドップラー周波数スペクトルに乗算する処理を実施する。
 パルス毎IFFT部53は位相補償関数乗算部52の乗算結果をレンジ方向に逆フーリエ変換し、その逆フーリエ変換結果であるレンジプロフィールを信号干渉型位相補償部35に出力する処理を実施する。なお、パルス毎IFFT部53はパルス毎逆フーリエ変換部を構成している。
 図6はこの発明の実施の形態1によるレーダ装置の信号干渉型位相補償部35を示す構成図である。
 図6において、時間反転レンジプロフィール生成部61は1次レンジマイグレーション補償部34から出力されたレンジプロフィールをブロック方向に時間反転して、時間反転レンジプロフィールを生成する処理を実施する。
 ただし、時間反転レンジプロフィール生成部61は、図3の信号処理装置12に実装されている信号干渉型位相補償部35に適用する場合、クラッタ抑圧部32によりクラッタが抑圧されたパルス毎のレンジプロフィールをヒット方向に時間反転して、時間反転レンジプロフィールを生成する処理を実施する。
 複素共役乗算部62は時間反転レンジプロフィール生成部61により生成された時間反転レンジプロフィールと1次レンジマイグレーション補償部34から出力されたレンジプロフィールとの複素共役乗算を実施することで、そのレンジプロフィールに重畳されているブロック方向の位相の変動を補償する処理を実施する。
 ただし、複素共役乗算部62は、図3の信号処理装置12に実装されている信号干渉型位相補償部35に適用する場合、時間反転レンジプロフィール生成部61により生成された時間反転レンジプロフィールとクラッタ抑圧部32によりクラッタが抑圧されたパルス毎のレンジプロフィールとの複素共役乗算を実施することで、そのレンジプロフィールに重畳されているヒット方向の位相の変動を補償する処理を実施する。
 次に動作について説明する。
 この実施の形態1では、電波発信源1が搬送波周波数f、信号帯域Bの電波を継続的に送信し、直接波受信用アンテナ2が電波発信源1から送信された電波の直接波を受信し、散乱波受信用アンテナ4が目標によって散乱された上記電波の散乱波を受信する。
 このとき、直接波受信機3は、観測時間T[sec]の間、直接波受信用アンテナ2の受信信号を増幅し、増幅後の受信信号を帯域フィルタに通して、所望の帯域の信号を取り出した後、所望の帯域の信号をダウンコンバートしてサンプリングする。
 また、散乱波受信機5は、観測時間T[sec]の間、散乱波受信用アンテナ4の受信信号を増幅し、増幅後の受信信号を帯域フィルタに通して、所望の帯域の信号を取り出した後、所望の帯域の信号をダウンコンバートしてサンプリングする。
 この実施の形態1では、詳細は後述するが、信号処理装置12のパルス毎レンジ圧縮部31によって、直接波及び散乱波の受信信号が時間幅T[sec]のブロックに分割される(N個のブロックに分割される)。
 また、各々のブロックが時間幅T[sec]のパルスに分割される(M個のパルスに分割される)。
 以降、時間幅Tをブロック幅と称し、時間幅Tをパルス幅と称する。
 なお、パルスとパルスは隣接しているため、パルスの繰り返し周期はパルス幅Tと一致する。そのため、必要に応じて時間幅T[sec]をパルス繰返し周期(PRI:Pulse Repetition Interval)と呼ぶ場合がある。
 定義より、T、T、Tは、下記の次の関係を満足する。
Figure JPOXMLDOC01-appb-I000003
 この実施の形態1において、信号をパルスに分割したり、ブロックにまとめたりするのは、処理の高速化を図るためである。
 詳細は後述するが、長時間観測したデータを短いパルスに区切ることにより、直接波と散乱波の長時間の相関処理を全てFFT(Fast Fourier Transform)によって構成することができる。
 また、いくつかのパルスをまとめたブロック単位の処理を導入することで、観測時間中の1次レンジマイグレーションへの対処を高速化することができる。
 続いて、信号処理装置12における各処理部の動作を説明するために、電波発信源1から発信された直接波の信号と、目標によって散乱された散乱波の信号とを定式化する。
 電波発信源1から発信される信号は、信号帯域幅がB、中心周波数がf、ベースバンド信号がw(t)の狭帯域信号であるから、直接波の信号をs(t)、散乱波の信号をs(t)とすると、下記のように表すことができる。
 以下では、広義定常性(WSS:wide-sense stationary)が成立するものとする。
Figure JPOXMLDOC01-appb-I000004

Figure JPOXMLDOC01-appb-I000005
 式(4)(5)において、aは直接波受信時の信号の振幅、aは散乱波受信時の信号の振幅、τは直接波が直接波受信機3に到達するまでの遅延時間、R(t)は散乱波の遅延距離、cは伝播線路中の電磁波の速さ、tは時間変数、fはドップラー周波数である。
 ここで、直接波の信号s(t)及び散乱波の信号s(t)の位相検波を実施することにより、次のビデオ信号s(t)チルダ,s(t)チルダが得られる。
Figure JPOXMLDOC01-appb-I000006

Figure JPOXMLDOC01-appb-I000007
 明細書の文書中では、電子出願の関係上、文字の上部に“~”の記号を付することができないため、「s(t)チルダ」のように表記している。
 直接波の信号s(t)と散乱波の信号s(t)との遅延距離差R(t)は、下記の式(8)のように定義される。
Figure JPOXMLDOC01-appb-I000008
 この実施の形態1では、目標のドップラー周波数f(t)が1次の時間変化をする場合を想定する。
 そこで、ドップラー周波数の変化率α[Hz/s]を導入し、目標のドップラー周波数f(t)を次式でモデル化する。
Figure JPOXMLDOC01-appb-I000009
 よって、
Figure JPOXMLDOC01-appb-I000010
 であることを考慮すると、式(9)及び式(10)より、遅延距離差R(t)とラジアル速度v(t)は、下記の式(11)(12)のように表される。
Figure JPOXMLDOC01-appb-I000011

Figure JPOXMLDOC01-appb-I000012
 なお、アルゴリズムの導出の過程で、ブロック幅T[sec]の間は、ドップラー周波数が一定であると見なせると仮定する。
 あるブロックにおけるm番目のパルスの中心時刻をtとし、n番目のブロックの中心時刻をtとすると、t,tは、下記の式(13)(14)によって定義される。
Figure JPOXMLDOC01-appb-I000013

Figure JPOXMLDOC01-appb-I000014
 R(t)はtの定義域において、次の1次関数R(t)とする。
Figure JPOXMLDOC01-appb-I000015
 以下、レーダ装置における信号処理装置12の処理内容を具体的に説明する。
 パルス毎レンジ圧縮部31は、送信信号取得部21の直接波受信機3から送信電波(直接波)の信号s(t)を受け、受信信号取得部22の散乱波受信機5から散乱波の信号s(t)を受けると、その直接波の信号s(t)及び散乱波の信号s(t)を短時間のパルスに分割し、パルス単位で、その直接波の信号と散乱波の信号との相互相関を求め、その相互相関を示すパルス毎のレンジプロフィールを生成する。
 即ち、パルス毎レンジ圧縮部31の送信信号FFT部41は、送信信号取得部21の直接波受信機3から直接波の信号s(t)を受けると、直接波の信号s(t)をレンジ方向にフーリエ変換することで、直接波の信号s(t)を短時間のパルスに分割する。
 また、パルス毎レンジ圧縮部31の受信信号FFT部42は、受信信号取得部22の散乱波受信機5から散乱波の信号s(t)を受けると、散乱波の信号s(t)をレンジ方向にフーリエ変換することで、散乱波の信号s(t)を短時間のパルスに分割する。
 そして、パルス毎レンジ圧縮部31の複素共役乗算部43は、送信信号FFT部41により分割されたパルスと、受信信号FFT部42により分割されたパルスとの複素共役乗算を実施することで、その直接波の信号と散乱波の信号との相互相関を求める。
 ここで、複素共役乗算部43により求められる相互相関を示す相互相関関数x(τ,t,t)は、下記の式(16)のように表され、レンジプロフィールと呼ばれる。
 ただし、x(τ,t,t)はn番目のブロックのm番目のパルスにおけるレンジプロフィールである。
Figure JPOXMLDOC01-appb-I000016
 ここで、ベースバンド信号w(t)については、広義定常性(WSS)が成立すると仮定しているので、自己相関関数の期待値C(τ)は下記の式(17)で表される。 
Figure JPOXMLDOC01-appb-I000017
 期待値について議論すると、次のようになる。
Figure JPOXMLDOC01-appb-I000018
 ただし、τはレンジ圧縮処理後の時間変数、*は複素共役、E[・]は期待値、C(・)は自己相関関数である。
 周波数空間上でのレンジ圧縮は、下記の式(19)で表現される。
Figure JPOXMLDOC01-appb-I000019
 ただし、C(f)は自己相関関数C(τ)のフーリエ変換である。F[g(τ)]τは関数g(τ)の変数τについてのフーリエ変換を表している。
 パルス毎レンジ圧縮部31のパルス毎IFFT部44は、複素共役乗算部43の乗算結果をレンジ方向に逆フーリエ変換し、その逆フーリエ変換結果をパルス毎のレンジプロフィールとして、クラッタ抑圧部32に出力する。
 クラッタ抑圧部32は、パルス毎レンジ圧縮部31からパルス毎のレンジプロフィールを受けると、パルス毎のレンジプロフィールから、各パルスのレンジプロフィールのパルス方向平均を差し引く処理を実施することで、背景の静止物からの反射信号(クラッタ)を抑圧する。
 即ち、クラッタ抑圧部32は、下記の式(20)に示す処理を実施することで、クラッタを抑圧する。
Figure JPOXMLDOC01-appb-I000020
 これにより、クラッタ抑圧部32が、式(20)に示すクラッタ抑圧後の信号X逆弧(f,t,t)(明細書の文書中では、電子出願の関係上、文字の上部に“∪”の記号を付することができないため、「X逆弧」のように表記している)をブロック毎ドップラー処理部33に出力するが、静止物からの反射波の信号については、遅延時間差がパルス毎に変化しない(ドップラー周波数シフトを受けていない)。
 このことは、式(19)において、目標が固定であれば、R(t)=constとなり、パルス番号mによらず、信号の位相が一定になることからも確認することができる。
 式(20)において、Nパルスのレンジプロフィールを平均化することによって、ドップラー周波数がゼロの信号を抽出し、各レンジプロフィールからドップラー周波数がゼロの信号を差し引くことで、ドップラー周波数がゼロの信号を抑圧している。これにより、背景の静止物からの反射信号を抑圧することができる。
 ただし、このクラッタ抑圧部32は、この実施の形態1を構成する必須の機能ではない。仮にクラッタ抑圧部32の処理を省いても、その他については、同様の処理を実施することが可能である。
 ブロック毎ドップラー処理部33は、クラッタ抑圧部32からクラッタ抑圧後のパルス毎のレンジプロフィールX逆弧(f,t,t)を受けると、クラッタ抑圧後のパルス毎のレンジプロフィールX逆弧(f,t,t)をブロック単位にまとめて、ブロック単位のレンジプロフィールをヒット方向にフーリエ変換し、そのフーリエ変換結果であるブロック毎のドップラー周波数スペクトルを1次レンジマイグレーション補償部34に出力する。
 以下、ブロック毎ドップラー処理部33の処理内容を具体的に説明する。
 まず、n番目のブロックにおけるレンジ圧縮後の信号X(f,t,t)は、式(15)を式(19)に代入することで、下記の式(21)のように表すことができる。
Figure JPOXMLDOC01-appb-I000021
 ここでは、レンジ圧縮後の信号X(f,t,t)を式(21)で表しているが、式(15)を式(20)に代入することで、クラッタが抑圧されたレンジ圧縮後の信号X逆弧(f,t,t)を表すことができる。
 レンジ圧縮後の信号X(f,t,t)を、mについて離散フーリエ変換すると、下記の式(22)が得られる。
Figure JPOXMLDOC01-appb-I000022
 ただし、fdkはk番目のドップラー周波数セルの中心周波数であり、下記の式(23)で定義される。
Figure JPOXMLDOC01-appb-I000023
 式(22)における近似は、次の関係式による。
    f >> f∈[-B/2,B/2]         (24)
 式(24)は、信号の比帯域が小さければ、式(22)の近似が成り立つことを示している。
 ここでは、ブロック幅Tにおける目標の移動量がレンジ分解能以下であることを示す下記の式(25)の関係を満たしている必要がある。
Figure JPOXMLDOC01-appb-I000024
 ただし、fdmaxはパルス繰返し周期PRIで決まる値であり、fdmax=1/(2T)である。したがって、式(25)は次のように整理することができる。
Figure JPOXMLDOC01-appb-I000025
 1次レンジマイグレーション補償部34は、ブロック毎ドップラー処理部33からブロック毎のドップラー周波数スペクトルを受けると、ブロック毎のドップラー周波数スペクトルの中で、ブロック方向に発生している1次のレンジマイグレーションを補償し、レンジマイグレーション補償後のドップラー周波数スペクトルをレンジ方向に逆フーリエ変換して、その逆フーリエ変換結果であるレンジプロフィールXcmp1(τ,fdk,t)を出力する。
 以下、1次レンジマイグレーション補償部34の処理内容を具体的に説明する。
 ブロック毎ドップラー処理部33では、ブロック幅Tの間は、ドップラー周波数が一定であることを仮定して処理を実施しているが、観測時間Tの全体を考える場合は、ドップラー周波数f(t)が1次の変化をする式(9)のモデルを考える。
 このことを踏まえ、式(22)のR(t),v(t)に式(11),式(12)を代入することで、下記の式(27)を得る。
Figure JPOXMLDOC01-appb-I000026
 この実施の形態1では、ブロック方向の処理を実施するために、目標信号のレンジ方向の移動(マイグレーション)を補償する。
 ここでは、ドップラー周波数が1次の変化をするモデルを考えているので、目標信号のレンジは1次と2次の変化をする。1次レンジマイグレーション補償部34では、1次の変化量を補償する。
 k番目のドップラー周波数セルに含まれる信号のドップラー周波数はfdkであるから、n番目のブロックにおける遅延量の1次成分ΔR(t)は、下記の式(28)で表される。
Figure JPOXMLDOC01-appb-I000027
 式(27)に対する1次レンジマイグレーション位相補償関数Ψcmp1(f,fdk,t)は、下記の式(29)で表され、予め、1次レンジマイグレーション位相補償関数Ψcmp1(f,fdk,t)は、1次レンジマイグレーション補償部34の1次レンジマイグレーション位相補償関数格納部51に格納される。
Figure JPOXMLDOC01-appb-I000028
 ただし、*は複素共役である。
 1次レンジマイグレーション補償部34の位相補償関数乗算部52は、ブロック毎ドップラー処理部33からブロック毎のドップラー周波数スペクトルを受けると、1次レンジマイグレーション位相補償関数格納部51に格納されている1次レンジマイグレーション位相補償関数Ψcmp1(f,fdk,t)をブロック毎のドップラー周波数スペクトルに乗算することで、1次のレンジマイグレーションを補償する。
 1次レンジマイグレーション位相補償関数Ψcmp1(f,fdm,t)を用いた関数y(τ,fdk,t)の1次のレンジマイグレーション補償は、下記の式(30)のようになる。これは周波数空間における畳み込み演算に相当する。
Figure JPOXMLDOC01-appb-I000029
 ただし、δfdk=β-fdkである。
 1次レンジマイグレーション補償部34のパルス毎IFFT部53は、位相補償関数乗算部52の乗算結果をレンジ方向に逆フーリエ変換し、その逆フーリエ変換結果であるレンジプロフィールXcmp1(τ,fdk,t)を信号干渉型位相補償部35に出力する。
 信号干渉型位相補償部35は、1次レンジマイグレーション補償部34からレンジプロフィールXcmp1(τ,fdk,t)を受けると、そのレンジプロフィールXcmp1(τ,fdk,t)に重畳されているブロック方向の位相の変動を補償する。
 以下、信号干渉型位相補償部35の処理内容を具体的に説明する。
 まず、ドップラーセルマイグレーション補償のため、式(30)のfdkについて逆離散フーリエ変換を実施する。
Figure JPOXMLDOC01-appb-I000030
 ここで、信号干渉型位相補償関数Ψcmp2fast(f,t,t)は、信号のブロック時間反転を用いると、下記の式(32)のようになり、信号干渉型位相補償部35の時間反転レンジプロフィール生成部61が時間反転レンジプロフィールΨcmp2fast(τ,fdk,t)を生成する。
Figure JPOXMLDOC01-appb-I000031
 信号干渉型位相補償部35の複素共役乗算部62は、時間反転レンジプロフィール生成部61が時間反転レンジプロフィールΨcmp2fast(τ,fdk,t)を生成すると、下記の式(33)に示すように、その時間反転レンジプロフィールΨcmp2fast(τ,fdk,t)と1次レンジマイグレーション補償部34から出力されたレンジプロフィールXcmp1(τ,fdk,t)との複素共役乗算を実施することで、そのレンジプロフィールに重畳されているブロック方向の偶数次の位相の変動を補償する。
Figure JPOXMLDOC01-appb-I000032
 ただし、下記の式(34)の近似を用いている。
Figure JPOXMLDOC01-appb-I000033
 ブロック方向ドップラー処理部36は、信号干渉型位相補償部35により位相の変動が補償されたレンジプロフィールXcmp2(τ,fdk,t)を受けると、そのレンジプロフィールXcmp2(τ,fdk,t)をブロック方向にフーリエ変換し、そのフーリエ変換結果であるドップラー周波数スペクトルfdiを目標検出部37に出力する。
 以下、ブロック方向ドップラー処理部36の処理内容を具体的に説明する。
 式(33)に対して、tについて離散フーリエ変換を実施すると、下記の式(35)のようになる。
Figure JPOXMLDOC01-appb-I000034
 式(35)の近似については、レンジマイグレーション補償処理後は、信号がブロック番号によらず、同一のレンジセルに存在していると見なせる。以降では、fdnを下記の式(36)で表すようにする。ただし、fdkはk番目のドップラー周波数セルの中心周波数であり、次式で定義される。
Figure JPOXMLDOC01-appb-I000035
 また、新たなドップラー周波数fdiを下記の式(37)のように定義する。
Figure JPOXMLDOC01-appb-I000036
 ただし、m(i),n(i)は、下記の式(38)のように定義される。
Figure JPOXMLDOC01-appb-I000037
 floor(i)は、iの小数点以下を切り捨てる演算子であり、mod(i,N)はiをNで割った余りを得る演算子である。
 式(37),(38)より、式(35)は、下記の式(39)のようになる。
Figure JPOXMLDOC01-appb-I000038
 式(39)において、実質の周波数分解能Δfは、1つ目のsinc関数よって、下記の式(40)のようになる。
Figure JPOXMLDOC01-appb-I000039
 目標検出部37は、ブロック方向ドップラー処理部36がドップラー周波数スペクトルfdiを算出すると、そのドップラー周波数スペクトルfdiを用いて、目標を検出する。
 即ち、目標検出部37は、式(35)によって算出される信号xcmp2(τ,fdk,fdl)の強度P(τ,fdk,fdl)、あるいは、式(39)によって算出される信号xcmp2(τ,fdi)の強度P(τ,fdi)を算出する。
Figure JPOXMLDOC01-appb-I000040

Figure JPOXMLDOC01-appb-I000041
 目標検出部37は、信号強度P(τ,fdk,fdl)、あるいは、信号強度P(τ,fdi)に対して、CFAR(Constant False Alarm Rate)処理などの検出処理を適用することによって、目標信号を検出する。CFAR処理については公知の技術であるため詳細な説明を省略する。
 なお、CFAR処理を実施する前に、信号強度P(τ,fdk,fdl)、あるいは、信号強度P(τ,fdi)について、レンジ方向又はドップラー周波数方向、あるいは、その両方向に互いに隣接する複数セルにまたがってインコヒーレントに積分を行うようにしてもよい。
 この処理により、雑音成分の標準偏差を低減することができるほか、目標信号がドップラーレンジ方向又はドップラー周波数方向、あるいは、その両方向に広がっている場合、信号成分をインコヒーレントに積み上げることができるため、SNR(Signal to Noise Ratio)を改善することが可能になる。
 以上で明らかなように、この実施の形態1によれば、信号干渉型位相補償部35が、1次レンジマイグレーション補償部34から出力されたレンジプロフィールXcmp1(τ,fdk,t)に重畳されているブロック方向の偶数次の位相の変動を補償するように構成したので、積分時間内の目標のレンジセルの移動や演算量の増大を招くことなく、目標の探知距離を延伸させることができる効果を奏する。
 即ち、1次のレンジマイグレーションが補償された後に、信号干渉型位相補償を行うことで、精度・効率よく、長時間コヒーレント積分が可能になるため、演算量の増大を招くことなく、目標の探知距離を延伸させることができる効果を奏する。
実施の形態2.
 上記実施の形態1では、信号取得部11の送信信号取得部21が図1の直接波受信用アンテナ2と直接波受信機3から構成され、信号取得部11の受信信号取得部22が図1の散乱波受信用アンテナ4と散乱波受信機5から構成されているものを示したが、図8に示すように、信号取得部11の送信信号取得部21が、予め電波発信源1から送信される電波(直接波)の信号s(t)を格納する電波発信源信号格納部71(メモリ)を備え、電波発信源信号格納部71により格納されている直接波の信号s(t)を信号処理装置12のパルス毎レンジ圧縮部31に出力するようにしてもよい。
 この場合、図1の直接波受信用アンテナ2と直接波受信機3を省略することができるため装置構成の簡略化を図ることができる。
実施の形態3.
 上記実施の形態1では、レーダ装置と別個に既設の電波発信源1が存在しているものを示したが、図9に示すように、信号取得部11の受信信号取得部22が、電波発信源1から発信される電波に相当する電波を送信する電波送信機81と、送受信アンテナ82と、電波送信機81又は散乱波受信機5を交互に送受信アンテナ82に接続する送受切換機83とを備えるようにしてもよい。
 この場合、電波送信機81が送受切換機83によって送受信アンテナ82と接続されたとき、電波発信源1から発信される電波に相当する電波を目標に向けて送信し、散乱波受信機5が送受切換機83によって送受信アンテナ82と接続されたとき、目標によって散乱された上記電波の散乱波を受信して、その散乱波の信号を信号処理装置12のパルス毎レンジ圧縮部31に出力する。
 なお、送信信号取得部21の送信信号格納部84は、電波送信機81から送信される電波の信号を格納しており、その信号を信号処理装置12のパルス毎レンジ圧縮部31に出力する。
 この場合、上記実施の形態2と同様に、図1の直接波受信用アンテナ2と直接波受信機3を省略することができるため装置構成の簡略化を図ることができる。
 また、既設の電波発信源1が存在していない場合でも、目標の検出処理を実施することができる。
実施の形態4.
 図10はこの発明の実施の形態4によるレーダ装置を示す構成図であり、図において、図2と同一符号は同一または相当部分を示すので説明を省略する。
 レンジ分割処理部91は1次レンジマイグレーション補償部34から出力されたレンジプロフィールを2つのレンジに分割する処理を実施する。なお、レンジ分割処理部91はレンジ分割処理手段を構成している。
 探索型位相補償部92はレンジ分割処理部91により分割された他方のレンジのレンジプロフィールに重畳されているブロック方向の位相の変動を2次以上の位相補償関数によって補償する処理を実施する。なお、探索型位相補償部92は探索型位相補償手段を構成している。
 レンジ統合処理部93は信号干渉型位相補償部35により位相の変動が補償された一方のレンジのレンジプロフィールと、探索型位相補償部92により位相の変動が補償された他方のレンジのレンジプロフィールとを統合する処理を実施する。なお、レンジ統合処理部93はレンジ統合処理手段を構成している。
 図10の例では、レーダ装置における信号処理装置12の構成要素であるパルス毎レンジ圧縮部31、クラッタ抑圧部32、ブロック毎ドップラー処理部33、1次レンジマイグレーション補償部34、レンジ分割処理部91、信号干渉型位相補償部35、探索型位相補償部92、レンジ統合処理部93、ブロック方向ドップラー処理部36及び目標検出部37のそれぞれが専用のハードウェア(例えば、CPUを実装している半導体集積回路、あるいは、ワンチップマイコンなど)から構成されているものを想定しているが、信号処理装置12がコンピュータで構成されていてもよい。
 信号処理装置12がコンピュータで構成されている場合、パルス毎レンジ圧縮部31、クラッタ抑圧部32、ブロック毎ドップラー処理部33、1次レンジマイグレーション補償部34、レンジ分割処理部91、信号干渉型位相補償部35、探索型位相補償部92、レンジ統合処理部93、ブロック方向ドップラー処理部36及び目標検出部37の処理内容を記述しているプログラムをコンピュータのメモリに格納し、当該コンピュータのCPUが当該メモリに格納されているプログラムを実行するようにすればよい。
 図11はこの発明の実施の形態4によるレーダ装置の探索型位相補償部92を示す構成図である。
 図11において、探索型位相補償関数格納部101はレンジプロフィールに重畳されているブロック方向の位相の変動を補償するための2次以上の位相補償関数を格納しているメモリである。
 位相補償関数乗算部102は探索型位相補償関数格納部101により格納されている2次以上の位相補償関数をレンジ分割処理部91により分割された他方のレンジのレンジプロフィールに乗算することで、そのレンジプロフィールに重畳されているブロック方向の位相の変動を補償する処理を実施する。
 次に動作について説明する。
 ただし、レンジ分割処理部91、探索型位相補償部92及びレンジ統合処理部93を実装している点以外は、上記実施の形態1と同様であるため、ここでは、レンジ分割処理部91、探索型位相補償部92及びレンジ統合処理部93の処理内容を主に説明する。
 レンジ分割処理部91は、1次レンジマイグレーション補償部34が、上記実施の形態1と同様に、ブロック毎のドップラー周波数スペクトルの中で、ブロック方向に発生している1次のレンジマイグレーションを補償し、レンジマイグレーション補償後のドップラー周波数スペクトルをレンジ方向に逆フーリエ変換して、その逆フーリエ変換結果であるレンジプロフィールXcmp1(τ,fdk,t)を出力すると、そのレンジプロフィールXcmp1(τ,fdk,t)を2つのレンジに分割する。
 レンジ分割処理部91は、レンジプロフィールXcmp1(τ,fdk,t)を2つのレンジに分割すると、一方のレンジのレンジプロフィールXcmp1(τ,fdk,t)を信号干渉型位相補償部35に出力し、他方のレンジのレンジプロフィールXcmp1(τ,fdk,t)を探索型位相補償部92に出力する。
 信号干渉型位相補償部35は、レンジ分割処理部91から一方のレンジのレンジプロフィールXcmp1(τ,fdk,t)を受けると、上記実施の形態1と同様に、複素乗算を実施することで、そのレンジプロフィールXcmp1(τ,fdk,t)に重畳されているブロック方向の偶数次の位相の変動を補償する。
 探索型位相補償部92は、レンジ分割処理部91から他方のレンジのレンジプロフィールXcmp1(τ,fdk,t)を受けると、そのレンジプロフィールXcmp1(τ,fdk,t)に重畳されているブロック方向の位相の変動を2次以上の位相補償関数によって補償する。
 即ち、探索型位相補償部92の位相補償関数乗算部102は、探索型位相補償関数格納部101により格納されている2次以上の位相補償関数をレンジ分割処理部91により分割された他方のレンジのレンジプロフィールXcmp1(τ,fdk,t)に乗算することで、そのレンジプロフィールに重畳されているブロック方向の位相の変動を補償する。
 レンジ統合処理部93は、信号干渉型位相補償部35が一方のレンジのレンジプロフィールXcmp1(τ,fdk,t)に重畳されているブロック方向の位相の変動を補償し、探索型位相補償部92が他方のレンジのレンジプロフィールXcmp1(τ,fdk,t)に重畳されているブロック方向の位相の変動を補償すると、位相変動補償後の一方のレンジのレンジプロフィールと、位相変動補償後の他方のレンジのレンジプロフィールとを統合し、統合後のレンジプロフィールをブロック方向ドップラー処理部36に出力する。
 以上で明らかなように、この実施の形態4によれば、信号干渉型位相補償部35が一方のレンジのレンジプロフィールXcmp1(τ,fdk,t)に重畳されているブロック方向の位相の変動を補償し、探索型位相補償部92が他方のレンジのレンジプロフィールXcmp1(τ,fdk,t)に重畳されているブロック方向の位相の変動を補償するように構成したので、レンジプロフィールXcmp1(τ,fdk,t)に重畳されているブロック方向の位相の変動の補償精度を高めることができる効果を奏する。
実施の形態5.
 図12はこの発明の実施の形態5によるレーダ装置を示す構成図であり、図において、図2、図4、図5及び図6と同一符号は同一または相当部分を示すので説明を省略する。
 図12のレーダ装置は、上記実施の形態1で説明しているパルス毎レンジ圧縮部31、クラッタ抑圧部32、ブロック毎ドップラー処理部33、1次レンジマイグレーション補償部34、信号干渉型位相補償部35、ブロック方向ドップラー処理部36及び目標検出部37から構成されており、パルス毎レンジ圧縮部31、1次レンジマイグレーション補償部34及び信号干渉型位相補償部35の具体的な構成を開示している実施例である。
 なお、本願発明はその発明の範囲内において、各実施の形態の自由な組み合わせ、あるいは各実施の形態の任意の構成要素の変形、もしくは各実施の形態において任意の構成要素の省略が可能である。
 この発明に係るレーダ装置は、送信電波の信号と散乱波の信号との相互相関を求め、その相互相関を示すパルス毎のレンジプロフィールを生成するパルス毎レンジ圧縮手段と、パルス毎レンジ圧縮手段により生成されたパルス毎のレンジプロフィールに重畳されているヒット方向の位相の変動を補償する位相補償手段を備え、積分時間内の目標のレンジセルの移動や演算量の増大を招くことなく、目標の探知距離を延伸させることができるので、パッシブレーダ方式のレーダ装置に用いるのに適している。
 1 電波発信源、2 直接波受信用アンテナ(電波取得手段)、3 直接波受信機(電波取得手段)、4 散乱波受信用アンテナ(電波取得手段)、5 散乱波受信機(電波取得手段)、11 信号取得部、12 信号処理装置、21 送信信号取得部、22 受信信号取得部、31 パルス毎レンジ圧縮部(パルス毎レンジ圧縮手段)、32 クラッタ抑圧部(クラッタ抑圧手段)、33 ブロック毎ドップラー処理部(ブロック毎ドップラー処理手段)、34 1次レンジマイグレーション補償部(1次レンジマイグレーション補償手段)、35 信号干渉型位相補償部(位相補償手段)、36 ブロック方向ドップラー処理部(ブロック方向ドップラー処理手段)、37 目標検出部(目標検出手段)、38 ドップラー処理部(ドップラー処理手段)、41 送信信号FFT部(送信電波信号フーリエ変換部)、42 受信信号FFT部(散乱波信号フーリエ変換部)、43 複素共役乗算部、44 パルス毎IFFT部(パルス毎逆フーリエ変換部)、51 1次レンジマイグレーション位相補償関数格納部、52 位相補償関数乗算部、53 パルス毎IFFT部(パルス毎逆フーリエ変換部)、61 時間反転レンジプロフィール生成部、62 複素共役乗算部、71 電波発信源信号格納部、81 電波送信機、82 送受信アンテナ、83 送受切換機、84 送信信号格納部、91 レンジ分割処理部(レンジ分割処理手段)、92 探索型位相補償部(探索型位相補償手段)、93 レンジ統合処理部(レンジ統合処理手段)、101 探索型位相補償関数格納部、102 位相補償関数乗算部。

Claims (20)

  1.  目標によって散乱された送信電波の散乱波を受信して、上記散乱波の信号を出力する電波取得手段と、
     上記送信電波の信号及び上記電波取得手段から出力された散乱波の信号をパルスに分割して、パルス単位で、上記送信電波の信号と上記散乱波の信号との相互相関を求め、上記相互相関を示すパルス毎のレンジプロフィールを生成するパルス毎レンジ圧縮手段と、
     上記パルス毎レンジ圧縮手段により生成されたパルス毎のレンジプロフィールに重畳されているヒット方向の位相の変動を補償する位相補償手段と、
     上記位相補償手段により位相の変動が補償されたレンジプロフィールをヒット方向にフーリエ変換し、そのフーリエ変換結果であるドップラー周波数スペクトルを出力するドップラー処理手段と、
     上記ドップラー処理手段より出力されたドップラー周波数スペクトルから目標を検出する目標検出手段と
     を備えたレーダ装置。
  2.  目標によって散乱された送信電波の散乱波を受信して、上記散乱波の信号を出力する電波取得手段と、
     上記送信電波の信号及び上記電波取得手段から出力された散乱波の信号をパルスに分割して、パルス単位で、上記送信電波の信号と上記散乱波の信号との相互相関を求め、上記相互相関を示すパルス毎のレンジプロフィールを生成するパルス毎レンジ圧縮手段と、
     上記パルス毎レンジ圧縮手段により生成されたパルス毎のレンジプロフィールをブロック単位にまとめて、ブロック単位のレンジプロフィールをヒット方向にフーリエ変換し、そのフーリエ変換結果であるブロック毎のドップラー周波数スペクトルを出力するブロック毎ドップラー処理手段と、
     上記ブロック毎ドップラー処理手段から出力されたブロック毎のドップラー周波数スペクトルの中で、ブロック方向に発生している1次のレンジマイグレーションを補償し、レンジマイグレーション補償後のドップラー周波数スペクトルをレンジ方向に逆フーリエ変換して、その逆フーリエ変換結果であるレンジプロフィールを出力する1次レンジマイグレーション補償手段と、
     上記1次レンジマイグレーション補償手段から出力されたレンジプロフィールに重畳されているブロック方向の位相の変動を補償する位相補償手段と、
     上記位相補償手段により位相の変動が補償されたレンジプロフィールをブロック方向にフーリエ変換し、そのフーリエ変換結果であるドップラー周波数スペクトルを出力するブロック方向ドップラー処理手段と、
     上記ブロック方向ドップラー処理手段より出力されたドップラー周波数スペクトルから目標を検出する目標検出手段と
     を備えたレーダ装置。
  3.  目標によって散乱された送信電波の散乱波を受信して、上記散乱波の信号を出力する電波取得手段と、
     上記送信電波の信号及び上記電波取得手段から出力された散乱波の信号をパルスに分割して、パルス単位で、上記送信電波の信号と上記散乱波の信号との相互相関を求め、上記相互相関を示すパルス毎のレンジプロフィールを生成するパルス毎レンジ圧縮手段と、
     上記パルス毎レンジ圧縮手段により生成されたパルス毎のレンジプロフィールをブロック単位にまとめて、ブロック単位のレンジプロフィールをヒット方向にフーリエ変換し、そのフーリエ変換結果であるブロック毎のドップラー周波数スペクトルを出力するブロック毎ドップラー処理手段と、
     上記ブロック毎ドップラー処理手段から出力されたブロック毎のドップラー周波数スペクトルの中で、ブロック方向に発生している1次のレンジマイグレーションを補償し、レンジマイグレーション補償後のドップラー周波数スペクトルをレンジ方向に逆フーリエ変換して、その逆フーリエ変換結果であるレンジプロフィールを出力する1次レンジマイグレーション補償手段と、
     上記1次レンジマイグレーション補償手段から出力されたレンジプロフィールを2つのレンジに分割するレンジ分割処理手段と、
     上記レンジ分割処理手段により分割された一方のレンジのレンジプロフィールに重畳されているブロック方向の位相の変動を複素乗算処理によって補償する信号干渉型位相補償手段と、
     上記レンジ分割処理手段により分割された他方のレンジのレンジプロフィールに重畳されているブロック方向の位相の変動を2次以上の位相補償関数によって補償する探索型位相補償手段と、
     上記信号干渉型位相補償手段により位相の変動が補償された一方のレンジのレンジプロフィールと上記探索型位相補償手段により位相の変動が補償された他方のレンジのレンジプロフィールを統合するレンジ統合処理手段と、
     上記レンジ統合処理手段により統合されたレンジプロフィールをブロック方向にフーリエ変換し、そのフーリエ変換結果であるドップラー周波数スペクトルを出力するブロック方向ドップラー処理手段と、
     上記ブロック方向ドップラー処理手段より出力されたドップラー周波数スペクトルから目標を検出する目標検出手段と
     を備えたレーダ装置。
  4.  パルス毎レンジ圧縮手段により生成されたパルス毎のレンジプロフィールに含まれている不要信号であるクラッタを抑圧するクラッタ抑圧手段を備えたことを特徴とする請求項1記載のレーダ装置。
  5.  パルス毎レンジ圧縮手段により生成されたパルス毎のレンジプロフィールに含まれている不要信号であるクラッタを抑圧するクラッタ抑圧手段を備えたことを特徴とする請求項2記載のレーダ装置。
  6.  パルス毎レンジ圧縮手段により生成されたパルス毎のレンジプロフィールに含まれている不要信号であるクラッタを抑圧するクラッタ抑圧手段を備えたことを特徴とする請求項3記載のレーダ装置。
  7.  電波取得手段は、予め電波発信源から送信される電波の信号をメモリに格納し、上記メモリに格納されている信号を送信電波の信号としてパルス毎レンジ圧縮手段に出力、あるいは、上記電波発信源から送信された電波の直接波を受信し、上記直接波の信号を上記送信電波の信号として上記パルス毎レンジ圧縮手段に出力することを特徴とする請求項1記載のレーダ装置。
  8.  電波取得手段は、予め電波発信源から送信される電波の信号をメモリに格納し、上記メモリに格納されている信号を送信電波の信号としてパルス毎レンジ圧縮手段に出力、あるいは、上記電波発信源から送信された電波の直接波を受信し、上記直接波の信号を上記送信電波の信号として上記パルス毎レンジ圧縮手段に出力することを特徴とする請求項2記載のレーダ装置。
  9.  電波取得手段は、予め電波発信源から送信される電波の信号をメモリに格納し、上記メモリに格納されている信号を送信電波の信号としてパルス毎レンジ圧縮手段に出力、あるいは、上記電波発信源から送信された電波の直接波を受信し、上記直接波の信号を上記送信電波の信号として上記パルス毎レンジ圧縮手段に出力することを特徴とする請求項3記載のレーダ装置。
  10.  電波取得手段は、
     送信電波の信号を格納する送信信号格納部と、
     上記送信信号格納部により格納されている送信電波の信号を送信する電波送信機と、
     散乱波の信号を受信する散乱波受信機と、
     上記電波送信機又は上記散乱波受信機を交互にアンテナに接続する送受切換機と
     から構成されていることを特徴とする請求項1記載のレーダ装置。
  11.  電波取得手段は、
     送信電波の信号を格納する送信信号格納部と、
     上記送信信号格納部により格納されている送信電波の信号を送信する電波送信機と、
     散乱波の信号を受信する散乱波受信機と、
     上記電波送信機又は上記散乱波受信機を交互にアンテナに接続する送受切換機と
     から構成されていることを特徴とする請求項2記載のレーダ装置。
  12.  電波取得手段は、
     送信電波の信号を格納する送信信号格納部と、
     上記送信信号格納部により格納されている送信電波の信号を送信する電波送信機と、
     散乱波の信号を受信する散乱波受信機と、
     上記電波送信機又は上記散乱波受信機を交互にアンテナに接続する送受切換機と
     から構成されていることを特徴とする請求項3記載のレーダ装置。
  13.  パルス毎レンジ圧縮手段は、
     送信電波の信号をレンジ方向にフーリエ変換することで、上記送信電波の信号をパルスに分割する送信電波信号フーリエ変換部と、
     散乱波の信号をレンジ方向にフーリエ変換することで、上記散乱波の信号をパルスに分割する散乱波信号フーリエ変換部と、
     上記送信電波信号フーリエ変換部により分割されたパルスと上記散乱波信号フーリエ変換部により分割されたパルスとの複素共役乗算を実施する複素共役乗算部と、
     上記複素共役乗算部の乗算結果をレンジ方向に逆フーリエ変換し、その逆フーリエ変換結果であるパルス毎のレンジプロフィールを出力するパルス毎逆フーリエ変換部と
     から構成されていることを特徴とする請求項1記載のレーダ装置。
  14.  パルス毎レンジ圧縮手段は、
     送信電波の信号をレンジ方向にフーリエ変換することで、上記送信電波の信号をパルスに分割する送信電波信号フーリエ変換部と、
     散乱波の信号をレンジ方向にフーリエ変換することで、上記散乱波の信号をパルスに分割する散乱波信号フーリエ変換部と、
     上記送信電波信号フーリエ変換部により分割されたパルスと上記散乱波信号フーリエ変換部により分割されたパルスとの複素共役乗算を実施する複素共役乗算部と、
     上記複素共役乗算部の乗算結果をレンジ方向に逆フーリエ変換し、その逆フーリエ変換結果であるパルス毎のレンジプロフィールを出力するパルス毎逆フーリエ変換部と
     から構成されていることを特徴とする請求項2記載のレーダ装置。
  15.  パルス毎レンジ圧縮手段は、
     送信電波の信号をレンジ方向にフーリエ変換することで、上記送信電波の信号をパルスに分割する送信電波信号フーリエ変換部と、
     散乱波の信号をレンジ方向にフーリエ変換することで、上記散乱波の信号をパルスに分割する散乱波信号フーリエ変換部と、
     上記送信電波信号フーリエ変換部により分割されたパルスと上記散乱波信号フーリエ変換部により分割されたパルスとの複素共役乗算を実施する複素共役乗算部と、
     上記複素共役乗算部の乗算結果をレンジ方向に逆フーリエ変換し、その逆フーリエ変換結果であるパルス毎のレンジプロフィールを出力するパルス毎逆フーリエ変換部と
     から構成されていることを特徴とする請求項3記載のレーダ装置。
  16.  位相補償手段は、
     パルス毎レンジ圧縮手段により生成されたパルス毎のレンジプロフィールをヒット方向に時間反転して、時間反転レンジプロフィールを生成する時間反転レンジプロフィール生成部と、
     上記時間反転レンジプロフィール生成部により生成された時間反転レンジプロフィールと上記パルス毎レンジ圧縮手段により生成されたパルス毎のレンジプロフィールとの複素共役乗算を実施することで、上記レンジプロフィールに重畳されているヒット方向の位相の変動を補償する複素共役乗算部と
     から構成されていることを特徴とする請求項1記載のレーダ装置。
  17.  位相補償手段は、
     1次レンジマイグレーション補償手段から出力されたレンジプロフィールをブロック方向に時間反転して、時間反転レンジプロフィールを生成する時間反転レンジプロフィール生成部と、
     上記時間反転レンジプロフィール生成部により生成された時間反転レンジプロフィールと上記1次レンジマイグレーション補償手段から出力されたレンジプロフィールとの複素共役乗算を実施することで、上記レンジプロフィールに重畳されているブロック方向の位相の変動を補償する複素共役乗算部と
     から構成されていることを特徴とする請求項2記載のレーダ装置。
  18.  1次レンジマイグレーション補償手段は、
     ブロック毎のドップラー周波数スペクトルにおける各々のドップラー周波数セルに対応するブロック方向の1次のレンジマイグレーションの量に相当する位相変化の補償に用いる1次レンジマイグレーション位相補償関数を格納する1次レンジマイグレーション位相補償関数格納部と、
     上記1次レンジマイグレーション位相補償関数格納部に格納されている1次レンジマイグレーション位相補償関数をブロック毎ドップラー処理手段から出力されたブロック毎のドップラー周波数スペクトルに乗算する位相補償関数乗算部と、
     上記位相補償関数乗算部の乗算結果をレンジ方向に逆フーリエ変換し、その逆フーリエ変換結果であるレンジプロフィールを出力するパルス毎逆フーリエ変換部と
     から構成されていることを特徴とする請求項2記載のレーダ装置。
  19.  1次レンジマイグレーション補償手段は、
     ブロック毎のドップラー周波数スペクトルにおける各々のドップラー周波数セルに対応するブロック方向の1次のレンジマイグレーションの量に相当する位相変化の補償に用いる1次レンジマイグレーション位相補償関数を格納する1次レンジマイグレーション位相補償関数格納部と、
     上記1次レンジマイグレーション位相補償関数格納部に格納されている1次レンジマイグレーション位相補償関数をブロック毎ドップラー処理手段から出力されたブロック毎のドップラー周波数スペクトルに乗算する位相補償関数乗算部と、
     上記位相補償関数乗算部の乗算結果をレンジ方向に逆フーリエ変換し、その逆フーリエ変換結果であるレンジプロフィールを出力するパルス毎逆フーリエ変換部と
     から構成されていることを特徴とする請求項3記載のレーダ装置。
  20.  電波発信源から送信された電波の直接波を受信して、上記直接波の信号を出力するとともに、目標によって散乱された上記電波の散乱波を受信して、上記散乱波の信号を出力する電波取得手段と、
     上記電波取得手段から出力された直接波の信号をレンジ方向にフーリエ変換することで、上記直接波の信号をパルスに分割する送信電波信号フーリエ変換部と、
     上記電波取得手段から出力された散乱波の信号をレンジ方向にフーリエ変換することで、上記散乱波の信号をパルスに分割する散乱波信号フーリエ変換部と、
     上記送信電波信号フーリエ変換部により分割されたパルスと上記散乱波信号フーリエ変換部により分割されたパルスとの複素共役乗算を実施する複素共役乗算部と、
     上記複素共役乗算部の乗算結果をレンジ方向に逆フーリエ変換し、その逆フーリエ変換結果であるパルス毎のレンジプロフィールを出力するパルス毎逆フーリエ変換部と
     上記パルス毎逆フーリエ変換部から出力されたパルス毎のレンジプロフィールに含まれている不要信号であるクラッタを抑圧するクラッタ抑圧手段と、
     上記クラッタ抑圧手段によりクラッタが抑圧されたパルス毎のレンジプロフィールをブロック単位にまとめて、ブロック単位のレンジプロフィールをヒット方向にフーリエ変換し、そのフーリエ変換結果であるブロック毎のドップラー周波数スペクトルを出力するブロック毎ドップラー処理手段と、
     ブロック毎のドップラー周波数スペクトルにおける各々のドップラー周波数セルに対応するブロック方向の1次のレンジマイグレーションの量に相当する位相変化の補償に用いる1次レンジマイグレーション位相補償関数を格納する1次レンジマイグレーション位相補償関数格納部と、
     上記1次レンジマイグレーション位相補償関数格納部に格納されている1次レンジマイグレーション位相補償関数を上記ブロック毎ドップラー処理手段から出力されたブロック毎のドップラー周波数スペクトルに乗算する位相補償関数乗算部と、
     上記位相補償関数乗算部の乗算結果をレンジ方向に逆フーリエ変換し、その逆フーリエ変換結果であるレンジプロフィールを出力するパルス毎逆フーリエ変換部と、
     上記パルス毎逆フーリエ変換部から出力されたレンジプロフィールをブロック方向に時間反転して、時間反転レンジプロフィールを生成する時間反転レンジプロフィール生成部と、
     上記時間反転レンジプロフィール生成部により生成された時間反転レンジプロフィールと上記パルス毎逆フーリエ変換部から出力されたレンジプロフィールとの複素共役乗算を実施することで、上記レンジプロフィールに重畳されているブロック方向の位相の変動を補償する複素共役乗算部と、
     上記複素共役乗算部により位相の変動が補償されたレンジプロフィールをブロック方向にフーリエ変換し、そのフーリエ変換結果であるドップラー周波数スペクトルを出力するブロック方向ドップラー処理手段と、
     上記ブロック方向ドップラー処理手段より出力されたドップラー周波数スペクトルから目標を検出する目標検出手段と
     を備えたレーダ装置。
PCT/JP2013/082988 2012-12-14 2013-12-09 レーダ装置 WO2014092052A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014552035A JP5823062B2 (ja) 2012-12-14 2013-12-09 レーダ装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012273630 2012-12-14
JP2012-273630 2012-12-14

Publications (1)

Publication Number Publication Date
WO2014092052A1 true WO2014092052A1 (ja) 2014-06-19

Family

ID=50934340

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/082988 WO2014092052A1 (ja) 2012-12-14 2013-12-09 レーダ装置

Country Status (2)

Country Link
JP (1) JP5823062B2 (ja)
WO (1) WO2014092052A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104062640A (zh) * 2014-06-30 2014-09-24 北京理工大学 一种外辐射源雷达距离徙动补偿的快速实现方法
CN107966688A (zh) * 2017-11-09 2018-04-27 东南大学 基于相位干涉技术的宽带雷达目标速度解模糊方法
CN108398676A (zh) * 2018-05-04 2018-08-14 电子科技大学 一种外辐射源雷达微弱运动目标探测方法
JP2019158670A (ja) * 2018-03-14 2019-09-19 株式会社東芝 レーダシステム及びそのレーダ信号処理方法
WO2022059090A1 (ja) * 2020-09-16 2022-03-24 日本電気株式会社 レーダ装置、イメージング方法およびイメージングプログラム

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102455634B1 (ko) 2018-01-22 2022-10-17 삼성전자주식회사 레이더를 이용한 오브젝트 거리 결정 방법 및 장치
WO2020157925A1 (ja) * 2019-01-31 2020-08-06 三菱電機株式会社 レーダ装置および信号処理方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6234087A (ja) * 1985-08-07 1987-02-14 Toshiba Corp レ−ダ装置
JPH05249236A (ja) * 1991-11-27 1993-09-28 Hughes Aircraft Co 4次積位相差オートフォーカス
US5627543A (en) * 1994-08-05 1997-05-06 Deutsche Forschungsanstalt Fur Luft-Und Raumfahrt E.V. Method of image generation by means of two-dimensional data processing in connection with a radar with synthetic aperture
JP2000088955A (ja) * 1998-09-10 2000-03-31 Mitsubishi Electric Corp 運動補償回路及びレーダ装置
JP2007333583A (ja) * 2006-06-15 2007-12-27 Mitsubishi Electric Corp 画像レーダ装置
JP2011174875A (ja) * 2010-02-25 2011-09-08 Mitsubishi Electric Corp パッシブレーダ装置
JP2011247593A (ja) * 2010-05-21 2011-12-08 Mitsubishi Electric Corp 画像レーダ装置
WO2012111141A1 (ja) * 2011-02-18 2012-08-23 三菱電機株式会社 パッシブレーダ装置
JP2012242217A (ja) * 2011-05-18 2012-12-10 Mitsubishi Electric Corp 画像レーダ装置
JP2013130472A (ja) * 2011-12-21 2013-07-04 Mitsubishi Electric Corp 画像レーダ装置
JP2014020820A (ja) * 2012-07-13 2014-02-03 Mitsubishi Electric Corp レーダ装置

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6234087A (ja) * 1985-08-07 1987-02-14 Toshiba Corp レ−ダ装置
JPH05249236A (ja) * 1991-11-27 1993-09-28 Hughes Aircraft Co 4次積位相差オートフォーカス
US5627543A (en) * 1994-08-05 1997-05-06 Deutsche Forschungsanstalt Fur Luft-Und Raumfahrt E.V. Method of image generation by means of two-dimensional data processing in connection with a radar with synthetic aperture
JP2000088955A (ja) * 1998-09-10 2000-03-31 Mitsubishi Electric Corp 運動補償回路及びレーダ装置
JP2007333583A (ja) * 2006-06-15 2007-12-27 Mitsubishi Electric Corp 画像レーダ装置
JP2011174875A (ja) * 2010-02-25 2011-09-08 Mitsubishi Electric Corp パッシブレーダ装置
JP2011247593A (ja) * 2010-05-21 2011-12-08 Mitsubishi Electric Corp 画像レーダ装置
WO2012111141A1 (ja) * 2011-02-18 2012-08-23 三菱電機株式会社 パッシブレーダ装置
JP2012242217A (ja) * 2011-05-18 2012-12-10 Mitsubishi Electric Corp 画像レーダ装置
JP2013130472A (ja) * 2011-12-21 2013-07-04 Mitsubishi Electric Corp 画像レーダ装置
JP2014020820A (ja) * 2012-07-13 2014-02-03 Mitsubishi Electric Corp レーダ装置

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
KAZUHIKO YAMAMOTO ET AL.: "A New Phase Compensation Algorithm for A Doppler Radar Imaging", THE TRANSACTIONS OF THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS, vol. J83-B, 25 October 2000 (2000-10-25), pages 1453 - 1461 *
KEI SUWA ET AL.: "Passive ISAR Imaging Using the Digital Terrestrial Television Signals : The Algorithm", PROCEEDINGS OF THE 2010 IEICE GENERAL CONFERENCE, TSUSHIN, vol. 1, 2 March 2010 (2010-03-02), pages 312 *
TAKEHIRO HOSHINO: "A Longtime Integration Method Considering Change of Doppler Frequency for Passive Radar", PROCEEDINGS OF THE 2012 IEICE COMMUNICATIONS SOCIETY CONFERENCE, vol. 1, 28 August 2012 (2012-08-28), pages 242 *
TAKEHIRO HOSHINO: "Longtime Integration Algorithm based on Short Time Cross-Correlation Considering Range-Migration for Passive Radar", vol. 112, no. 162, 20 July 2012 (2012-07-20), pages 37 - 42, Retrieved from the Internet <URL:IEICE Technical Report> *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104062640A (zh) * 2014-06-30 2014-09-24 北京理工大学 一种外辐射源雷达距离徙动补偿的快速实现方法
CN107966688A (zh) * 2017-11-09 2018-04-27 东南大学 基于相位干涉技术的宽带雷达目标速度解模糊方法
CN107966688B (zh) * 2017-11-09 2021-04-20 东南大学 基于相位干涉技术的宽带雷达目标速度解模糊方法
JP2019158670A (ja) * 2018-03-14 2019-09-19 株式会社東芝 レーダシステム及びそのレーダ信号処理方法
CN108398676A (zh) * 2018-05-04 2018-08-14 电子科技大学 一种外辐射源雷达微弱运动目标探测方法
CN108398676B (zh) * 2018-05-04 2021-10-26 电子科技大学 一种外辐射源雷达微弱运动目标探测方法
WO2022059090A1 (ja) * 2020-09-16 2022-03-24 日本電気株式会社 レーダ装置、イメージング方法およびイメージングプログラム
JP7452678B2 (ja) 2020-09-16 2024-03-19 日本電気株式会社 レーダ装置、イメージング方法およびイメージングプログラム

Also Published As

Publication number Publication date
JPWO2014092052A1 (ja) 2017-01-12
JP5823062B2 (ja) 2015-11-25

Similar Documents

Publication Publication Date Title
WO2014092052A1 (ja) レーダ装置
JP5665893B2 (ja) パッシブレーダ装置
JP5865794B2 (ja) レーダ装置
US9128182B2 (en) Radar device
JP5606097B2 (ja) パッシブレーダ装置
US20090278731A1 (en) Rfi suppression in sar
WO2014128995A1 (ja) パッシブレーダ装置
CN110109102B (zh) 一种sar运动目标检测与速度估计的方法
JP5251591B2 (ja) パルス圧縮装置
CN110568434B (zh) 一种多通道匀加速sar动目标二维速度估计方法
JP6391888B2 (ja) レーダ装置
JP2009192516A (ja) 伝搬遅延時間測定装置及びレーダ装置
JP6279193B2 (ja) 物体検出装置及びセンサ装置
JP2011208974A (ja) レーダ画像処理装置
JP2010175457A (ja) レーダ装置
JP6573748B2 (ja) レーダ装置
JP2015036628A (ja) パッシブレーダ装置
JP2011247615A (ja) パルス圧縮装置、レーダ装置、パルス圧縮方法、およびパルス圧縮プログラム
EP2963443B1 (en) Device, method and program for processing signal, underwater detecting device and radar apparatus
JP2013044642A (ja) パッシブレーダ装置
JP2008256447A (ja) 移動目標検出装置
JP6321472B2 (ja) 信号処理装置、水中探知装置、レーダ装置、信号処理方法、及び信号処理プログラム
CN115932921B (zh) 一种多卫星多载波的非相参联合累积处理方法
JP6410445B2 (ja) レーダ装置
JP2019120613A (ja) レーダ装置、レーダ装置の制御方法、およびプログラム

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2014552035

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13861893

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13861893

Country of ref document: EP

Kind code of ref document: A1