WO2014090101A1 - 基于能量优化的混合动力汽车发动机与电机扭矩分配方法 - Google Patents

基于能量优化的混合动力汽车发动机与电机扭矩分配方法 Download PDF

Info

Publication number
WO2014090101A1
WO2014090101A1 PCT/CN2013/088427 CN2013088427W WO2014090101A1 WO 2014090101 A1 WO2014090101 A1 WO 2014090101A1 CN 2013088427 W CN2013088427 W CN 2013088427W WO 2014090101 A1 WO2014090101 A1 WO 2014090101A1
Authority
WO
WIPO (PCT)
Prior art keywords
engine
torque
motor
energy
hybrid vehicle
Prior art date
Application number
PCT/CN2013/088427
Other languages
English (en)
French (fr)
Inventor
周宇星
朱军
邓晓光
张霏霏
赵沂
Original Assignee
上海汽车集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海汽车集团股份有限公司 filed Critical 上海汽车集团股份有限公司
Priority to EP13862482.0A priority Critical patent/EP2930080A4/en
Priority to US14/649,513 priority patent/US9637110B2/en
Publication of WO2014090101A1 publication Critical patent/WO2014090101A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/13Controlling the power contribution of each of the prime movers to meet required power demand in order to stay within battery power input or output limits; in order to prevent overcharging or battery depletion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/15Control strategies specially adapted for achieving a particular effect
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/06Combustion engines, Gas turbines
    • B60W2510/0614Position of fuel or air injector
    • B60W2510/0623Fuel flow rate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/06Combustion engines, Gas turbines
    • B60W2510/0638Engine speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/06Combustion engines, Gas turbines
    • B60W2510/0657Engine torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/06Combustion engines, Gas turbines
    • B60W2510/0666Engine power
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/24Energy storage means
    • B60W2510/242Energy storage means for electrical energy
    • B60W2510/244Charge state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/06Combustion engines, Gas turbines
    • B60W2710/0666Engine torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/06Combustion engines, Gas turbines
    • B60W2710/0666Engine torque
    • B60W2710/0672Torque change rate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/08Electric propulsion units
    • B60W2710/083Torque
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S903/00Hybrid electric vehicles, HEVS
    • Y10S903/902Prime movers comprising electrical and internal combustion motors
    • Y10S903/903Prime movers comprising electrical and internal combustion motors having energy storing means, e.g. battery, capacitor
    • Y10S903/93Conjoint control of different elements

Definitions

  • the present invention belongs to the field of hybrid vehicle control technology, and in particular, to an energy-optimized hybrid vehicle engine and motor torque distribution method. Background technique
  • An energy-optimized hybrid vehicle engine and motor torque distribution method includes the following steps: A. Providing an off-line specific fuel consumption map of the engine under full operating conditions, wherein the offline specific fuel consumption map is an engine
  • the rotational speed and engine torque are the contours of the specific fuel consumption of the engine drawn by the coordinate axis.
  • the full operating condition refers to the engine torque being zero between the engine speed zero value and the engine maximum speed n Eng .
  • the engine and the motor are jointly involved in responding to the demand torque T D when driving, and the motor and the engine are coordinated at the same speed to optimize the working efficiency;
  • T BSFe is the engine torque corresponding to the lowest fuel consumption point of the off-line specific fuel consumption map according to the current engine speed; otherwise, the current operating state is maintained.
  • the maximum torque limit value is obtained from an engine subsystem on a hybrid vehicle through an in-vehicle network.
  • the step c2 further comprises: acquiring the maximum torque limit value T El3 ⁇ 4 ⁇ ⁇ AN of the engine in real time through the vehicle network, and then T The minimum value of BSrc and both is determined as ⁇ ⁇ 3 ⁇ 4 _ for T Eng — filtering processing to prevent dramatic changes in its value yields T El3 ⁇ 4 lt , and then
  • the filtering process limits the rate of change of T EngJjm to be not greater than the torque rate of change of the engine.
  • the maximum torque limit value is obtained from an engine subsystem on a hybrid vehicle through an in-vehicle network.
  • the maximum torque limit value T_u ⁇ eAM and the minimum torque limit value T ⁇ eAN are mixed from the vehicle network Obtained by the motor subsystem on the power car.
  • the first preset value is not equal to the second preset value.
  • the in-vehicle network is a CAN network.
  • the present invention has the beneficial effects of using the energy-optimized hybrid vehicle engine and motor torque distribution method of the present invention to distribute torque reasonably and efficiently between the engine and the motor, that is, when the power battery is high Try to distribute the demand torque to the motor first, and then the engine to make up the remaining torque, so that the engine can be output as little as possible in an easy-to-charge working environment or the power battery is often maintained at a high value, thus avoiding fuel consumption.
  • the power battery is low, try to ensure that the engine runs at the optimal working point. By combining with the motor, the fuel consumption can be minimized.
  • the method of the present invention can fully utilize the respective performance advantages of the engine and the motor, so that the system always works in an efficient area, reduces the energy consumption cost of the vehicle, and greatly reduces harmful gas emissions, thereby contributing to energy conservation and environmental protection.
  • FIG. 1 is a schematic diagram illustrating the energy-optimized hybrid vehicle engine and motor torque distribution method of the present invention.
  • FIG. 2 is a logic diagram of transition between a first distribution mode and a second distribution mode in an embodiment of the energy-optimized hybrid vehicle engine and motor torque distribution method of the present invention.
  • FIG. — 3 is a ⁇ ⁇ ⁇ ⁇ lt and ⁇ in an example of an energy-optimized hybrid vehicle engine and motor torque distribution method of the present invention.
  • FIG. — 3 is a computational schematic diagram.
  • the implementation of the technical solution of the present invention needs to provide an off-line specific fuel consumption map of the engine under full working conditions (ie, the engine specific speed and the engine torque as the coordinate axes, and the equivalent fuel consumption BSFC (g/kWh) of the engine is plotted. Line) as a basic parameter.
  • full working condition refers to all operating points in a matrix consisting of the maximum operating speed range of the engine and the external characteristics of the engine torque.
  • the full operating condition is the engine speed from zero.
  • the engine torque is zero to all coverage areas between 1 ⁇ _ ⁇ .
  • the engine and the motor are jointly involved in the demand torque T D when the vehicle is driven, and the motor and the engine work together and coordinate work at the same speed to make the work efficiency the most. optimization.
  • the efficiency of the engine is simplified as the specific fuel consumption. This is because the engine has a large variation in fuel consumption at different rotation speeds and torques, which is a major factor affecting energy consumption.
  • the calculation of the optimum operating point torque for the engine will be continued below. If the speed is 3 ⁇ 4 under certain conditions and the demand torque of the power source is T D , then the above-mentioned offline specific fuel consumption map can be checked. The speed is ⁇ .
  • T BSK of the point with the lowest fuel consumption in the case of the speed ii Q , if the operating torque T El3 ⁇ 4J ⁇ of the engine is equal to T Bsrc , then the torque distributed by the motor is T D — T BSFC; T D — T Bsrc ⁇ 0, then means that the power source demand torque is greater than the engine optimal operating point, so the motor drive is required to provide a positive force to supplement the engine torque.
  • T D — T BSFG ; ⁇ 0 it means that the power demand torque is less than the optimal operating point of the engine, so the engine torque has extra torque in addition to the power source torque, which requires the motor to generate electricity.
  • the motor provides a negative force to convert the excess torque of the engine into electrical energy for storage.
  • the energy-optimized hybrid vehicle engine and motor torque distribution method of the present invention will be described below.
  • the method of the invention comprises the following steps:
  • Step a When the battery state of charge SOC is greater than the first preset value
  • the meaning of the first distribution mode is:
  • the power battery in the hybrid vehicle is high, the demand torque should be preferentially distributed to the motor to provide it, and then The remaining demand torque is supplemented by the engine, so that in an easy-to-charge working environment, the engine should be output as little as possible while the power is often maintained at a high value, thereby avoiding fuel consumption, specifically if ⁇ ⁇ !
  • Tl ⁇ —TM ⁇ A N represents the maximum torque limit value of the motor obtained in real time through an in-vehicle network such as CAN; when the battery state of charge SOC is not greater than the first preset value, the current working state is maintained, that is, Maintain the existing torque distribution pattern between the engine and the motor; or
  • Step b When the battery state of charge SOC is less than the second preset value, the second distribution mode is entered.
  • the first predetermined value described above may be set to be not equal to the second predetermined value to avoid frequent switching during torque distribution of the engine and the electric motor of the hybrid power system.
  • whether the condition that the SOC of the battery state of charge is greater than the first preset value is determined according to whether the condition that the battery state of charge SOC is greater than the first preset value is determined may be determined to determine whether to enter the first distribution mode from the initial state or enter the second distribution mode. This is illustrated in Figure 2.
  • the maximum torque limit value T E — : i c of the engine may be further acquired in real time in step b above (eg, may be from a hybrid via an in-vehicle network such as CAN)
  • the engine subsystem on the vehicle obtains this parameter value, or is obtained from other components, modules or devices on the hybrid vehicle, and then compares TBSFC ⁇ BT E — :i eA and the minimum of them TE ⁇ —L ⁇ is the torque _ ⁇ actually assigned to the engine, and then further determines the torque of the motor according to the above example.
  • 3 ⁇ 4 ⁇ — ⁇ T D -
  • the maximum torque limit value T ENG — TF AN of the engine may be first acquired in real time in step b above (eg, may be passed through, for example, CAN)
  • the vehicle network is obtained from the engine subsystem on the hybrid vehicle, or from other components, modules or devices on the hybrid vehicle, and then compares TBSFC ; and T EL3 ⁇ 4 — and minimizes
  • the value TE ⁇ -UTM is used as the torque T E actually assigned to the engine ; then, by filtering the T EL3 ⁇ 4 — (for example, by limiting the rate of change of T ⁇ gj ⁇ to no more than launching
  • the torque change rate of the machine or other suitable value is used to prevent the value from changing drastically (ie, to avoid the sudden change of torque under variable conditions), thus obtaining!

Abstract

一种基于能量优化的混合动力汽车发动机与电机扭矩分配方法,其包括步骤:提供发动机在全工况下的离线的比油耗Map图;使发动机与电机共同参与响应行车时的需求扭矩T D ,电机与发动机在同一转速下协调工作使得工作效率最优化;获取车载动力电池当前的电池荷电状态SOC,并且根据如下情形来分配发动机扭矩T Eng_pre ,和电机扭矩T Mac_pre :当SOC大于第一预设值时则进入第一分配模式,当SOC小于第二预设值时则进入第二分配模式,否则保持当前工作状态。所述方法可以充分发挥发动机、电机各自的性能优势,使系统始终工作在高效区域,降低车辆的能耗成本,并且大幅降低有害气体排放而有助于节能环保。

Description

说 明 书
基于能量优化的混合动力汽车发动机与电机扭矩分配方法 技术领域
[0001] 本发明属于混合动力汽车控制技术领域,尤其涉及一种基于能量优化的混合动力 汽车发动机与电机扭矩分配方法。 背景技术
[0002] 在现有技术中, 针对采用发动机和电机组成混合动力源的混合动力汽车系统, 目 前还没有例如专利文献等涉及如何在混动技术方案中的发动机和电机之间进行扭矩分 配和控制。 因此, 需要提供相应的控制方法以便在发动机、 电机之间合理地分配扭矩, 从而充分发挥发动机和电机各自的性能优势、 延长它们的使用寿命, 并且在有效保证混 合动力系统动力性能的情况下尽可能地节省燃油消耗, 使得系统始终工作在高效区域。 发明内容
[0003] 有鉴于此,本发明主要目的是提供一种基于能量优化的混合动力汽车发动机与电 机扭矩分配方法, 以便解决现有技术中存在的上述问题以及其他方面的问题。
[0004] 为了实现上述的发明目的, 本发明采用了以下技术方案:
一种基于能量优化的混合动力汽车发动机与电机扭矩分配方法, 它包括以下步骤: A. 提供发动机在全工况下的离线的比油耗 Map图,其中所述离线的比油耗 Map图是以 发动机转速和发动机扭矩为坐标轴所绘制出的发动机的比油耗的等高线,所述全工况是 指在发动机转速为零值到发动机最大转速 nEng之间、发动机扭矩为零值到发动机在各转 速下的外特性扭矩 TEL¾—皿之间的所有覆盖区域,所述外特性扭矩 TEL¾ 是指发动机 指示扭矩减去摩擦扭矩的净扭矩;
B. 使发动机与电机共同参与响应行车时的需求扭矩 TD, 所述电机与发动机在同一转速 下协调工作使得工作效率最优化; 以及
C. 获取车载动力电池当前的电池荷电状态 SOC , 并且根据如下情形来分配发动机扭矩 ^ 和电机扭矩 TM^ cl . 当电池荷电状态 SOC大于第一预设值时进入第一分配模式,即若 1^< CA 则 使得 TE.ngjjre =0 Tlv c— pre =TD,若 TD >Trviac CAN贝1 J使得 Tlvfec— pre C.AN TRngja? =TD 其中 是通过车载网络实时获取的所述电机的最大扭矩限制 值; 否则, 保持当前工作状态; 或者 c2. 当电池荷电状态 SOC小于第二预设值时进入第二分配模式, 即使得 TEl¾jm=TBSFC;
Ί^_^= TD— TBSrc, 其中 TBSFe是根据发动机的当前转速在所述离线的比油耗 Map图 查出的比油耗最低点所对应的发动机扭矩; 否则, 保持当前工作状态。
[0005] 在上述基于能量优化的混合动力汽车发动机与电机扭矩分配方法中, 优选地, 所 述步骤 c2进一步包括: 通过车载网络实时获取发动机的最大扭矩限制值 T£l¾— ^ AN, 然后将 TBSFC;和 二者中的最小值确定为 TEl¾— y^ , 然后使得 TE ,=TEl¾— u™, 7 , = To
― T n ^一 Lim
[0006] 在上述基于能量优化的混合动力汽车发动机与电机扭矩分配方法中, 优选地, 所 述最大扭矩限制值 ΤΕ^^^ΑΝ是通过车载网络从混合动力汽车上的发动机子系统获得 的。
[0007] 在上述基于能量优化的混合动力汽车发动机与电机扭矩分配方法中, 优选地, 所 述步骤 c2进一步包括: 通过车载网络实时获取发动机的最大扭矩限制值 TEl¾― ^AN, 然后将 TBSrc和 二者中的最小值确定为 τΕι¾_ 对 TEng— 进行防止其数值出现剧烈变化的滤波处理得到 TEl¾ lt, 然后使得 以及
Figure imgf000004_0001
通过车载网络实时获取所述电机的最大扭矩限制值 TM^ ^^^ T和最小扭矩限制值
TMa^CAN, 并且获得计算值 TD— TBSFC + (TEL¾__LJKL - TEL¾_^IT ) , 接着将该计算值与 fc maxCAN一者中的最小值确定为 TMae_Lim, 再将 TMae_Lim与 T c mmCAN——者中的最大 值确定为 Tlvkc— split, 然后使得 ^ =Ti ]ac_spi1t ° [0008] 在上述基于能量优化的混合动力汽车发动机与电机扭矩分配方法中, 优选地, 所 述滤波处理是将 TEngJjm的变化率限制为不大于发动机的扭矩变化率。 [0009] 在上述基于能量优化的混合动力汽车发动机与电机扭矩分配方法中, 优选地, 所 述最大扭矩限制值 ΤΕ^^^ΑΝ是通过车载网络从混合动力汽车上的发动机子系统获得 的。
[0010] 在上述基于能量优化的混合动力汽车发动机与电机扭矩分配方法中, 优选地, 所 述最大扭矩限制值 T — u^eAM和最小扭矩限制值 T^^^eAN是通过车载网络从混合动 力汽车上的电机子系统获得的。
[0011] 在上述基于能量优化的混合动力汽车发动机与电机扭矩分配方法中, 优选地, 所 述第一预设值不等于所述第二预设值。
[0012] 在上述基于能量优化的混合动力汽车发动机与电机扭矩分配方法中, 优选地, 所 述车载网络是 CAN网络。
[0013] 本发明的有益效果在于:采用本发明的基于能量优化的混合动力汽车发动机与电 机扭矩分配方法, 能够在发动机、 电机之间合理、 高效地分配扭矩, 即在动力电池电量 较高时尽量先将需求扭矩分配给电机, 然后由发动机来补足剩余扭矩, 这样就可以在易 于充电的工作环境或动力电池电量经常维持较高值情况下尽量少让发动机出力, 从而避 免了燃油消耗。 另外, 当动力电池电量较低时尽量保证发动机运行在最佳工作点下, 通 过与电机相结合而使得燃油消耗量可降到最低。 因此, 采用本发明方法就可以充分发挥 发动机、 电机各自的性能优势, 使系统始终工作在高效区域, 降低车辆的能耗成本, 并 且大幅降低有害气体排放而有助于节能环保。 附图说明 [0014] 以下将结合附图和实施例, 对本发明的技术方案作进一步的详细描述。
[0015] 图 1 是本发明的基于能量优化的混合动力汽车发动机与电机扭矩分配方法的 理说明示意图。
[0016] 图 2 是本发明的基于能量优化的混合动力汽车发动机与电机扭矩分配方法一 实施例中第一分配模式、 第二分配模式之间的转换逻辑示意图。
[0017] 图 3 是本发明的基于能量优化的混合动力汽车发动机与电机扭矩分配方法实 例中 τΕι¾ lt和 τ 。— 3 的计算逻辑示意图。
具体实施方式
[0018] 需要说明的是,以下将以示例方式来具体说明本发明的基于能量优化的混合动力 汽车发动机与电机扭矩分配方法的原理、 特点以及优点, 然而所有的描述仅是用来进行 说明的, 而不应将它们理解为对本发明形成任何的限制。 此外, 在本文所提及的各实施 例中予以描述或隐含的任意单个技术特征, 或者被显示或隐含在各附图中的任意单个技 术特征, 仍然可以在这些技术特征 (或其等同物)之间继续进行任意组合或者删减, 从而 获得可能未在本文中直接提及的本发明的更多其他实施例。
[0019] 为了便于更好地理解本发明方法, 还需要进行以下一些解释和说明。 首先, 实施 本发明技术方案需要提供发动机在全工况下的离线的比油耗 Map图(即以发动机转速和 发动机扭矩为坐标轴, 绘制出的发动机的比油耗 BSFC(g/kWh)的等高线)作为基础参量。 上述用语 "全工况"就是指在发动机的最大工作转速范围和发动机扭矩外特性组成的矩 阵内所有的工况点。 举例而言, 当发动机最大转速为 nEng, 发动机在各个转速下的外特 性扭矩为 TEng_max (即发动机指示扭矩减去摩擦扭矩的净扭矩), 那么全工况就是发动机 转速从零值到 llEr ^之间、 发动机扭矩为零值到 1^^_„^之间的所有覆盖区域。
[0020] 其次, 在本发明中使发动机与电机 (可能是单电机或多电机)共同参与响应行车时 的需求扭矩 TD, 电机与发动机共同出力并且在同一转速下协调工作以使得工作效率最 优化。 如上所述, 在本发明中是将发动机的工作效率简化理解为比油耗, 这是因为发动 机比油耗在不同转速及扭矩下的变化较大, 它是影响能耗的主要因素。
[0021] 请参考图 1, 下面继续说明对于发动机最佳工作点扭矩的计算。 如果在一定工况 下转速为 ¾和动力源的需求扭矩为 TD, 那么可以通过上述离线的比油耗 Map图可以查 出转速 ΐϊ。所对应的比油耗最低的点的扭矩 TBSK 这样, 在转速 iiQ的情况下, 如果令发 动机的工作扭矩 TEl¾J¥等于 TBsrc的话,那么电机分配到的扭矩 就是 TD— TBSFC; 当 TD— TBsrc〉0时, 那么就意味着动力源需求扭矩大于发动机最佳工作点, 因此需要 电机驱动来提供正力, 以便补充发动机扭矩。 当 TD— TBSFG; <0时, 那么就意味着动力 需求扭矩小于发动机最佳工作点, 因此发动机的扭矩除了用于响应动力源扭矩外还有多 余的扭矩, 这就需要使电机进行发电, 由电机来提供负力, 以便将发动机多余的扭矩转 化成电能储存起来。
[0022] 下面将介绍本发明的基于能量优化的混合动力汽车发动机与电机扭矩分配方法。 总体而言, 本发明方法包括以下步骤:
如前所述, 需要提供发动机在全工况下的离线的比油耗 Map图;
此外, 需要使得发动机与电机共同参与响应行车时的需求扭矩 TD, 它们在同一转速下 协调工作, 以便使得工作效率最优化;
然后, 获取车载动力电池当前的电池荷电状态 SOC 来作为判断条件, 以便根据以下情 形来分配发动机扭矩 TEngJ^和电机扭矩¾¾― : 步骤 a. 当电池荷电状态 SOC大于第一预设值时, 则进入第一分配模式, 所谓第一分配 模式的含义是: 当混合动力汽车中的动力电池电量较高的时候, 应尽量将需求扭矩优先 地全部分配给电机由其来提供, 然后再将剩余的需求扭矩由发动机来补足, 这样在易于 充电的工作环境中、 在电量经常维持较高值情况下应当尽可能少让发动机出力, 从而避 免了燃油消耗, 具体而言就是如果 Τ Τ!^— n^t^w则使得 TE JB=0 T — p^TD, 如 果 TD>TMac— CAN贝1 J使得 Tivlac—re =丁1\½ CAN CA , 上述参数
Figure imgf000007_0001
Tl^—™^AN表示的是通过例如 CAN 等车载网络所实时获取到的电机的最大扭矩限制 值; 当电池荷电状态 SOC不大于第一预设值时, 则保持当前工作状态, 即维持发动机、 电机之间的现有扭矩分配格局不变; 或者
步骤 b. 当电池荷电状态 SOC小于第二预设值, 则进入第二分配模式, 所谓第二分配模 式的含义是: 当混合动力汽车中的动力电池电量较低的时候, 需要考虑发动机最佳工作 点, 并且将电机来作为辅助动力源, 使其与发动机扭矩共同提供行车所需要的扭矩, 从 而通过二者相结合来使得油耗降至最低,具体而言就是使得 TE JB=TBS:RC (该 TBS:RC是根 据发动机的当前转速在离线的比油耗 Map 图查出的比油耗最低点所对应的发动机扭 矩), ^_^= TD - TBSFC ; 当电池荷电状态 SOC不小于第二预设值时, 则保持当前工 作状态, 即维持发动机、 电机之间的现有扭矩分配格局不变。
[0023] 在优选情形下, 可以将上述的第一预设值设置成不等于第二预设值, 以避免在混 合动力系统的发动机和电机的扭矩分配过程中频繁发生切换。 此外, 可以在混合动力汽 车运行初始时, 就根据上述的电池荷电状态 SOC 大于第一预设值的条件是否成立, 从 而判断确定是从初始状态进入第一分配模式、 还是进入第二分配模式, 这在图 2中进行 了图示。
[0024] 除以上所述以外,还可以对本发明的基于能量优化的混合动力汽车发动机与电机 扭矩分配方法做出进一步改变。
[0025] 作为举例, 在一些可选情形下, 可在上述的步骤 b中进一步地实时获取发动机的 最大扭矩限制值 TE:ic; (例如, 可以通过如 CAN等车载网络从混合动力汽车上的发 动机子系统获得该参数值, 或者从混合动力汽车上的其他部件、 模块或装置等处获得), 然后比较 TBSFC^BTE:ieA 二者,并将它们当中的最小值 TE^—L^作为实际分配给发动 机的扭矩 _^, 然后按照前述示例说明来进一步确定电机的扭矩 ¾^—^ = TD -
Figure imgf000008_0001
[0026] 再举例而言, 在另一些可选情形下, 如图 3所示, 可在上述的步骤 b中首先实时 获取发动机的最大扭矩限制值 TENGTFAN (例如, 可以通过如 CAN等车载网络从混合动 力汽车上的发动机子系统获得, 或者从混合动力汽车上的其他部件、 模块或装置等处获 得), 然后比较 TBSFC;和 TEL¾— 二者, 并将它们当中的最小值 TE^—U™作为实际分配 给发动机的扭矩 TE , ; 然后, 通过对 TEL¾— 进行滤波处理 (例如, 通过将 T^^gj^的变化率限制为不大于发动 机的扭矩变化率或其他适宜数值等方式来实现), 以便防止该数值出现剧烈变化 (即为了 避免变工况下出现扭矩变化剧烈), 从而得到!^^—^^并将其作为发动机的扭矩 TEngjm ; 接着, 实时获取电机的最大扭矩限制值 maxC 禾口最小扭矩限制值 i]ac niinCA (例如, 可以通过如 CAN等车载网络从混合动力汽车上的电机子系统获得这些参数值, 或者从 混合动力汽车上的其他部件、 模块或装置等处获得); 由于以上针对发动机的扭矩进行 了滤波处理,这样就造成了经滤波处理后得到的 TE — 与原始的 TEl¾JLjm之间产生了偏 差, 所以需要针对电机扭矩进行相应的补偿处理, 即得到计算值 (TD TBSFC)+(TEl¾_Lmi TEng— ^pm),接着将该计算值与 CAN进行比较并且将其中的最小值作为 TMaeLim, 随后再比较 TMae_Lim与 TMae— ^CAH并将二者中的最大值 s 作为实际分配给电机的 扭矩 Ti lac— pre o
[ 00271 以上列举了若干具体实施例来详细阐明本发明的基于能量优化的混合动力汽车 发动机与电机扭矩分配方法, 这些个例仅供说明本发明的原理及其实施方式之用, 而非 对本发明的限制, 在不脱离本发明的精神和范围的情况下, 本领域的普通技术人员还可 以做出各种变形和改进。 因此, 所有等同的技术方案均应属于本发明的范畴并为本发明 的各项权利要求所限定。

Claims

权 利 要 求 书
1. 一种基于能量优化的混合动力汽车发动机与电机扭矩分配方法, 其特征在于, 它包括以下步骤:
A. 提供发动机在全工况下的离线的比油耗 Map图, 其中所述离线的比油耗 Map 图是以发动机转速和发动机扭矩为坐标轴所绘制出的发动机的比油耗的等高线, 所述全 工况是指在发动机转速为零值到发动机最大转速 nEng之间、发动机扭矩为零值到发动机 在各转速下的外特性扭矩 TENG—„_之间的所有覆盖区域, 所述外特性扭矩 TH^ 是指发 动机指示扭矩减去摩擦扭矩的净扭矩;
B . 使发动机与电机共同参与响应行车时的需求扭矩 TD, 所述电机与发动机在同一 转速下协调工作使得工作效率最优化; 以及
C. 获取车载动力电池当前的电池荷电状态 SOC , 并且根据如下情形来分配发动机 扭矩 TEl¾ 和电机扭矩 1 — ^: cl . 当电池荷电状态 SOC大于第一预设值时进入第一分配模式,即若 Τ Τ!^^^^
Figure imgf000010_0001
一 T^_maK^, 其中 Tr^^ ^是通过车载网络实时获取的所述电机的最大扭矩限制值; 否 贝 ϋ, 保持当前工作状态; 或者
c2. 当电池荷电状态 SOC小于第二预设值时进入第二分配模式, 即使得 TEL¾J^=TBSFC, ^_^ = 一 TBSFE, 其中 TBSFC是根据发动机的当前转速在所述离线的比 油耗 Map图查出的比油耗最低点所对应的发动机扭矩; 否则, 保持当前工作状态。
2. 根据权利要求 1所述基于能量优化的混合动力汽车发动机与电机扭矩分配方法, 其特征在于, 所述步骤 c2进一步包括:
通过车载网络实时获取发动机的最大扭矩限制值 TH^^ , 然后将 Tbs 和 ΤΗ^^ 二者中的最小值确定为 TE — ]^, 然后使得 ,= 1 _^, TD— TEl — 。
3. 根据权利要求 2所述基于能量优化的混合动力汽车发动机与电机扭矩分配方法, 其特征在于, 所述最大扭矩限制值 TH^^ 是通过车载网络从混合动力汽车上的发动机 子系统获得的。
4. 根据权利要求 1所述基于能量优化的混合动力汽车发动机与电机扭矩分配方法, 其特征在于, 所述步骤 c2进一步包括:
通过车载网络实时获取发动机的最大扭矩限制值 TH^ ^ , 然后将 Tbs 和 ΤΕ^^^Τ 二者中的最小值确定为 ^^ Lion; 对 TEl¾— 进行防止其数值出现剧烈变化的滤波处理得到 TEl¾— , 然后使得 以及
Figure imgf000011_0001
通过车载网络实时获取所述电机的最大扭矩限制值 Tj^—m^^和最小扭矩限制值 并且获得计算值 TD— TBS +(TEl¾— — TEl¾— ^it),接着将该计算值与 T 二者中的最小值确定为 T cLlm, 再将 TM^— umm 二者中的最大值确定为
¾kc— SpHt, 然后使得 Tjviac— pre
Figure imgf000011_0002
5. 根据权利要求 4所述基于能量优化的混合动力汽车发动机与电机扭矩分配方法, 其特征在于, 所述滤波处理是将 TEl¾— Um的变化率限制为不大于发动机的扭矩变化率。
6. 根据权利要求 4或 5所述基于能量优化的混合动力汽车发动机与电机扭矩分配 方法, 其特征在于, 所述最大扭矩限制值 TS^^ 是通过车载网络从混合动力汽车上的 发动机子系统获得的。
7. 根据权利要求 4或 5所述基于能量优化的混合动力汽车发动机与电机扭矩分配 方法, 其特征在于, 所述最大扭矩限制值 TM^m AW和最小扭矩限制值 T —M ^是通过车 载网络从混合动力汽车上的电机子系统获得的。
8. 根据权利要求 1-5中任一项所述基于能量优化的混合动力汽车发动机与电机扭 矩分配方法, 其特征在于, 所述第一预设值不等于所述第二预设值。
9. 根据权利要求 1-5 中任一项所述基于能量优化的混合动力汽车发动机与电机扭 矩分配方法, 其特征在于, 所述车载网络是 CAN网络。
PCT/CN2013/088427 2012-12-10 2013-12-03 基于能量优化的混合动力汽车发动机与电机扭矩分配方法 WO2014090101A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP13862482.0A EP2930080A4 (en) 2012-12-10 2013-12-03 TORQUE DISTRIBUTION METHOD FOR ENGINE AND ELECTRIC MOTOR OF ENERGY-EFFICIENT HYBRID ELECTRIC VEHICLE
US14/649,513 US9637110B2 (en) 2012-12-10 2013-12-03 Torque distribution method for engine and motor of energy-efficient hybrid electric vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210526797.XA CN103863311B (zh) 2012-12-10 2012-12-10 基于能量优化的混合动力汽车发动机与电机扭矩分配方法
CN201210526797.X 2012-12-10

Publications (1)

Publication Number Publication Date
WO2014090101A1 true WO2014090101A1 (zh) 2014-06-19

Family

ID=50902488

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/088427 WO2014090101A1 (zh) 2012-12-10 2013-12-03 基于能量优化的混合动力汽车发动机与电机扭矩分配方法

Country Status (4)

Country Link
US (1) US9637110B2 (zh)
EP (1) EP2930080A4 (zh)
CN (1) CN103863311B (zh)
WO (1) WO2014090101A1 (zh)

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9415764B2 (en) * 2014-07-10 2016-08-16 Ford Global Technologies, Llc Methods and systems for improving hybrid vehicle performance consistency
CN105620467B (zh) * 2014-10-31 2018-08-14 比亚迪股份有限公司 混合动力车辆及混合动力车辆的驱动控制方法
FR3037025B1 (fr) * 2015-06-05 2018-07-27 Psa Automobiles Sa. Procede de controle de la decharge de l'accumulateur electrique d'un vehicule hybride pour le roulage dans une zone de circulation controlee
DE102016117299A1 (de) 2015-09-17 2017-03-23 Hyundai Motor Company Nutzerschnittstellenvorrichtung eines Ungleichmäßiger-Hubraum- Verbrennungsmotor-Steuersystems und Steuerverfahren der Nutzerschnittstellenvorrichtung des Ungleichmäßiger-Hubraum- Verbrennungsmotor-Steuersystems
US10086820B2 (en) 2015-09-17 2018-10-02 Hyundai Motor Company Non-uniform displacement engine control system and method having transient state control mode
DE102016117300A1 (de) * 2015-09-17 2017-03-23 Hyundai Motor Company Ungleichmäßiger-Hubraum-Verbrennungsmotor-Steuersystem mit unterschiedlichen Steuerungsmodi basierend auf einem Ladezustand einer Batterie und Verfahren zum Steuern eines Ungleichmäßiger-Hubraum-Verbrennungsmotors mit unterschiedlichen Steuerungsmodi basierend auf einem Ladezustand einer Batterie
JP6890392B2 (ja) * 2015-09-17 2021-06-18 現代自動車株式会社Hyundai Motor Company シリンダーの休止を用いる非均等排気量エンジン制御システム及びその制御方法
US9914449B2 (en) * 2016-01-13 2018-03-13 Ford Global Technologies, Llc Methods and system for improving efficiency of a hybrid vehicle
DE102016208238A1 (de) * 2016-05-12 2017-11-16 Volkswagen Aktiengesellschaft Steuerungsverfahren für einen Hybridantrieb, Steuergerät und Hybridantrieb
CN107600065A (zh) * 2016-07-12 2018-01-19 贵航青年莲花汽车有限公司 一种基于动力电池寿命优化的整车控制方法
CN106394549B (zh) * 2016-08-31 2019-01-29 北京新能源汽车股份有限公司 用于混合动力汽车的扭矩分配方法及装置
CN106357189B (zh) * 2016-10-10 2019-04-16 金龙联合汽车工业(苏州)有限公司 一种车用驱动电机系统效率分布的设计方法
DE102016125607A1 (de) * 2016-12-23 2018-06-28 Volkswagen Aktiengesellschaft Verfahren zum Betreiben eines Antriebssystems, Antriebssystem und Kraftfahrzeug
JP6753368B2 (ja) * 2017-06-28 2020-09-09 トヨタ自動車株式会社 ハイブリッド車両
CN107640038B (zh) * 2017-08-01 2020-02-18 浙江吉利新能源商用车有限公司 插电式混合动力电动汽车及其能量管理方法
CN108657168B (zh) * 2018-04-26 2020-05-12 北京航天发射技术研究所 一种多动力单元功率匹配优化控制方法
CN109353328A (zh) * 2018-09-28 2019-02-19 潍柴动力股份有限公司 一种混合动力控制方法、系统及搅拌车
CN112572406B (zh) * 2019-09-27 2022-06-10 比亚迪股份有限公司 控制车辆的方法、装置、存储介质及车辆
CN111016876B (zh) * 2019-12-05 2021-02-19 浙江吉利汽车研究院有限公司 一种单电机混合动力车发动机扭矩控制策略及系统
CN111516702B (zh) * 2020-04-30 2021-07-06 北京理工大学 一种混合动力车辆在线实时分层能量管理方法和系统
CN112061122A (zh) * 2020-08-03 2020-12-11 北京汽车股份有限公司 混合动力车辆的巡航控制方法及装置
CN112026743B (zh) * 2020-08-28 2021-10-12 重庆长安汽车股份有限公司 串联式混合动力汽车能量管理方法、装置及混合动力汽车
CN112046463A (zh) * 2020-09-21 2020-12-08 云动(上海)汽车技术有限公司 一种混合动力汽车动力总成控制方法
CN112267950B (zh) * 2020-10-20 2023-05-02 东风越野车有限公司 混合动力柴油机高精度扭矩控制方法
CN113104021B (zh) * 2020-11-17 2022-06-07 吉林大学 一种基于智能优化的增程式电动汽车能量管理控制方法
CN112389410A (zh) * 2020-11-18 2021-02-23 重庆美沣秦安汽车驱动系统有限公司 混合动力汽车的增程器控制方法、系统、存储介质及终端
CN112428881B (zh) * 2020-12-04 2022-06-14 浙江吉利控股集团有限公司 一种用于混合动力车辆的电池加热方法及加热系统
CN114954427A (zh) * 2020-12-25 2022-08-30 浙江吉利控股集团有限公司 混合动力汽车的控制方法、汽车、车载终端及存储介质
CN113183944B (zh) * 2021-04-20 2022-09-02 东风汽车集团股份有限公司 确定驾驶员需求驱动及滑行转矩的方法及设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101602362A (zh) * 2009-06-08 2009-12-16 奇瑞汽车股份有限公司 一种混合动力车的辅助驱动扭矩分配方法
JP2011063089A (ja) * 2009-09-16 2011-03-31 Mitsubishi Fuso Truck & Bus Corp ハイブリッド電気自動車の制御装置
CN102358283A (zh) * 2011-08-19 2012-02-22 奇瑞汽车股份有限公司 一种混合动力车驱动轴扭矩解析控制方法
CN102431550A (zh) * 2011-10-17 2012-05-02 大连理工大学 一种混合动力汽车控制方法
JP2012086709A (ja) * 2010-10-21 2012-05-10 Nissan Motor Co Ltd 車両の駆動力制御装置
CN102774374A (zh) * 2011-05-12 2012-11-14 上海汽车集团股份有限公司 混合动力汽车扭矩监控系统

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5842534A (en) 1995-05-31 1998-12-01 Frank; Andrew A. Charge depletion control method and apparatus for hybrid powered vehicles
US6847189B2 (en) * 1995-05-31 2005-01-25 The Regents Of The University Of California Method for controlling the operating characteristics of a hybrid electric vehicle
JP2007246009A (ja) * 2006-03-17 2007-09-27 Mitsubishi Fuso Truck & Bus Corp ハイブリッド電気自動車の制御装置
US7575529B2 (en) * 2006-09-13 2009-08-18 Gm Global Technology Operations, Inc. Hybrid electrically variable transmission with geared reverse mode using single motor/generator
AT9756U1 (de) 2006-12-11 2008-03-15 Magna Steyr Fahrzeugtechnik Ag Verfahren zur steuerung des hybridantriebes eines kraftfahrzeuges und steuersystem
JP2010057228A (ja) * 2008-08-27 2010-03-11 Hitachi Ltd モータ制御装置
CN101428610A (zh) * 2008-12-04 2009-05-13 奇瑞汽车股份有限公司 一种混合动力汽车动力总成控制方法
JP2011131830A (ja) * 2009-12-25 2011-07-07 Mitsubishi Fuso Truck & Bus Corp ハイブリッド電気自動車の制御装置
JP2013533424A (ja) * 2010-09-24 2013-08-22 スクデリ グループ リミテッド ライアビリティ カンパニー 分割サイクルエンジンのターボ過給小型化圧縮シリンダ
JP2012126327A (ja) * 2010-12-17 2012-07-05 Daimler Ag ハイブリッド電気自動車の走行制御装置
DE102011002541A1 (de) 2011-01-12 2012-07-12 Zf Friedrichshafen Ag Verfahren zum Betreiben eines Hybridantriebs sowie Steuerungseinrichtung eines Hybridantriebs
US9580062B2 (en) 2012-01-10 2017-02-28 Ford Global Technologies, Llc Method for increasing fuel economy of plug-in hybrid electric vehicles
CN102602388B (zh) * 2012-03-29 2015-11-18 潍柴动力股份有限公司 一种优化混合动力发动机怠速下工况的方法和装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101602362A (zh) * 2009-06-08 2009-12-16 奇瑞汽车股份有限公司 一种混合动力车的辅助驱动扭矩分配方法
JP2011063089A (ja) * 2009-09-16 2011-03-31 Mitsubishi Fuso Truck & Bus Corp ハイブリッド電気自動車の制御装置
JP2012086709A (ja) * 2010-10-21 2012-05-10 Nissan Motor Co Ltd 車両の駆動力制御装置
CN102774374A (zh) * 2011-05-12 2012-11-14 上海汽车集团股份有限公司 混合动力汽车扭矩监控系统
CN102358283A (zh) * 2011-08-19 2012-02-22 奇瑞汽车股份有限公司 一种混合动力车驱动轴扭矩解析控制方法
CN102431550A (zh) * 2011-10-17 2012-05-02 大连理工大学 一种混合动力汽车控制方法

Also Published As

Publication number Publication date
CN103863311A (zh) 2014-06-18
EP2930080A1 (en) 2015-10-14
US20150314773A1 (en) 2015-11-05
EP2930080A4 (en) 2016-05-11
US9637110B2 (en) 2017-05-02
CN103863311B (zh) 2017-04-19

Similar Documents

Publication Publication Date Title
WO2014090101A1 (zh) 基于能量优化的混合动力汽车发动机与电机扭矩分配方法
US8515606B2 (en) Torque management method for hybrid electric motor
WO2018188224A1 (zh) 供电系统、电力驱动装置、纯电动汽车及其工作方法
RU2453455C1 (ru) Гибридное транспортное средство и способ управления электроэнергией гибридного транспортного средства
US9421846B2 (en) Vehicle control system
CN102975625B (zh) 一种电动车增程器调速的实现方法
CN109094552A (zh) 一种发动机的停机控制方法、系统及混合动力汽车
CN103042948B (zh) 控制包括永磁同步马达的车辆的系统和方法
CN108215813A (zh) 一种增程器控制系统及控制方法
KR20130064537A (ko) 친환경 자동차의 토크 제어방법 및 그 장치
CN1807144A (zh) 一种基于can总线网络通信的燃料电池客车能量控制方法
CN203713586U (zh) 电动客车增程器的集成控制系统
CN103427742A (zh) 一种绕组开路式混合励磁电机发电系统及其能量分配方法
JP2018122792A (ja) ハイブリッド車両
CN102556046B (zh) 用于控制混合动力车电动机的系统和方法
CN111086415B (zh) 电池充电管理方法、装置、车辆及存储介质
TWI688501B (zh) 混合動力汽車及其動力系統
CN113442737B (zh) 一种双电机联合驱动系统的双电机控制系统及控制方法
CN105857095A (zh) 一种增程器功率时间控制方法
CN110920418B (zh) 在纯电动车上实现自主发电增程的子系统及方法
CN102664582A (zh) 一种增程式电动汽车发电控制方法
CN110311604B (zh) 电动马达驱动装置
CN105774795B (zh) 并联式混合动力系统车辆的扭矩分配方法及系统
CN106882081B (zh) 基于瞬时能量消耗最小的双电机纯电动汽车能量管理方法
US11052743B2 (en) Oil maintenance strategy for electrified vehicles

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13862482

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14649513

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013862482

Country of ref document: EP