WO2014092031A1 - 電極ブロック、積層電池および積層電池の組立方法 - Google Patents

電極ブロック、積層電池および積層電池の組立方法 Download PDF

Info

Publication number
WO2014092031A1
WO2014092031A1 PCT/JP2013/082893 JP2013082893W WO2014092031A1 WO 2014092031 A1 WO2014092031 A1 WO 2014092031A1 JP 2013082893 W JP2013082893 W JP 2013082893W WO 2014092031 A1 WO2014092031 A1 WO 2014092031A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
separator
holding member
battery
hole
Prior art date
Application number
PCT/JP2013/082893
Other languages
English (en)
French (fr)
Inventor
堤 香津雄
Original Assignee
エクセルギー・パワー・システムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by エクセルギー・パワー・システムズ株式会社 filed Critical エクセルギー・パワー・システムズ株式会社
Priority to RU2014147376A priority Critical patent/RU2613525C2/ru
Priority to BR112014030120-4A priority patent/BR112014030120B1/pt
Priority to DK13862844.1T priority patent/DK2871699T3/da
Priority to PL13862844T priority patent/PL2871699T3/pl
Priority to US14/402,500 priority patent/US10388982B2/en
Priority to CN201380028039.8A priority patent/CN104321920B/zh
Priority to KR1020147033831A priority patent/KR101695868B1/ko
Priority to NO13862844A priority patent/NO2871699T3/no
Priority to ES13862844.1T priority patent/ES2653266T3/es
Priority to EP13862844.1A priority patent/EP2871699B1/en
Priority to JP2014542037A priority patent/JP5691048B2/ja
Publication of WO2014092031A1 publication Critical patent/WO2014092031A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0468Compression means for stacks of electrodes and separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0413Large-sized flat cells or batteries for motive or stationary systems with plate-like electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0422Cells or battery with cylindrical casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/75Wires, rods or strips
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/107Primary casings; Jackets or wrappings characterised by their shape or physical structure having curved cross-section, e.g. round or elliptic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/147Lids or covers
    • H01M50/148Lids or covers characterised by their shape
    • H01M50/152Lids or covers characterised by their shape for cells having curved cross-section, e.g. round or elliptic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/463Separators, membranes or diaphragms characterised by their shape
    • H01M50/466U-shaped, bag-shaped or folded
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/505Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing comprising a single busbar
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/509Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing characterised by the type of connection, e.g. mixed connections
    • H01M50/512Connection only in parallel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/503Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing characterised by the shape of the interconnectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/514Methods for interconnecting adjacent batteries or cells
    • H01M50/517Methods for interconnecting adjacent batteries or cells by fixing means, e.g. screws, rivets or bolts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/521Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing characterised by the material
    • H01M50/522Inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/521Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing characterised by the material
    • H01M50/526Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing characterised by the material having a layered structure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49108Electric battery cell making
    • Y10T29/49114Electric battery cell making including adhesively bonding

Definitions

  • the present invention relates to an electrode block, a laminated battery, and a method for assembling the same, in which a cooling performance is improved and a short circuit and a contact failure are prevented.
  • a battery having a wound electrode structure (a wound battery: for example, Patent Document 1) is housed in a battery case in a state where a positive electrode and a negative electrode are wound in a spiral shape with a separator interposed therebetween.
  • a battery having a stacked electrode structure laminated battery: for example, Patent Document 2
  • an electrode group in which positive electrodes and negative electrodes are alternately stacked via separators is housed in a battery case.
  • separators having low thermal conductivity are stacked in multiple layers between the surface and the center of the battery. As a result, even when the surface temperature of the battery case is close to the ambient temperature, the central portion of the wound battery becomes considerably hot. If the temperature inside the battery becomes high, the battery performance is impaired.
  • the cylindrical stacked battery described in Patent Document 2 has a structure in which the stacked electrodes are individually collected by contacting the terminals. For this reason, in the assembly process, the positive electrode and the negative electrode may be short-circuited to cause an initial failure. In addition, a separator may be interposed between the electrode and the terminal to cause poor contact. Furthermore, the electrode is repeatedly contracted and expanded by repeated charging and discharging. As a result, the electrode may be deformed / displaced, resulting in poor contact between the electrode and the terminal, resulting in aging failure.
  • the present invention has been made to solve the above-described problems, and suppresses a temperature rise inside the battery, prevents a contact failure and prevents a short circuit between electrodes, and is easy to assemble. Providing a simple battery is a problem to be solved.
  • An electrode block according to the present invention includes an electrode group in which a positive electrode, a negative electrode, and a separator disposed between the positive electrode and the negative electrode are stacked, and a lid member provided at both ends of the electrode group in the stacking direction. And a first holding member attached to an outer surface of the electrode group and the lid member, and the first holding member is electrically connected to a first electrode that is one of the positive electrode and the negative electrode Connected and not electrically connected to the second electrode which is the other electrode of the positive electrode and the negative electrode.
  • the “outer surface” is a surface facing the outside of the electrode group and the lid member.
  • the 1st holding member attaches to the outer side of an electrode group and a cover member, hold
  • the first holding member may cover the outer side of the electrode group and the lid member except for the peripheral edge of the hole of the lid member.
  • the first holding member may be attached to at least the side surfaces of the electrode group and the lid member. This is because the electrode group and the lid member can be integrally held without attaching the first holding member to the surface of the lid member.
  • the first holding member may be a single metal plate or may be a plurality of strip-shaped metal plates. Further, the first holding member may be a metal foil. Further, the first holding member is connected to the first electrode and functions as a current collecting terminal of the first electrode. The first electrode is connected to the first holding member with a small thermal and electrical resistance. The first holding member acts advantageously for cooling and collecting the first electrode.
  • the heat generated in the first electrode is transmitted to the first holding member.
  • Heat generated in the second electrode is transferred to the first electrode through one separator.
  • the heat generated at the electrode is transferred to the first holding member with a small thermal resistance.
  • the electrode block can easily suppress the temperature rise inside the electrode block by cooling the surface of the first holding member.
  • the electrode block does not include an exterior body that houses the electrode block or a current collector for the second electrode.
  • the battery includes an exterior body and a current collector for the second electrode in addition to the electrode block.
  • the electrode block is one of the components of the battery.
  • each of the first electrode, the second electrode, and the separator has a hole in the center, and an outer edge of the second electrode is covered with the separator, and the hole of the first electrode It is preferable that the peripheral edge of the separator is covered with the separator, the outer edge of the separator is covered with the first electrode, and the peripheral edge of the hole of the separator is covered with the second electrode. For this reason, the 1st electrode and the 2nd electrode are reliably isolated by the separator in the outer edge and the peripheral edge of a hole. Therefore, even if the electrodes are deformed, both the electrodes do not come into contact with each other at the outer edge portion and the peripheral edge portion of the hole.
  • the separator is not interposed between the electrode and the terminal, so that contact failure does not occur.
  • the outer diameter of the separator is larger than the outer diameter of the second electrode, and the hole diameter of the separator is smaller than the hole diameter of the first electrode.
  • the outer diameter of the first electrode is larger than the outer diameter of the separator, and the hole diameter of the separator is larger than the hole diameter of the second electrode.
  • the first holding member preferably has a plurality of protrusions on at least one side.
  • the first holding member has a plurality of protrusions on at least one of the surface in contact with the first electrode and the surface on the opposite side.
  • the plurality of protrusions bite into the first electrode, hold the first electrode firmly and maintain its shape, and ensure contact between the first electrode and the first holding member.
  • the plurality of protrusions are preferably provided on at least a surface in contact with the first electrode. In this way, even if a volume change occurs in the first electrode, the plurality of protrusions prevent poor contact between the first electrode and the first holding member.
  • a metal plate having a plurality of protrusions on at least one surface may be interposed between the first holding member and the first electrode.
  • the first electrode is included in the first separator so that an outer edge of the first electrode is exposed to the outside of the bag-shaped first separator.
  • the second electrode may be included in the second separator in such a manner that the inner edge of the hole of the second electrode is exposed to the outside of the second separator formed in a bag shape. .
  • the first separator has, for example, a bag shape in which the inner edge side is bonded by welding or the like, and the first electrode is included such that the outer edge is exposed inside the bag-shaped separator.
  • a first separator can be manufactured, for example, by sandwiching the first electrode between sheet-like separators and welding the inner edge sides of both separators.
  • the second separator has, for example, a bag shape in which the outer edge side is bonded by welding or the like, and the inner edge, that is, the peripheral edge of the hole is exposed inside the bag-shaped separator, and the second electrode is included.
  • the second separator can be manufactured, for example, by sandwiching the second electrode between sheet-like separators and welding the outer edge sides of both separators.
  • the debris and foreign matter of the first electrode and the second electrode generated during the assembly process and the transport process of the electrode block are captured inside the bag-like separator, thereby preventing the occurrence of an internal short circuit.
  • the first holding member has a side surface portion that contacts the side surface of the electrode block and a bent portion that is bent from the side surface portion toward the center of the lid member.
  • the both ends of the lamination direction form a bending part, and a side part is located between bending parts.
  • the first holding member is fixed to the outer surface of the lid member. According to this configuration, the end portion in the stacking direction of the first holding member and the outer surface of the lid member are fixed, and the electrode block has an integral structure. Since there are no bent portions, the axial dimension of the electrode block is reduced accordingly.
  • the lid member has a hole in the center, and the holes of the positive electrode, the negative electrode, the separator, and the lid member form a through hole in the stacked state of the electrode group and the lid member, It is preferable that a second holding member attached to the inner surface of the through hole is further provided, and the second holding member is electrically connected to the second electrode and is not electrically connected to the first electrode. According to this configuration, the second holding member holds the electrode group together with the first holding member.
  • the second holding member preferably has a plurality of protrusions on at least one side.
  • at least one of the surface in contact with the second electrode and the surface on the opposite side of the second holding member may have a plurality of protrusions.
  • the plurality of protrusions bite into the second electrode, hold the second electrode firmly, and ensure contact.
  • the plurality of protrusions are preferably provided on at least a surface that contacts the second electrode. In this way, even if a volume change occurs in the second electrode, the plurality of protrusions prevent poor contact between the second electrode and the second holding member.
  • a metal plate having a plurality of protrusions on at least one surface may be interposed between the second holding member and the second electrode.
  • the laminated battery according to the present invention includes the electrode block, a cylindrical exterior body that houses the electrode block, and a current collector that penetrates the through hole of the electrode block, and the first electrode is the It is preferable that the second electrode is electrically connected to the outer body and the second electrode is electrically connected to the current collector.
  • the exterior body functions as a current collecting terminal for the first electrode.
  • the first holding member of the electrode block is in direct contact with the inner surface of the outer package or is in contact with the conductive member. Accordingly, the first electrode and the exterior body are connected to the exterior body with a small thermal and electrical resistance via the first holding member, and effectively act on cooling and current collection of the first electrode.
  • the whole or part of the inner edge of the hole of the second electrode through which the current collector passes is in direct contact with the current collector or connected via a conductive member such as a metal plate.
  • the heat generated in the second electrode is transferred to the first electrode through the separator, and is transferred to the exterior body with a small thermal resistance.
  • the laminated battery of the present invention does not need to be provided with a pipe or a heat sink for allowing a coolant to flow inside the battery in order to suppress an increase in temperature inside the battery. Therefore, the present laminated battery has a compact structure. Moreover, this laminated battery can suppress the temperature rise inside a battery easily by cooling the surface of an exterior body.
  • the electrode block accommodated in the exterior body may be one or plural.
  • the battery capacity can be easily changed by adjusting the number of electrode blocks.
  • the electrode blocks are structurally connected in series.
  • the first electrode is electrically connected via the exterior body
  • the second electrode is electrically connected via the current collector.
  • a plurality of electrode blocks are electrically connected in parallel.
  • the laminated battery of the present invention by laminating a plurality of electrode blocks on the exterior body, the plus terminals and minus terminals of adjacent electrode blocks can be electrically connected. That is, it is a simple series connection in terms of structure, and a simple parallel connection electrically. In this way, the capacity of the laminated battery can be easily increased.
  • the current collector preferably includes a conductive core rod and a structural material that covers an outer periphery of the core rod.
  • a highly conductive material for the core bar and a material resistant to alkali as the structural material, a current collector having high conductivity and resistance to alkali can be obtained.
  • the laminated battery further includes a sealing lid that closes the opening of the exterior body, and the sealing lid has two annular grooves formed on an outer periphery thereof, and an O-ring is attached to the annular groove.
  • a sealing material is provided between the annular grooves. According to this configuration, leakage of the electrolyte in the laminated battery is suppressed by the O-ring and the sealing material provided on the sealing lid that closes the opening at the axial end of the exterior body.
  • a plurality of heat sinks are attached to the outer peripheral surface of the outer package along the axial direction of the outer package. According to this configuration, the cooling performance of the laminated battery is improved.
  • the laminated battery further includes a through bolt that penetrates the heat radiating plate.
  • a heat sink, an exterior body, and a 1st electrode are electrically connected by a through bolt.
  • the through bolt functions as a terminal of the first electrode.
  • the assembled battery according to the present invention includes a plurality of stacked batteries, a first connection member that connects the through bolts of the adjacent stacked batteries to each other, and a second that connects the current collectors of the adjacent stacked batteries to each other.
  • a plurality of stacked batteries are electrically connected by the first connection member and the second connection member. According to this configuration, the plurality of stacked batteries are electrically connected in parallel by the connecting member.
  • An assembled battery according to the present invention includes a plurality of stacked batteries, a third connecting member that connects the through bolts of one of the adjacent stacked batteries, and the current collector of the other stacked battery, A plurality of the stacked batteries are electrically connected by the third connecting member. According to this configuration, the plurality of stacked batteries can be electrically connected in series by the connecting member.
  • the temperature rise inside the battery can be suppressed, and contact failure can be prevented while preventing a short circuit between the electrodes.
  • Battery assembly is also simplified.
  • FIG. 9 is a side view of the laminated battery including a cross section taken along line IX-IX in FIG.
  • FIG. 10 is an enlarged view of the end of FIG. 9. It is the perspective view which notched the edge part of the exterior body of a laminated battery. It is sectional drawing of the edge part of the exterior body of a laminated battery. It is the perspective view which notched some current collectors of the laminated battery. It is explanatory drawing which shows the outline of the manufacturing process of the electrical power collector of a laminated battery.
  • the type of the secondary battery is not limited to the type described below, and may be a secondary battery such as a nickel zinc battery, a manganese dioxide battery, a zinc manganese battery, or a nickel cadmium battery.
  • Secondary battery type> [1-1. About Nickel Metal Hydride Battery]
  • a paste obtained by adding a solvent to a hydrogen storage alloy, a conductive filler, and a binder, applied onto a substrate, molded into a plate shape, and cured was used.
  • a paste obtained by adding a solvent to nickel oxyhydroxide, a conductive filler, and a binder, applied onto a substrate, molded into a plate shape, and cured was used.
  • Carbon particles were used as the conductive filler.
  • a thermoplastic resin that is soluble in a water-soluble solvent was used.
  • a nickel foam sheet was used.
  • polypropylene fiber was used.
  • electrolytic solution a KOH aqueous solution was used.
  • a negative electrode mixes lithium titanate, carboxymethylcellulose (CMC), and ketjen black (KB), and adjusts a slurry-like mixture.
  • the mixture can be applied onto a stainless steel foil, temporarily dried, and then heat-treated to obtain a negative electrode.
  • lithium iron phosphate, CMC, activated carbon, and KB are mixed to prepare a slurry mixture.
  • the mixture can be applied on a stainless steel foil, temporarily dried, and then heat-treated to obtain a positive electrode.
  • a polypropylene microporous film can be used as the separator.
  • As the electrolytic solution 1 mol / L LiPF6 / EC: DEC can be used.
  • KB can be used as the conductive agent.
  • CMC can be used as the binder.
  • Stainless steel can be used for the positive electrode, the negative electrode, and the current collector.
  • FIG. 1A shows a schematic perspective view of an electrode block according to the first embodiment of the present invention.
  • FIG. 1B shows a schematic sectional view in the axial direction of the electrode block.
  • the electrode block 21 includes an electrode group 23, a lid member 24, a first holding member 22a, and a second holding member 22b.
  • the electrode group 23 is formed by laminating a positive electrode 23a and a negative electrode 23b with a bag-shaped separator 23c interposed therebetween.
  • the electrode group 23 is sandwiched between the lid members 24 at both ends in the stacking direction (X direction in FIG. 1B).
  • the positive electrode 23a, the negative electrode 23b, the bag-like separator 23c, and the lid member 24 are all discs having a hole in the center, and are concentrically stacked.
  • the lid member 24 is polypropylene but may be other resin as long as it has an insulating property.
  • the positive and negative electrodes 23a and 23b are covered with a bag-shaped separator.
  • FIG. 2A shows a cross-sectional view of an electrode included in a separator formed in a bag shape.
  • FIG. 2A shows one positive electrode 23a and one negative electrode 23b for simplicity.
  • the positive electrode 23a is wrapped in a bag-like separator 23ca except for the outer edge portion.
  • the periphery of the negative electrode 23b is wrapped around a bag-like separator 23cb except for the peripheral portion of the hole provided in the center.
  • FIG. 2B shows a plan view of the positive electrode 23a included in the bag-shaped separator.
  • FIG. 2C shows a plan view of the negative electrode 23b encapsulated in the bag-shaped separator.
  • the positive electrode 23a is sandwiched between two separators whose outer diameter is smaller than the outer diameter of the positive electrode 23a and whose central hole diameter is smaller than that of the positive electrode 23a, and where the separators overlap (the peripheral edge of the central hole) To join.
  • the positive electrode 23a is included in the bag-shaped separator 23ca.
  • the negative electrode 23b is sandwiched between two separators whose outer diameter is larger than the outer diameter of the negative electrode 23b and whose central hole diameter is larger than the hole diameter of the negative electrode 23b, and the overlapping part (outer peripheral edge) of the separator is joined by thermal welding. .
  • the negative electrode 23b is included in the bag-like separator 23cb.
  • Electrode debris and foreign matter generated during the assembly and transportation process of the electrode block are captured inside the bag-shaped separator. If a bag-like separator is used, electrode scraps and foreign matter do not intervene between the electrodes and between the electrodes and the current collecting terminals, so that an internal short circuit can be prevented. Furthermore, it is possible to prevent a contact failure due to a separator being interposed between the positive electrode 23a and the negative electrode 23b and the holding member 22 due to a shift in the attachment position of the separator.
  • the positive electrode 23a wrapped in the bag-shaped separator 23ca and the negative electrode 23b wrapped in the bag-shaped separator 23cb are sequentially stacked so that the respective holes communicate with each other to form the electrode group 23.
  • Lid members 24 are arranged at both ends of the electrode group 23 in the axial direction (X direction in FIG. 1B).
  • the central hole of the positive electrode 23a, the negative electrode 23b, the separator 23ca, the separator 23cb, and the lid member 24 communicates to form the through hole 25.
  • the first holding member 22a holds the shape of the electrode group 23 and the lid member 24 from the outside.
  • the second holding member 22 b holds the shape of the electrode group 23 and the lid member 24 from the inside of the through hole 25.
  • 3A and 3B are a cross-sectional view and a plan view of the metal plate 220 constituting the holding member 22, respectively.
  • the metal plate 220 has a number of protrusions 221 formed so as to protrude on the surface thereof.
  • the metal plate 220 is obtained by embossing a metallic plate, providing a large number of protrusions and through holes, and providing burrs.
  • the thickness of the metal plate 220 is not particularly limited, but is preferably smaller than the thickness of the positive electrode 23a or the negative electrode 23b. Although depending on the thickness of the positive electrode 23a or the negative electrode 23b, the thickness of the metal plate 220 is preferably 10 to 100 ⁇ m. More preferably, it is 20 to 50 ⁇ m. When the thickness of the metal plate 220 is large, the size of the battery increases. Further, when the thickness of the metal plate 220 is small, the strength of the metal plate is lowered.
  • a through hole is provided at the top of the protrusion 221 to form an opening 222.
  • the opening 222 is provided with an edge 223 extending in the direction opposite to the protrusion 221.
  • the metal plate 220 is a nickel foil having a thickness (h1) of 25 ⁇ m.
  • a quadrangular pyramid-shaped projection 221 composed of an upper structure L1 and a lower structure L2 is formed.
  • the vertical and horizontal lengths (X and Y directions in FIG. 3B) of the lower structure L2 are both 1 mm, and the vertical and horizontal lengths of the upper structure L1 are both 0.5 mm.
  • the thickness (h2) of the metal plate 220 including the protrusions 221 is 0.5 mm.
  • the dimension (h3) of the cache 223 is 0.15 mm.
  • the first holding member 22 a is disposed on the electrode group 23 and the outer surface 23 d of the lid member 24.
  • the outer surface 23 d is a side surface of the electrode group 23 and an exposed surface of the lid member 24. More specifically, the first holding member 22 a is attached to the peripheral portion including the side surface of the electrode group 23 and the outer surface of the lid member 24.
  • the 1st holding member 22a bears the role which makes the electrode group used as the main component of a battery into one structure by wrapping the electrode group 23 and the cover member 24 except the vicinity of the through-hole 25 and the through-hole 25. .
  • the assembly of the laminated battery can be simplified.
  • the first holding member 22 a In the first holding member 22 a, the protrusion 221 bites into the positive electrode 23 a and the lid member 24, and holds the stacked state of the electrode group 23 and the lid member 24.
  • the first holding member 22 a includes a first side surface portion 22 aa that covers the side surfaces of the electrode group 23 and the lid member 24, and a through-hole of the electrode group 23 along the surface of the lid member 24 from the end portion of the first side surface portion 22 aa. And a first bent portion ab that bends in the direction of 25.
  • the second holding member 22b is disposed on the inner peripheral surface 23e of the through hole 25 of the electrode group.
  • the protrusion 221 bites into the negative electrode 23 b and the lid member 24, and holds the stacked state of the electrode group 23 and the lid member 24.
  • the second holding member 22b is a second side surface portion 22ba that covers the inner peripheral surface, and a second bent portion that is bent in the outer diameter direction of the electrode group 23 along the surface of the lid member 24 from the end portion of the second side surface portion 22ba. Part 22bb.
  • the first side surface portion 22aa bites into the outer peripheral end of the positive electrode 23a, and the first holding member 22a and the positive electrode 23a are electrically connected. Further, the second side surface portion 22ba bites into the inner peripheral end portion of the negative electrode 23b, and the second holding member 22b and the negative electrode 23b are electrically connected. On the other hand, since the first bent portion 22ab and the second bent portion 22bb are not in contact and the lid member 24 has insulation, the first holding member 22a and the second holding member 22b are in an insulated state. It has become.
  • the bondability between the positive electrodes and the negative electrodes is improved.
  • the volume of the electrode changes due to the charging / discharging of the battery, since the protrusion bites into the electrode, it is possible to suppress poor contact between the electrode and the holding member that becomes the current collecting terminal. Thereby, cycle life characteristics are improved.
  • the positive electrode and the negative electrode are included in the bag separator, but the present invention can also be implemented when not included in the bag separator.
  • the outer edge of the negative electrode is covered with the separator, the peripheral edge of the positive electrode hole is covered with the separator, the outer edge of the separator is covered with the positive electrode, and the peripheral edge of the separator hole is covered with the negative electrode. It has been broken. For this reason, the positive electrode and the negative electrode are reliably separated by the separator at the outer edge and the peripheral edge of the hole. Even if the electrodes are deformed, the two electrodes do not come into contact with each other at the outer edge and the peripheral edge of the hole. Further, the separator is not interposed between the negative electrode and the current collector, and is not interposed between the positive electrode and the exterior body. Therefore, contact failure due to the intervening separator does not occur.
  • a bag-like separator may be disposed on either the positive electrode or the negative electrode.
  • the positive electrode 23a is included in the bag separator 23ca, and the negative electrode 23b is not included in the bag separator. In this way, it is possible to save the trouble of enclosing the negative electrode in the bag separator, and the cost can be reduced.
  • the negative electrode 23b is arrange
  • FIG. 5 shows a schematic sectional view of the electrode block 52 of the third embodiment.
  • a metal plate 26 a is interposed between the first holding member 27 a and the electrode group 23.
  • a metal plate 26 b is interposed between the second holding member 27 b and the electrode group 23.
  • the metal plate 26 has a plurality of protrusions on at least one surface as shown in FIG. The protrusions 221 of the metal plate 26 bite into the electrodes 23a and 23b to ensure the connection between the electrodes. Since the holding member 27 and the metal plate 26 are in contact with each other on the entire surface, the electrodes 23a, b and the holding member 27 are electrically connected reliably.
  • the holding member 27 acts as a strength element. Thus, by providing the strength member and the element that connects the electrodes separately in the holding member, it is possible to manufacture a larger-capacity electrode block.
  • FIG. 6A is a schematic perspective view showing an electrode block according to a fourth embodiment
  • FIG. 6B is a schematic cross-sectional view.
  • the electrode block 61 includes an electrode group 63, a lid member 64, and a plurality of first holding members 62.
  • the first holding member 62 holds the shapes of the electrode group 63 and the lid member 64.
  • the positive electrode 63a is wrapped in a bag-like separator 63ca except for the outer edge portion. Further, the negative electrode 63b is wrapped in a bag-like separator 63cb except for the peripheral portion of the central hole.
  • the positive electrode 63a wrapped in the bag-shaped separator 63ca and the negative electrode 63b wrapped in the bag-shaped separator 63cb are sequentially stacked so that the holes overlap each other.
  • a lid member 64 having a hole in the center of the electrode group 63 is sandwiched. The central hole of the electrode group 63 and the lid member 64 communicate with each other to form a through hole 67 of the electrode block 61 as a whole.
  • a second holding member 65 is disposed on the inner peripheral surface of the through hole 67.
  • the lid member 64 of this embodiment is metallic.
  • the electrode that contacts the lid member 64 (the negative electrode 63b in FIG. 6B) is included in a bag separator (63cb in FIG. 6B). If the electrode is included in the bag separator, the lid member 64 and the electrode that is in contact with the lid member 64 are not in direct contact. In FIG. 6, the negative electrode 63 b is not short-circuited with the positive electrode 63 a via the lid member 64.
  • the first holding member 62 is a strip-shaped metal plate. One end of the first holding member 62 is fixed to the side surface of one lid member 64, and the other end is fixed to the side surface of the other lid member 64. These fixations are, for example, by spot welding, but may be brazing. Thus, the shape of the electrode group 63 is held by the first holding member, and the electrode group 63 has an integral structure as an electrode block.
  • the diameter of the hole at the center of the lid member 64 is larger than the diameter of the hole of the negative electrode 63b, and when the second holding member 65 is attached to the electrode group 63, the lid member 64 and the second holding member 65 are not in contact with each other. It has become. Note that it is preferable to dispose the insulating ring 68 in the hole of the lid member 64.
  • the insulating ring 68 reliably prevents contact between the lid member 64 and the second holding member 65 and prevents a short circuit between the electrodes.
  • the lid member 64 may be an insulating disk. In this case, the lid member 64 and the first holding member 62 are fixed with an adhesive.
  • FIG. 7 is a schematic cross-sectional view showing a modification of the electrode block of FIG. 6B. If the insulating plate 69 is disposed between the lid member 64 and the electrode group 63, the negative electrode 63 b that is not included in the bag separator can be disposed at the upper end or the lower end of the electrode group 63. The insulating plate 69 prevents the metal lid member 64 and the negative electrode 63b from being short-circuited. Further, as shown in the figure, an electrode block may be configured by adding a second holding member 65.
  • the metal plate shown in FIG. 3 may be attached to only one of the outer peripheral surface of the electrode group and the inner surface of the through hole. Further, the protrusions of the metal plate may be provided only on the surface in contact with the electrode group, may be provided only on the opposite surface, or may be provided on both surfaces.
  • Electrode block assembly method (1) The positive electrode is sandwiched between two separators whose outer diameter is smaller than the outer diameter of the positive electrode and whose central hole diameter is smaller than that of the positive electrode hole, and the portions where the separators overlap are joined by a heater. The negative electrode is sandwiched between two separators whose outer diameter is larger than the outer diameter of the negative electrode and whose central hole diameter is larger than that of the negative electrode hole, and the overlapping portions of the separators are joined by a heater. (2) Prepare two lid members. Then, a round bar whose diameter is slightly smaller than the hole diameter of the negative electrode is projected in the center of the cylinder whose inner diameter is slightly larger than the outer diameter of the positive electrode.
  • the hole of one lid member is passed through the round bar.
  • the negative electrode included in the bag separator and the positive electrode included in the bag separator are sequentially passed through the round bar.
  • the other lid member is passed through the round bar.
  • the electrode group sandwiched between the lid members is manufactured.
  • the lid member and the electrode group are taken out of the cylinder together with the round bar, and the first holding member is attached to the outer peripheral surfaces of the lid member and the electrode group. Both ends in the axial direction of the first holding member are bent 90 degrees in the direction of the round bar along the surface of the lid member to form a first bent portion.
  • a 1st bending part will be located in the both ends of a 1st side part.
  • a round bar is extracted from the lid member and the electrode group.
  • a 2nd holding member is attached to the inner surface of the through-hole of a cover member and an electrode group. Both ends in the axial direction of the second holding member are bent in the outer peripheral direction along the surface of the lid member to form a second bent portion following the second side surface portion.
  • the electrode block in which the electrode group and the pair of lid members are integrated is manufactured by the first holding member and the second holding member. In addition, you may manufacture the electrode block which does not have a 2nd holding member as needed.
  • FIG. 8 is a perspective view showing a schematic configuration of a laminated battery using the electrode block of the present invention.
  • FIG. 9 is a side view of the laminated battery including a cross section taken along line IX-IX in FIG. 8 in the upper half.
  • FIG. 10 is an enlarged cross-sectional view of the end portion of the laminated battery of FIG. 9 rotated 90 degrees.
  • the laminated battery 31 includes an exterior body 32, a current collector 33, a plurality of heat radiating plates 34, and a casing 35 as main components.
  • a plurality of electrode blocks 21 are stacked and housed inside the exterior body 32.
  • the current collector 33 penetrates the plurality of electrode blocks 21 in the axial direction of the exterior body 32 (X direction in FIG. 9).
  • the plurality of heat radiating plates 34 are arranged along the X direction around the exterior body 32 such that the central hole contacts the outer periphery of the exterior body 32.
  • the casing 35 accommodates the exterior body 32, the current collector 33, the heat radiating plate 34, and the through bolt 46 therein.
  • a first bus bar 36 and a second bus bar 37 are attached to end portions of the casing 35 in the axial direction, which are connection members.
  • the electrode block 21 is stacked and accommodated inside a cylindrical pipe 32a.
  • the inner diameter of the pipe 32 a is slightly smaller than the outer diameter of the electrode block 21. Thereby, when the electrode block 21 is pushed into the pipe 32a, the contact state between the outer peripheral surface of the electrode block 21 and the inner peripheral surface of the pipe 32a is maintained.
  • Both end openings of the pipe 32a are closed by a cylindrical sealing lid 32b.
  • the sealing lid 32b is provided with a central hole 32ba through which the current collector 33 passes and a liquid injection hole 32bb for injecting an electrolytic solution (see FIG. 11A).
  • An electrolytic solution injection seat 39 is attached to the liquid injection hole 32bb, and the electrolytic solution is injected into the exterior body 32 from a hole provided in the electrolytic solution injection seat 39.
  • the sealing lid 32b In the sealing lid 32b, two grooves 32bc and a groove 32bd shallower than these are formed between the two grooves 32bc on the outer peripheral surface (see FIG. 11B).
  • An O-ring 32c is disposed in each of the two grooves 32bc, and a liquid packing 32d is disposed in the groove 32bd. This prevents the electrolyte from leaking outside the battery.
  • the liquid packing 32d is preferably a highly viscous substance, and for example, asphalt pitch can be used.
  • the pipe 32a and the sealing lid 32b are nickel-plated iron and have conductivity. Since the inner peripheral surface of the exterior body 32 and the positive electrode 23a are in contact via the first holding member 22a, the exterior body 32 and the positive electrode 23a are electrically connected.
  • the exterior body 32 functions as a positive electrode current collecting terminal.
  • An insulating sleeve 40 is attached between the sealing lid 32b and the current collector 33 to prevent the exterior body 32 and the current collector 33 from being short-circuited via the sealing lid 32 (see FIG. 10). .
  • the current collector 33 is a conductive round bar.
  • the outer peripheral surface of the current collector 33 and the negative electrode 23b are in contact with each other through the second holding member 22b. Both are in an electrically connected state.
  • the current collector 33 functions as a negative electrode current collecting terminal.
  • the current collector 33 may be constituted by a pipe-shaped structural member 33b and a core member 33a housed therein.
  • the core material 33a is copper
  • the structural material 33b is iron.
  • Copper is highly conductive but is relatively weak to alkali. Iron is less conductive than copper, but reacts with alkali to form a passive film, so it has corrosion resistance to alkali.
  • Nickel plating 33 c may be applied to the surface of the current collector 33. Nickel plating also has alkali resistance. With such a structure, the current collector is highly conductive and resistant to alkali.
  • a current collector 33 as shown in FIG. 12A may be manufactured by press-fitting a copper wire into an iron pipe. Also, as shown in FIG. 12B, the structural material 33b may be moved along the periphery of the core material 33a and moved in the direction of the arrow while being squeezed to caulk the structural material 33b. Thereafter, the surface of the current collector 33 may be manufactured by nickel plating.
  • a push plate 45 is disposed on the upper side of the exterior body 32 that houses the electrode block 21.
  • a first connecting member 41 is arranged on the upper side of the pressing plate 45.
  • a screw hole 41a is provided on one surface of the first connecting member 41, and a mounting hole 41b is provided on the other surface.
  • the end of the current collector 33 is fitted into the mounting hole 41b.
  • a hexagonal bolt 43 is screwed into the screw hole 41 a and the first bus bar 36 is attached to the first connecting member 41. Thereby, the current collector 33 and the first bus bar 36 are electrically connected.
  • the first bus bar 36 functions as a negative electrode terminal.
  • a second connecting member 42 is disposed on the upper end of the through bolt 46.
  • a screw hole 42a is provided on one surface of the second connecting member 42, and a mounting hole 42b is provided on the other surface.
  • a through bolt 46 is fitted into the mounting hole 42b.
  • a hexagon bolt 43 is screwed into the screw hole 42 a, and the second bus bar 37 is attached to the second connecting member 42. Thereby, the exterior body 32 and the second bus bar 37 are electrically connected via the through bolt 46.
  • the second bus bar 37 functions as a positive terminal.
  • the push plate 45 is a rectangular plate-like metal, and includes a hole 45a into which the first connecting member 41 is fitted, a hole 45b through which the through bolt 46 passes, and a hole 45c through which the electrolyte injection seat 39 passes.
  • the pressing plate 45 and the exterior body 32 are in contact with each other, and the pressing plate functions as a positive current collecting terminal.
  • An insulating ring 47 is disposed between the first connecting member 41 and the push plate 45, and the push plate 45 and the current collector 33 are insulated.
  • the pressing plate 45 plays a role of dispersing the tightening force by the hexagon bolts 43.
  • the electrode block 21 receives a compressive force in the axial direction (X direction in FIG. 10) by the hexagon bolts 43. This compressive force acts to prevent deformation due to charging / discharging of the electrode blocks and to reduce the contact resistance between the electrode blocks.
  • the electrolytic solution injection seat 39 has a long and narrow cylindrical shape having a hole in the center, and is a liquid injection port for injecting the electrolytic solution into the exterior body 32 from the outside. After injection of the electrolytic solution, a stopper 38 is attached to seal the inside of the exterior body 32.
  • the lower end part of a laminated battery also has the same structure as an upper end part.
  • the heat radiating plate 34 has a rectangular plate shape, and includes a battery hole 34a through which the laminated battery 31 passes and a bolt hole 34b through which through bolts 46 pass through four corners (for example, FIG. 8).
  • the heat radiating plate 34 is conductive, and the material thereof is aluminum whose surface is nickel-plated. Then, the battery hole 34 a comes into contact with the surface of the exterior body 32, and the heat of the exterior body 32 is transmitted to the heat radiating plate 34.
  • the through bolt 46 is conductive, and its material is iron whose surface is nickel-plated. And the bolt hole 34b contacts with the through bolt 46, and the exterior body 32, the heat sink 34, and the through bolt 46 are electrically connected.
  • the material of the heat sink 34 and the through bolt 46 is not limited to iron or aluminum, but may be other metals.
  • the casing 35 includes a square tube 35a having a substantially square frame cross section, and a substantially square plate-like lid member 35b at both ends of the square tube 35a.
  • the inner dimension of the casing 35 is made approximately the same as the outer dimension of the heat sink 34.
  • the lid member 35b has a hole 35c through which the first connecting member 41 passes and a hole 35d through which the second connecting member 42 passes.
  • FIG. 13A is a perspective view showing the first bus bar 36 of the present embodiment.
  • the first bus bar 36 is a substantially triangular metal plate, and is provided with three first bolt holes 36a through which the hexagon bolts 43 pass.
  • the first bus bar 36 is attached to the end of the stacked battery 31 and electrically connects the adjacent stacked batteries 31.
  • the first connecting member 41 of one stacked battery 31 and one first bolt hole 36a of the first bus bar 36 are connected by a hexagon bolt 43
  • the second connecting member 42 of the other stacked battery 31 are connected by the hexagon bolt 43
  • the remaining two first bolt holes 36 a of the 1 bus bar 36 are connected by the hexagon bolts 43, the two stacked batteries 31 are electrically connected.
  • FIG. 13B is a perspective view showing the second bus bar 37.
  • the second bus bar 37 is an elongated plate-like metal plate provided with three second bolt holes 37a.
  • the 2nd bus bar 37 is attached to the edge part of the laminated battery 31, and connects the adjacent laminated batteries 31 electrically.
  • the first connecting member 41 of one stacked battery 31 and one second bolt hole 37a of the second bus bar 37 are connected by a hexagon bolt 43, the second connecting member 42 of the other stacked battery 31, If the remaining two second bolt holes 37a of the two bus bars are connected with the hexagon bolts 43, the two stacked batteries 31 are electrically connected.
  • the shapes of the first bus bar 36 and the second bus bar 37 are not limited to this embodiment.
  • the material of the first bus bar 36 and the second bus bar 37 is iron whose surface is nickel-plated.
  • FIG. 14 shows an example in which a plurality of stacked batteries 31 are connected in series using the first bus bar 36 and the second bus bar 37.
  • the first bus bar 36 has a shape that facilitates connecting the stacked batteries 31 in the vertical direction in FIG. 14, and the second bus bar 37 has a shape that facilitates connection of the stacked batteries 31 in the horizontal direction in FIG. 14.
  • the degree of freedom in arrangement can be ensured by appropriately selecting a bus bar. For example, when the current collectors 33 of adjacent batteries are connected to each other using the second bus bar 37 and the through bolts 46 are connected to each other, the stacked batteries can be connected in parallel.
  • a large-capacity battery can be easily manufactured by laminating a plurality of electrode blocks 21.
  • the first holding member 22a and the second holding member 22b have a plurality of protrusions 221 on the surface in contact with the electrode group 21, the protrusions 221 bite into the electrode, so that the positive electrode and the outer body or the negative electrode and the negative electrode are collected. Bonding between electric bodies is further improved. In addition, even if the volume of the electrode changes due to charging / discharging of the battery, since the protrusion bites into the electrode, poor contact between the electrode and the terminal can be suppressed. This improves the cycle life characteristics.
  • the laminated battery 31 of the present embodiment is configured by laminating a plurality of electrode blocks 21.
  • the first holding members 22 a of the adjacent electrode blocks 21 are directly connected via the exterior body 32, and the second holding members 22 b are directly connected via the current collector 33.
  • the plurality of electrode blocks 21 are electrically connected in parallel. That is, in the laminated battery 31 of this embodiment, the plus terminals and the minus terminals of the adjacent electrode blocks 21 are electrically connected by simply laminating the plurality of electrode blocks 21 on the exterior body 32. Accordingly, the plurality of electrode blocks 21 are structurally simple in series connection and electrically connected in parallel. In this way, the capacity of the laminated battery can be easily increased.
  • the cooling effect is as follows.
  • the positive electrode 23a is strongly pressed against the inner peripheral surface of the exterior body 32 via the first holding member 22a, and the positive electrode 23a and the exterior body 32 are in close contact with each other. Therefore, the heat generated in the positive electrode 23a is transmitted to the exterior body 32 through the first holding member 22a.
  • the heat generated in the negative electrode 23b is transferred to the positive electrode 23a through the separator 23c. Since the separator 23c is a single sheet and is a thin sheet, it does not hinder heat conduction. In this way, the heat generated in the positive electrode 23a and the negative electrode 23b is transmitted to the exterior body 32 with a small thermal resistance, and the temperature rise inside the multilayer battery 31 is suppressed.
  • the wound type battery has a number of separators that are difficult to conduct heat between the battery center and the battery case. Therefore, even if the battery case is cooled, the temperature inside the battery does not decrease much.
  • the laminated battery of the embodiment of the present invention is nearly 100,000 times that of the conventional wound battery. It turned out to be big.
  • the laminated battery of the present invention can keep the temperature inside the battery low to near the temperature of the battery surface.
  • the heat transfer on the surface of the battery becomes the rate of heat transfer inside the battery.
  • the cooling performance was further improved by attaching a plurality of heat radiation plates 34 to the outer periphery of the exterior body 32 to increase the heat radiation area.
  • the casing of the laminated battery is air-cooled with a cooling fan, the temperature inside the battery becomes 51 ° C.
  • the radiator plate was attached to the laminated battery and naturally cooled by air, the temperature inside the battery was kept at 23 ° C.
  • FIG. 15 shows the result of the temperature rise test of the laminated battery 31 of the present embodiment.
  • curve (1) is the charging voltage
  • curve (2) is the discharging voltage
  • curves (3) and (4) are the internal temperatures of the battery during charging and discharging, respectively.
  • the battery temperature of the laminated battery 31 of the present embodiment hardly changes even when charging / discharging. Temperature rise inside the battery can be suppressed. The reason why the battery temperature has dropped in the early stage of charge / discharge is that the room temperature has dropped.
  • it is not necessary to provide a pipe or the like for flowing a refrigerant inside the battery it is not necessary to provide a pipe or the like for flowing a refrigerant inside the battery, and the battery temperature rise can be suppressed with a compact structure.
  • the outer package is a positive electrode current collector and the current collector is a negative electrode current collector
  • the outer package is a negative electrode current collector
  • the current collector is a positive electrode current collector. You may comprise so that it may become.
  • the electrode group of this embodiment demonstrated the example of a cylindrical shape as a whole provided with the circular through-hole in the center, it is not restricted to this, A square-tube-shaped electrode group may be sufficient, and a through-hole may be square.
  • the shape of the laminated battery of the present embodiment has been described as an example of a cylindrical shape, but may be a prismatic shape.
  • the materials of various parts of the present embodiment may also be materials other than the above embodiments.
  • the metal part is not limited to iron whose surface is nickel-plated, and may be a metal whose surface is not nickel-plated.
  • this embodiment mainly demonstrated the example to the nickel metal hydride battery, this invention is also applicable to another secondary battery, for example, a lithium ion battery, a manganese battery.
  • the laminated battery according to the present invention can be suitably used as a power storage device for consumer use as well as for industrial use.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Cell Separators (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

 本発明は、電池内部の温度上昇を抑制し、接触不良を防止するとともに電極同士の短絡を防止し、さらに、組立が簡単な電池を提供する。 本発明において、電極ブロック(21)は、正極(23a)と、負極(23b)と、正極と負極との間に配されたセパレータ(23ca,23cb)とが積層された電極群(23)と、電極群の積層方向の両端に設けた蓋部材(24)と、電極群および蓋部材の外面に取り付けた第1保持部材(22a)とを備え、第1保持部材は、正極および負極のいずれか一方の電極である第1電極と電気的に接続され、正極および負極のいずれか他方の電極である第2電極と電気的に接続されていない。さらに、電極群と蓋部材に設けた孔が貫通孔(25)を形成し、この貫通孔に第2保持部材(22b)を取り付けて、電極ブロックを製作する。そして、この電極ブロックを外装体に積層収納して、貫通孔に集電体を挿入して積層電池を製作する。

Description

電極ブロック、積層電池および積層電池の組立方法
 本発明は、冷却性能の向上を図りつつ、短絡および接触不良の防止を図った電極ブロック、積層電池およびその組立方法に関する。
 二次電池の主な電極構造には、捲回タイプと積層タイプの2つのタイプがある。捲回タイプの電極構造を有する電池(捲回電池:例えば、特許文献1)は、正極と負極とがセパレータを挟んで渦巻状に巻き取られた状態で、電池ケース内に収納されている。積層タイプの電極構造を有する電池(積層電池:例えば、特許文献2)は、正極と負極とがセパレータを介して交互に積層されている電極群が、電池ケース内に収納されている。
特開2002-198044号公報 特開2000-48854号公報
 特許文献1に記載の捲回電池は、熱伝導度の小さいセパレータが、電池の表面と中心部との間に、多層に重ねられている。この結果、電池ケースの表面温度が周囲温度に近い場合でも、捲回電池の中心部分はかなり高温となる。電池内部の温度が高温となれば、電池性能を損なうことになる。
 特許文献2に記載の円筒型積層電池は、積層された電極が、個々に、端子に当接することにより、集電される構造となっている。このため、組立過程において、正極と負極が短絡して初期不良が生じることがある。また、セパレータが電極と端子の間に介在して接触不良を生じることがある。更には、充放電が繰り返されることにより、電極が収縮と膨張とを繰り返す。その結果、電極が変形・変位して、電極と端子が接触不良となり、経年不良が生じることがある。
 小さな電池を組み合わせて組電池とし、電池の大容量化を図る場合、電池の接続に大きな手間を要す。更に、組電池を構成する電池の1つに不具合があれば、不具合な電池を正常な電池に取り換えるのに大きな手間を要す。
 本発明は、上記の課題を解決するためになされたものであり、電池内部の温度上昇を抑制すること、および、接触不良を防止するとともに電極同士の短絡を防止すること、および、組立が簡単な電池を提供することを解決課題とする。
 本発明に係る電極ブロックは、正極と、負極と、前記正極と前記負極との間に配されたセパレータと、が積層された電極群と、前記電極群の積層方向の両端に設けた蓋部材と、前記電極群および前記蓋部材の外面に取り付けた第1保持部材と、を備え、前記第1保持部材は、前記正極および前記負極のいずれか一方の電極である第1電極と電気的に接続され、前記正極および前記負極のいずれか他方の電極である第2電極と電気的に接続されていない。
 ここに、「外面」とは、電極群と蓋部材の外側に面した面のことである。この構成によれば、第1保持部材は、電極群と蓋部材の外側に取り付けて、電極群と蓋部材を保持して、両者を一体構造とする役割を果たす。一体構造になれば、電極体の取り扱いが容易になる。第1保持部材は、蓋部材の孔の周縁を除き電極群および蓋部材の外側を覆ってもよい。また、第1保持部材は、少なくとも電極群と蓋部材の側面に取り付けてもよい。第1保持部材を蓋部材の表面に取り付けなくても、電極群および蓋部材を一体として保持しうるからである。
 第1保持部材は、1枚の金属板であってもよく、また、短冊状の複数の金属板であってもよい。また、第1保持部材は、金属箔であってもよい。
 更に、第1保持部材は、第1電極と接続されて、第1電極の集電端子として機能する。第1電極は、熱的および電気的に小さな抵抗で第1保持部材に接続される。第1保持部材は、第1電極の冷却および集電に有利に作用する。
 第1電極で発生する熱は、第1保持部材に伝えられる。第2電極で発生する熱は、セパレータ1枚を介して第1電極に伝えられる。電極で発生する熱は小さな熱抵抗で第1保持部材に伝えられる。
 電極ブロックは、第1保持部材の表面を冷却することで、電極ブロックの内部の温度上昇を容易に抑えることができる。
 電極ブロックは、電極ブロックを収納する外装体や、第2電極の集電体を備えていない。事実、後述するように、電池は、電極ブロックの他に、外装体と、第2電極の集電体を、備えている。電極ブロックは、電池の構成要素の一つである。
 なお、このような電極ブロックを採用して、モジュール化を図ることにより、電池の生産性が上がる。また、電極を個別に電池ケースに収納する場合よりも、正極や負極の破損や位置ずれが抑えられ、接触不良や短絡を抑制できる。更に、電池ケースに収納する電極ブロックの数を調整すれば、電池容量を簡単に増減することができる。すなわち、電池ブロックの数を増やせば、電極ブロックが並列に接続されることになるので容易に電池容量を増やすことができる。
 電極ブロックにおいて、前記第1電極、前記第2電極およびセパレータは、いずれも中央に孔を有しており、前記第2電極の外縁が、前記セパレータにより覆われており、前記第1電極の孔の周縁が、前記セパレータにより覆われており、前記セパレータの外縁が、前記第1電極により覆われており、前記セパレータの孔の周縁が、前記第2電極により覆われていることが好ましい。このため、第1電極と第2電極とは、その外縁および孔の周縁において、セパレータにより確実に隔離されている。したがって、電極が変形しても、両電極が、その外縁部および孔の周縁部において接触することはない。また、セパレータが電極と端子の間に介在して接触不良を生じることもない。セパレータの外径は第2電極の外径より大きく、セパレータの孔径は第1電極の孔径より小さい。第1電極の外径はセパレータの外径より大きく、セパレータの孔径は第2電極の孔径より大きい。
 電極ブロックにおいて、前記第1保持部材は、少なくとも片面に複数の突起を有していることが好ましい。この構成によれば、第1保持部材は、少なくとも第1電極に接する面およびその反対側の面のいずれか一方の面に、複数の突起を有する。複数の突起は第1電極に食い込み、第1電極をしっかり保持してその形状を維持するとともに、第1電極と第1保持部材の接触を確実にする。なお、複数の突起は、少なくとも第1電極と接触する面に設けられることが好ましい。このようにすれば、第1電極に体積変化が生じても、複数の突起が、第1電極と第1保持部材との間の接触不良を防ぐ。また、電極ブロックは、前記第1保持部材と前記第1電極の間に、少なくとも片面に複数の突起を有する金属板が介在していてもよい。
 電極ブロックにおいて、前記第1電極は、前記第1電極の外縁が袋状に形成された第1セパレータの外部に露出する態様で、前記第1セパレータに内包されていることが好ましい。また、この電極ブロックにおいて、前記第2電極は、前記第2電極の孔の内縁が袋状に形成された第2セパレータの外部に露出する態様で、前記第2セパレータに内包されていてもよい。
 第1セパレータは、例えば、内縁側が溶着などにより接着された袋状になっていて、この袋状のセパレータの内部に外縁が露出する形で、第1電極が内包されている。このような第1セパレータは、例えば、第1電極をシート状のセパレータで挟み込み、両セパレータの内縁側を溶着して、製作することができる。また、第2セパレータは、例えば、外縁側が溶着などにより接着された袋状になっていて、この袋状のセパレータの内部に、内縁つまり孔の周縁が露出する形で、第2電極が内包されている。この第2セパレータは、例えば、第2電極をシート状のセパレータで挟み込み、両セパレータの外縁側を溶着して、製作することができる。
 この構成によれば、電極ブロックの組立過程や運搬過程で生じる第1電極、第2電極の屑や異物は、袋状セパレータの内部に補足され、内部短絡の発生を防止する。
 電極ブロックにおいて、前記第1保持部材は、当該電極ブロックの側面に当接する側面部と、前記側面部から前記蓋部材の中心方向に折れ曲がる折曲部とを有していることが好ましい。この構成によれば、第1保持部材は、積層方向の両端部が折曲部を形成し、側面部が折曲部の間に位置する。
 電極ブロックは、前記第1保持部材が、前記蓋部材の外側面に固定されている。この構成によれば、第1保持部材の積層方向端部と蓋部材の外側面とが固定されて、電極ブロックが一体構造を有する。折曲部がないので、電極ブロックの軸方向寸法が、その分、小さくなる。
 電極ブロックは、前記蓋部材は中央に孔を有しており、前記正極、前記負極、前記セパレータおよび前記蓋部材の孔が、前記電極群および前記蓋部材の積層状態で貫通孔を形成し、前記貫通孔の内面に取り付けた第2保持部材を更に備え、前記第2保持部材は、前記第2電極と電気的に接続され、前記第1電極と電気的に接続されていないことが好ましい。この構成によれば、第2保持部材が、第1保持部材とともに電極群を保持する。
 電極ブロックにおいて、前記第2保持部材は、少なくとも片面に複数の突起を有していることが好ましい。この構成によれば、第2保持部材は、少なくとも第2電極に接する面およびその反対側の面のいずれか一方の面が、複数の突起を有していてもよい。複数の突起は第2電極に食い込み、第2電極をしっかり保持するとともに、接触を確実にする。なお、複数の突起は、少なくとも第2電極と接触する面に設けられることが好ましい。このようにすれば、第2電極に体積変化が生じても、複数の突起が、第2電極と第2保持部材との間の接触不良を防ぐ。電極ブロックは、前記第2保持部材と前記第2電極の間に、少なくとも片面に複数の突起を有する金属板が介在していてもよい。
 本発明に係る積層電池は、前記電極ブロックと、前記電極ブロックを収納する筒状の外装体と、前記電極ブロックの前記貫通孔を貫通する集電体と、を備え、前記第1電極が前記外装体に電気的に接続されており、かつ、前記第2電極が前記集電体に電気的に接続されていることが好ましい。
 この構成によれば、外装体は、第1電極の集電端子として機能する。電極ブロックの第1保持部材は、外装体の内面に直接接触するか、または、導電性部材を介して接触する。これにより、第1電極と外装体とが第1保持部材を介して、熱的および電気的に小さな抵抗で外装体に接続され、第1電極の冷却および集電に有効に作用する。
 また、集電体が貫通する第2電極の孔の内縁の全部もしくは一部が、集電体に直接接触するか、または、金属板などの導電性部材を介して接続されている。第2電極で発生する熱は、セパレータを介して第1電極に伝えられ、熱的に小さな抵抗で外装体に伝えられる。
 以上のように、本発明の積層電池は、電池の内部の温度の上昇を抑えるために、電池内部に冷媒を流すためのパイプまたはヒートシンクを設ける必要がない。したがって、本積層電池は、コンパクトな構造となる。また、本積層電池は、外装体の表面を冷却することにより、電池内部の温度上昇を容易に抑えることができる。
 また、外装体に収納される電極ブロックは、1つでもよく、複数でもよい。電極ブロックの数を調節することで、電池容量を簡単に変更できる。複数の電極ブロックを、外装体に収納することで、電極ブロックを構造的に直列に接続する。この場合、隣り合う電極ブロックは、第1電極が外装体を介して電気的に接続され、第2電極が集電体を介して電気的に接続される。これにより、複数の電極ブロックが電気的に並列に接続される。
 ところで、従来、複数の電池を電気的に並列に接続する場合、配線を用いて隣り合う電池のプラス端子同士を接続し、マイナス端子同士を接続していた。つまり、電池を並列接続する場合、配線が必須の構成となるため、配線の取り回しが繁雑であったり、設置場所が制限されたりという欠点があった。
 一方、本発明の積層電池において、外装体に複数の電極ブロックを積層することにより、隣り合う電極ブロックのプラス端子同士、マイナス端子同士を電気的に接続できる。つまり、構造的には単純な直列接続であり、電気的には簡単な並列接続となる。このようにして、積層電池の容量を簡単に大きくすることができる。
 積層電池は、前記集電体は、導電性の芯棒と、前記芯棒の外周を覆う構造材と、を有することが好ましい。芯棒に導電性の高い材料を用い、構造材にアルカリに強い材料を用いることで、導電性が高く、アルカリに強い集電体とすることができる。
 好ましくは、この積層電池は、前記外装体の開口部を塞ぐ封止蓋を更に備え、前記封止蓋は、その外周に2つの環状溝が形成されていて、前記環状溝にOリングが取り付けられていて、更に、前記環状溝の間にシール材を有する。この構成によれば、外装体の軸方向端部の開口部を塞ぐ封止蓋に設けたOリングとシール材により、積層電池内部の電解液の漏れを抑える。
 好ましくは、この積層電池は、複数の放熱板が、前記外装体の軸方向に沿って、前記外装体の外周面に取り付けられている。この構成によれば、積層電池の冷却性能が向上する。
 好ましくは、この積層電池は、前記放熱板を貫通する通しボルトを、更に備える。この構成によれば、通しボルトにより、放熱板、外装体、第1電極が電気的に接続される。通しボルトは第1電極の端子として機能する。
 本発明に係る組電池は、複数の積層電池と、隣り合う前記積層電池の前記通しボルトを互に接続する第1接続部材と、隣り合う前記積層電池の前記集電体を互いに接続する第2接続部材と、を備え、前記第1接続部材と前記第2接続部材とにより複数の前記積層電池が電気的に接続されている。この構成によれば、接続部材によって、複数の積層電池が電気的に並列に接続される。
 本発明に係る組電池は、複数の積層電池と、隣り合う一方の前記積層電池の前記通しボルトと、他方の前記積層電池の前記集電体とを接続する第3接続部材と、を備え、前記第3接続部材により複数の前記積層電池が電気的に接続されている。この構成によれば、接続部材によって、複数の積層電池が電気的に直列に接続可能となる。
 以上のように本発明によれば、電池内部の温度上昇を抑えることができ、および、電極同士の短絡を防止しつつ、接触不良を防止することができる。電池の組み立ても簡単になる。
第1実施形態に係る電極ブロックの概略構成を示す斜視図である。 第1実施形態に係る電極ブロックの軸方向断面図である。 袋状セパレータに内包された電極の断面図である。 袋状セパレータに内包された正極の平面図である。 袋状セパレータに内包された負極の平面図である。 電極ブロックの金属板の断面図である。 電極ブロックの金属板の平面図である。 第2実施形態に係る電極ブロックの軸方向断面図である。 第3実施形態に係る電極ブロックの軸方向断面図である。 第4実施形態に係る電極ブロックの概略構成を示す斜視図である。 第4実施形態に係る電極ブロックの軸方向断面図である。 第4実施形態に係る電極ブロックの変形例を示す軸方向断面図である。 電極ブロックを用いた積層電池の概略構成を示す斜視図である。 図8のIX-IX線に沿った断面を含む積層電池の側面図である。 図9の端部拡大図である。 積層電池の外装体の端部を切り欠いた斜視図である。 積層電池の外装体の端部の断面図である。 積層電池の集電体の一部を切り欠いた斜視図である。 積層電池の集電体の製作工程の概略を示す説明図である。 積層電池の第1ブスバーの説明図である。 積層電池の第2ブスバーの説明図である。 積層電池を複数接続した模式図である。 積層電池の温度上昇試験結果を示す図である。
 以下、本発明の実施形態を図面に従って説明するが、本発明はこれらの実施形態に限定されるものではない。また、以下に説明する実施形態において、個数、寸法、材質などに言及する場合、本発明の範囲は必ずしもその個数、寸法、材質などに限定されない。
 本発明の各実施形態について説明するのに先立ち、本発明が適用される二次電池について述べる。二次電池のタイプは下記に説明するタイプに限定されるものでなく、ニッケル亜鉛電池、二酸化マンガン電池、亜鉛マンガン電池、ニッケルカドミウム電池等の二次電池であってもよい。
<1.二次電池のタイプ>
[1-1.ニッケル水素電池について]
 負極としては、水素吸蔵合金、導電性フィラーおよびバインダーに溶剤を加えてペースト状にしたものを、基板上に塗布して板状に成形し、硬化させたものを使用した。同様に、正極としては、オキシ水酸化ニッケル、導電性フィラーおよびバインダーに溶剤を加えてペースト状にしたものを、基板上に塗布して板状に成形し硬化させたものを使用した。
 導電性フィラーとしては、炭素粒子を用いた。バインダーとしては、熱可塑性樹脂で、水に可溶な溶剤に溶解する樹脂を用いた。基板としては、発泡ニッケルシートを用いた。セパレータとしては、ポリプロピレン繊維を用いた。電解液としては、KOH水溶液を用いた。
[1-2.リチウムイオン電池]
 負極は、チタン酸リチウム、カルボキシメチルセルロース(CMC)、およびケッチェンブラック(KB)を混合し、スラリー状合剤を調整する。この合剤をステンレス鋼箔上に塗布し、仮乾燥した後、加熱処理して負極を得ることができる。正極は、リン酸鉄リチウム、CMC、活性炭、およびKBを混合し、スラリー状合剤を調整する。この合剤をステンレス鋼箔上に塗布し、仮乾燥した後、加熱処理して正極を得ることができる。
 セパレータとしてポリプロピレンの微多孔膜を用いることができる。電解液として1mol/LのLiPF6/EC:DECを用いることができる。導電剤としては、KBを用いることができる。バインダーとしては、CMCを用いることができる。正極、負極、集電体には、ステンレス鋼を用いることができる。
<2.電極ブロックの実施形態>
 以下、説明の都合上、正極を第1電極とし、負極を第2電極として説明することがあるが、これに限定されるものではない。
[2-1.第1実施形態]
 図1Aに本発明の第1実施形態に係る電極ブロックの概略斜視図を示す。図1Bに電極ブロックの軸方向概略断面図を示す。図1Bに示すように、電極ブロック21は、電極群23と、蓋部材24と、第1保持部材22aおよび第2保持部材22bとを備える。
 電極群23は、正極23aと負極23bとが袋状セパレータ23cを介して積層して構成されている。電極群23は、積層方向(図1BのX方向)の両端部において、蓋部材24により挟まれている。正極23a、負極23b、袋状セパレータ23cおよび蓋部材24は、いずれも中央に孔のあいた円板であって、同心状に積層されている。蓋部材24は、ポロプロピレン性であるが、絶縁性があれば他の樹脂であってもよい。正負極23a,23bは袋状のセパレータにより覆われている。
 図2Aに、袋状に形成したセパレータに内包された電極の断面図を示す。図2Aには、簡単のため、正極23aおよび負極23bが各1つ示されている。正極23aは、外縁部分を除き、袋状セパレータ23caに包まれている。また、負極23bは、中央に設けた孔の周縁部分を除き、袋状セパレータ23cbにその周囲が包まれている。
 図2Bに、袋状セパレータに内包された正極23aの平面図を示す。図2Cに、袋状セパレータに内包された負極23bの平面図を示す。
 外径が正極23aの外径より小さく、中央の孔の径が正極23aの孔の径より小さい2枚のセパレータで正極23aを挟み込み、セパレータが重なった箇所(中央の孔の周縁)を熱溶着により接合する。これにより、正極23aが袋状セパレータ23caに内包される。外径が負極23bの外径より大きく、中央の孔の径が負極23bの孔の径より大きい2枚のセパレータで負極23bを挟み込み、セパレータの重なった箇所(外周縁)を熱溶着により接合する。これにより、負極23bが袋状セパレータ23cbに内包される。
 電極ブロックの組立過程および運搬過程で生じる電極の屑や異物は、袋状セパレータの内部に補足される。袋状セパレータを用いれば、電極の屑や異物が、電極間、および電極と集電端子の間に介在することがないので、内部短絡を防ぐことができる。更に、セパレータの取り付け位置がずれて、正極23aおよび負極23bと、保持部材22の間に、セパレータが介在して、接触不良を起こすことを防ぐことができる。
 袋状セパレータ23caに包まれた正極23aと、袋状セパレータ23cbに包まれた負極23bとを、それぞれの孔が連通するように順次積み重ねて、電極群23を構成する。電極群23の軸方向(図1BのX方向)の両端に蓋部材24が配される。正極23a、負極23b、セパレータ23ca、セパレータ23cb、蓋部材24の中央の孔が連通して、貫通孔25を形成する。
 第1保持部材22aは、電極群23および蓋部材24を外側からその形状を保持する。第2保持部材22bは、電極群23および蓋部材24を貫通孔25の内側からその形状を保持する。図3A、Bに、それぞれ、保持部材22を構成する金属板220の断面図および平面図を示す。図3Aに示すように、金属板220は、その表面に突出するように形成された、多数の突起221を有している。金属板220は、金属性の板にエンボスロール加工を施し、多数の突起と貫通孔を設け、かつ、カエシを設けたものである。
 金属板220の厚さは、特に限定されないが、正極23aもしくは負極23bの厚さよりも小さいことが好ましい。正極23aもしくは負極23bの厚さにもよるが、金属板220の厚さは10~100μmであることが好ましい。20~50μmであることがより好ましい。金属板220の厚さが大きいと、電池の寸法が大きくなる。また、金属板220の厚さが小さいと、金属板の強度が低下する。
 突起221の頂部に貫通孔が設けられていて、開口部222を形成している。開口部222には、突起221と反対方向に伸びるカエシ223が設けられている。金属板220は、25μmの厚み(h1)を有するニッケル箔である。このニッケル箔に、構造上部L1および構造下部L2とからなる四角錐台状の突起221が形成されている。構造下部L2の縦横長さ(図3BのX、Y方向)はいずれも1mmであり、構造上部L1の縦横長さはいずれも0.5mmである。突起221を含む金属板220の厚み(h2)は0.5mmである。カエシ223の寸法(h3)は0.15mmである。
 第1保持部材22aは、電極群23と蓋部材24の外面23dに配されている。ここに外面23dは、電極群23の側面と蓋部材24の露出面のことである。より具体的にいえば、第1保持部材22aは、電極群23の側面と蓋部材24の外側面を含む周縁部に取り付けられている。第1保持部材22aは、貫通孔25および貫通孔25の近辺を除き、電極群23と蓋部材24を包むことにより、電池の主要構成要素となる電極群を一つの構造体とする役割を担う。このように電極群を一体化して電極ブロックとすることにより、積層電池の組み立ての簡素化を図ることができる。
 第1保持部材22aは、突起221が正極23aおよび蓋部材24に食い込んで、電極群23と蓋部材24の積層状態の形態を保持する。第1保持部材22aは、電極群23および蓋部材24の側面部分を覆う第1側面部22aaと、第1側面部22aaの端部から、蓋部材24の表面に沿って電極群23の貫通孔25の方向に折れ曲る第1折曲部abとを備えている。
 第2保持部材22bは、電極群の貫通孔25の内周面23eに配されている。第2保持部材22bは、突起221が負極23bおよび蓋部材24に食い込んで、電極群23と蓋部材24の積層状態の形態を保持する。第2保持部材22bは、内周面を覆う第2側面部22baと、第2側面部22baの端部から、蓋部材24の表面に沿って電極群23の外径方向に折れ曲がる第2折曲部22bbとを備えている。
 第1側面部22aaが正極23aの外周端部に食い込んで、第1保持部材22aと正極23aが電気的に接続される。また、第2側面部22baが負極23bの内周端部に食い込んで、第2保持部材22bと負極23bが電気的に接続される。一方、第1折曲部22abと第2折曲部22bbは接触しておらず、かつ、蓋部材24が絶縁性を有するので、第1保持部材22aと第2保持部材22bとは絶縁状態となっている。
 以上のように、第1保持部材22aおよび第2保持部材22bに突起221を設けることで、正極間および負極間の接合性が向上する。また、電池の充放電に伴い電極の体積に変化が生じても、突起が電極に食い込んでいるため、電極と集電端子となる保持部材との接触不良を抑制することが可能となる。これにより、サイクル寿命特性が改善される。
 以上において、正極および負極は袋セパレータに内包されているが、袋セパレータに内包されていない場合も実施可能である。ただし、負極の外縁が、セパレータにより覆われており、正極の孔の周縁が、セパレータにより覆われており、セパレータの外縁が、正極により覆われており、セパレータの孔の周縁が、負極により覆われている。このため、正極と負極とは、その外縁および孔の周縁において、セパレータにより確実に隔離されている。電極が変形しても、両電極が、その外縁部および孔の周縁部において接触することはない。また、セパレータが負極と集電体間に介在することがなく、正極と外装体の間に介在することもない。よって、セパレータの介在による接触不良を生じることがない。
[2-2.第2実施形態]
 以下各実施形態の説明において、特にことわらない限り、第1実施形態と共通する部分については、説明を省略する。正極および負極のいずれか一方に袋状セパレータを配してもよい。図4に示す第2実施形態の電極ブロック51は、正極23aが袋セパレータ23caに内包されており、負極23bは袋セパレータに内包されていない。このようにすれば、負極を袋セパレータに内包させる手間を省くことができ、コストを削減できる。図4において、負極23bが電極群23の上下端に配置されていて、負極23bの枚数が正極23aより多い。この電極ブロック51を用いて電池を構成すれば、正極規制の電池とすることができる。
[2-3.第3実施形態]
 図5に第3実施形態の電極ブロック52の概略断面図を示す。電極ブロック52において、第1保持部材27aと電極群23との間に金属板26aが介在している。また、第2保持部材27bと電極群23との間に金属板26bが介在している。本実施形態において、金属板26は、図3に示すような、少なくとも片面に複数の突起を有している。金属板26の突起221は電極23a,bに食い込み、電極同士の接続を確実にする。保持部材27と金属板26とは全面において接触するので、電極23a,bと保持部材27は電気的に確実に接続される。保持部材27は強度要素として作用する。このように、保持部材において、強度要素と電極同士の接続を果たす要素とを別個に設けることにより、より大容量の電極ブロックの製作が可能となる。
[2-4.第4実施形態]
 図6Aは、第4実施形態に係る電極ブロックを示す概略斜視図であり、図6Bは、概略断面図である。電極ブロック61は、電極群63と、蓋部材64と、複数の第1保持部材62とを備えている。第1保持部材62が、電極群63と蓋部材64の形状を保持する。
 正極63aは、外縁部分を除き袋状セパレータ63caに包まれている。また、負極63bは、中央の孔の周縁部分を除き袋状セパレータ63cbに包まれている。袋状セパレータ63caに包まれた正極63aと、袋状セパレータ63cbに包まれた負極63bとが、孔が互いに重なるように順次積み重ねられている。この電極群63を中央に孔のあいた蓋部材64が挟持している。電極群63と蓋部材64の中央の孔が連通して、全体として、電極ブロック61の貫通孔67を形成する。貫通孔67の内周面には第2保持部材65が配置されている。
 本実施形態の蓋部材64は、金属性である。蓋部材64に接触する電極は(図6Bでは負極63b)は、袋セパレータ(図6Bでは63cb)に内包されている。電極が袋セパレータに内包されておれば、蓋部材64とこれに面接する電極とは直接接触することがない。図6において、負極63bは蓋部材64を介して正極63aと短絡することがない。
 第1保持部材62は、短冊状の金属板である。第1保持部材62の一端が、一方の蓋部材64の側面に固定され、他端が、他方の蓋部材64の側面に固定されている。これらの固定は、例えば、スポット溶接によるが、ロウ付けであってもよい。このようにして、電極群63は第1保持部材によりその形状が保持され、電極ブロックとして一体構造を有する。
 蓋部材64の中央の孔の径は、負極63bの孔の径よりも大きく、電極群63に第2保持部材65を取り付けたとき、蓋部材64と第2保持部材65とが接触しない構造となっている。なお、蓋部材64の孔に、絶縁リング68を配置することが好ましい。絶縁リング68は、蓋部材64と第2保持部材65との接触を確実に防止して、電極間の短絡を防ぐ。
 蓋部材64を、絶縁性の円板としてもよい。この場合、蓋部材64と第1保持部材62は、接着剤で固定する。
[2-4-1.第4実施形態の変形例]
 図7は、図6Bの電極ブロックの変形例を示す概略断面図である。蓋部材64と電極群63の間に絶縁板69を配置すれば、電極群63の上端もしくは下端に、袋セパレータに内包されない負極63bを配置することができる。絶縁板69は、金属製の蓋部材64と負極63bが短絡することを防止する。また、図示するように、第2保持部材65を追加して、電極ブロックを構成してもよい。
 以上の実施形態おいて、電極群の外周面および貫通孔の内面のいずれか一方の面のみに図3に示す金属板を取り付けてもよい。また、金属板の突起は、電極群に接する面のみに設ける他、その反対面のみに設けてもよいし、両面に設けてもよい。
[2-5.電極ブロックの組立方法]
(1)外径が正極の外径より小さく、中央の孔の径が正極の孔の径より小さい2枚のセパレータで正極を挟み込み、セパレータが重なった箇所をヒーターで接合する。外径が負極の外径より大きく、中央の孔の径が負極の孔の径より大きい2枚のセパレータで負極を挟み込み、セパレータの重なった箇所をヒーターで接合する。
(2)蓋部材を2枚用意する。そして、正極の外径より内径が少し大きい筒の中心に、負極の穴径よりも直径が少し小さい丸棒を突き立てる。そして、一方の蓋部材の孔を、丸棒に通す。
(3)次に、袋セパレータに内包された負極および袋セパレータに内包された正極、を順次丸棒に通す。
(4)最後に他方の蓋部材を丸棒に通す。以上により、蓋部材に挟まれた電極群を製作する。
(5)次に、筒から蓋部材および電極群を丸棒と一緒に取り出し、蓋部材および電極群の外周面に第1保持部材を取り付ける。第1保持部材の軸方向の両端を、蓋部材の表面に沿って、丸棒の方向に90度折り曲げて、第1折曲部を形成する。第1側面部の両端に第1折曲部が位置することとなる。
(6)次に、蓋部材および電極群から、丸棒を抜きとる。そして、蓋部材および電極群の貫通孔の内面に第2保持部材を取り付ける。第2保持部材の軸方向の両端を、蓋部材の表面沿って外周方向に折り曲げて、第2側面部に続く第2折曲部を形成する。
(8)これにより、第1保持部材と第2保持部材とにより、電極群と一対の蓋部材が一体化された電極ブロックが製作される。なお、必要に応じて、第2保持部材を有さない電極ブロックを製作してもよい。
<3.積層電池の実施例>
[3-1.積層電池の構造]
 図8は本発明の電極ブロックを用いた積層電池の概略構成を示す斜視図である。図9は図8のIX-IX線に沿った断面を上半部に含む積層電池の側面図である。そして、図10は図9の積層電池の端部を拡大した断面図を、90度回転して示してある。積層電池31は、外装体32と、集電体33と、複数の放熱板34と、ケーシング35とを主要な構成として備えている。外装体32の内部には、複数の電極ブロック21が積層されて、収納されている。集電体33は、複数の電極ブロック21を、外装体32の軸方向(図9のX方向)に貫通する。複数の放熱板34は、中央の孔が外装体32の外周に接触するように、外装体32の周りに、X方向に沿って配されている。ケーシング35は、外装体32と集電体33と放熱板34と通しボルト46を、その内部に収納している。ケーシング35の軸方向の端部には、それぞれ接続部材となる、第1ブスバー36と第2ブスバー37が取り付けられている。
 電極ブロック21は積層して、円筒状のパイプ32aの内部に収納されている。パイプ32aの内径は電極ブロック21の外径より少し小さい。これにより、電極ブロック21をパイプ32aに押し込んだ際に、電極ブロック21の外周面とパイプ32aの内周面との接触状態が維持される。パイプ32aの両端開口部は円柱状の封止蓋32bで塞がれている。封止蓋32bには、その中央に集電体33が貫通する中央孔32baと、電解液注入のための注液孔32bbが設けられている(図11A参照)。注液孔32bbに、電解液注入座39が取り付けられるようになっており、電解液注入座39に設けた孔から外装体32の内部に電解液を注入するようになっている。
 封止蓋32bには、外周面に2つの溝32bcと、2つの溝32bcの間にこれらよりも浅い溝32bdが形成されている(図11B参照)。2つの溝32bcにはそれぞれOリング32cが配され、溝32bdには液体パッキン32dが配されている。これにより、電解液が電池の外部に漏れるのを防止する。液体パッキン32dは粘性の高い物質が好ましく、例えばアスファルトピッチを用いることができる。
 パイプ32aと封止蓋32bは、ニッケルめっきした鉄であり、導電性を有する。外装体32の内周面と、正極23aとが、第1保持部材22aを介して接触しているので、外装体32と正極23aは電気的に接続された状態となる。外装体32は、正極の集電端子として機能する。封止蓋32bと集電体33の間に絶縁スリーブ40が取り付けられており、封止蓋32を介して外装体32と集電体33が短絡するのを防止している(図10参照)。
 集電体33は、導電性の丸棒である。集電体33の外周面と負極23bとが、第2保持部材22bを介して接触する。両者は、電気的に接続された状態となる。集電体33は、負極集電端子として機能する。
 集電体33は、例えば図12Aに示すように、パイプ状の構造材33bと、その内部に収納された芯材33aとで構成してもよい。実施形態では、芯材33aは銅であり、構造材33bは鉄である。銅は導電性が高いが、アルカリに比較的弱い。鉄は、銅に比べて導電性は低いが、アルカリと反応して不動態被膜が形成されるので、アルカリに対して耐食性を有する。集電体33の表面にニッケルメッキ33cを施してもよい。ニッケルめっきも耐アルカリ性を有する。このような構造にすることにより、導電性が高く、アルカリに強い集電体となる。
 鉄製のパイプに銅線を圧入して図12Aに示すような集電体33を製作してもよい。また図12Bに示すように、構造材33bを芯材33aの周囲に沿わせて、絞りながら矢印の方向に芯材33aを移動させて、構造材33bをかしめて被覆してもよい。その後、表面にニッケルめっきをして、集電体33を製作してもよい。
 図10を用いて積層電池31の端部における構造を説明する。電極ブロック21を収納した外装体32の上側には、押板45が配されている。押板45の上側には、第1連結部材41が配されている。第1連結部材41の一方の面にはネジ穴41aが設けられていて、他方の面には取付穴41bが設けられている。取付穴41bに集電体33の端部が嵌め込まれている。ネジ穴41aには六角ボルト43が螺合して、第1ブスバー36が第1連結部材41に取り付けられている。これにより、集電体33と第1ブスバー36とが電気的に接続される。第1ブスバー36が負極端子として機能する。
 通しボルト46の上端部には、第2連結部材42が配されている。第2連結部材42の一方の面にネジ穴42aが設けられていて、他方の面には取付穴42bが設けられている。取付穴42bには、通しボルト46が嵌め込まれている。ネジ穴42aには、六角ボルト43が螺合して、第2ブスバー37が第2連結部材42に取り付けられている。これにより、外装体32と第2ブスバー37とが通しボルト46を介して電気的に接続される。第2ブスバー37が正極端子として機能する。
 押板45は、矩形板状の金属であり第1連結部材41が嵌合する孔45a、通しボルト46が貫通する孔45b、電解液注入座39が貫通する孔45cを備える。押板45と外装体32とは当接しており、押板は正極の集電端子として機能を有する。第1連結部材41と押板45の間は絶縁リング47が配されており、押板45と集電体33とは絶縁されている。
 押板45は、六角ボルト43による締め付け力を分散する役割を果たす。六角ボルト43により、電極ブロック21は軸方向(図10のX方向)に圧縮力を受ける。この圧縮力は、電極ブロックの充放電に伴う変形を防止するとともに、電極ブロック間の接触抵抗を小さくするように作用する。
 電解液注入座39は、中央に孔を有する細長い円柱状であり、外部から外装体32の内部に電解液が注入するための注液口である。電解液の注入後、栓38を取り付けて、外装体32の内部を密閉する。なお、積層電池の下端部も上端部と同様の構造を有している。
 放熱板34は、矩形の板状であり、中央に積層電池31が貫通する電池穴34aと、4隅に通しボルト46が貫通するボルト穴34bとを備える(例えば図8)。放熱板34は導電性であり、その材料は、表面をニッケルめっきしたアルミである。そして、電池穴34aが外装体32の表面と接触して、外装体32の熱が放熱板34に伝えられる。
 また、通しボルト46は導電性であり、その材料は、表面をニッケルめっきした鉄である。そして、ボルト穴34bが通しボルト46と接触して、外装体32と放熱板34と通しボルト46が電気的に接続される。なお、放熱板34および通しボルト46の材質は、鉄やアルミに限られず、その他の金属でもよい。
 また、ケーシング35は、断面が略正方形枠状の角筒35aと、角筒35aの両端部に略正方形板状の蓋部材35bとを備える。ケーシング35の内寸は、放熱板34の外寸と略同寸に作られている。蓋部材35bは、第1連結部材41が貫通する孔35cと、第2連結部材42が貫通する孔35dとを有する。
[3-3.ブスバーの構造および積層電池の接続構造]
 図13Aは本実施形態の第1ブスバー36を示す斜視図である。第1ブスバー36は、略三角形状の金属板であり、六角ボルト43が通過する3つの第1ボルト孔36aが設けられている。第1ブスバー36は、積層電池31の端部に取り付けて、隣り合う積層電池31を電気的に接続する。例えば、一方の積層電池31の第1連結部材41と、第1ブスバー36の1つの第1ボルト孔36aとを六角ボルト43で連結し、他方の積層電池31の第2連結部材42と、第1ブスバー36の残りの2つの第1ボルト孔36aとを六角ボルト43で連結すれば、2つの積層電池31が電気的に接続される。
 図13Bは第2ブスバー37を示す斜視図である。第2ブスバー37は、3つの第2ボルト孔37aを備えた細長い板状の金属板である。第2ブスバー37は、積層電池31の端部に取り付けて、隣り合う積層電池31を電気的に接続する。例えば、一方の積層電池31の第1連結部材41と、第2ブスバー37の1つの第2ボルト孔37aとを六角ボルト43で連結し、他方の積層電池31の第2連結部材42と、第2ブスバーの残りの2つの第2ボルト孔37aとを六角ボルト43で連結すれば、2つの積層電池31が電気的に接続される。
 第1ブスバー36と第2ブスバー37の形状は、本実施形態に限られない。なお、第1ブスバー36と第2ブスバー37の材料は、表面をニッケルめっきした鉄である。
 図14に第1ブスバー36と第2ブスバー37を用いて、複数の積層電池31を直列に接続した一例を示す。第1ブスバー36は、図14において積層電池31を縦方向に接続しやすい形状であり、第2ブスバー37は、図14において積層電池31を横方向に接続しやすい形状である。複数の積層電池31を用いて組電池を構成する場合に、ブスバーを適宜選択することにより、配置の自由度を確保することができる。例えば、第2ブスバー37を用いて、隣り合う電池の集電体33同士を接続するとともに、通しボルト46同士を接続すれば、積層電池を並列に接続することができる。
[3-3.積層電池の組立方法]
次に、電極ブロック21を用いた積層電池31の組立方法について説明する。
(1)複数の電極ブロック21を[2-5]に示す方法で製作する一方、外装体32のパイプ32aを作業台に固定する。
(2)パイプ32aの一方の端部開口部に封止蓋32bを取り付ける。他端の開口部から、複数の電極ブロック21を、外装体32に圧入する。
(3)次に、集電体33を電極ブロック21の中央の貫通孔25に圧入する。パイプ32aの他端の開口部に封止蓋32bを取り付ける。そして、外装体内部の空気抜きを行なった後、電解液を加えて密閉する。
(4)次に、外装体32に複数の放熱板34を取り付けた後、4本の通しボルト46を放熱板34に通して、第2保持部材42により固定する。放熱板を取り付けた外装体の側面と上下面を角筒35aで囲う。続いて、角筒35aの両端から押板45を圧入した後、第1連結部材41、第2連結部材42や、電解液注入座39などを取り付ける。そして、角筒35aの両端に蓋部材35bを取り付けた後、ブスバー36、37を取り付ける。
<4.作用および効果>
 第1実施形態の電極ブロックおよびこれを用いた積層電池を例にとり、その作用と効果について説明する。
[4-1.ブロック化の効果]
 第1実施形態の電極ブロック21において、電極群23が第1保持部材22aと第2保持部材22bとによりその形状が保持されているので、正極23a、負極23b、セパレータ23cがばらばらにならず一体となっている。したがって、電極群23を1つのブロックとして取り扱え、製作の作業性がよい。
 本実施形態の積層電池31によれば、電極ブロック21を、複数積層することにより、大容量の電池が容易に製作できる。
[4-2.金属板の効果]
 第1保持部材22aおよび第2保持部材22bは、電極群21に接する面に複数の突起221を有しているので、この突起221が電極に食い込むことで、正極と外装体間または負極と集電体間の接合が更に向上する。また、電池の充放電に伴い電極の体積に変化が生じても、突起が電極に食い込んでいるため、電極と端子間との接触不良を抑制することができる。これにより、サイクル寿命の特性が改善される。
[4-3.袋セパレータの効果]
 さらに、正極23aおよび負極23bは、それぞれ、袋状セパレータ23ca、23cbにより覆われているので、電池の運搬過程および組立過程で生じる電極の屑や異物は、袋状セパレータの内部に補足される。袋状セパレータは、電極の屑や異物が、電極間、および電極と集電端子の間に介在することを防ぎ、内部短絡を防止する。更に、セパレータの取り付け位置がずれて、正極23aと外装体32の間、および、負極23bと集電体33の間に、セパレータが介在して、接触不良が生じることを防ぐ。
[4-4.積層の効果]
 また、本実施形態の積層電池31は、複数の電極ブロック21が積層されて構成されている。具体的には、隣り合う電極ブロック21の第1保持部材22a同士が直接かつ外装体32を介して接続され、第2保持部材22b同士が直接かつ集電体33を介して接続されている。これにより、複数の電極ブロック21が電気的に並列に接続される。すなわち、本実施形態の積層電池31は、外装体32に複数の電極ブロック21を積層するだけで、隣り合う電極ブロック21のプラス端子同士、マイナス端子同士が電気的に接続される。したがって、複数の電極ブロック21は、構造的には簡単な直列接続であり、電気的には並列接続される。このようにして、積層電池の容量を簡単に大きくすることができる。
[4-5.冷却の効果]
 冷却性能について次の効果がある。正極23aは第1保持部材22aを介して外装体32の内周面に強く押し当てられ、正極23aと外装体32が密に接触している。したがって、正極23aで発生した熱は、第1保持部材22aを介して外装体32に伝えられる。一方、負極23bで発生した熱はセパレータ23cを介して正極23aに伝えられる。セパレータ23cは1枚であり薄いシートであるので、熱の伝導に大きな妨げとならない。このようにして、正極23aおよび負極23bで発生した熱は、それぞれ、小さな熱的抵抗で外装体32に伝えられ、積層電池31内部の温度上昇は抑制される。
 捲回タイプの電池は、電池中心部と電池ケース間に、熱を伝えにくいセパレータが幾重にも介在している。よって、電池ケースを冷却しても、電池内部の温度はあまり低下しない。18650型電池を例に取り、積層タイプの電池と捲回タイプの電池の総括熱伝達係数を比べてみれば、本発明の実施形態の積層電池は、従来の捲回電池比べて10万倍近く大きいことが判明した。
 本発明の積層電池は、電池内部の温度を電池表面の温度近くまで低く抑えることができる。電池表面の熱伝達が電池内部の熱伝達の律速となる。電池内部の温度を更に下げるには、電池表面の温度を下げる必要がある。そこで、外装体32の外周に複数の放熱板34を取り付けて、放熱面積を増やすことにより、更に冷却性能の向上を図った。積層電池のケーシングを、冷却ファンで空冷すると、電池内部の温度は51℃となる。一方、積層電池に放熱板を取り付けて自然空冷した場合、電池内部の温度は23℃に押さえられることが実験的に確認できた。
 図15に本実施形態の積層電池31の温度上昇試験の結果を示す。図において曲線(1)が充電電圧であり、曲線(2)が放電電圧であり、曲線(3)および(4)が、それぞれ、充電時および放電時の電池の内部温度である。図15に示すように、本実施形態の積層電池31は、充放電しても電池温度がほとんど変化しない。電池内部の温度上昇は抑えられる。なお、充放電初期に、電池温度が降下しているのは、室温が下がったためである。このように、従来の捲回電池に比べて、冷媒を流すためのパイプ等を電池内部に設ける必要がなく、コンパクトな構造で電池の温度上昇を抑えることができる。
<6.その他の実施形態>
 以上のとおり、図面を参照しながら本発明の好適な実施形態を説明したが、本発明の趣旨を逸脱しない範囲内で、種々の追加、変更または削除が可能である。
 本実施形態の積層電池は、外装体が正極集電体で、集電体が負極集電体の例を説明したが、外装体が負極集電体で、集電体が正極集電体となるように構成してもよい。また、本実施形態の電極群は、中央に円形の貫通孔を備える全体として円筒形状の例を説明したが、これに限られず、角筒形状の電極群でもよく、貫通孔は角形でもよい。本実施形態の積層電池の形状は、円柱形状の例を説明したが、角柱形状としてもよい。
 本実施形態の種々の部品の材質も、上記実施形態以外の材質としてもよい。例えば、金属製の部品は、表面をニッケルめっきした鉄に限られず、表面をニッケルめっきしていない金属でもよい。また、本実施形態は、主にニッケル水素電池を例に説明したが、その他の二次電池、例えばリチウムイオン電池、マンガン電池にも本発明を適用することもできる。
 本発明に係る積層電池は、産業用のみならず民生用の蓄電装置として好適に用いることができる。
11 積層電池
12 円筒缶(a:側部内面)
13 電極群(a:正極/b:負極/c:セパレータ)
14 絶縁板
15 外装体
16 蓋部材
17 集電体(a:軸部/b:止め部/c:正極端子)
18 軸受
21 電極ブロック
22 保持部材(a:側面部/b:折曲部)
23 電極群(a:正極/b:負極/c:セパレータ)
24 蓋部材
25 貫通孔
26 金属板
27 保持部材
31 積層電池
32 外装体(a:パイプ/b:封止蓋)
33 集電体(a:芯材/b:構造材/c:ニッケルめっき)
34 放熱板(a:電池穴/b:ボルト穴)
35 ケーシング(a:角筒/b:蓋部材)
36 第1ブスバー
37 第2ブスバー
38 栓
39 電解液注入座
40 絶縁スリーブ
41 第1連結部材
42 第2連結部材
43 六角ボルト
45 押板
46 通しボルト
47 絶縁リング
51 電極ブロック
52 電極ブロック
61 電極ブロック
62 第1保持部材
63 電極群(a:正極/b:負極/c:セパレータ)
64 蓋部材
65 第2保持部材
67 貫通孔
68 絶縁リング
69 絶縁板
220 金属板
221 突起
222 開口部
223 カエシ
 

Claims (19)

  1.  正極と、負極と、前記正極と前記負極との間に配されたセパレータと、が積層された電極群と、
     前記電極群の積層方向の両端に配した蓋部材と、
     前記電極群および前記蓋部材の外面に取り付けた第1保持部材と、
     を備え、
     前記第1保持部材は、前記正極および前記負極のいずれか一方の電極である第1電極と電気的に接続され、前記正極および前記負極のいずれか他方の電極である第2電極と電気的に接続されていない、電極ブロック。
  2.  前記第1電極、前記第2電極およびセパレータは、いずれも中央に孔を有しており、
     前記第2電極の外縁が、前記セパレータにより覆われており、
     前記第1電極の孔の周縁が、前記セパレータにより覆われており、
     前記セパレータの外縁が、前記第1電極により覆われており、
     前記セパレータの孔の周縁が、前記第2電極により覆われている、請求項1に記載の電極ブロック。
  3.  前記第1保持部材は、少なくとも片面に複数の突起を有している、請求項1に記載の電極ブロック。
  4.  前記第1保持部材と前記第1電極の間に、少なくとも片面に複数の突起を有する金属板が介在している、請求項1に記載の電極ブロック。
  5.  前記第1電極は、前記第1電極の外縁が袋状に形成された第1セパレータの外部に露出する態様で、前記第1セパレータに内包されている、請求項1に記載の電極ブロック。
  6.  前記第2電極は、前記第2電極の孔の内縁が袋状に形成された第2セパレータの外部に露出する態様で、前記第2セパレータに内包されている、請求項1に記載の電極ブロック。
  7.  前記第1保持部材は、当該電極ブロックの側面に当接する側面部と、前記側面部から前記蓋部材の中心方向に折れ曲がる折曲部とを有している、請求項1に記載の電極ブロック。
  8.  前記第1保持部材が、前記蓋部材の外側面に固定されている、請求項1に記載の電極ブロック。
  9.  前記蓋部材は中央に孔を有しており、
     前記正極、前記負極、前記セパレータおよび前記蓋部材の孔が、前記電極群および前記蓋部材の積層状態で貫通孔を形成し、
     前記貫通孔の内面に取り付けた第2保持部材を更に備え、
     前記第2保持部材は、前記第2電極と電気的に接続され、前記第1電極と電気的に接続されていない、請求項1に記載の電極ブロック。
  10.  前記第2保持部材は、少なくとも片面に複数の突起を有している、請求項9に記載の電極ブロック。
  11.  前記第2保持部材と前記第2電極の間に、少なくとも片面に複数の突起を有する金属板が介在している、請求項9に記載の電極ブロック。
  12.  請求項1~11のいずれか一に記載の電極ブロックと、
     前記電極ブロックを収納する筒状の外装体と、
     前記電極ブロックの前記貫通孔を貫通する集電体と、を備え、
     前記第1電極が前記外装体に電気的に接続されており、
    かつ、前記第2電極が前記集電体に電気的に接続されている、積層電池。
  13.  前記集電体は、
     導電性の芯棒と、
     前記芯棒の外周を覆う構造材と、
     を有する、請求項12に記載の積層電池。
  14.  前記外装体の開口部を塞ぐ封止蓋を更に備え、
     前記封止蓋は、その外周に2つの環状溝が形成されていて、
    前記環状溝にOリングが取り付けられていて、更に、前記環状溝の間にシール材を有する、請求項12に記載の積層電池。
  15.  複数の放熱板が、前記外装体の軸方向に沿って、前記外装体の外周面に取り付けられている、請求項12に記載の積層電池。
  16.  前記放熱板を貫通する通しボルトを、更に備える、請求項15に記載の積層電池。
  17.  請求項16に記載の複数の積層電池と、
     隣り合う前記積層電池の前記通しボルトを互いに接続する第1接続部材と、
     隣り合う前記積層電池の前記集電体を互いに接続する第2接続部材と、を備え、
     前記第1接続部材と前記第2接続部材とにより複数の前記積層電池が電気的に接続されている、組電池。
  18.  請求項16に記載の複数の積層電池と、
     隣り合う一方の前記積層電池の前記通しボルトと、他方の前記積層電池の前記集電体とを接続する第3接続部材と、を備え、
    前記第3接続部材により複数の前記積層電池が電気的に接続されている、組電池。
  19.  請求項12に記載の積層電池の組立方法であって、
     外径が正極の外径より小さく、中央の孔の径が前記正極の孔の径より小さい2枚の第1セパレータで前記正極を挟み込み、第1セパレータが重なった箇所をヒーターで接合するとともに、外径が前記負極の外径より大きく、中央の孔の径が前記負極の孔の径より大きい2枚の第2セパレータで前記負極を挟み込み、第2セパレータの重なった箇所をヒーターで接合して、袋セパレータに内包された正極および負極を製作する工程Aと、
     前記集電体の径と同径の丸棒に、前記袋セパレータに内包された負極と、前記袋セパレータに内包された正極とを順次挿入して、電極群を組み立てる工程Bと、
     前記丸棒の両端から中央に孔を有する蓋部材を挿入して前記電極群を挟持し、前記蓋部材に圧力をかけて前記電極群を圧縮する工程Cと、
     圧縮状態を保持したまま、前記電極群の外側面に第1保持部材を取り付けるとともに、前記蓋部材の表面に沿って前記第1保持部材を前記丸棒の方向に折り曲げて、前記電極群と前記蓋部材に前記第1保持部材を装着する工程Dと、
     圧縮状態を保持したまま前記丸棒を引き抜く工程Eと、
     前記電極群と前記蓋部材の中央の貫通孔の内面に第2保持部材を装着する工程Fと、
     前記工程A~Eを繰り返し、前記電極ブロックを複数組み立てる工程Gと、
     複数の前記電極ブロックを筒状の外装体の内部に圧入する工程Hと、
     前記外装体の開口部に封止蓋を取り付ける工程Iと、
     複数の前記電極ブロックの前記第2保持部材の内側に前記集電体を圧入する工程Jと、
     前記外装体の空気抜きを行う工程Kと、
     前記外装体の開口部両端に封止蓋を取付け、電池内部を密閉する工程Lと、
     前記外装体の内部に電解液を注入する工程Mと、
     を備える、積層電池の組立方法。
     
     
     
     
PCT/JP2013/082893 2012-12-16 2013-12-07 電極ブロック、積層電池および積層電池の組立方法 WO2014092031A1 (ja)

Priority Applications (11)

Application Number Priority Date Filing Date Title
RU2014147376A RU2613525C2 (ru) 2012-12-16 2013-12-07 Электродный блок, слоевой аккумулятор и способ изготовления такого аккумулятора
BR112014030120-4A BR112014030120B1 (pt) 2012-12-16 2013-12-07 Bloco de eletrodo, célula em camadas, conjuntos de bateria e método de montagem para célula em camadas
DK13862844.1T DK2871699T3 (da) 2012-12-16 2013-12-07 Elektrodeblok, lagdelt batteri og fremgangsmåde til samling af lagdelt batteri
PL13862844T PL2871699T3 (pl) 2012-12-16 2013-12-07 Blok elektrod, warstwowe ogniwo i sposób montażu dla warstwowego ogniwa
US14/402,500 US10388982B2 (en) 2012-12-16 2013-12-07 Electrode block, layered cell, and assembly method for layered cell
CN201380028039.8A CN104321920B (zh) 2012-12-16 2013-12-07 电极块、层叠电池和层叠电池的组装方法
KR1020147033831A KR101695868B1 (ko) 2012-12-16 2013-12-07 전극 블록, 적층 전지 및 적층 전지의 조립 방법
NO13862844A NO2871699T3 (ja) 2012-12-16 2013-12-07
ES13862844.1T ES2653266T3 (es) 2012-12-16 2013-12-07 Bloque de electrodos, batería estratificada, y método de ensamblaje para batería estratificada
EP13862844.1A EP2871699B1 (en) 2012-12-16 2013-12-07 Electrode block, layered battery, and assembly method for layered battery
JP2014542037A JP5691048B2 (ja) 2012-12-16 2013-12-07 電極ブロック、積層電池および積層電池の組立方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JPPCT/JP2012/082586 2012-12-16
PCT/JP2012/082586 WO2014091635A1 (ja) 2012-12-16 2012-12-16 積層電池および積層電池の組立方法

Publications (1)

Publication Number Publication Date
WO2014092031A1 true WO2014092031A1 (ja) 2014-06-19

Family

ID=50933950

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2012/082586 WO2014091635A1 (ja) 2012-12-16 2012-12-16 積層電池および積層電池の組立方法
PCT/JP2013/082893 WO2014092031A1 (ja) 2012-12-16 2013-12-07 電極ブロック、積層電池および積層電池の組立方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/082586 WO2014091635A1 (ja) 2012-12-16 2012-12-16 積層電池および積層電池の組立方法

Country Status (14)

Country Link
US (1) US10388982B2 (ja)
EP (1) EP2871699B1 (ja)
JP (1) JP5691048B2 (ja)
KR (1) KR101695868B1 (ja)
CN (1) CN104321920B (ja)
BR (1) BR112014030120B1 (ja)
DK (1) DK2871699T3 (ja)
ES (1) ES2653266T3 (ja)
HU (1) HUE035631T2 (ja)
NO (1) NO2871699T3 (ja)
PL (1) PL2871699T3 (ja)
PT (1) PT2871699T (ja)
RU (1) RU2613525C2 (ja)
WO (2) WO2014091635A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101732698B1 (ko) * 2014-11-17 2017-05-04 에스케이이노베이션 주식회사 이차 전지 및 이를 포함하는 이차 전지 모듈
WO2017145378A1 (ja) * 2016-02-26 2017-08-31 エクセルギー・パワー・システムズ株式会社 バイポーラ電池
JP2017527950A (ja) * 2014-08-21 2017-09-21 エルジー・ケム・リミテッド 冷却性能が改善された電池セル
JP2017174519A (ja) * 2016-03-21 2017-09-28 エクセルギー・パワー・システムズ株式会社 電池用電極、電池用電極の製造方法および積層電池
JP2017220371A (ja) * 2016-06-08 2017-12-14 トヨタ自動車株式会社 積層電池
JP2017224401A (ja) * 2016-06-13 2017-12-21 トヨタ自動車株式会社 円筒形積層電池
JP2018206659A (ja) * 2017-06-07 2018-12-27 エクセルギー・パワー・システムズ株式会社 蓄電デバイス
JP2018206575A (ja) * 2017-06-02 2018-12-27 エクセルギー・パワー・システムズ株式会社 蓄電デバイス
WO2021144928A1 (ja) * 2020-01-16 2021-07-22 川崎重工業株式会社 蓄電素子およびその製造方法

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102040256B1 (ko) * 2015-08-31 2019-11-04 주식회사 엘지화학 케이블형 이차 전지
JP6414577B2 (ja) * 2016-09-16 2018-10-31 トヨタ自動車株式会社 積層型電池
US10396315B2 (en) * 2016-12-30 2019-08-27 Microsoft Technology Licensing, Llc Hollow-core rolled-electrode battery cell
US10476049B2 (en) * 2017-07-17 2019-11-12 Robert Bosch Battery Systems Llc Mechanically fastened through-wall current collector
JP6965717B2 (ja) * 2017-12-13 2021-11-10 トヨタ自動車株式会社 電池パックの製造方法
RU2675594C1 (ru) * 2017-12-29 2018-12-20 Публичное акционерное общество "Сатурн", (ПАО "Сатурн") Герметичный контейнер литий-ионной аккумуляторной батареи для космического аппарата
TWI645601B (zh) * 2018-02-14 2018-12-21 輝能科技股份有限公司 極層複合材料
CN111668396B (zh) * 2020-06-10 2024-06-18 宜兴市惠华复合材料有限公司 一种整体式锂电池
JP7391799B2 (ja) * 2020-08-27 2023-12-05 株式会社東芝 二次電池、電池パック、車両及び定置用電源
JP3239502U (ja) * 2020-08-31 2022-10-20 中山市小万能源科技有限公司 電池
DE102021118808B3 (de) 2021-07-21 2022-09-08 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Elektrochemische Pouch-Zelle
CN115036648B (zh) * 2022-08-15 2022-11-22 江苏时代新能源科技有限公司 电极组件、电池单体、电池及用电装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57500854A (ja) * 1980-06-13 1982-05-13
JP2000048854A (ja) 1998-07-31 2000-02-18 Toshiba Battery Co Ltd 円筒型二次電池
JP2002198044A (ja) 2000-12-27 2002-07-12 Yuasa Corp 水素吸蔵合金系活物質、水素吸蔵合金電極およびニッケル−水素蓄電池
WO2012173091A1 (ja) * 2011-06-15 2012-12-20 国立大学法人 東京大学 リバーシブル燃料電池、リバーシブル燃料電池システム、リバーシブル燃料電池モジュール、および、リバーシブル燃料電池バンク
WO2013042640A1 (ja) * 2011-09-21 2013-03-28 エクセルギー工学研究所株式会社 積層電池およびこれを用いた組電池
WO2013094383A1 (ja) * 2011-12-19 2013-06-27 エクセルギー工学研究所株式会社 積層電池、積層電池を含む組電池、および、積層電池の組立て方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10106514A (ja) 1996-09-26 1998-04-24 Nissan Motor Co Ltd 円筒形二次電池およびこれを用いた組電池
KR100905391B1 (ko) * 2004-12-24 2009-06-30 주식회사 엘지화학 이차전지 모듈의 단자 연결부재
KR101106455B1 (ko) 2005-09-06 2012-01-17 삼성에스디아이 주식회사 원통형 리튬 이온 이차 전지
JP4438784B2 (ja) * 2006-08-25 2010-03-24 トヨタ自動車株式会社 蓄電装置
KR101223081B1 (ko) * 2006-09-07 2013-01-17 히다치 막셀 가부시키가이샤 전지용 세퍼레이터 및 리튬 2차 전지
JP2008117568A (ja) 2006-11-01 2008-05-22 Fdk Energy Co Ltd 筒型電池
KR101329636B1 (ko) * 2008-04-11 2013-11-14 가와사키 쥬코교 가부시키가이샤 밀폐식 각형 전지 및 이것을 사용한 전지 모듈
KR101039517B1 (ko) 2008-06-26 2011-06-08 주식회사 엘지화학 전지셀 접속부재
KR101107075B1 (ko) * 2009-10-28 2012-01-20 삼성에스디아이 주식회사 이차 전지
JP2011151006A (ja) * 2009-12-25 2011-08-04 Sanyo Electric Co Ltd バッテリシステムおよびそれを備えた電動車両
KR101161154B1 (ko) * 2010-10-20 2012-06-29 지에스나노텍 주식회사 기판 내장형 단자를 포함하는 박막전지 및 이를 이용하여 제조된 적층형 박막전지 모듈
US8974949B2 (en) * 2011-04-07 2015-03-10 Cardiac Pacemakers, Inc. Electrical insulator shaped to conform to power source electrodes
US10446822B2 (en) * 2011-10-24 2019-10-15 Advanced Battery Concepts, LLC Bipolar battery assembly

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57500854A (ja) * 1980-06-13 1982-05-13
JP2000048854A (ja) 1998-07-31 2000-02-18 Toshiba Battery Co Ltd 円筒型二次電池
JP2002198044A (ja) 2000-12-27 2002-07-12 Yuasa Corp 水素吸蔵合金系活物質、水素吸蔵合金電極およびニッケル−水素蓄電池
WO2012173091A1 (ja) * 2011-06-15 2012-12-20 国立大学法人 東京大学 リバーシブル燃料電池、リバーシブル燃料電池システム、リバーシブル燃料電池モジュール、および、リバーシブル燃料電池バンク
WO2013042640A1 (ja) * 2011-09-21 2013-03-28 エクセルギー工学研究所株式会社 積層電池およびこれを用いた組電池
WO2013094383A1 (ja) * 2011-12-19 2013-06-27 エクセルギー工学研究所株式会社 積層電池、積層電池を含む組電池、および、積層電池の組立て方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2871699A4

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10249919B2 (en) 2014-08-21 2019-04-02 Lg Chem, Ltd. Battery cell having improved cooling performance
JP2017527950A (ja) * 2014-08-21 2017-09-21 エルジー・ケム・リミテッド 冷却性能が改善された電池セル
KR101732698B1 (ko) * 2014-11-17 2017-05-04 에스케이이노베이션 주식회사 이차 전지 및 이를 포함하는 이차 전지 모듈
JPWO2017145378A1 (ja) * 2016-02-26 2018-03-08 エクセルギー・パワー・システムズ株式会社 バイポーラ電池
WO2017145378A1 (ja) * 2016-02-26 2017-08-31 エクセルギー・パワー・システムズ株式会社 バイポーラ電池
US10720629B2 (en) 2016-02-26 2020-07-21 Exergy Power Systems, Inc. Bipolar battery
JP2017174519A (ja) * 2016-03-21 2017-09-28 エクセルギー・パワー・システムズ株式会社 電池用電極、電池用電極の製造方法および積層電池
JP2017220371A (ja) * 2016-06-08 2017-12-14 トヨタ自動車株式会社 積層電池
JP2017224401A (ja) * 2016-06-13 2017-12-21 トヨタ自動車株式会社 円筒形積層電池
JP2018206575A (ja) * 2017-06-02 2018-12-27 エクセルギー・パワー・システムズ株式会社 蓄電デバイス
JP2018206659A (ja) * 2017-06-07 2018-12-27 エクセルギー・パワー・システムズ株式会社 蓄電デバイス
WO2021144928A1 (ja) * 2020-01-16 2021-07-22 川崎重工業株式会社 蓄電素子およびその製造方法
JPWO2021144928A1 (ja) * 2020-01-16 2021-07-22
JP7407208B2 (ja) 2020-01-16 2023-12-28 カワサキモータース株式会社 蓄電素子およびその製造方法

Also Published As

Publication number Publication date
PL2871699T3 (pl) 2018-04-30
BR112014030120A2 (pt) 2017-06-27
EP2871699B1 (en) 2017-11-08
EP2871699A1 (en) 2015-05-13
BR112014030120B1 (pt) 2021-06-15
RU2014147376A (ru) 2017-01-23
JPWO2014092031A1 (ja) 2017-01-12
ES2653266T3 (es) 2018-02-06
PT2871699T (pt) 2017-12-20
CN104321920B (zh) 2017-11-10
US20150132637A1 (en) 2015-05-14
HUE035631T2 (en) 2018-05-28
NO2871699T3 (ja) 2018-04-07
CN104321920A (zh) 2015-01-28
EP2871699A4 (en) 2016-06-22
US10388982B2 (en) 2019-08-20
JP5691048B2 (ja) 2015-04-01
WO2014091635A1 (ja) 2014-06-19
KR101695868B1 (ko) 2017-01-13
RU2613525C2 (ru) 2017-03-16
DK2871699T3 (da) 2018-01-29
KR20150082112A (ko) 2015-07-15

Similar Documents

Publication Publication Date Title
JP5691048B2 (ja) 電極ブロック、積層電池および積層電池の組立方法
US8765291B2 (en) Rechargeable battery
KR100627374B1 (ko) 이차 전지
TWI508350B (zh) 積層電池、包含積層電池之電池組、及積層電池之組合方法
JP4211769B2 (ja) 自動車用電池
US20050233212A1 (en) Housing for electrochemical devices
WO2013042640A1 (ja) 積層電池およびこれを用いた組電池
US8450007B2 (en) Stacked secondary battery
WO2013179811A1 (ja) 継手構造、接合方法、二次電池、および、二次電池の製造方法
JP2009087612A (ja) 積層式電池
US20150207128A1 (en) Square secondary battery
US20050196665A1 (en) Battery, battery pack, method for manufacturing the battery, and method for manufacturing the battery pack
JP2005123069A (ja) 組電池
US8758928B2 (en) Conductive structure for an electrode assembly of a lithium secondary battery
JP2010118625A (ja) 電極接続具、それを備えた蓄電装置
JP6959514B2 (ja) 蓄電モジュール、蓄電モジュールの製造方法、及び、蓄電装置の製造方法
JP2010245221A (ja) キャパシタ及びこれを用いたキャパシタ装置
JP2004022339A (ja) 電池
JP2010027494A (ja) 蓄電デバイスおよびその製造方法
US20230420772A1 (en) Battery
US20220278402A1 (en) Rectangular secondary battery
US20220352556A1 (en) Power storage element and method for manufacturing same
JP4725022B2 (ja) 電池
JP3738198B2 (ja) 電池
JP2006019214A (ja) ラミネート外装電池装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2014542037

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13862844

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2013862844

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14402500

Country of ref document: US

Ref document number: 2013862844

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20147033831

Country of ref document: KR

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112014030120

Country of ref document: BR

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2014147376

Country of ref document: RU

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112014030120

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20141202