WO2014091628A1 - 光源位置検出装置、光源追尾装置、制御方法およびプログラム - Google Patents

光源位置検出装置、光源追尾装置、制御方法およびプログラム Download PDF

Info

Publication number
WO2014091628A1
WO2014091628A1 PCT/JP2012/082550 JP2012082550W WO2014091628A1 WO 2014091628 A1 WO2014091628 A1 WO 2014091628A1 JP 2012082550 W JP2012082550 W JP 2012082550W WO 2014091628 A1 WO2014091628 A1 WO 2014091628A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
light source
detected
sensor
imaging device
Prior art date
Application number
PCT/JP2012/082550
Other languages
English (en)
French (fr)
Inventor
真一 猪狩
一彦 菊池
俊夫 塩見
英生 石川
Original Assignee
独立行政法人産業技術総合研究所
株式会社オプトリサーチ
ソフトワークス株式会社
石川産業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 独立行政法人産業技術総合研究所, 株式会社オプトリサーチ, ソフトワークス株式会社, 石川産業株式会社 filed Critical 独立行政法人産業技術総合研究所
Priority to PCT/JP2012/082550 priority Critical patent/WO2014091628A1/ja
Priority to EP12889840.0A priority patent/EP2933601B1/en
Priority to JP2014551824A priority patent/JP6135871B2/ja
Priority to US14/652,077 priority patent/US9411036B2/en
Publication of WO2014091628A1 publication Critical patent/WO2014091628A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S3/00Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
    • G01S3/78Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using electromagnetic waves other than radio waves
    • G01S3/782Systems for determining direction or deviation from predetermined direction
    • G01S3/785Systems for determining direction or deviation from predetermined direction using adjustment of orientation of directivity characteristics of a detector or detector system to give a desired condition of signal derived from that detector or detector system
    • G01S3/786Systems for determining direction or deviation from predetermined direction using adjustment of orientation of directivity characteristics of a detector or detector system to give a desired condition of signal derived from that detector or detector system the desired condition being maintained automatically
    • G01S3/7861Solar tracking systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C1/00Measuring angles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S20/00Supporting structures for PV modules
    • H02S20/30Supporting structures being movable or adjustable, e.g. for angle adjustment
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S20/00Supporting structures for PV modules
    • H02S20/30Supporting structures being movable or adjustable, e.g. for angle adjustment
    • H02S20/32Supporting structures being movable or adjustable, e.g. for angle adjustment specially adapted for solar tracking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/70Circuitry for compensating brightness variation in the scene
    • H04N23/71Circuitry for evaluating the brightness variation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/70Circuitry for compensating brightness variation in the scene
    • H04N23/73Circuitry for compensating brightness variation in the scene by influencing the exposure time
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/70Circuitry for compensating brightness variation in the scene
    • H04N23/75Circuitry for compensating brightness variation in the scene by influencing optical camera components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S30/00Arrangements for moving or orienting solar heat collector modules
    • F24S30/40Arrangements for moving or orienting solar heat collector modules for rotary movement
    • F24S30/45Arrangements for moving or orienting solar heat collector modules for rotary movement with two rotation axes
    • F24S30/452Vertical primary axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S50/00Arrangements for controlling solar heat collectors
    • F24S50/20Arrangements for controlling solar heat collectors for tracking
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Definitions

  • the present invention relates to a light source position detection device, a light source tracking device, a control method, and a program.
  • a sun tracking sensor using a 4-split photodiode, an optical position sensor including one element, or the like is known.
  • sunlight is imaged on the 4-divided photodiode, and the processing circuit outputs an X, Y coordinate position signal.
  • Automatic tracking of the sun is enabled by using the X, Y coordinate position signal output by the sun tracking sensor.
  • an error of ⁇ 0.1 ° by the sun tracking sensor is integrated because the light is collected by the funnel lens, so that the light emitted from the sun can be accurately measured by the solar cell
  • the cells can not be irradiated and conversion efficiency is reduced.
  • the light collected by the Fresnel lens may be collected at a position different from that of the solar battery cell, which may damage the device due to an abnormal temperature rise.
  • it is required to further improve the accuracy of detecting the position of the sun.
  • the position of the sun decreases depending on the hiding condition, and there is a problem that the position of the sun can not be detected.
  • the position of the sun can be detected to a certain extent depending on the degree of hiding of the sun, the light emitted from the sun is scattered by the clouds, so that the light quantity is detected even in parts other than the sun. Therefore, when the sun hides in the cloud, there is a problem that the position of the sun can not be detected with high accuracy due to the influence of the light quantity scattered by the cloud.
  • the present invention has been made in view of the above-described problems, and an object thereof is to detect the position of a light source with high accuracy. In addition, it is an object of the present invention to detect the position of a light source with high accuracy even if the light source is hidden by a cloud, for example.
  • a light collecting portion for collecting light emitted from the light source to be detected
  • an image pickup device for receiving the light collected by the light collecting portion, and light received by the image pickup device
  • a control unit that detects the position of the light source to be detected based on light reception information for each pixel, and the control unit changes the shutter speed of the imaging element according to the amount of light emitted from the light source to be detected And adjusting the amount of light received by the image sensor.
  • a light source tracking device comprises a light source sensor having a light collecting portion for collecting light emitted from a light source to be detected and an image pickup element for receiving the light collected by the light collector; A control unit that detects the position of the detection target light source based on the received light reception information for each pixel, and outputs a drive signal based on the detected position of the detection target light source; and the light source sensor based on the drive signal Moving the light source to track the light source to be detected, and the control unit changes the shutter speed of the image pickup element according to the amount of light emitted from the light source to be detected, and the image pickup element receives light.
  • a control method of a light source tracking device includes a light collecting unit for collecting light emitted from a light source to be detected, an image pickup device for receiving light collected by the light collecting unit, and light receiving by the image pickup device.
  • a control unit for detecting the position of the detection target light source based on received light reception information for each pixel, and the control unit is configured to control the amount of light emitted from the detection target light source.
  • the shutter speed of the image pickup device is changed according to the above to adjust the amount of light received by the image pickup device.
  • a program includes a light collecting unit for collecting light emitted from a light source to be detected, an image pickup device for receiving the light collected by the light collecting unit, and each pixel received by the image pickup device.
  • a program for controlling a light source position detection apparatus comprising: a control unit that detects the position of the detection target light source based on light reception information, the control unit corresponding to the amount of light emitted from the detection target light source.
  • the program is a program for changing the shutter speed of the image pickup device and adjusting the amount of light received by the image pickup device.
  • the position of the light source can be detected with high accuracy.
  • the position of the light source can be detected with high accuracy even when the light source is hidden by a cloud, for example.
  • FIG. 1 is a view showing an example of an appearance configuration of a light source tracking device 10.
  • the light source tracking device 10 has a base 11, a first drive stand 12, a second drive stand 13, a light source sensor 30, and the like.
  • the base 11 is, for example, grounded to the ground, and rotatably supports the first drive base 12 about a vertical axis (v-axis).
  • the first drive stand 12 is rotated about a vertical axis (v-axis) by a direction tracking motor 26 described later.
  • the first drive stand 12 rotatably supports the second drive stand 13 about a horizontal axis (h axis).
  • the second drive stand 13 is rotated about a horizontal axis (h axis) by an elevation angle tracking motor 28 described later.
  • the light source sensor 30 is attached to the second drive stand 13 via the reference surface 13 a of the second drive stand 13.
  • a mounting portion 14 for mounting a pyranometer, a sun photometer, or the like is installed on the second drive stand 13.
  • the light source tracking device 10 can direct the light source sensor 30 in an arbitrary direction by rotating the first drive base 12 and the second drive base 13 respectively.
  • FIG. 2 is a diagram showing an example of the internal configuration of the light source tracking device 10.
  • the light source tracking device 10 includes a CPU 21, a memory 22, a clock unit 23, a power supply unit 24, a drive unit controller 25, an azimuth tracking motor 26, a driver 27, an elevation tracking motor 28, a driver 29, and a light source sensor 30.
  • the light source tracking device 10 performs processing of detecting the position of the light source and processing of tracking the light source.
  • the CPU 21, the memory 22, the clock unit 23, the power supply unit 24, and the light source sensor 30 function as a light source position detection device 41 that detects the position of the light source.
  • the CPU 21 is an example of a control unit, and controls the entire light source tracking device 10.
  • the CPU 21 executes a program stored in the memory 22 to perform processing for detecting the position of the light source and processing for causing the drive unit controller 25 to track the light source based on the detected position of the light source.
  • the memory 22 includes nonvolatile memories such as ROM and EEPROM, volatile memories such as RAM, and the like.
  • the non-volatile memory stores programs executed by the CPU 21 and thresholds and tables used when the CPU 21 performs processing. Volatile memory is used as a work memory of the CPU 21.
  • the clock unit 23 clocks the current date and the current time.
  • the CPU 21 obtains the current date and time information from the timekeeping unit 23 to determine the approximate amount of light emitted from the sun in the case of fine weather (when the sun is not hidden by clouds). Can.
  • the power supply unit 24 supplies power for driving each component of the light source tracking device 10.
  • the power supply unit 24 may be an AC power supply that receives power from a power plug, or may be a rechargeable battery or the like.
  • the drive unit controller 25 moves the light source sensor 30 based on an instruction from the CPU 21. Specifically, the drive unit controller 25 controls the direction in which the light source sensor 30 points by driving the azimuth tracking motor 26 and the elevation angle tracking motor 28 via the driver 27 and the driver 29.
  • the azimuth tracking motor 26 is an example as a drive unit, and as shown in FIG. 1, rotates the first drive base 12 about the vertical axis.
  • the elevation angle tracking motor 28 is an example as a drive unit, and as shown in FIG. 1, rotates the second drive base 13 about a horizontal axis.
  • the light source sensor 30 attached to the second drive base 13 also rotates about the horizontal axis.
  • the light source sensor 30 receives the light emitted from the sun and transmits the received light reception information to the CPU 21.
  • the light source sensor 30 also adjusts the amount of light received from the sun based on an instruction from the CPU 21.
  • an external device 40 such as a personal computer (PC) can be connected to the light source tracking device 10, for example.
  • the user can directly instruct the light source tracking device 10 via the external device 40, or rewrite a program, a threshold, a table and the like stored in the memory 22.
  • the driving device for driving the direction of the light receiving surface of the solar cell panel as the external device 40 It can be connected.
  • the light source tracking device 10 may have an input unit or the like that directly receives an instruction from the user.
  • the light source sensor 30 includes a housing 31, a condenser lens 32, an imaging device 33, a light reduction filter 34, a visible light blocking / infrared light transmitting filter 35, and the like.
  • the housing 31 is formed, for example, in a hollow shape, and supports the condenser lens 32, the image sensor 33, the light reduction filter 34, and the visible light blocking / infrared light transmitting filter 35 at predetermined positions.
  • Reference surfaces 31 a and 31 b are formed on the outer surface of the housing 31.
  • the reference surface 31 a is a surface along the direction orthogonal to the light receiving surface 33 a of the imaging device 33.
  • the reference surface 31 b is a surface parallel to the light receiving surface 33 a of the image sensor 33.
  • the light source sensor 30 can be attached to the second drive base 13 with high accuracy by attaching the light source sensor 30 to the second drive base 13 via the reference surface 31 a and the reference surface 31 b of the housing 31. Further, by forming the reference surface 31a and the reference surface 31b, the light source tracking device can be accurately attached to other light source tracking devices.
  • the condensing lens 32 functions as a condensing part which condenses the light irradiated from the sun on the light receiving surface 33 a of the imaging device 33.
  • the imaging device 33 may be, for example, a charge coupled device (CCD) or a complementary device (CMOS). Metal-Oxide Semiconductor) or the like can be used.
  • the image sensor 33 may be of any suitable size and number of pixels depending on the light source.
  • the imaging device 33 receives the light collected by the collecting lens 32 for each pixel, converts the received light into a charge and stores the light, and converts the stored charge into an electric signal.
  • the imaging device 33 transmits the converted electrical signal to the CPU 21 as light reception information.
  • the light reception information includes, for example, luminance information (or gradation information) of, for example, 0 to 255 which is increased or decreased according to the amount of light received for each pixel.
  • the luminance “0” is the case where light is not received and the charge is not accumulated
  • the luminance “255” is the case where light is received and the charge is accumulated up to the saturation amount. Since the CPU 21 can acquire luminance information for each pixel, the CPU 21 can detect at which position of the light receiving surface 33 a of the imaging device 33 light is collected.
  • the imaging device 33 has a so-called electronic shutter mechanism.
  • the image sensor 33 can adjust the amount of received light by changing the charge accumulation time by lengthening or shortening it.
  • the process of changing the time for accumulating the charge corresponds to the process of changing the shutter speed.
  • the change of the shutter speed is performed based on an instruction of the CPU 21. For example, when the pixel of the luminance “255” is included in the luminance information received by the CPU 21, it is difficult to detect the accurate position of the light source because the amount of charge saturation has been reached.
  • the CPU 21 can acquire light reception information suitable for detecting the position of the light source by increasing the shutter speed of the imaging element 33 (shortening the charge accumulation time).
  • the CPU 21 can acquire light reception information suitable for detecting the position of the light source by slowing the shutter speed of the imaging element 33 (increasing the charge accumulation time).
  • the light reduction filter 34 is a filter that reduces the amount of light that is collected by the collection lens 32 and emitted to the imaging device 33.
  • the amount of light emitted from the sun is the largest (for example, in the case of fine weather in summer)
  • it is a filter that reduces the amount of light accumulated in the image sensor 33 so as not to reach the saturation amount.
  • the light reduction filter is not limited to the light reduction filter 34, and may be a heat ray cut filter.
  • the visible light blocking / infrared light transmitting filter 35 is a filter that blocks visible light in light emitted from the sun and transmits infrared light.
  • the visible light blocking / infrared light transmission filter 35 is an infrared light imaging means for focusing infrared light on the light receiving surface 33 a of the imaging element 33 without focusing visible light on the light receiving surface 33 a of the imaging element 33
  • the sun is hidden by clouds, light emitted from the sun is diffused by the clouds. Even if diffused visible light is received, it is difficult to accurately detect the position of the sun.
  • infrared light since infrared light has a long wavelength compared with visible light, it is hard to be scattered by a cloud, and the property which permeate
  • the visible light blocking / infrared light transmitting filter 35 blocks the visible light diffused by the cloud, and causes the light receiving surface 33 a of the imaging element 33 to emit the infrared light transmitted through the cloud.
  • the imaging device 33 also has a spectral sensitivity of infrared light on the longer wavelength side than visible light, the CPU 21 detects the position of the sun from the infrared light even when the sun is hidden by a cloud. It is possible to acquire light reception information suitable for
  • the flowchart of FIG. 4 is realized by the CPU 21 executing a program stored in the memory 22.
  • the light emitted from the sun is assumed to be condensed at any position on the light receiving surface 33 a of the image sensor 33 of the light source sensor 30.
  • step S10 the CPU 21 acquires the light quantity of the light source via the imaging device 33. Specifically, the CPU 21 instructs the imaging element 33 to capture an image at a predetermined shutter speed stored in advance in the memory 22.
  • the imaging device 33 receives the light of the sun irradiated through the condenser lens 32, the dark filter 34, and the visible light blocking / infrared light transmitting filter 35 at the instructed shutter speed, and transmits the received light information to the CPU 21. Do.
  • step S11 the CPU 21 changes the shutter speed of the image sensor 33 according to the amount of light emitted from the sun, and adjusts the amount of light received by the image sensor 33. Specifically, the CPU 21 determines the shutter speed based on the luminance information among the light reception information received from the image sensor 33 in step S10.
  • the memory 22 stores, for example, a table in which the maximum value of brightness and the optimum shutter speed according to the maximum value of brightness are associated. In this table, for example, when the maximum value of the brightness is close to "255" (when the brightness is large), a fast shutter speed is associated, and when the maximum value of the brightness is close to "0" (when the brightness is small) A slow shutter speed is associated.
  • the CPU 21 obtains the maximum value of the brightness and refers to the table stored in the memory 22 to determine the shutter speed associated with the maximum value of the brightness. Therefore, when the amount of light emitted from the sun is large, the maximum value of the luminance is increased, and thus the CPU 21 determines a high shutter speed. On the other hand, when the sun is hidden by clouds and the amount of light emitted from the sun is small, the maximum value of the luminance is small, and thus the CPU 21 determines a slow shutter speed.
  • a brightness average value may be used.
  • the CPU 21 determines that the shutter speed is high when the average luminance value of the pixels is large, and determines that the shutter speed is low when the average luminance value of the pixels is small. For example, the CPU 21 determines, as the shutter speed, the shutter speed so that the maximum value of the luminance is larger than a predetermined threshold A used in step S13 described later and is smaller than 255. Is preferred.
  • step S12 the CPU 21 instructs the image sensor 33 to capture an image at the shutter speed determined in step S11.
  • the image pickup device 33 receives the light of the sun irradiated through the condenser lens 32, the light reduction filter 34, and the visible light blocking / infrared light transmitting filter 35 at the instructed shutter speed, and the light receiving information including the luminance information Is sent to the CPU 21.
  • step S13 the CPU 21 executes clipping processing to cut out part of the luminance information received from the imaging device 33.
  • FIG. 5A is a view showing a subject image formed on the light receiving surface 33 a of the image sensor 33 and in which a part of the sun is hidden by clouds.
  • the horizontal direction is taken as the x axis
  • the vertical direction as the y axis.
  • 5 (b) and 5 (c) are graphs showing luminance information of pixels along line II in FIG. 5 (a).
  • FIG. 5B and FIG. 5C since the shutter speed is adjusted to the optimum at step S11 described above, luminance information suitable for detecting the position of the light source is acquired.
  • FIG. 5B and FIG. 5C since the shutter speed is adjusted to the optimum at step S11 described above, luminance information suitable for detecting the position of the light source is acquired.
  • FIG. 5B and FIG. 5C since the shutter speed is adjusted to the optimum at step S11 described above, luminance information suitable for detecting the position of the
  • FIG. 5B shows luminance information in the case of forming an image including visible light without using the visible light blocking / infrared light transmission filter 35.
  • FIG. 5 (b) among the light emitted from the sun, visible light is scattered by the clouds, so that high brightness appears even in the cloud portions. Therefore, although the actual energy center of gravity of the sun is at the position of the arrow T, the center of gravity is detected as the position of the arrow F1 due to the scattering of visible light.
  • FIG. 5C shows luminance information when the visible light is blocked and the infrared light is transmitted and imaged by using the visible light blocking / infrared light transmitting filter 35. As shown in FIG.
  • the CPU 21 performs clipping processing to cut out luminance information equal to or lower than a predetermined threshold value among the acquired luminance information.
  • the process which CPU21 performs specifically is demonstrated.
  • the horizontal direction of the light receiving surface 33a is the x axis
  • the vertical direction is the y axis
  • the luminance of the pixel at the coordinates (x, y) is f (x, y).
  • f (x, y) is equal to or less than the predetermined threshold A
  • the threshold A is preferably a value that can cut off the luminance generated by the scattered light from the cloud.
  • 5D is a graph showing luminance information in which the luminance equal to or less than a predetermined threshold A is zero. As shown in FIG. 5D, by performing the clipping process, the position of the detected gravity center can be made to coincide with the arrow T of the actual energy gravity center of the sun.
  • step S14 the CPU 21 calculates the energy center of gravity of the sun. Specifically, the CPU 21 calculates the barycentric coordinates (Xg, Yg) by the following equation 1 using f (x, y) after the clipping process. By this processing, the CPU 21 can detect the position of the sun with high accuracy.
  • step S15 the CPU 21 performs processing for causing the drive unit controller 25 to track the light source based on the detected position of the sun. Specifically, the CPU 21 calculates distances in the x direction and the y direction between the central coordinates of the light receiving surface 33 a of the image sensor 33 and the coordinates of the center of gravity of the sun. Subsequently, the CPU 21 calculates the inclination angle of the optical axis of the sun with respect to the light source sensor 30 based on the calculated distance. The CPU 21 may calculate the inclination angle by referring to a table stored in the memory 22 and in which the distance in the x direction and the y direction is associated with the inclination angle, and based on the distances in the x direction and the y direction.
  • FIG. 6 is a diagram showing a state in which the coordinates of the energy gravity center of light emitted from the sun are apart from the center coordinates by a distance of ⁇ x.
  • the CPU 21 calculates ⁇ x as an inclination angle of the optical axis of the sun from ⁇ x.
  • the CPU 21 transmits the information of the tilt angle calculated to track the sun to the drive unit controller 25.
  • the drive unit controller 25 transmits a drive signal to the azimuth tracking motor 26 and the elevation angle tracking motor 28 based on the information on the tilt angle transmitted from the CPU 21.
  • the azimuth tracking motor 26 and elevation angle tracking motor 28 move the first drive stand 12 and the second drive stand 13 according to the drive signal.
  • the movement of the first drive base 12 and the second drive base 13 causes the optical axis of the sun to accurately coincide with the center coordinates of the light source sensor 30, thereby completing the process of tracking the sun.
  • the light source tracking device 10 can track the sun with high accuracy by continuously continuing the processing from step S10 to step S15.
  • FIG. 7 is a graph in which the positions when the conventional light source tracking device using the light position sensor and the light source tracking device 10 of the present embodiment detect the same light source are plotted.
  • the horizontal axis is the position when the light source is moved at a predetermined interval
  • the vertical axis is the position of the light source detected by each light source tracking device.
  • the broken line in the graph is the regression line of the plot output by the conventional light source tracking device
  • the solid line in the graph is the regression line of the plot output by the light source tracking device 10 of the present embodiment.
  • the light source tracking device 10 according to the present embodiment can reduce the error of the inclination angle of the light source with respect to the optical axis to ⁇ 0.001 ° or less, and can demonstrate that the position of the light source can be detected with high accuracy.
  • the pyranometer tracks the sun with high accuracy, so that the amount of solar radiation can be measured accurately.
  • the tilt angle calculated by the CPU 21 is transmitted to the driving device of the solar cell panel, the solar cell panel can always be tracked with high accuracy so as to be orthogonal to the sun, so the conversion efficiency is improved. It can be done.
  • an error is integrated by being collected by the Fresnel lens, so that the solar cell can be accurately irradiated with light by the error of the conventional light source tracking device. I can not By using the light source tracking device 10 according to the present embodiment, the error can be extremely reduced, so that the present invention can be applied to a concentrating solar cell panel.
  • step S10 of the above-described embodiment the case has been described where the CPU 21 instructs the imaging element 33 to capture an image at a predetermined shutter speed stored in advance in the memory 22.
  • the memory 22 may store in advance a table in which time information of the current date and time and the shutter speed are associated with each other. For example, a long shutter speed is associated with winter time and morning and evening time, and a short shutter speed is associated with summer time and daytime on this table.
  • the CPU 21 obtains time information of the current date and time from the timekeeping unit 23, and obtains a shutter speed associated with the time information by referring to the table stored in the memory 22. . Subsequently, the CPU 21 can acquire light reception information suitable for determining the shutter speed in step S11 by instructing the acquired shutter speed to the imaging element 33.
  • step S10 and step S11 may be repeated until it is possible to acquire light reception information suitable for detecting the position of the sun. That is, after the shutter speed is determined in step S11, the process returns to step S10, and the image sensor 33 is instructed to capture an image at the determined shutter speed. Thereafter, the CPU 21 can proceed to step S12 when the light reception information suitable for detecting the position of the sun can be acquired.
  • the condenser lens 32 itself may be a lens that causes infrared light transmitting through a cloud to form an image on the image pickup device 33 without forming visible light on the image pickup device 33.
  • FIG. 8 is a view showing the configuration of a light source sensor 50 according to the second embodiment.
  • the light source sensor 50 includes a housing 51, an imaging device 33, and the like.
  • the housing 51 is formed, for example, in a hollow shape, and a pinhole 51 a is formed as a light collecting portion for collecting the light emitted from the sun on the light receiving surface 33 a of the imaging device 33.
  • the pinhole 51 a also has a function of reducing the amount of light emitted to the imaging device 33.
  • the reference surfaces 31a and 31b similar to those of the first embodiment are formed on the outer surface of the housing 51.
  • the position of the sun is detected with high accuracy as in the first embodiment. be able to.
  • the configuration of the light source sensor 50 can be simplified as compared with the first embodiment, the manufacturing cost can be reduced.
  • FIG. 9 is a view showing the configuration of a light source sensor 60 according to the third embodiment.
  • the light source sensor 60 includes a housing 31, a wide-angle lens 61, an imaging device 33, and the like.
  • the wide-angle lens 61 can condense light on the light receiving surface 33 a of the image sensor 33 even if the light is irradiated at a large angle (for example, 50 °) of the inclination angle of the optical axis of the sun. By using the wide-angle lens 61 in this manner, the light source sensor 60 of this embodiment can detect the position of the sun over a wide range.
  • the light source sensor 60 of the present embodiment is used when detecting a light source (for example, missile) that moves faster than the sun, or when installing the light source tracking device 10 on the water surface (for example, a ship) Preferred.
  • the light source sensor 60 of the present embodiment may be configured in a plurality in combination with the light source sensor 30 of the first embodiment or the light source sensor 50 of the second embodiment.
  • the light source sensor 30 (first light source sensor) and the light source sensor 60 (second light source sensor) may be arranged in parallel and attached to the second drive stand 13.
  • the CPU 21 first detects and follows the rough position of the sun based on the light reception information acquired from the light source sensor 60 (after step S10 to step S15 described above), and then the light reception information acquired from the light source sensor 30 The exact position of the sun can be detected and tracked based on the above (steps S10 to S15 described above).
  • the light source tracking device 10 By configuring the light source tracking device 10 in this manner, the light source can be detected quickly and accurately even if the light source is detected faster than the sun or the light source tracking device 10 is installed on the water surface (for example, a ship). It can track.
  • the wide-angle lens 61 for example, a fisheye lens may be used.
  • the present invention is not limited to this case.
  • the CPU 21 may calculate, for example, the center of gravity (geometric center of gravity) of the figure when viewing the shape (outline) of the sun as a figure.
  • binarization processing may be executed instead of the clipping processing in step S13 of the flowchart of FIG. That is, in step S13, the CPU 21 executes the binarization process based on the luminance information received from the imaging device 33.
  • the CPU 21 calculates the barycentric coordinates (Xg, Yg) according to the above equation 1 using f (x, y) after the binarization processing. By this processing, the CPU 21 can calculate the position of the geometrical center of gravity of the sun.
  • the user can set whether to calculate the energy center of gravity or to calculate the geometric center of gravity via the PC of the external device 40 or the like.
  • the CPU 21 calculates an energy centroid or a geometric centroid according to the setting.
  • the user may set whether to calculate the energy centroid or the geometric centroid according to the purpose of tracking the light source.
  • the present invention has been described above with various embodiments, the present invention is not limited to only these embodiments, and may be modified within the scope of the present invention, or each embodiment may be combined. It is.
  • the light source is the sun has been described in the above embodiment, the present invention is not limited to this case. Any light source can be applied as long as the light source emits light.
  • the imaging device 33 transmits the luminance information of 0 to 255 for each pixel has been described, but the invention is not limited to this case, for example, the luminance information of 0 to 127, 0 to 511, etc. is transmitted. You may
  • the light source tracking device 10 has the drive unit controller 25.
  • the drive unit controller 25 may be omitted by including the function of the drive unit controller 25 in the CPU 21.
  • a program for realizing the above-described processing is supplied to the light source tracking device 10 via a network or various storage media, and the CPU 21 of the light source tracking device 10 reads out and executes the supplied program.
  • Ru may be a storage medium storing a program.
  • the present invention can be used for a light source position detection device, a light source tracking device, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Studio Devices (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

光源位置検出装置(10)は、太陽から照射される光を集光する集光レンズ(32)と、集光レンズ(32)により集光された光を受光する撮像素子(33)と、撮像素子(33)により受光された画素毎の受光情報に基づいて太陽の位置を検出するCPU(21)と、を有し、CPU(21)は、太陽から照射される光量に応じて撮像素子(33)のシャッタスピードを変更し、撮像素子が受光する光量を調整する。光源位置検出装置(10)は、光源の位置を高精度に検出すると共に、光源が例えば雲に隠れた場合であっても光源の位置を高精度に検出することができる。

Description

光源位置検出装置、光源追尾装置、制御方法およびプログラム
 本発明は、光源位置検出装置、光源追尾装置、制御方法およびプログラムに関する。
 従来、4分割フォトダイオードや1つの素子からなる光位置センサなどを使用した太陽追尾センサが知られている。特許文献1に開示された太陽追尾センサでは、太陽光を4分割フォトダイオード上に結像させ、処理回路がX,Y座標位置信号を出力する。太陽追尾センサが出力したX,Y座標位置信号を用いることで、太陽自動追尾を可能にしている。
特開平5-126563号公報
 しかしながら、従来の4分割フォトダイオードや1つの素子からなる光位置センサなどを使用した太陽追尾センサでは、実際に太陽から照射される光の光軸に対して±0.01°或いはそれ以上の誤差が生じてしまうという問題がある。例えば太陽追尾センサから出力された情報を用いて、太陽電池パネルを常に太陽光に直交させるように駆動させる追尾型太陽光発電装置が知られている。このような追尾型太陽光発電装置において、近年、発電効率を向上させるために、集光型の太陽電池パネルが用いられている。集光型の太陽電池パネルの場合にはフルネルレンズにより集光されるために、太陽追尾センサによる±0.1°の誤差が積算されてしまい、太陽から照射される光を正確に太陽電池セルに照射させることができず、変換効率が低下してしまう。また、フルネルレンズにより集光された光が太陽電池セルとは異なる位置に集光されてしまい、異常な温度上昇により機器を破損させてしまう虞がある。このように、近年では太陽の位置を検出する精度をより向上させることが求められている。
 また、従来の太陽追尾センサでは、太陽が雲に隠れる場合には、その隠れ具合によって、太陽から照射される光量が低下してしまい、太陽の位置を検出することができないという問題がある。また、太陽の隠れ具合によっては、太陽の位置をある程度検出することができるものの、太陽から照射される光が雲により散乱してしまうことから、太陽以外の部分でも光量が検出されてしまう。したがって、太陽が雲に隠れた場合では、雲により散乱された光量の影響により太陽の位置を高精度に検出することができないという問題がある。
 本発明は、上述したような問題点に鑑みてなされたものであり、光源の位置を高精度に検出することを目的とする。また、光源が例えば雲に隠れた場合であっても、光源の位置を高精度に検出することを目的とする。
 本発明の光源位置検出装置は、検出対象光源から照射される光を集光する集光部と、前記集光部により集光された光を受光する撮像素子と、前記撮像素子により受光された画素毎の受光情報に基づいて前記検出対象光源の位置を検出する制御部と、を有し、前記制御部は、前記検出対象光源から照射される光量に応じて前記撮像素子のシャッタスピードを変更し、前記撮像素子が受光する光量を調整することを特徴とする。
 本発明の光源追尾装置は、検出対象光源から照射される光を集光する集光部および前記集光部により集光された光を受光する撮像素子を有する光源センサと、前記撮像素子により受光された画素毎の受光情報に基づいて前記検出対象光源の位置を検出し、検出された前記検出対象光源の位置に基づいて駆動信号を出力する制御部と、前記駆動信号に基づいて前記光源センサを移動させ前記検出対象光源を追尾する駆動部と、を有し、前記制御部は、前記検出対象光源から照射される光量に応じて前記撮像素子のシャッタスピードを変更し、前記撮像素子が受光する光量を調整することを特徴とする。
 本発明の光源追尾装置の制御方法は、検出対象光源から照射される光を集光する集光部と、前記集光部により集光された光を受光する撮像素子と、前記撮像素子により受光された画素毎の受光情報に基づいて前記検出対象光源の位置を検出する制御部と、を有する光源位置検出装置の制御方法であって、前記制御部は、前記検出対象光源から照射される光量に応じて前記撮像素子のシャッタスピードを変更し、前記撮像素子が受光する光量を調整することを特徴とする。
 本発明のプログラムは、検出対象光源から照射される光を集光する集光部と、前記集光部により集光された光を受光する撮像素子と、前記撮像素子により受光された画素毎の受光情報に基づいて前記検出対象光源の位置を検出する制御部と、を有する光源位置検出装置を制御するためのプログラムであって、前記制御部に、前記検出対象光源から照射される光量に応じて前記撮像素子のシャッタスピードを変更し、前記撮像素子が受光する光量を調整する処理を実行させるためのプログラムである。
 本発明によれば、光源の位置を高精度に検出することができる。また、光源が例えば雲に隠れた場合であっても、光源の位置を高精度に検出することができる。
本実施形態の光源追尾装置の外観構成を示す図である。 本実施形態の光源追尾装置の内部構成を示す図である。 第1の実施形態の光源センサの構成を示す図である。 本実施形態の光源追尾装置の処理を示すフローチャートである。 本実施形態のクリッピング処理を説明するための図である。 本実施形態の太陽を追尾する処理を説明するための図である。 本実施形態の光源センサと従来の光源センサとの比較を示す図である。 第2の実施形態の光源センサの構成を示す図である。 第3の実施形態の光源センサの構成を示す図である。
 以下、本実施形態に係る光源追尾装置10について図面を参照して説明する。以下で説明する実施形態では、検出対象光源(以下、光源という)を太陽とし、光源追尾装置10が太陽を追尾する場合について説明する。
(第1の実施形態)
 図1は、光源追尾装置10の外観構成の一例を示す図である。
 図1に示すように、光源追尾装置10は、基台11、第1の駆動台12、第2の駆動台13、光源センサ30などを有している。
 基台11は、例えば地面に接地され、第1の駆動台12を鉛直軸(v軸)周りに回動自在に支持する。
 第1の駆動台12は、後述する方位追尾モータ26によって鉛直軸(v軸)周りを回動する。また、第1の駆動台12は、第2の駆動台13を水平軸(h軸)周りに回動自在に支持する。
 第2の駆動台13は、後述する仰角追尾モータ28によって水平軸(h軸)周りを回動する。また、第2の駆動台13は、第2の駆動台13の基準面13aを介して光源センサ30が取り付けられる。また、第2の駆動台13には、光源追尾装置10を例えば気象観測センサとして用いる場合に、日射計やサンフォトメータなどを取り付けるための取付け部14が設置されている。
 光源追尾装置10は、第1の駆動台12および第2の駆動台13がそれぞれ回動することで光源センサ30を任意の方向に指向させることができる。
 図2は、光源追尾装置10の内部構成の一例を示す図である。
 図2に示すように、光源追尾装置10は、CPU21、メモリ22、計時部23、電源部24、駆動部コントローラ25、方位追尾モータ26、ドライバ27、仰角追尾モータ28、ドライバ29、光源センサ30などを有している。光源追尾装置10は、光源の位置を検出する処理と、光源を追尾する処理とを行う。また、光源追尾装置10のうち、CPU21、メモリ22、計時部23、電源部24、光源センサ30は、光源の位置を検出する光源位置検出装置41として機能する。
 CPU21は、制御部の一例であり、光源追尾装置10全体を制御する。CPU21は、メモリ22に記憶されたプログラムを実行することにより、光源の位置を検出する処理や、検出した光源の位置に基づいて駆動部コントローラ25に光源を追尾させるための処理を行う。
 メモリ22には、ROMやEEPROMなどの不揮発性メモリ、RAMなどの揮発性メモリなどが含まれている。不揮発性メモリは、CPU21が実行するプログラムや、CPU21が処理を行うときに用いる閾値やテーブルなどが記憶されている。揮発性メモリは、CPU21のワークメモリとして用いられる。
 計時部23は、現在の年月日および現在の時刻を計時している。CPU21は、計時部23から現在の年月日および時刻としての時刻情報を取得することで、晴天の場合(太陽が雲に隠れていない場合)において太陽から照射される概算の光量を判断することができる。
 電源部24は、光源追尾装置10の各構成部を駆動させるための電力を供給する。電源部24は、電源プラグから受電する交流電源であってもよく、充電式バッテリなどであってもよい。
 駆動部コントローラ25は、CPU21からの指示に基づいて光源センサ30を移動させる。具体的には、駆動部コントローラ25は、ドライバ27およびドライバ29を介して、方位追尾モータ26および仰角追尾モータ28を駆動させることで、光源センサ30が指向する方向を制御する。
 方位追尾モータ26は、駆動部としての一例であり、図1に示すように、第1の駆動台12を鉛直軸回りに回動させる。第1の駆動台12の回動に伴い、第1の駆動台12を介して第2の駆動台13に取り付けられた光源センサ30も同様に鉛直軸回りに回動する。
 仰角追尾モータ28は、駆動部としての一例であり、図1に示すように、第2の駆動台13を水平軸回りに回動させる。第2の駆動台13の回動に伴い、第2の駆動台13に取り付けられた光源センサ30も同様に水平軸回りに回動する。
 光源センサ30は、太陽から照射される光を受光し、受光した受光情報をCPU21に送信する。また、光源センサ30は、CPU21からの指示に基づいて太陽から受光する光量を調整する。光源センサ30の構成は、図3を参照して後述する。
 また、光源追尾装置10には、例えばパーソナルコンピュータ(PC)などの外部機器40が接続可能である。例えば、ユーザは外部機器40を介して光源追尾装置10に対して直接命令したり、メモリ22内に記憶されたプログラム、閾値およびテーブルなどを書き換えたりすることができる。また、光源追尾装置10を、例えば太陽電池パネルの受光面が太陽に直交するように追尾するために用いる場合には、外部機器40として、太陽電池パネルの受光面の向きを駆動させる駆動装置に接続することができる。
 その他、光源追尾装置10は、ユーザからの指示を直接受け付ける入力部などを有していてもよい。
 次に、光源センサ30について図3を参照して説明する。
 光源センサ30は、筐体31、集光レンズ32、撮像素子33、減光フィルタ34、可視光遮断/赤外光透過フィルタ35などを有している。
 筐体31は、例えば中空状に形成され、集光レンズ32、撮像素子33、減光フィルタ34および可視光遮断/赤外光透過フィルタ35を所定の位置に支持する。筐体31の外面には、基準面31a、31bが形成される。基準面31aは、撮像素子33の受光面33aに直交する方向に沿った面である。基準面31bは、撮像素子33の受光面33aと平行な面である。光源センサ30を筐体31の基準面31aおよび基準面31bを介して第2の駆動台13に取り付けることで、光源センサ30を第2の駆動台13に精度よく取り付けることができる。また、基準面31aおよび基準面31bを形成することで他の光源追尾装置にも精度よく取り付けることができる。
 集光レンズ32は、太陽から照射される光を撮像素子33の受光面33aに集光する集光部として機能する。
 撮像素子33は、例えばCCD(Charge Coupled Device)や、CMOS(Complementary
Metal-Oxide Semiconductor)などを用いることができる。撮像素子33は、光源に応じて好適なサイズおよび画素数のものを用いることができる。
 撮像素子33は、集光レンズ32により集光された光を画素毎に受光し、受光した光を電荷に変換して蓄積し、蓄積した電荷を電気信号に変換する。撮像素子33は、変換された電気信号を受光情報としてCPU21に送信する。受光情報には、例えば画素毎の受光した光量に応じて増減する例えば0~255の輝度情報(あるいは階調情報)が含まれる。ここで、輝度「0」とは光を受光しておらず電荷が蓄積されていない場合であり、輝度「255」とは光を受光し電荷の飽和量まで蓄積された場合である。CPU21は、画素毎に輝度情報を取得できることから、撮像素子33の受光面33aのうち何れの位置に光が集光したかを検出することができる。
 また、撮像素子33は、いわゆる電子シャッターの機構を有している。具体的には、撮像素子33は、電荷の蓄積時間を長くしたり短くしたりして変更することで、受光する光量を調整することができる。この電荷を蓄積する時間を変更する処理は、シャッタスピードを変更する処理に相当する。このシャッタスピードの変更は、CPU21の指示に基づいて行われる。
 例えば、CPU21が受信した輝度情報に輝度「255」の画素が含まれている場合、電荷の飽和量に達しているため、正確な光源の位置を検出することが困難になる。この場合、CPU21は、撮像素子33のシャッタスピードを速く(電荷の蓄積時間を短く)することで、光源の位置を検出するのに適した受光情報を取得することができる。
 一方、CPU21が受信した輝度情報のうち小さな輝度が多い場合にはノイズが混在している場合があるため、正確な光源の位置を検出することが困難になる。この場合、CPU21は、撮像素子33のシャッタスピードを遅く(電荷の蓄積時間を長く)することで、光源の位置を検出するのに適した受光情報を取得することができる。
 減光フィルタ34は、集光レンズ32により集光され、撮像素子33に照射される光量を減光させるフィルタである。本実施形態では、太陽から照射される光量が最も多い場合(例えば夏場の晴天時の場合)に、撮像素子33に蓄積される電荷が飽和量に達しないように減光するフィルタであることが好ましい。なお、減光させるフィルタは、減光フィルタ34に限られず、熱線カットフィルタであってもよい。
 可視光遮断/赤外光透過フィルタ35は、太陽から照射される光のうち可視光を遮断して、赤外光を透過させるフィルタである。可視光遮断/赤外光透過フィルタ35は、可視光を撮像素子33の受光面33aに結像させることなく、赤外光を撮像素子33の受光面33aに結像させる赤外光結像手段の一例である。晴天の場合には、太陽から照射される光は直達されるため、可視光を受光することで太陽の位置を検出することができる。一方、太陽が雲に隠れている場合には、太陽から照射される光は雲によって拡散されてしまう。拡散された可視光を受光しても太陽の位置を正確に検出することが困難である。そこで、本実施形態では赤外光が、可視光に比べて波長が長いため雲により散乱しにくく、雲を透過する性質を利用する。具体的には、可視光遮断/赤外光透過フィルタ35は、雲によって拡散された可視光を遮断し、雲を透過した赤外光を撮像素子33の受光面33aに照射させる。撮像素子33は可視光よりも長波長側である赤外光の分光感度も有しているため、太陽が雲に隠れている場合であっても、CPU21は赤外光から太陽の位置を検出するのに適した受光情報を取得することができる。
 次に、光源追尾装置10による太陽を追尾する処理について図4のフローチャートを参照して説明する。ここでは、太陽のエネルギー重心の位置を検出する場合について説明する。図4のフローチャートは、CPU21がメモリ22に記憶されたプログラムを実行することにより実現する。なお、太陽から照射された光は、光源センサ30の撮像素子33の受光面33aの何れかの位置に集光されているものとする。
 ステップS10では、CPU21は、撮像素子33を介して光源の光量を取得する。具体的には、CPU21は、メモリ22に予め記憶された所定のシャッタスピードで撮像するように撮像素子33に指示する。撮像素子33は、集光レンズ32、減光フィルタ34、可視光遮断/赤外光透過フィルタ35を介して照射された太陽の光を指示されたシャッタスピードにより受光し、受光情報をCPU21に送信する。
 ステップS11では、CPU21は、太陽から照射される光量に応じて撮像素子33のシャッタスピードを変更し、撮像素子33が受光する光量を調整する。具体的には、CPU21は、ステップS10において撮像素子33から受信した受光情報のうち輝度情報に基づいてシャッタスピードを決定する。メモリ22には、例えば輝度の最大値と、輝度の最大値に応じた最適なシャッタスピードとが関連付けられたテーブルが記憶されている。このテーブルでは、例えば輝度の最大値が「255」に近い場合(輝度が大きい場合)には速いシャッタスピードが関連付けられ、輝度の最大値が「0」に近い場合(輝度が小さい場合)には遅いシャッタスピードが関連付けられている。CPU21は、輝度の最大値を取得し、メモリ22に記憶されたテーブルを参照することで、輝度の最大値に関連付けられたシャッタスピードを決定する。したがって、太陽から照射される光量が大きい場合には輝度の最大値が大きくなるために、CPU21は、速いシャッタスピードを決定する。一方、太陽が雲に隠れ太陽から照射される光量が小さい場合には輝度の最大値が小さくなるため、CPU21は、遅いシャッタスピードを決定する。ここでは、輝度の最大値を用いて太陽から照射される光量を判定しているが、例えば輝度平均値を用いてもよい。この場合、CPU21は画素の輝度平均値が大きい場合には速いシャッタスピードに決定し、画素の輝度平均値が小さい場合には遅いシャッタスピードに決定する。例えば、CPU21は、シャッタスピードとして、輝度の最大値が、後述するステップS13において用いられる所定の閾値Aよりも大きい輝度であって、255よりも小さい輝度が出力されるようにシャッタスピードを決定することが好ましい。
 ステップS12は、CPU21は、ステップS11で決定したシャッタスピードで撮像するように撮像素子33に指示する。撮像素子33は、集光レンズ32、減光フィルタ34、可視光遮断/赤外光透過フィルタ35を介して照射された太陽の光を指示されたシャッタスピードにより受光し、輝度情報を含む受光情報をCPU21に送信する。
 ステップS13では、CPU21は、撮像素子33から受信した輝度情報の一部を切り取る、クリッピング処理を実行する。ここで、クリッピング処理について図5を参照して説明する。図5(a)は、撮像素子33の受光面33aに結像された、太陽の一部が雲に隠れた被写体像を示す図である。ここでは、水平方向をx軸とし、鉛直方向をy軸とする。
 図5(b)および図5(c)は、図5(a)のI-I線に沿った画素の輝度情報をグラフで示した図である。なお、図5(b)および図5(c)では、上述したステップS11により最適なシャッタスピードに調整されているために、光源の位置を検出するのに適した輝度情報が取得されている。
 図5(b)は、可視光遮断/赤外光透過フィルタ35を用いず、可視光も含めて結像された場合の輝度情報を示している。図5(b)に示すように、太陽から照射される光のうち可視光は雲により散乱することで、雲の部分でも高い輝度が現れる。したがって、実際の太陽のエネルギー重心は矢印Tの位置であるが、可視光の散乱により矢印F1の位置として重心が検出されてしまう。
 一方、図5(c)は、可視光遮断/赤外光透過フィルタ35を用いて、可視光を遮断し赤外光を透過させ結像された場合の輝度情報を示している。図5(c)に示すように、可視光を遮断することにより雲により散乱する光が遮断されると共に、赤外光により雲を透過することから太陽の部分のみに高い輝度が現れる。したがって、実際の太陽のエネルギー重心の矢印Tに近接した位置である矢印F2の位置が重心として検出される。
 このように、可視光遮断/赤外光透過フィルタ35を用いることで、太陽が雲に隠れた場合でも、雲による可視光の散乱を防止することができる。
 CPU21は、取得した輝度情報のうち、所定の閾値以下の輝度情報を切り取る、クリッピング処理を行う。具体的にCPU21が行う処理について説明する。ここでは、受光面33aの水平方向をx軸とし、鉛直方向をy軸とし、座標(x,y)の画素の輝度をf(x,y)とする。CPU21は、f(x,y)が所定の閾値A以下の場合には、f(x,y)=0とする処理(クリッピング処理)を全ての画素について行う。なお、閾値Aは、雲による散乱光で生じる輝度を切り捨てることができる値であることが好ましい。図5(d)は、所定の閾値A以下の輝度を0にした輝度情報をグラフで示した図である。図5(d)に示すように、クリッピング処理を行うことにより、実際の太陽のエネルギー重心の矢印Tに検出される重心の位置を一致させることができる。
 ステップS14では、CPU21は、太陽のエネルギー重心を算出する。具体的には、CPU21は、クリッピング処理後のf(x,y)を用いて、重心座標(Xg、Yg)を以下の数1により算出する。この処理によって、CPU21は、太陽の位置を精度よく検出することができる。
Figure JPOXMLDOC01-appb-M000001
 ステップS15では、CPU21は、検出した太陽の位置に基づいて駆動部コントローラ25に光源を追尾させるための処理を行う。具体的には、CPU21は、撮像素子33の受光面33aの中心座標と太陽のエネルギー重心の座標との間のx方向およびy方向における距離を算出する。続いて、CPU21は、算出した距離に基づいて、光源センサ30に対する太陽の光軸の傾き角を算出する。CPU21は、メモリ22に記憶された、x方向およびy方向における距離と傾き角とが関連付けられたテーブルを参照することで傾き角を算出してもよく、x方向およびy方向における距離に基づいて幾何学的に傾き角を算出してもよい。
 図6は、太陽から照射された光のエネルギー重心の座標が中心座標からΔxの距離だけ離れている状態を示す図である。この場合、CPU21は、Δxから太陽の光軸の傾き角としてθxを算出する。
 CPU21は、太陽を追尾するために算出した傾き角の情報を駆動部コントローラ25に送信する。駆動部コントローラ25は、CPU21から送信された傾き角の情報に基づいて方位追尾モータ26および仰角追尾モータ28に駆動信号を送信する。方位追尾モータ26および仰角追尾モータ28が駆動信号に応じて第1の駆動台12および第2の駆動台13が移動する。第1の駆動台12および第2の駆動台13の移動により、太陽の光軸を光源センサ30の中心座標に精度よく一致させることで、太陽を追尾する処理が終了する。
 光源追尾装置10は、ステップS10~ステップS15までの処理を常時、継続させることで、太陽を高精度に追尾することができる。
 図7は、光位置センサを用いた従来の光源追尾装置と、本実施形態の光源追尾装置10とがそれぞれ同一の光源を検出したときの位置をプロットしたグラフである。図7では、横軸が光源を所定の間隔で移動させたときの位置であり、縦軸が各光源追尾装置により検出された光源の位置である。グラフ内の破線が従来の光源追尾装置により出力されたプロットの回帰直線であり、グラフ内の実線が本実施形態の光源追尾装置10により出力されたプロットの回帰直線である。
 図7に示すように、従来の光源追尾装置により出力されたプロットは回帰直線上に位置せず、相関を示す決定係数Rが、R=0.5087であり、低い相関関係であった。一方、本実施形態の光源追尾装置10により出力されたプロットはほぼ回帰直線上であり、相関を示す決定係数Rが、R=0.9975であり、非常に高い相関関係であった。本実施形態の光源追尾装置10は、光源の光軸に対する傾き角の誤差を±0.001°以下にすることができ、高精度に光源の位置を検出できることを実証できた。
 したがって、例えば光源追尾装置10の取付け部14に日射計を取り付けた場合には、日射計は太陽を高精度に追尾するので、日射量を正確に計測することができる。また、例えばCPU21が算出した傾き角を太陽電池パネルの駆動装置に送信した場合には、太陽電池パネルは常に高精度に太陽に対して直交するように追尾することができるので、変換効率を向上させることができる。特に、集光型の太陽電池パネルの場合にはフルネルレンズにより集光されることで誤差が積算されてしまうため、従来の光源追尾装置の誤差では太陽電池セルに光を正確に照射させることができない。本実施形態の光源追尾装置10を用いることで誤差を極めて小さくすることができるので、集光型の太陽電池パネルにも適用することができる。
 なお、上述した実施形態のステップS10では、CPU21がメモリ22に予め記憶された所定のシャッタスピードで撮像するように撮像素子33に指示する場合について説明したが、この場合に限られない。例えば、メモリ22には、現在の年月日および時刻の時刻情報と、シャッタスピードとが関連付けられたテーブルを予め記憶しておいてもよい。このテーブルには、例えば冬の時期や朝夕の時刻には長いシャッタスピードが関連付けられ、夏の時期や昼間の時刻には短いシャッタスピードが関連付けられている。この場合には、CPU21は、計時部23から現在の年月日および時刻の時刻情報を取得し、メモリ22に記憶されたテーブルを参照することで、時刻情報に関連付けられたシャッタスピードを取得する。続いて、CPU21は、取得したシャッタスピードを撮像素子33に指示することで、ステップS11のシャッタスピードを決定する場合に適した受光情報を取得することができる。
 また、太陽の位置を検出するのに適した受光情報を取得できるまで、ステップS10とステップS11との処理を繰り返してもよい。すなわち、ステップS11でシャッタスピードを決定した後に、ステップS10に戻って、決定したシャッタスピードで撮像するように撮像素子33に指示する。その後、CPU21は、太陽の位置を検出するのに適した受光情報を取得できる場合に、ステップS12に進むことができる。
 また、上述した実施形態では、赤外光結像手段として、可視光遮断/赤外光透過フィルタ35を用いる場合について説明したが、この場合に限られない。例えば、集光レンズ32自体が、可視光を撮像素子33に結像させることなく、雲を透過する赤外光を撮像素子33に結像させるレンズであってもよい。
 (第2の実施形態)
 第1の実施形態では、太陽から照射される光を撮像素子33の受光面33aに集光させる集光部として集光レンズ32を用いる場合について説明した。本実施形態では、集光部としてピンホールを用いる場合について説明する。
 図8は、第2の実施形態に係る光源センサ50の構成を示す図である。なお、第1の実施形態の光源センサ30と同一の構成は、同一符号を付し、その説明を適宜省略する。
 光源センサ50は、筐体51、撮像素子33などを有している。
 筐体51は、例えば中空状に形成され、太陽から照射される光を撮像素子33の受光面33aに集光させる集光部としてのピンホール51aが形成されている。ピンホール51aは、撮像素子33に照射される光量を減光させる機能も有している。また、筐体51の外面には、第1の実施形態と同様の基準面31a、31bが形成される。
 本実施形態によれば、ピンホール51aにより集光された光を撮像素子33の受光面33aに集光させることができるので、第1の実施形態と同様、太陽の位置を高精度に検出することができる。また、第1の実施形態に比べて、光源センサ50の構成を簡略化できるために、製造コストを削減することができる。
 (第3の実施形態)
 第1の実施形態および第2の実施形態では、集光部として集光レンズ32またはピンホール51aを用いる場合について説明した。本実施形態では、集光部として広角レンズを用いる場合について説明する。
 図9は、第3の実施形態に係る光源センサ60の構成を示す図である。なお、第1の実施形態の光源センサ30と同一の構成は、同一符号を付し、その説明を適宜省略する。
 光源センサ60は、筐体31、広角レンズ61、撮像素子33などを有している。
 広角レンズ61は、太陽の光軸の傾き角が大きな角度(例えば50°)で照射される光であっても撮像素子33の受光面33aに集光させることができる。このように広角レンズ61を用いることで、本実施形態の光源センサ60では、広い範囲に亘って太陽の位置を検出することができる。
 したがって、本実施形態の光源センサ60は、太陽よりも動きが速い光源(例えばミサイル)を検出する場合に用いたり、光源追尾装置10を水面上(例えば船舶)に設置する場合に用いたりするときに好適である。また、本実施形態の光源センサ60は、第1の実施形態の光源センサ30または第2の実施形態の光源センサ50と組み合わせ、複数で構成してもよい。例えば、光源センサ30(第1の光源センサ)と光源センサ60(第2の光源センサ)とを並列させて、第2の駆動台13に取り付けてもよい。この場合、CPU21は、まず光源センサ60から取得した受光情報に基づいて太陽の大まかな位置を検出して追尾した後(上述したステップS10~ステップS15後)、光源センサ30から取得した受光情報に基づいて太陽の正確な位置を検出して追尾する(上述したステップS10~ステップS15)ことができる。このように光源追尾装置10を構成することで、太陽よりも動きが速い光源を検出したり、光源追尾装置10を水面上(例えば船舶)に設置したりする場合でも、光源を早期かつ正確に追尾することができる。なお、広角レンズ61には、例えば魚眼レンズなどを用いてもよい。
(第4の実施形態)
 第1の実施形態では、CPU21が太陽のエネルギー重心を算出する場合について説明したが、この場合に限られない。CPU21は、例えば太陽の形状(輪郭)を図形として見たときの図形の重心(幾何学的な重心)を算出してもよい。幾何学的な重心を算出する場合には、図4のフローチャートのステップS13のクリッピング処理に代えて二値化処理を実行すればよい。
 すなわち、ステップS13において、CPU21は、撮像素子33から受信した輝度情報に基づいて二値化処理を実行する。具体的にはCPU21は、所定の閾値Aを境界として、f(x,y)が所定の閾値A以下の場合には、f(x,y)=0とし、所定の閾値Aよりも大きい場合にはf(x,y)=1とする処理を全ての画素について行う。
 ステップS14では、CPU21は、二値化処理後のf(x,y)を用いて、重心座標(Xg、Yg)を上述した数1により算出する。この処理により、CPU21は、太陽の幾何学的な重心の位置を算出することができる。
 光源追尾装置10では、エネルギー重心を算出するか、幾何学的な重心を算出するかをユーザが外部機器40のPCなどを介して設定することができる。CPU21は、設定に応じてエネルギー重心あるいは幾何学的な重心を算出する。なお、エネルギー重心を算出するか、幾何学的な重心を算出するかは、ユーザが光源を追尾する目的に応じて設定することが考えられる。
 以上、本発明を種々の実施形態と共に説明したが、本発明はこれらの実施形態にのみ限定されるものではなく、本発明の範囲内で変更したり、各実施形態を組み合わせたりすることが可能である。
 例えば、上述した実施形態では、光源を太陽とする場合について説明したが、この場合に限られない。光を照射する光源であれば、どのような光源であっても適用することができる。
 また、上述した実施形態では、撮像素子33が画素毎に0~255の輝度情報を送信する場合について説明したが、この場合に限られず、例えば0~127、0~511などの輝度情報を送信してもよい。
 また、上述した実施形態では、駆動部として、方位追尾モータ26および仰角追尾モータ28を用いる場合について説明したが、この場合に限られず、光源を追尾できればどのような駆動部であってもよい。
 また、上述した実施形態では、光源追尾装置10が駆動部コントローラ25を有する場合について説明したが、CPU21に駆動部コントローラ25の機能を含めることで、駆動部コントローラ25を省略してもよい。
 本実施形態では、上述した処理を実現するプログラムを、ネットワークまたは各種記憶媒体を介して光源追尾装置10に供給し、光源追尾装置10のCPU21が供給されたプログラムを読み出して実行することでも実現される。本発明は、プログラムを記録した記憶媒体であってもよい。
 本発明は、光源位置検出装置や光源追尾装置などに利用することができる。
 

Claims (13)

  1.  検出対象光源から照射される光を集光する集光部と、
     前記集光部により集光された光を受光する撮像素子と、
     前記撮像素子により受光された画素毎の受光情報に基づいて前記検出対象光源の位置を検出する制御部と、を有し、
     前記制御部は、前記検出対象光源から照射される光量に応じて前記撮像素子のシャッタスピードを変更し、前記撮像素子が受光する光量を調整することを特徴とする光源位置検出装置。
  2.  前記制御部は、前記撮像素子から画素毎の受光情報に含まれる輝度情報を取得し、取得した輝度情報に基づいてシャッタスピードを変更することを特徴とする請求項1に記載の光源位置検出装置。
  3.  前記検出対象光源から照射された光のうち、可視光を前記撮像素子に結像させることなく、雲を透過する赤外光を前記撮像素子に結像させる赤外光結像手段を更に有することを特徴とする請求項1に記載の光源位置検出装置。
  4.  前記制御部は、前記検出対象光源から照射される光量に応じてシャッタスピードが変更された前記撮像素子から画素毎の輝度情報を取得し、取得した輝度情報のうち所定の閾値以下の輝度情報を0とするクリッピング処理をし、クリッピング処理後の輝度情報に基づいて、前記検出対象光源の位置を検出することを特徴とする請求項1に記載の光源位置検出装置。
  5.  前記制御部は、前記検出対象光源から照射される光量に応じてシャッタスピードが変更された前記撮像素子から画素毎の輝度情報を取得し、取得した輝度情報のうち所定の閾値を境界として二値化処理をし、二値化処理後の輝度情報に基づいて、前記検出対象光源の位置を検出することを特徴とする請求項1に記載の光源位置検出装置。
  6.  前記集光部は、集光レンズ、ピンホールまたは広角レンズの何れかであることを特徴とする請求項1に記載の光源位置検出装置。
  7.  前記撮像素子を支持する筐体を有し、
     前記筐体は、前記撮像素子の受光面に直交する方向に沿った基準面および前記撮像素子の受光面と平行な基準面を有することを特徴とする請求項1に記載の光源位置検出装置。
  8.  前記赤外光結像手段は、可視光を遮断し赤外光を透過させる可視光遮断/赤外光透過フィルタであることを特徴とする請求項3に記載の光源位置検出装置。
  9.  前記赤外光結像手段は、赤外光を前記撮像素子に集光させる集光レンズであることを特徴とする請求項3に記載の光源位置検出装置。
  10.  検出対象光源から照射される光を集光する集光部および前記集光部により集光された光を受光する撮像素子を有する光源センサと、
     前記撮像素子により受光された画素毎の受光情報に基づいて前記検出対象光源の位置を検出し、検出された前記検出対象光源の位置に基づいて駆動信号を出力する制御部と、
     前記駆動信号に基づいて前記光源センサを移動させ前記検出対象光源を追尾する駆動部と、を有し、
     前記制御部は、前記検出対象光源から照射される光量に応じて前記撮像素子のシャッタスピードを変更し、前記撮像素子が受光する光量を調整することを特徴とする光源追尾装置。
  11.  前記光源センサとして、第1の光源センサと第2の光源センサとを有し、
     前記第1の光源センサは、前記集光部が集光レンズまたはピンホールであり、
     前記第2の光源センサは、前記集光部が広角レンズであり、
     前記制御部は、前記第2の光源センサの前記撮像素子により受光された画素毎の受光情報に基づいて前記検出対象光源の位置を検出し、検出された前記検出対象光源の位置に基づいて前記駆動部に制御部に駆動信号を出力した後、前記第1の光源センサの前記撮像素子により受光された画素毎の受光情報に基づいて前記検出対象光源の位置を検出し、検出された前記検出対象光源の位置に基づいて前記駆動部に駆動信号を出力することを特徴とする請求項10に記載の光源追尾装置。
  12.  検出対象光源から照射される光を集光する集光部と、
     前記集光部により集光された光を受光する撮像素子と、
     前記撮像素子により受光された画素毎の受光情報に基づいて前記検出対象光源の位置を検出する制御部と、を有する光源位置検出装置の制御方法であって、
     前記制御部は、前記検出対象光源から照射される光量に応じて前記撮像素子のシャッタスピードを変更し、前記撮像素子が受光する光量を調整することを特徴とする制御方法。
  13.  検出対象光源から照射される光を集光する集光部と、
     前記集光部により集光された光を受光する撮像素子と、
     前記撮像素子により受光された画素毎の受光情報に基づいて前記検出対象光源の位置を検出する制御部と、を有する光源位置検出装置を制御するためのプログラムであって、
     前記制御部に、前記検出対象光源から照射される光量に応じて前記撮像素子のシャッタスピードを変更し、前記撮像素子が受光する光量を調整する処理を実行させるためのプログラム。
     
PCT/JP2012/082550 2012-12-14 2012-12-14 光源位置検出装置、光源追尾装置、制御方法およびプログラム WO2014091628A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2012/082550 WO2014091628A1 (ja) 2012-12-14 2012-12-14 光源位置検出装置、光源追尾装置、制御方法およびプログラム
EP12889840.0A EP2933601B1 (en) 2012-12-14 2012-12-14 Light source position detection apparatus, light source tracking apparatus, control method, and program
JP2014551824A JP6135871B2 (ja) 2012-12-14 2012-12-14 光源位置検出装置、光源追尾装置、制御方法およびプログラム
US14/652,077 US9411036B2 (en) 2012-12-14 2012-12-14 Light source position detection apparatus, light source tracking apparatus, control method and program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/082550 WO2014091628A1 (ja) 2012-12-14 2012-12-14 光源位置検出装置、光源追尾装置、制御方法およびプログラム

Publications (1)

Publication Number Publication Date
WO2014091628A1 true WO2014091628A1 (ja) 2014-06-19

Family

ID=50933943

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/082550 WO2014091628A1 (ja) 2012-12-14 2012-12-14 光源位置検出装置、光源追尾装置、制御方法およびプログラム

Country Status (4)

Country Link
US (1) US9411036B2 (ja)
EP (1) EP2933601B1 (ja)
JP (1) JP6135871B2 (ja)
WO (1) WO2014091628A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015042003A (ja) * 2013-08-23 2015-03-02 明星電気株式会社 移動体追尾装置、移動体追尾方法
JP2019138854A (ja) * 2018-02-14 2019-08-22 キヤノン電子株式会社 光源角度測定装置、光源位置検出装置、並びに人工衛星

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020190952A1 (en) * 2019-03-18 2020-09-24 The Climate Corporation System and method for automatic control of exposure time in an imaging instrument
CN112153303B (zh) * 2020-09-28 2021-09-21 广州虎牙科技有限公司 一种视觉数据处理方法、装置、图像处理设备和存储介质

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0351713A (ja) * 1989-07-19 1991-03-06 Nec Corp 恒星センサ
JPH10197247A (ja) * 1997-01-08 1998-07-31 Fuji Photo Optical Co Ltd 位置計測作図装置の自動追尾装置
JP2000196125A (ja) * 1998-12-25 2000-07-14 Honda Motor Co Ltd 太陽位置センサ
JP2000234925A (ja) * 1998-12-14 2000-08-29 Nec Corp 姿勢検出装置
JP2000337876A (ja) * 1999-05-31 2000-12-08 Fuji Photo Optical Co Ltd 位置計測作図用自動追尾装置
JP2004085270A (ja) * 2002-08-23 2004-03-18 Nidec Copal Corp 太陽位置検出装置
JP2004153203A (ja) * 2002-11-01 2004-05-27 Daido Steel Co Ltd 集光式太陽光発電装置
JP2004340784A (ja) * 2003-05-16 2004-12-02 Mitsubishi Electric Corp スターセンサ
JP2009014495A (ja) * 2007-07-04 2009-01-22 Konica Minolta Sensing Inc 計測装置及びこれを用いた計測方法
JP2009281980A (ja) * 2008-05-26 2009-12-03 Olympus Corp 偏心測定方法および装置
JP2010223915A (ja) * 2009-03-25 2010-10-07 Fujifilm Corp 回転中心線の位置変動測定方法および装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07111343B2 (ja) 1991-11-02 1995-11-29 環境庁長官 太陽追尾センサの信号処理方法
DE102006053758A1 (de) * 2006-11-13 2008-05-15 Deutsches Zentrum für Luft- und Raumfahrt e.V. Verfahren zur Regelung der Ausrichtung eines Heliostaten auf einen Receiver, Heliostatenvorrichtung und Solarkraftwerk
US20110000478A1 (en) * 2009-07-02 2011-01-06 Dan Reznik Camera-based heliostat tracking controller
ITBO20100361A1 (it) * 2010-06-08 2011-12-09 Stefano Baricordi Sistema opto-elettronico per misure radiometriche.

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0351713A (ja) * 1989-07-19 1991-03-06 Nec Corp 恒星センサ
JPH10197247A (ja) * 1997-01-08 1998-07-31 Fuji Photo Optical Co Ltd 位置計測作図装置の自動追尾装置
JP2000234925A (ja) * 1998-12-14 2000-08-29 Nec Corp 姿勢検出装置
JP2000196125A (ja) * 1998-12-25 2000-07-14 Honda Motor Co Ltd 太陽位置センサ
JP2000337876A (ja) * 1999-05-31 2000-12-08 Fuji Photo Optical Co Ltd 位置計測作図用自動追尾装置
JP2004085270A (ja) * 2002-08-23 2004-03-18 Nidec Copal Corp 太陽位置検出装置
JP2004153203A (ja) * 2002-11-01 2004-05-27 Daido Steel Co Ltd 集光式太陽光発電装置
JP2004340784A (ja) * 2003-05-16 2004-12-02 Mitsubishi Electric Corp スターセンサ
JP2009014495A (ja) * 2007-07-04 2009-01-22 Konica Minolta Sensing Inc 計測装置及びこれを用いた計測方法
JP2009281980A (ja) * 2008-05-26 2009-12-03 Olympus Corp 偏心測定方法および装置
JP2010223915A (ja) * 2009-03-25 2010-10-07 Fujifilm Corp 回転中心線の位置変動測定方法および装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2933601A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015042003A (ja) * 2013-08-23 2015-03-02 明星電気株式会社 移動体追尾装置、移動体追尾方法
JP2019138854A (ja) * 2018-02-14 2019-08-22 キヤノン電子株式会社 光源角度測定装置、光源位置検出装置、並びに人工衛星
JP7170401B2 (ja) 2018-02-14 2022-11-14 キヤノン電子株式会社 光源角度測定装置、光源位置検出装置、並びに人工衛星

Also Published As

Publication number Publication date
JPWO2014091628A1 (ja) 2017-01-05
JP6135871B2 (ja) 2017-05-31
EP2933601A4 (en) 2016-08-10
US20150309153A1 (en) 2015-10-29
US9411036B2 (en) 2016-08-09
EP2933601B1 (en) 2019-09-11
EP2933601A1 (en) 2015-10-21

Similar Documents

Publication Publication Date Title
CN109791207A (zh) 用于确定到对象的距离的系统和方法
WO2014091628A1 (ja) 光源位置検出装置、光源追尾装置、制御方法およびプログラム
US11554035B2 (en) Heliostat tracking based on circumsolar radiance maps
WO2010149593A1 (en) Pulsed light optical rangefinder
US20090260618A1 (en) Solar tracking apparatus and solar electric power generation system thereof
JP2011013036A (ja) 直射光有無判断装置、電動ブラインドの制御装置、直射光有無判断方法及び電動ブラインドの制御方法
KR101313282B1 (ko) 하이브리드 방식의 태양위치 추적 시스템 및 그 방법
US20200026031A1 (en) Bokeh control utilizing time-of-flight sensor to estimate distances to an object
CN107830928A (zh) 一种用于卷云光学特性测量的太阳光度计
JP2007101501A (ja) 日照検出装置及び該日照検出装置を用いた電動ブラインドの制御装置
CN103134664B (zh) 一种基于凸面反射镜的在轨光学卫星相机mtf测量方法
KR101412783B1 (ko) 하이브리드식 태양추적장치를 이용한 헬리오스타트 제어 장치 및 방법
FR3071057A1 (fr) Systeme de mesure des composantes du rayonnement solaire
CN104010165B (zh) 降水粒子阴影图像自动采集装置
US10359215B2 (en) Heliostat array intensity and polarization tracking
US8669509B1 (en) Mobile computing device configured to compute irradiance, glint, and glare of the sun
JP4584104B2 (ja) 電動ブラインドの制御装置
US9086540B2 (en) Imaging apparatus and control method of imaging apparatus
KR20150137797A (ko) 태양광 발전장치
CN104038684A (zh) 一种信息处理方法及电子设备
US10690381B2 (en) Solar tracking device
KR20110123954A (ko) 태양 위치 감측 장치
KR101137022B1 (ko) 하이브리드식 헬리오스타트의 태양추적시스템
KR101249908B1 (ko) 태양의 위치 추적 장치 및 방법
JP2004325202A (ja) レーザレーダ装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12889840

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014551824

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14652077

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012889840

Country of ref document: EP